1
|
Xian ZN, Gong H, Xu Y, Zhu N. Recent advances in occurrence, biotreatment, and integrated insights into bacterial degradation of phthalic acid esters in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138248. [PMID: 40239513 DOI: 10.1016/j.jhazmat.2025.138248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Phthalic acid esters (PAEs) are prevalent as emerging contaminants owing to their widespread use as plasticizers in industry. Despite their environmental and health risks, a limited understanding of PAE contamination in aquatic environments hinders the practical implementation of biotreatment strategies for their removal. This paper reviews the advances in occurrence, biotreatment, and relevant integrative analysis of bacterial PAE degradation over the past decade. In various aquatic environments, dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are the predominant PAE pollutants across different regions, with alarming levels reported in Eastern China. PAEs in water usually inhibit the growth and metabolism of surrounding organisms. Meanwhile, various biotreatment techniques have proven effective in removing PAEs from leachate and wastewater. The treatment efficiency can be further enhanced by incorporating suitable physicochemical processes and optimizing key factors, such as the initial pollutant concentration, PAE type, and reaction time. Additionally, a K-means machine learning algorithm and 16S rRNA gene-based evolutionary analysis were employed to reveal that soil is a preferred source for isolating strains, with Gordonia and Pseudomonas being the dominant genera of PAE-degrading bacteria exhibiting high degradation efficiency. Moreover, most PAE hydrolase genes were discovered in these two genera. Different gene clusters facilitated the subsequent degradation pathways under aerobic or anaerobic conditions. This paper presents the latest updates on PAE biotreatment and offers an integrated analysis of the bacterial degradation involved. Future research should apply these insights to enhance the overall effectiveness of PAE removal in water.
Collapse
Affiliation(s)
- Zhuo-Ning Xian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Huabo Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 20040, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
2
|
Dhar R, Basu S, Bhattacharyya M, Acharya D, Dutta TK. Bacterial Catabolism of Phthalates With Estrogenic Activity Used as Plasticisers in the Manufacture of Plastic Products. Microb Biotechnol 2024; 17:e70055. [PMID: 39548699 PMCID: PMC11568242 DOI: 10.1111/1751-7915.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024] Open
Abstract
Phthalic acid esters (PAEs), the pervasive and ubiquitous endocrine-disrupting chemicals of environmental concern, generated annually on a million-ton scale, are primarily employed as plasticisers in the production of a variety of plastic products and as additives in a large number of commercial supplies. The increased awareness of various adverse effects on the ecosystem and human health including reproductive and developmental disorders has led to a striking increase in research interest aimed at managing these man-made oestrogenic chemicals. In these circumstances, microbial metabolism appeared as the major realistic process to neutralise the toxic burdens of PAEs in an ecologically accepted manner. Among a wide variety of microbial species capable of degrading/transforming PAEs reported so far, bacteria-mediated degradation has been studied most extensively. The main purpose of this review is to provide current knowledge of metabolic imprints of microbial degradation/transformation of PAEs, a co-contaminant of plastic pollution. In addition, this communication illustrates the recent advancement of the structure-functional aspects of the key metabolic enzyme phthalate hydrolase, their inducible regulation of gene expression and evolutionary relatedness, besides prioritising future research needs to facilitate the development of new insights into the bioremediation of PAE in the environment.
Collapse
Affiliation(s)
- Rinita Dhar
- Department of MicrobiologyBose InstituteKolkataIndia
| | - Suman Basu
- Department of MicrobiologyBose InstituteKolkataIndia
| | | | | | | |
Collapse
|
3
|
Lequan Q, Yanan F, Xianda Z, Mengyuan B, Chenyu L, Shijin W. Mechanisms and high-value applications of phthalate isomers degradation pathways in bacteria. World J Microbiol Biotechnol 2024; 40:247. [PMID: 38904858 DOI: 10.1007/s11274-024-04060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Phthalate isomers are key intermediates in the biodegradation of pollutants including waste polyethylene terephthalate (PET) plastics and plasticizers. So far, an increasing number of phthalate isomer-degrading strains have been isolated, and their degradation pathways show significant diversity. In this paper, we comprehensively review the current status of research on the degrading bacteria, degradation characteristics, aerobic and anaerobic degradation pathways, and degradation genes (clusters) of phthalate isomers, and discuss the current shortcomings and challenges. Moreover, the degradation process of phthalate isomers produces many important aromatic precursor molecules, which can be used to produce higher-value derivative chemicals, and the modification of their degradation pathways holds good prospects. Therefore, this review also highlights the current progress made in modifying the phthalate isomer degradation pathway and explores its potential for high-value applications.
Collapse
Affiliation(s)
- Qiu Lequan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| | - Fu Yanan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhou Xianda
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Bao Mengyuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Li Chenyu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wu Shijin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
4
|
Singh S, Thakur RS, Manickam N. Insights into molecular mechanism of plasticizer biodegradation in Dietzia kunjamensis IITR165 and Brucella intermedia IITR166 isolated from a solid waste dumpsite. J Appl Microbiol 2023; 134:lxad231. [PMID: 37838476 DOI: 10.1093/jambio/lxad231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/16/2023]
Abstract
AIMS Isolation of phthalate esters (PAEs) degrading bacteria from a solid waste dumpsite could degrade many plasticizers efficiently and to investigate their degrading kinetics, pathways, and genes. METHODS AND RESULTS Based on their 16S rRNA gene sequence the strains were identified as Dietzia kunjamensis IITR165 and Brucella intermedia IITR166, which showed a first-order degradation kinetic model under lab conditions. The quantification of phthalates and their intermediate metabolites identification were done by using ultra-high-performance liquid chromatography (UHPLC) and gas chromatography-tandem mass-spectrometry (GC-MS/MS), respectively. Both the bacteria utilized >99% dibutyl phthalate at a high concentration of 100-400 mg L-1 within 192 h as monitored by UHPLC. GC-MS/MS revealed the presence of metabolites dimethyl phthalate (DMP), phthalic acid (PA), and benzoic acid (BA) during DBP degradation by IITR165 while monobutyl phthalate (MBP) and PA were identified in IITR166. Phthalate esters degrading gene cluster in IITR165 comprised two novel genes coding for carboxylesterase (dkca1) and mono-alkyl phthalate hydrolase (maph), having only 37.47% and 47.74% homology, respectively, with reported phthalate degradation genes, along with the terephthalate dioxygenase system (tphA1, A2, A3, and B). However, IITR166 harbored different gene clusters comprising di-alkyl phthalate hydrolase (dph_bi), and phthalate dioxygenase (ophA, B, and C) genes. CONCLUSIONS Two novel bacterial strains, Dietzia kunjamensis IITR165 and Brucella intermedia IITR166, were isolated and found to efficiently degrade DBP at high concentrations. The degradation followed first-order kinetics, and both strains exhibited a removal efficiency of over 99%. Metabolite analysis revealed that both bacteria utilized de-methylation, de-esterification, and decarboxylation steps during degradation.
Collapse
Affiliation(s)
- Saurabh Singh
- FEST Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ravindra Singh Thakur
- Analytical Sciences and Accredited Testing Services, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Natesan Manickam
- FEST Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
5
|
Basu S, Dhar R, Bhattacharyya M, Dutta TK. Biochemical and Multi-Omics Approaches To Obtain Molecular Insights into the Catabolism of the Plasticizer Benzyl Butyl Phthalate in Rhodococcus sp. Strain PAE-6. Microbiol Spectr 2023; 11:e0480122. [PMID: 37318352 PMCID: PMC10434107 DOI: 10.1128/spectrum.04801-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/16/2023] [Indexed: 06/16/2023] Open
Abstract
Phthalate diesters are extensively used as plasticizers in manufacturing plastic materials; however, because of their estrogenic properties, these chemicals have emerged as a global threat to human health. The present study investigated the course of degradation of a widely used plasticizer, benzyl butyl phthalate (BBP), by the bacterium PAE-6, belonging to the genus Rhodococcus. The metabolism of BBP, possessing structurally dissimilar side chains, was evaluated biochemically using a combination of respirometric, chromatographic, enzymatic, and mass-spectrometric analyses, depicting pathways of degradation. Consequently, the biochemical observations were corroborated by identifying possible catabolic genes from whole-genome analysis, and the involvement of inducible specific esterases and other degradative enzymes was validated by transcriptomic, reverse transcription-quantitative PCR (RT-qPCR) and proteomic analyses. Nonetheless, phthalic acid (PA), an intermediate of BBP, could not be efficiently metabolized by strain PAE-6, although the genome contains a PA-degrading gene cluster. This deficiency of complete degradation of BBP by strain PAE-6 was effectively managed by using a coculture of strains PAE-6 and PAE-2. The latter was identified as a Paenarthrobacter strain which can efficiently utilize PA. Based on sequence analysis of the PA-degrading gene cluster in strain PAE-6, it appeared that the alpha subunit of the multicomponent phthalate 3,4-dioxygenase harbors a number of altered residues in the multiple sequence alignment of homologous subunits, which may play a role(s) in poor turnover of PA. IMPORTANCE Benzyl butyl phthalate (BBP), an estrogenic, high-molecular-weight phthalic acid diester, is an extensively used plasticizer throughout the world. Due to its structural rigidity and hydrophobic nature, BBP gets adsorbed on sediments and largely escapes the biotic and abiotic degradative processes of the ecosystem. In the present study, a potent BBP-degrading bacterial strain belonging to the genus Rhodococcus was isolated that can also assimilate a number of other phthalate diesters of environmental concern. Various biochemical and multi-omics analyses revealed that the strain harbors all the required catabolic machinery for the degradation of the plasticizer and elucidated the inducible regulation of the associated catabolic genes and gene clusters.
Collapse
Affiliation(s)
- Suman Basu
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, India
| | - Rinita Dhar
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, India
| | | | - Tapan K. Dutta
- Department of Microbiology, Bose Institute, Kolkata, West Bengal, India
| |
Collapse
|
6
|
Zhuang J, Zhang R, Zeng Y, Dai T, Ye Z, Gao Q, Yang Y, Guo X, Li G, Zhou J. Petroleum pollution changes microbial diversity and network complexity of soil profile in an oil refinery. Front Microbiol 2023; 14:1193189. [PMID: 37287448 PMCID: PMC10242060 DOI: 10.3389/fmicb.2023.1193189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/27/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Petroleum pollution resulting from spills and leakages in oil refinery areas has been a significant environmental concern for decades. Despite this, the effects of petroleum pollutants on soil microbial communities and their potential for pollutant biodegradation still required further investigation. Methods In this study, we collected 75 soil samples from 0 to 5 m depths of 15 soil profiles in an abandoned refinery to analyze the effect of petroleum pollution on soil microbial diversity, community structure, and network co-occurrence patterns. Results Our results suggested soil microbial a-diversity decreased under high C10-C40 levels, coupled with significant changes in the community structure of soil profiles. However, soil microbial network complexity increased with petroleum pollution levels, suggesting more complex microbial potential interactions. A module specific for methane and methyl oxidation was also found under high C10-C40 levels of the soil profile, indicating stronger methanotrophic and methylotrophic metabolic activities at the heavily polluted soil profile. Discussion The increased network complexity observed may be due to more metabolic pathways and processes, as well as increased microbial interactions during these processes. These findings highlight the importance of considering both microbial diversity and network complexity in assessing the effects of petroleum pollution on soil ecosystems.
Collapse
Affiliation(s)
- Jugui Zhuang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Ruihuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yufei Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Tianjiao Dai
- School of Water Resources and Environment, China University of Geosciences, Beijing, China
| | - Zhencheng Ye
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Xue Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Guanghe Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
7
|
Sahoo TP, Kumar MA. Remediation of phthalate acid esters from contaminated environment—Insights on the bioremedial approaches and future perspectives. Heliyon 2023; 9:e14945. [PMID: 37025882 PMCID: PMC10070671 DOI: 10.1016/j.heliyon.2023.e14945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Phthalates are well-known emerging pollutants that are toxic to the environment and human health. Phthalates are lipophilic chemicals used as plasticizers in many of the items for improving their material properties. These compounds are not chemically bound and are released to the surroundings directly. Phthalate acid esters (PAEs) are endocrine disruptors and can interfere with hormones, which can cause issues with development and reproduction, thus there is a huge concern over their existence in various ecological surroundings. The purpose of this review is to explore the occurrence, fate, and concentration of phthalates in various environmental matrices. This article also covers the phthalate degradation process, mechanism, and outcomes. Besides the conventional treatment technology, the paper also aims at the recent advancements in various physical, chemical, and biological approaches developed for phthalate degradation. In this paper, a special focus has been given on the diverse microbial entities and their bioremedial mechanisms executes the PAEs removal. Critically, the analyses method for determining intermediate products generated during phthalate biotransformation have been discussed. Concluisvely, the challenges, limitations, knowledge gaps and future opportunities of bioremediation and their significant role in ecology have also been highlighted.
Collapse
|
8
|
Dowd A. Elucidating Cellular Metabolism and Protein Difference Data from DIGE Proteomics Experiments Using Enzyme Assays. Methods Mol Biol 2023; 2596:399-419. [PMID: 36378453 DOI: 10.1007/978-1-0716-2831-7_27] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Assays for measuring enzyme activity can be useful tools for proteomics applications. Enzyme testing can be performed to validate an experimental system prior to a difference gel electrophoresis (DIGE) proteomic experiment and can also be utilized as an integral part of multifaceted experiment in conjunction with DIGE. Data from enzyme tests can be used to corroborate results of DIGE proteomic experiments where an enzyme or enzymes are demonstrated by DIGE to be differentially expressed. Enzyme testing can also be utilized to support data from DIGE experiments that demonstrate metabolic changes in a biological system. The different types of enzyme assays that can be performed in conjunction with DIGE experiments are reviewed alongside a discussion of experimental approaches for designing enzyme assays.
Collapse
Affiliation(s)
- Andrew Dowd
- Croda Europe Limited, Daresbury, Cheshire, UK.
| |
Collapse
|
9
|
Mondal T, Mondal S, Ghosh SK, Pal P, Soren T, Pandey S, Maiti TK. Phthalates - A family of plasticizers, their health risks, phytotoxic effects, and microbial bioaugmentation approaches. ENVIRONMENTAL RESEARCH 2022; 214:114059. [PMID: 35961545 DOI: 10.1016/j.envres.2022.114059] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are a family of reprotoxicant compounds, predominantly used as a plasticizer to improve the flexibility and longevity of consumable plastic goods. After their use these plastic products find their way to the waste disposal sites where they leach out the hazardous phthalates present within them, into the surrounding environment, contaminating soil, groundwater resources, and the nearby water bodies. Subsequently, phthalates move into the living system through the food chain and exhibit the well-known phenomenon of biological magnification. Phthalates as a primary pollutant have been classified as 1B reprotoxicants and teratogens by different government authorities and they have thus imposed restrictions on their use. Nevertheless, the release of these compounds in the environment is unabated. Bioremediation has been suggested as one of the ways of mitigating this menace, but studies regarding the field applications of phthalate utilizing microbes for this purpose are limited. Through this review, we endeavor to make a deeper understanding of the cause and concern of the problem and to find out a possible solution to it. The review critically emphasizes the various aspects of phthalates toxicity, including their chemical nature, human health risks, phytoaccumulation and entry into the food chain, microbial role in phthalate degradation processes, and future challenges.
Collapse
Affiliation(s)
- Tanushree Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Priyanka Pal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Tithi Soren
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sanjeev Pandey
- Department of Botany, Banwarilal Bhalotia College, Asansol, 713303, West Bengal, India.
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| |
Collapse
|
10
|
Junghare M, Frey J, Naji KM, Spiteller D, Vaaje-Kolstad G, Schink B. Isophthalate:coenzyme A ligase initiates anaerobic degradation of xenobiotic isophthalate. BMC Microbiol 2022; 22:227. [PMID: 36171563 PMCID: PMC9516798 DOI: 10.1186/s12866-022-02630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Background Environmental contamination from synthetic plastics and their additives is a widespread problem. Phthalate esters are a class of refractory synthetic organic compounds which are widely used in plastics, coatings, and for several industrial applications such as packaging, pharmaceuticals, and/or paints. They are released into the environment during production, use and disposal, and some of them are potential mutagens and carcinogens. Isophthalate (1,3-benzenedicarboxylic acid) is a synthetic chemical that is globally produced at a million-ton scale for industrial applications and is considered a priority pollutant. Here we describe the biochemical characterization of an enzyme involved in anaerobic degradation of isophthalate by the syntrophically fermenting bacterium Syntrophorhabdus aromaticivorans strain UI that activate isophthalate to isophthalyl-CoA followed by its decarboxylation to benzoyl-CoA. Results Isophthalate:Coenzyme A ligase (IPCL, AMP-forming) that activates isophthalate to isophthalyl-CoA was heterologously expressed in E. coli (49.6 kDa) for biochemical characterization. IPCL is homologous to phenylacetate-CoA ligase that belongs to the family of ligases that form carbon-sulfur bonds. In the presence of coenzyme A, Mg2+ and ATP, IPCL converts isophthalate to isophthalyl-CoA, AMP and pyrophosphate (PPi). The enzyme was specifically induced after anaerobic growth of S. aromaticivorans in a medium containing isophthalate as the sole carbon source. Therefore, IPCL exhibited high substrate specificity and affinity towards isophthalate. Only substrates that are structurally related to isophthalate, such as glutarate and 3-hydroxybenzoate, could be partially converted to the respective coenzyme A esters. Notably, no activity could be measured with substrates such as phthalate, terephthalate and benzoate. Acetyl-CoA or succinyl-CoA did not serve as CoA donors. The enzyme has a theoretical pI of 6.8 and exhibited optimal activity between pH 7.0 to 7.5. The optimal temperature was between 25 °C and 37 °C. Denaturation temperature (Tm) of IPCL was found to be at about 63 °C. The apparent KM values for isophthalate, CoA, and ATP were 409 μM, 642 μM, and 3580 μM, respectively. Although S. aromaticivorans is a strictly anaerobic bacterium, the enzyme was found to be oxygen-insensitive and catalysed isophthalyl-CoA formation under both anoxic and oxic conditions. Conclusion We have successfully cloned the ipcl gene, expressed and characterized the corresponding IPCL enzyme, which plays a key role in isophthalate activation that initiates its activation and further degradation by S. aromaticivorans. Its biochemical characterization represents an important step in the elucidation of the complete degradation pathway of isophthalate. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02630-x.
Collapse
Affiliation(s)
- Madan Junghare
- General Microbiology and Microbial Ecology, Department of Biology, University of Konstanz, D-78457, Constance, Germany. .,Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1430, Ås, Norway.
| | - Jasmin Frey
- General Microbiology and Microbial Ecology, Department of Biology, University of Konstanz, D-78457, Constance, Germany
| | - Khalid M Naji
- Chemical Ecology and Biological Chemistry, Department of Biology, University of Konstanz, D-78457, Constance, Germany
| | - Dieter Spiteller
- Chemical Ecology and Biological Chemistry, Department of Biology, University of Konstanz, D-78457, Constance, Germany
| | - Gustav Vaaje-Kolstad
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1430, Ås, Norway
| | - Bernhard Schink
- General Microbiology and Microbial Ecology, Department of Biology, University of Konstanz, D-78457, Constance, Germany
| |
Collapse
|
11
|
Zan S, Wang J, Wang F, Li Z, Du M, Cai Y. A novel degradation mechanism of naphthenic acids by marine Pseudoalteromonas sp. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127534. [PMID: 34879524 DOI: 10.1016/j.jhazmat.2021.127534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Naphthenic acids (NAs) are a persistent toxic organic pollutant that occur in different environment worldwide and cause serious threat to the ecosystem and public health. However, knowledge on the behavior and fate of NAs in marine environments still remains unknown. In this study, the degradation mechanism of NAs (cyclohexylacetic acid, CHAA) was investigated using an common indigenous marine Pseudoalteromonas sp. The results showed that CHAA could be degraded completely under aerobic condition, but could not be utilized directly under anaerobic condition. Interestingly, transcriptome and key enzyme activity results showed the CHAA degradation pathway induced under aerobic condition could still work in anaerobic condition. The degradation was activated by acetyl-CoA transferase and sequentially formed the corresponding cyclohexene, alcohol, and ketone with the assistance of related enzymes, and finally cleaved by hydroxymethylglutarate-CoA lyase. Besides, there was a positive correlation between chemotaxis and aerobic degradation genes (r = 0.976, P < 0.05), the chemotaxis would enhance bacterium movement and NAs biodegradation. It is proposed that bacterium could translocate to NAs and accomplish biodegradation from aerobic to anaerobic environments, which was a new anaerobic degradation pathway of NAs. This study provides new insights into the fate of NAs and other organic contaminants in marine environment.
Collapse
Affiliation(s)
- Shuaijun Zan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Fengbo Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Zelong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Miaomiao Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| | - Yingxue Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
12
|
Hu R, Zhao H, Xu X, Wang Z, Yu K, Shu L, Yan Q, Wu B, Mo C, He Z, Wang C. Bacteria-driven phthalic acid ester biodegradation: Current status and emerging opportunities. ENVIRONMENT INTERNATIONAL 2021; 154:106560. [PMID: 33866059 DOI: 10.1016/j.envint.2021.106560] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/15/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
The extensive use of phthalic acid esters (PAEs) has led to their widespread distribution across various environments. As PAEs pose significant threats to human health, it is urgent to develop efficient strategies to eliminate them from environments. Bacteria-driven PAE biodegradation has been considered as an inexpensive yet effective strategy to restore the contaminated environments. Despite great advances in bacterial culturing and sequencing, the inherent complexity of indigenous microbial community hinders us to mechanistically understand in situ PAE biodegradation and efficiently harness the degrading power of bacteria. The synthetic microbial ecology provides us a simple and controllable model system to address this problem. In this review, we focus on the current progress of PAE biodegradation mediated by bacterial isolates and indigenous bacterial communities, and discuss the prospective of synthetic PAE-degrading bacterial communities in PAE biodegradation research. It is anticipated that the theories and approaches of synthetic microbial ecology will revolutionize the study of bacteria-driven PAE biodegradation and provide novel insights for developing effective bioremediation solutions.
Collapse
Affiliation(s)
- Ruiwen Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Haiming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xihui Xu
- Department of Microbiology, Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhigang Wang
- School of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Cehui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Integrated Multi-omics Investigations Reveal the Key Role of Synergistic Microbial Networks in Removing Plasticizer Di-(2-Ethylhexyl) Phthalate from Estuarine Sediments. mSystems 2021; 6:e0035821. [PMID: 34100638 PMCID: PMC8269228 DOI: 10.1128/msystems.00358-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is the most widely used plasticizer worldwide, with an annual global production of more than 8 million tons. Because of its improper disposal, endocrine-disrupting DEHP often accumulates in estuarine sediments in industrialized countries at submillimolar levels, resulting in adverse effects on both ecosystems and human beings. The microbial degraders and biodegradation pathways of DEHP in O2-limited estuarine sediments remain elusive. Here, we employed an integrated meta-omics approach to identify the DEHP degradation pathway and major degraders in this ecosystem. Estuarine sediments were treated with DEHP or its derived metabolites, o-phthalic acid and benzoic acid. The rate of DEHP degradation in denitrifying mesocosms was two times slower than that of o-phthalic acid, suggesting that side chain hydrolysis of DEHP is the rate-limiting step of anaerobic DEHP degradation. On the basis of microbial community structures, functional gene expression, and metabolite profile analysis, we proposed that DEHP biodegradation in estuarine sediments is mainly achieved through synergistic networks between denitrifying proteobacteria. Acidovorax and Sedimenticola are the major degraders of DEHP side chains; the resulting o-phthalic acid is mainly degraded by Aestuariibacter through the UbiD-dependent benzoyl coenzyme A (benzoyl-CoA) pathway. We isolated and characterized Acidovorax sp. strain 210-6 and its extracellular hydrolase, which hydrolyzes both alkyl side chains of DEHP. Interestingly, genes encoding DEHP/mono-(2-ethylhexyl) phthalate (MEHP) hydrolase and phthaloyl-CoA decarboxylase—key enzymes for side chain hydrolysis and o-phthalic acid degradation, respectively—are flanked by transposases in these proteobacterial genomes, indicating that DEHP degradation capacity is likely transferred horizontally in microbial communities. IMPORTANCE Xenobiotic phthalate esters (PAEs) have been produced on a considerably large scale for only 70 years. The occurrence of endocrine-disrupting di-(2-ethylhexyl) phthalate (DEHP) in environments has raised public concern, and estuarine sediments are major DEHP reservoirs. Our multi-omics analyses indicated that complete DEHP degradation in O2-limited estuarine sediments depends on synergistic microbial networks between diverse denitrifying proteobacteria and uncultured candidates. Our data also suggested that the side chain hydrolysis of DEHP, rather than o-phthalic acid activation, is the rate-limiting step in DEHP biodegradation within O2-limited estuarine sediments. Therefore, deciphering the bacterial ecophysiology and related biochemical mechanisms can help facilitate the practice of bioremediation in O2-limited environments. Furthermore, the DEHP hydrolase genes of active DEHP degraders can be used as molecular markers to monitor environmental DEHP degradation. Finally, future studies on the directed evolution of identified DEHP/mono-(2-ethylhexyl) phthalate (MEHP) hydrolase would bring a more catalytically efficient DEHP/MEHP hydrolase into practice.
Collapse
|
14
|
Guan Z, Dai S, Yao Q, Zong W, Deng Z, Liu S, Yun J, Xiao X, Liu L, Li H. Properties of a Newly Identified Acetyl Esterase and Its Degradation of Diisobutyl Phthalate. ChemistrySelect 2020. [DOI: 10.1002/slct.202003720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ziran Guan
- College of Life Science and Biopharmaceuticals Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangdong key Laboratory of Pharmaceutical Bioactive Substances Guangdong Pharmaceutical University Guangzhou 510006 PR China
| | - Shuang Dai
- College of Life Science and Biopharmaceuticals Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangdong key Laboratory of Pharmaceutical Bioactive Substances Guangdong Pharmaceutical University Guangzhou 510006 PR China
| | - Qian Yao
- College of Life Science and Biopharmaceuticals Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangdong key Laboratory of Pharmaceutical Bioactive Substances Guangdong Pharmaceutical University Guangzhou 510006 PR China
| | - Wei Zong
- College of Life Science and Biopharmaceuticals Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangdong key Laboratory of Pharmaceutical Bioactive Substances Guangdong Pharmaceutical University Guangzhou 510006 PR China
| | - Zujun Deng
- College of Life Science and Biopharmaceuticals Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangdong key Laboratory of Pharmaceutical Bioactive Substances Guangdong Pharmaceutical University Guangzhou 510006 PR China
| | - Shan Liu
- Guangzhou Base Clean Cosmetics Manufacturer Co., Ltd Guangzhou 510006 PR China
| | - Jeonyun Yun
- Guangzhou Base Clean Cosmetics Manufacturer Co., Ltd Guangzhou 510006 PR China
| | - Xiong Xiao
- Guangzhou Base Clean Cosmetics Manufacturer Co., Ltd Guangzhou 510006 PR China
| | - Liyang Liu
- School of Pharmaceutical Business Guangdong Pharmaceutical University Guangzhou 510006 PR China
| | - He Li
- College of Life Science and Biopharmaceuticals Guangdong Pharmaceutical University, Guangzhou 510006, PR China
- Guangdong key Laboratory of Pharmaceutical Bioactive Substances Guangdong Pharmaceutical University Guangzhou 510006 PR China
| |
Collapse
|
15
|
Sanz D, García JL, Díaz E. Expanding the current knowledge and biotechnological applications of the oxygen-independent ortho-phthalate degradation pathway. Environ Microbiol 2020; 22:3478-3493. [PMID: 32510798 DOI: 10.1111/1462-2920.15119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 11/29/2022]
Abstract
ortho-Phthalate derives from industrially produced phthalate esters, which are massively used as plasticizers and constitute major emerging environmental pollutants. The pht pathway for the anaerobic bacterial biodegradation of o-phthalate involves its activation to phthaloyl-CoA followed by decarboxylation to benzoyl-CoA. Here, we have explored further the pht peripheral pathway in denitrifying bacteria and shown that it requires also an active transport system for o-phthalate uptake that belongs to the poorly characterized class of TAXI-TRAP transporters. The construction of a fully functional pht cassette combining both catabolic and transport genes allowed to expand the o-phthalate degradation ecological trait to heterologous hosts. Unexpectedly, the pht cassette also allowed the aerobic conversion of o-phthalate to benzoyl-CoA when coupled to a functional box central pathway. Hence, the pht pathway may constitute an evolutionary acquisition for o-phthalate degradation by bacteria that thrive either in anoxic environments or in environments that face oxygen limitations and that rely on benzoyl-CoA, rather than on catecholic central intermediates, for the aerobic catabolism of aromatic compounds. Finally, the recombinant pht cassette was used both to screen for functional aerobic box pathways in bacteria and to engineer recombinant biocatalysts for o-phthalate bioconversion into sustainable bioplastics, e.g., polyhydroxybutyrate, in plastic recycling industrial processes.
Collapse
Affiliation(s)
- David Sanz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - José L García
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Eduardo Díaz
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| |
Collapse
|
16
|
An Aerobic Hybrid Phthalate Degradation Pathway via Phthaloyl-Coenzyme A in Denitrifying Bacteria. Appl Environ Microbiol 2020; 86:AEM.00498-20. [PMID: 32220846 DOI: 10.1128/aem.00498-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/16/2020] [Indexed: 11/20/2022] Open
Abstract
The degradation of the xenobiotic phthalic acid esters by microorganisms is initiated by the hydrolysis to the respective alcohols and ortho-phthalate (hereafter, phthalate). In aerobic bacteria and fungi, oxygenases are involved in the conversion of phthalate to protocatechuate, the substrate for ring-cleaving dioxygenases. In contrast, anaerobic bacteria activate phthalate to the extremely unstable phthaloyl-coenzyme A (CoA), which is decarboxylated by oxygen-sensitive UbiD-like phthaloyl-CoA decarboxylase (PCD) to the central benzoyl-CoA intermediate. Here, we demonstrate that the facultatively anaerobic, denitrifying Thauera chlorobenzoica 3CB-1 and Aromatoleum evansii KB740 strains use phthalate as a growth substrate under aerobic and denitrifying conditions. In vitro assays with extracts from cells grown aerobically with phthalate demonstrated the succinyl-CoA-dependent activation of phthalate followed by decarboxylation to benzoyl-CoA. In T. chlorobenzoica 3CB-1, we identified PCD as a highly abundant enzyme in both aerobically and anaerobically grown cells, whereas genes for phthalate dioxygenases are missing in the genome. PCD was highly enriched from aerobically grown T. chlorobenzoica cells and was identified as an identical enzyme produced under denitrifying conditions. These results indicate that the initial steps of aerobic phthalate degradation in denitrifying bacteria are accomplished by the anaerobic enzyme inventory, whereas the benzoyl-CoA oxygenase-dependent pathway is used for further conversion to central intermediates. Such a hybrid pathway requires intracellular oxygen homeostasis at concentrations low enough to prevent PCD inactivation but sufficiently high to supply benzoyl-CoA oxygenase with its cosubstrate.IMPORTANCE Phthalic acid esters (PAEs) are industrially produced on a million-ton scale per year and are predominantly used as plasticizers. They are classified as environmentally relevant xenobiotics with a number of adverse health effects, including endocrine-disrupting activity. Biodegradation by microorganisms is considered the most effective process to eliminate PAEs from the environment. It is usually initiated by the hydrolysis of PAEs to alcohols and o-phthalic acid. Degradation of o-phthalic acid fundamentally differs in aerobic and anaerobic microorganisms; aerobic phthalate degradation heavily depends on dioxygenase-dependent reactions, whereas anaerobic degradation employs the oxygen-sensitive key enzyme phthaloyl-CoA decarboxylase. We demonstrate that aerobic phthalate degradation in facultatively anaerobic bacteria proceeds via a previously unknown hybrid degradation pathway involving oxygen-sensitive and oxygen-dependent key enzymes. Such a strategy is essential for facultatively anaerobic bacteria that frequently switch between oxic and anoxic environments.
Collapse
|
17
|
Shi M, Zhao X, Zhu L, Wu J, Mohamed TA, Zhang X, Chen X, Zhao Y, Wei Z. Elucidating the negative effect of denitrification on aromatic humic substance formation during sludge aerobic fermentation. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122086. [PMID: 31972435 DOI: 10.1016/j.jhazmat.2020.122086] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
Humic substance (HS), as an aromatic compound, is the core product of aerobic fermentation. Denitrification-dependent degradation of aromatic compounds have been repeatedly observed in environment. However, few studies have elucidated the relationship between denitrification and aromatic HS during sludge aerobic fermentation. This study was conducted to investigate the effect of enhanced denitrification on aromatic HS formation. On the 24th day of sludge aerobic fermentation, five tests (CK, Run1, Run2, Run3 and Run4) were executed, and nitrate concentrations were adjusted to 480 ± 20, 500 ± 20, 1000 ± 20, 1500 ± 20 and 2000 ± 20 mg/kg with potassium nitrate, respectively. Analytical results demonstrated that nitrate addition increased denitrifying genes abundance and enhanced denitrification, which further reduced aromatic HS formation (p < 0.05). Especially in Run3, the concentrations of HS and humic acid on the 52nd day dramatically decreased by 12.9 % and 34.2 % in comparison with those on the 31st day. High-throughput sequencing revealed that enhanced denitrification effectively stimulated the metabolism of denitrifying microorganisms with aromatic-degrading capability. Co-occurring network analysis indicated that some keystone taxa of denitrification aromatic-degrading microorganisms involved in the conversion of nitrate to nitrite were the most crucial for enhancing denitrification and reducing aromatic HS formation.
Collapse
Affiliation(s)
- Mingzi Shi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Longji Zhu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Taha Ahmed Mohamed
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, Egypt
| | - Xu Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaomeng Chen
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
18
|
Wright RJ, Bosch R, Gibson MI, Christie-Oleza JA. Plasticizer Degradation by Marine Bacterial Isolates: A Proteogenomic and Metabolomic Characterization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2244-2256. [PMID: 31894974 PMCID: PMC7031849 DOI: 10.1021/acs.est.9b05228] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 05/19/2023]
Abstract
Many commercial plasticizers are toxic endocrine-disrupting chemicals that are added to plastics during manufacturing and may leach out once they reach the environment. Traditional phthalic acid ester plasticizers (PAEs), such as dibutyl phthalate (DBP) and bis(2-ethyl hexyl) phthalate (DEHP), are now increasingly being replaced with more environmentally friendly alternatives, such as acetyl tributyl citrate (ATBC). While the metabolic pathways for PAE degradation have been established in the terrestrial environment, to our knowledge, the mechanisms for ATBC biodegradation have not been identified previously and plasticizer degradation in the marine environment remains underexplored. From marine plastic debris, we enriched and isolated microbes able to grow using a range of plasticizers and, for the first time, identified the pathways used by two phylogenetically distinct bacteria to degrade three different plasticizers (i.e., DBP, DEHP, and ATBC) via a comprehensive proteogenomic and metabolomic approach. This integrated multi-OMIC study also revealed the different mechanisms used for ester side-chain removal from the different plasticizers (esterases and enzymes involved in the β-oxidation pathway) as well as the molecular response to deal with toxic intermediates, that is, phthalate, and the lower biodegrading potential detected for ATBC than for PAE plasticizers. This study highlights the metabolic potential that exists in the biofilms that colonize plastics-the Plastisphere-to effectively biodegrade plastic additives and flags the inherent importance of microbes in reducing plastic toxicity in the environment.
Collapse
Affiliation(s)
- Robyn J. Wright
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
- School for Resource and Environmental Studies, Dalhousie University, Halifax B3H 4R2, Canada
- E-mail: (R.J.W.)
| | - Rafael Bosch
- University of the Balearic Islands, Palma 07122, Spain
- IMEDEA (CSIC-UIB), Esporles 07190, Spain
| | - Matthew I. Gibson
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Medical School, University
of Warwick, Coventry CV4 7AL, U.K.
| | - Joseph A. Christie-Oleza
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
- University of the Balearic Islands, Palma 07122, Spain
- IMEDEA (CSIC-UIB), Esporles 07190, Spain
- E-mail: (J.A.C.-O.)
| |
Collapse
|
19
|
Boll M, Geiger R, Junghare M, Schink B. Microbial degradation of phthalates: biochemistry and environmental implications. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:3-15. [PMID: 31364812 DOI: 10.1111/1758-2229.12787] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 05/10/2023]
Abstract
The environmentally relevant xenobiotic esters of phthalic acid (PA), isophthalic acid (IPA) and terephthalic acid (TPA) are produced on a million ton scale annually and are predominantly used as plastic polymers or plasticizers. Degradation by microorganisms is considered as the most effective means of their elimination from the environment and proceeds via hydrolysis to the corresponding PA isomers and alcohols under oxic and anoxic conditions. Further degradation of PA, IPA and TPA differs fundamentally between anaerobic and aerobic microorganisms. The latter introduce hydroxyl functionalities by dioxygenases to facilitate subsequent decarboxylation by either aromatizing dehydrogenases or cofactor-free decarboxylases. In contrast, anaerobic bacteria activate the PA isomers to the respective thioesters using CoA ligases or CoA transferases followed by decarboxylation to the central intermediate benzoyl-CoA. Decarboxylases acting on the three PA CoA thioesters belong to the UbiD enzyme family that harbour a prenylated flavin mononucleotide (FMN) cofactor to achieve the mechanistically challenging decarboxylation. Capture of the extremely instable PA-CoA intermediate is accomplished by a massive overproduction of phthaloyl-CoA decarboxylase and a balanced production of PA-CoA forming/decarboxylating enzymes. The strategy of anaerobic phthalate degradation probably represents a snapshot of an ongoing evolution of a xenobiotic degradation pathway via a short-lived reaction intermediate.
Collapse
Affiliation(s)
- Matthias Boll
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Robin Geiger
- Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Madan Junghare
- Department of Biology and Microbial Ecology, University of Konstanz, Constance, Germany
| | - Bernhard Schink
- Department of Biology and Microbial Ecology, University of Konstanz, Constance, Germany
| |
Collapse
|
20
|
Huang H, Zhang XY, Chen TL, Zhao YL, Xu DS, Bai YP. Biodegradation of Structurally Diverse Phthalate Esters by a Newly Identified Esterase with Catalytic Activity toward Di(2-ethylhexyl) Phthalate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8548-8558. [PMID: 31266305 DOI: 10.1021/acs.jafc.9b02655] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, we report a double enzyme system to degrade 12 phthalate esters (PAEs), particularly bulky PAEs, such as the widely used bis(2-ethylhexyl) phthalate (DEHP), in a one-pot cascade process. A PAE-degrading bacterium, Gordonia sp. strain 5F, was isolated from soil polluted with plastic waste. From this strain, a novel esterase (GoEst15) and a mono(2-ethylhexyl) phthalate hydrolase (GoEstM1) were identified by homology-based cloning. GoEst15 showed broad substrate specificity, hydrolyzing DEHP and 10 other PAEs to monoalkyl phthalates, which were further degraded by GoEstM1 to phthalic acid. GoEst15 and GoEstM1 were heterologously coexpressed in Escherichia coli BL21 (DE3), which could then completely degrade 12 PAEs (5 mM), within 1 and 24 h for small and bulky substrates, respectively. To our knowledge, GoEst15 is the first DEHP hydrolase with a known protein sequence, which will enable protein engineering to enhance its catalytic performance in the future.
Collapse
Affiliation(s)
- Han Huang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Xiao-Yan Zhang
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Tian-Lei Chen
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Yu-Lian Zhao
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Dian-Sheng Xu
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| | - Yun-Peng Bai
- State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , People's Republic of China
| |
Collapse
|
21
|
Payer SE, Faber K, Glueck SM. Non-Oxidative Enzymatic (De)Carboxylation of (Hetero)Aromatics and Acrylic Acid Derivatives. Adv Synth Catal 2019; 361:2402-2420. [PMID: 31379472 PMCID: PMC6644310 DOI: 10.1002/adsc.201900275] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/16/2019] [Indexed: 12/20/2022]
Abstract
The utilization of carbon dioxide as a C1-building block for the production of valuable chemicals has recently attracted much interest. Whereas chemical CO2 fixation is dominated by C-O and C-N bond forming reactions, the development of novel concepts for the carboxylation of C-nucleophiles, which leads to the formation of carboxylic acids, is highly desired. Beside transition metal catalysis, biocatalysis has emerged as an attractive method for the highly regioselective (de)carboxylation of electron-rich (hetero)aromatics, which has been recently further expanded to include conjugated α,β-unsaturated (acrylic) acid derivatives. Depending on the type of substrate, different classes of enzymes have been explored for (i) the ortho-carboxylation of phenols catalyzed by metal-dependent ortho-benzoic acid decarboxylases and (ii) the side-chain carboxylation of para-hydroxystyrenes mediated by metal-independent phenolic acid decarboxylases. Just recently, the portfolio of bio-carboxylation reactions was complemented by (iii) the para-carboxylation of phenols and the decarboxylation of electron-rich heterocyclic and acrylic acid derivatives mediated by prenylated FMN-dependent decarboxylases, which is the main focus of this review. Bio(de)carboxylation processes proceed under physiological reaction conditions employing bicarbonate or (pressurized) CO2 when running in the energetically uphill carboxylation direction. Aiming to facilitate the application of these enzymes in preparative-scale biotransformations, their catalytic mechanism and substrate scope are analyzed in this review.
Collapse
Affiliation(s)
- Stefan E. Payer
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Kurt Faber
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| | - Silvia M. Glueck
- Institute of ChemistryUniversity of GrazHeinrichstrasse 288010GrazAustria
| |
Collapse
|
22
|
Geiger RA, Junghare M, Mergelsberg M, Ebenau‐Jehle C, Jesenofsky VJ, Jehmlich N, von Bergen M, Schink B, Boll M. Enzymes involved in phthalate degradation in sulphate‐reducing bacteria. Environ Microbiol 2019; 21:3601-3612. [DOI: 10.1111/1462-2920.14681] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/03/2019] [Accepted: 05/11/2019] [Indexed: 12/31/2022]
Affiliation(s)
| | - Madan Junghare
- Department of Biology, Microbial EcologyUniversity of Konstanz, 78457 Constance Germany
| | - Mario Mergelsberg
- Faculty of Biology–MicrobiologyUniversity of Freiburg, 79104 Freiburg Germany
| | | | | | - Nico Jehmlich
- Department of Molecular Systems BiologyHelmholtz Centre for Environmental Research UFZ 04318 Leipzig Germany
| | - Martin von Bergen
- Department of Molecular Systems BiologyHelmholtz Centre for Environmental Research UFZ 04318 Leipzig Germany
- Institute of Biochemistry, Faculty of Life SciencesUniversity of Leipzig Brüderstr. 34, 04103 Leipzig Germany
| | - Bernhard Schink
- Department of Biology, Microbial EcologyUniversity of Konstanz, 78457 Constance Germany
| | - Matthias Boll
- Faculty of Biology–MicrobiologyUniversity of Freiburg, 79104 Freiburg Germany
| |
Collapse
|
23
|
Identification of naphthalene carboxylase subunits of the sulfate-reducing culture N47. Biodegradation 2019; 30:147-160. [DOI: 10.1007/s10532-019-09872-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 02/26/2019] [Indexed: 11/26/2022]
|
24
|
Zhu F, Zhu C, Zhou D, Gao J. Fate of di (2-ethylhexyl) phthalate and its impact on soil bacterial community under aerobic and anaerobic conditions. CHEMOSPHERE 2019; 216:84-93. [PMID: 30359920 DOI: 10.1016/j.chemosphere.2018.10.078] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
In this study, we examined the influence of oxygen on the degradation of di (2-ethylhexyl) phthalate (DEHP), the accumulation of its monoester metabolite mono (2-ethylhexyl) phthalate (MEHP) and their impact on soil bacterial communities. Soil microcosms artificially contaminated with DEHP (0, 100 and 1000 mg kg-1) were incubated under aerobic and anaerobic flooded conditions, and sacrificed after 0, 21 and 42 days. The results indicated that DEHP degradation proceeded at similar rates in aerobic and anaerobic flooded soils, but accumulation of metabolite MEHP was more likely to occur in anaerobic soils. Moreover, MEHP generated from DEHP degradation seemed to be readily released into the water phase, which may arouse health concerns. Illumina Miseq sequencing showed that MEHP had a greater impact on soil bacterial community than DEHP at the same dosage, and a wide range of bacterial phylotypes were inhibited by MEHP under anaerobic conditions. High DEHP contamination (1000 mg kg-1) significantly reduced bacterial diversity and altered bacterial community structure under anaerobic conditions, but not under aerobic conditions. Firmicutes was constantly inhibited by DEHP under both aerobic (Bacillus) and anaerobic (unclassified Clostridiales Family_XVIII) conditions. On the other hand, bacterial phylotypes belonging to Actinobacteria, β-Proteobacteria and Gemmatimonadaceae were constantly enriched by DEHP in anaerobic soils, however no such a clear pattern existed in aerobic soils. This work greatly expanded our understanding of the fate of DEHP and its modifying effect on bacterial communities under different environmental conditions.
Collapse
Affiliation(s)
- Fengxiao Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Changyin Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
25
|
Junghare M, Spiteller D, Schink B. Anaerobic degradation of xenobiotic isophthalate by the fermenting bacterium Syntrophorhabdus aromaticivorans. ISME JOURNAL 2019; 13:1252-1268. [PMID: 30647456 DOI: 10.1038/s41396-019-0348-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/19/2018] [Accepted: 12/22/2018] [Indexed: 12/13/2022]
Abstract
Syntrophorhabdus aromaticivorans is a syntrophically fermenting bacterium that can degrade isophthalate (3-carboxybenzoate). It is a xenobiotic compound which has accumulated in the environment for more than 50 years due to its global industrial usage and can cause negative effects on the environment. Isophthalate degradation by the strictly anaerobic S. aromaticivorans was investigated to advance our understanding of the degradation of xenobiotics introduced into nature, and to identify enzymes that might have ecological significance for bioremediation. Differential proteome analysis of isophthalate- vs benzoate-grown cells revealed over 400 differentially expressed proteins of which only four were unique to isophthalate-grown cells. The isophthalate-induced proteins include a phenylacetate:CoA ligase, a UbiD-like decarboxylase, a UbiX-like flavin prenyltransferase, and a hypothetical protein. These proteins are encoded by genes forming a single gene cluster that putatively codes for anaerobic conversion of isophthalate to benzoyl-CoA. Subsequently, benzoyl-CoA is metabolized by the enzymes of the anaerobic benzoate degradation pathway that were identified in the proteomic analysis. In vitro enzyme assays with cell-free extracts of isophthalate-grown cells indicated that isophthalate is activated to isophthalyl-CoA by an ATP-dependent isophthalate:CoA ligase (IPCL), and subsequently decarboxylated to benzoyl-CoA by a UbiD family isophthalyl-CoA decarboxylase (IPCD) that requires a prenylated flavin mononucleotide (prFMN) cofactor supplied by UbiX to effect decarboxylation. Phylogenetic analysis revealed that IPCD is a novel member of the functionally diverse UbiD family (de)carboxylases. Homologs of the IPCD encoding genes are found in several other bacteria, such as aromatic compound-degrading denitrifiers, marine sulfate-reducers, and methanogenic communities in a terephthalate-degrading reactor. These results suggest that metabolic strategies adapted for degradation of isophthalate and other phthalate are conserved between microorganisms that are involved in the anaerobic degradation of environmentally relevant aromatic compounds.
Collapse
Affiliation(s)
- Madan Junghare
- Microbial Ecology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| | - Dieter Spiteller
- Chemical Ecology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Bernhard Schink
- Microbial Ecology, Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| |
Collapse
|
26
|
Zhu F, Zhu C, Doyle E, Liu H, Zhou D, Gao J. Fate of di (2‑ethylhexyl) phthalate in different soils and associated bacterial community changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:460-469. [PMID: 29754081 DOI: 10.1016/j.scitotenv.2018.05.055] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Di (2‑ethylhexyl) phthalate (DEHP) is a ubiquitous organic pollutant, which has caused considerable pollution in arable soils. In this study, the relationship between DEHP degradation potential and soil properties in 12 agricultural soils (S1-S12) was examined in a microcosm based experiment. Six of these soils were then selected to monitor patterns in bacterial community responses. It was found that DEHP degradation was positively correlated with bacterial counts in the original soils, suggesting a key role for bacteria in degradation. However, DEHP metabolism did not always lead to complete degradation. Its monoester metabolite, mono (2‑ethylhexyl) phthalate (MEHP), was present at appreciable levels in the two acidic soils (S1 and S2) during the incubation period of 35 days. Based on high-throughput sequencing data, we observed a greater impact of DEHP contamination on bacterial community structure in acidic soils than in the other soils. Nocardioides, Ramlibacter and unclassified Sphingomonadaceae were enriched in the two near-neutral soils where degradation was highest (S4 and S7), suggesting that these organisms might be efficient degraders. The relative abundance of Tumibacillus was greatly reduced in 50% of the six soils examined, demonstrating a high sensitivity to DEHP contamination. Furthermore, putative organic-matter decomposing bacteria (including Tumebacillus and other bacteria taxa such as members from Micromonosporaceae) were greatly reduced in the two acidic soils (S1 and S2), possibly due to the accumulation of MEHP. These results suggest a crucial role of soil acidity in determining the fate and impact of DEHP in soil ecosystems, which deserves further investigation. This work contributes to a better understanding of the environmental behavior of DEHP in soil and should facilitate the development of appropriate remediation technologies.
Collapse
Affiliation(s)
- Fengxiao Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Changyin Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Evelyn Doyle
- Environmental Microbiology Group, School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hailong Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
27
|
Shi M, Wei Z, Wang L, Wu J, Zhang D, Wei D, Tang Y, Zhao Y. Response of humic acid formation to elevated nitrate during chicken manure composting. BIORESOURCE TECHNOLOGY 2018; 258:390-394. [PMID: 29571890 DOI: 10.1016/j.biortech.2018.03.056] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/07/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
Nitrate can stimulate microbes to degrade aromatic compounds, whereas humic acid (HA) as a high molecular weight aromatic compound, its formation may be affected by elevated nitrate during composting. Therefore, this study is conducted to determine the effect of elevated nitrate on HA formation. Five tests were executed by adding different nitrate concentrations to chicken manure composting. Results demonstrate that the concentration of HA in treatment group is significantly decreased compared with control group (p < 0.05), especially in the highest nitrate concentration group. RDA indicates that the microbes associated with HA and environmental parameters are influenced by elevated nitrate. Furthermore, structural equation model reveals that elevated nitrate reduces HA formation by mediating microbes directly, or by affecting ammonia and pH as the indirect drivers to regulate microbial community structure.
Collapse
Affiliation(s)
- Mingzi Shi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liqin Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Duoying Zhang
- School of Civil Engineering, Heilongjiang University, Harbin 150080, China
| | - Dan Wei
- Soil and Environmental Resources Institute, Heilongjiang Academy of Agricultural Science, Harbin, Heilongjiang 150086, China
| | - Yu Tang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
28
|
Sawers RG. o-Phthalate derived from plastics’ plasticizers and a bacterium's solution to its anaerobic degradation. Mol Microbiol 2018; 108:595-600. [DOI: 10.1111/mmi.13975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2018] [Indexed: 12/18/2022]
Affiliation(s)
- R. G. Sawers
- Institute of Biology/Microbiology; Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3; Halle (Saale) 06120, Germany
| |
Collapse
|
29
|
Mergelsberg M, Egle V, Boll M. Evolution of a xenobiotic degradation pathway: formation and capture of the labile phthaloyl-CoA intermediate during anaerobic phthalate degradation. Mol Microbiol 2018; 108:614-626. [PMID: 29645305 DOI: 10.1111/mmi.13962] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2018] [Indexed: 12/21/2022]
Abstract
Xenobiotic phthalates are industrially produced on the annual million ton scale. The oxygen-independent enzymatic reactions involved in anaerobic phthalate degradation have only recently been elucidated. In vitro assays suggested that phthalate is first activated to phthaloyl-CoA followed by decarboxylation to benzoyl-CoA. Here, we report the heterologous production and characterization of the enzyme initiating anaerobic phthalate degradation from 'Aromatoleum aromaticum': a highly specific succinyl-CoA:phthalate CoA transferase (SPT, class III CoA transferase). Phthaloyl-CoA formed by SPT accumulated only to sub-micromolar concentrations due to the extreme lability of the product towards intramolecular substitution with a half-life of around 7 min. Upon addition of excess phthaloyl-CoA decarboxylase (PCD), the combined activity of both enzymes was drastically shifted towards physiologically relevant benzoyl-CoA formation. In conclusion, a massive overproduction of PCD in phthalate-grown cells to concentrations >140 μM was observed that allowed for efficient phthaloyl-CoA conversion at concentrations 250-fold below the apparent Km -value of PCD. The results obtained provide insights into an only recently evolved xenobiotic degradation pathway where a massive cellular overproduction of PCD compensates for the formation of the probably most unstable CoA ester intermediate in biology.
Collapse
Affiliation(s)
- Mario Mergelsberg
- Faculty of Biology - Microbiology, University of Freiburg, Freiburg, Germany
| | - Valentin Egle
- Faculty of Biology - Microbiology, University of Freiburg, Freiburg, Germany
| | - Matthias Boll
- Faculty of Biology - Microbiology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Dowd A. Elucidating Cellular Metabolism and Protein Difference Data from DIGE Proteomics Experiments Using Enzyme Assays. Methods Mol Biol 2018; 1664:261-278. [PMID: 29019139 DOI: 10.1007/978-1-4939-7268-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Assays for measuring enzyme activity can be useful tools for proteomics applications. Enzyme testing can be performed to validate an experimental system prior to a Difference Gel Electrophoresis (DIGE) proteomic experiment and can also be utilized as an integral part of multifaceted experiment in conjunction with DIGE. Data from enzyme tests can be used to corroborate results of DIGE proteomic experiments where an enzyme or enzymes are demonstrated by DIGE to be differentially expressed. Enzyme testing can also be utilized to support data from DIGE experiments that demonstrate metabolic changes in a biological system. The different types of enzyme assays that can be performed in conjunction with DIGE experiments are reviewed alongside a discussion of experimental approaches for designing enzyme assays.
Collapse
Affiliation(s)
- Andrew Dowd
- Monaghan Biosciences, Tyholland, Co. Monaghan, Ireland.
| |
Collapse
|
31
|
The UbiX-UbiD system: The biosynthesis and use of prenylated flavin (prFMN). Arch Biochem Biophys 2017; 632:209-221. [DOI: 10.1016/j.abb.2017.07.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022]
|
32
|
Mergelsberg M, Willistein M, Meyer H, Stärk HJ, Bechtel DF, Pierik AJ, Boll M. Phthaloyl-coenzyme A decarboxylase from Thauera chlorobenzoica: the prenylated flavin-, K + - and Fe 2+ -dependent key enzyme of anaerobic phthalate degradation. Environ Microbiol 2017; 19:3734-3744. [PMID: 28752942 DOI: 10.1111/1462-2920.13875] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
The degradation of the industrially produced and environmentally relevant phthalate esters by microorganisms is initiated by the hydrolysis to alcohols and phthalate (1,2-dicarboxybenzene). In the absence of oxygen the further degradation of phthalate proceeds via activation to phthaloyl-CoA followed by decarboxylation to benzoyl-CoA. Here, we report on the first purification and characterization of a phthaloyl-CoA decarboxylase (PCD) from the denitrifying Thauera chlorobenzoica. Hexameric PCD belongs to the UbiD-family of (de)carboxylases and contains prenylated FMN (prFMN), K+ and, unlike other UbiD-like enzymes, Fe2+ as cofactors. The latter is suggested to be involved in oxygen-independent electron-transfer during oxidative prFMN maturation. Either oxidation to the Fe3+ -state in air or removal of K+ by desalting resulted in >92% loss of both, prFMN and decarboxylation activity suggesting the presence of an active site prFMN/Fe2+ /K+ -complex in PCD. The PCD-catalysed reaction was essentially irreversible: neither carboxylation of benzoyl-CoA in the presence of 2 M bicarbonate, nor an isotope exchange of phthaloyl-CoA with 13 C-bicarbonate was observed. PCD differs in many aspects from prFMN-containing UbiD-like decarboxylases and serves as a biochemically accessible model for the large number of UbiD-like (de)carboxylases that play key roles in the anaerobic degradation of environmentally relevant aromatic pollutants.
Collapse
Affiliation(s)
- Mario Mergelsberg
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany
| | - Max Willistein
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany
| | - Heike Meyer
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany
| | - Hans-Joachim Stärk
- Department of Analytics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | | | - Antonio J Pierik
- Department of Chemistry, TU Kaiserslautern, Kaiserslautern, Germany
| | - Matthias Boll
- Faculty of Biology, Department of Microbiology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
Novel Three-Component Phenazine-1-Carboxylic Acid 1,2-Dioxygenase in Sphingomonas wittichii DP58. Appl Environ Microbiol 2017; 83:AEM.00133-17. [PMID: 28188209 DOI: 10.1128/aem.00133-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
Phenazine-1-carboxylic acid, the main component of shenqinmycin, is widely used in southern China for the prevention of rice sheath blight. However, the fate of phenazine-1-carboxylic acid in soil remains uncertain. Sphingomonas wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources for growth. In this study, dioxygenase-encoding genes, pcaA1A2, were found using transcriptome analysis to be highly upregulated upon phenazine-1-carboxylic acid biodegradation. PcaA1 shares 68% amino acid sequence identity with the large oxygenase subunit of anthranilate 1,2-dioxygenase from Rhodococcus maanshanensis DSM 44675. The dioxygenase was coexpressed in Escherichia coli with its adjacent reductase-encoding gene, pcaA3, and ferredoxin-encoding gene, pcaA4, and showed phenazine-1-carboxylic acid consumption. The dioxygenase-, ferredoxin-, and reductase-encoding genes were expressed in Pseudomonas putida KT2440 or E. coli BL21, and the three recombinant proteins were purified. A phenazine-1-carboxylic acid conversion capability occurred in vitro only when all three components were present. However, P. putida KT2440 transformed with pcaA1A2 obtained phenazine-1-carboxylic acid degradation ability, suggesting that phenazine-1-carboxylic acid 1,2-dioxygenase has low specificities for its ferredoxin and reductase. This was verified by replacing PcaA3 with RedA2 in the in vitro enzyme assay. High-performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) analysis showed that phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation, indicating that PcaA1A2A3A4 constitutes the initial phenazine-1-carboxylic acid 1,2-dioxygenase. This study fills a gap in our understanding of the biodegradation of phenazine-1-carboxylic acid and illustrates a new dioxygenase for decarboxylation.IMPORTANCE Phenazine-1-carboxylic acid is widely used in southern China as a key fungicide to prevent rice sheath blight. However, the degradation characteristics of phenazine-1-carboxylic acid and the environmental consequences of the long-term application are not clear. S. wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources. In this study, a three-component dioxygenase, PcaA1A2A3A4, was determined to be the initial dioxygenase for phenazine-1-carboxylic acid degradation in S. wittichii DP58. Phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation. This finding may help us discover the pathway for phenazine-1-carboxylic acid degradation.
Collapse
|
34
|
Patil Y, Junghare M, Müller N. Fermentation of glycerol by Anaerobium acetethylicum and its potential use in biofuel production. Microb Biotechnol 2016; 10:203-217. [PMID: 28004884 PMCID: PMC5270724 DOI: 10.1111/1751-7915.12484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/27/2016] [Accepted: 11/10/2016] [Indexed: 11/29/2022] Open
Abstract
Growth of biodiesel industries resulted in increased coproduction of crude glycerol which is therefore becoming a waste product instead of a valuable 'coproduct'. Glycerol can be used for the production of valuable chemicals, e.g. biofuels, to reduce glycerol waste disposal. In this study, a novel bacterial strain is described which converts glycerol mainly to ethanol and hydrogen with very little amounts of acetate, formate and 1,2-propanediol as coproducts. The bacterium offers certain advantages over previously studied glycerol-fermenting microorganisms. Anaerobium acetethylicum during growth with glycerol produces very little side products and grows in the presence of maximum glycerol concentrations up to 1500 mM and in the complete absence of complex organic supplements such as yeast extract or tryptone. The highest observed growth rate of 0.116 h-1 is similar to that of other glycerol degraders, and the maximum concentration of ethanol that can be tolerated was found to be about 60 mM (2.8 g l-1 ) and further growth was likely inhibited due to ethanol toxicity. Proteome analysis as well as enzyme assays performed in cell-free extracts demonstrated that glycerol is degraded via glyceraldehyde-3-phosphate, which is further metabolized through the lower part of glycolysis leading to formation of mainly ethanol and hydrogen. In conclusion, fermentation of glycerol to ethanol and hydrogen by this bacterium represents a remarkable option to add value to the biodiesel industries by utilization of surplus glycerol.
Collapse
Affiliation(s)
- Yogita Patil
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
| | - Madan Junghare
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany.,Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz, D-78457, Germany
| | - Nicolai Müller
- Department of Biology, Microbial Ecology, University of Konstanz, Konstanz, D-78457, Germany
| |
Collapse
|