1
|
Liu Q, Yin S, Luo Q, Yi Y. A bacteria-based index of biotic integrity assesses aquatic ecosystems effectively in rewetted long-term dry river channel after water replenishment. AMBIO 2025; 54:448-459. [PMID: 39066834 PMCID: PMC11780026 DOI: 10.1007/s13280-024-02060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Climate-induced droughts exert a significant influence on the connectivity of river systems. It is estimated that about 25% of the world's rivers ran dry before reaching the ocean due to climate change and human activities. Ecological water replenishment is an effective measure for restoring aquatic ecosystems damaged by drought. It is urgently needed to quantitatively assess the aquatic ecosystems in rewetted dry river channels after water replenishment. This study investigated the variations in phytoplankton, zooplankton, benthic macroinvertebrates, and benthic bacterial communities in the rewetted dry river channel of Yongding River after water replenishment. In comparison with the water column communities, the benthic macroinvertebrates were identified as limiting factors for ecological restoration in rewetted dry river channels. In the absence of a certain recovery time for benthic macroinvertebrates, the benthic bacterial-based index of biological integrity, especially calculated based on their intrinsic properties, can properly assess aquatic ecosystems in rewetted dry river channels.
Collapse
Affiliation(s)
- Qi Liu
- School of Environment, Beijing Normal University, Beijing, 100875, China
- State Key Laboratory of Water Environment Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Senlu Yin
- School of Environment, Beijing Normal University, Beijing, 100875, China
- State Key Laboratory of Water Environment Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Qiyong Luo
- School of Environment, Beijing Normal University, Beijing, 100875, China
- State Key Laboratory of Water Environment Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China
| | - Yujun Yi
- School of Environment, Beijing Normal University, Beijing, 100875, China.
- State Key Laboratory of Water Environment Simulation and Pollution Control, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
2
|
Freixa A, González-Trujillo JD, Sacristán-Soriano O, Borrego CM, Sabater S. Terrestrialization of sediment bacterial assemblages when temporary rivers run dry. FEMS Microbiol Ecol 2024; 100:fiae126. [PMID: 39277783 PMCID: PMC11460285 DOI: 10.1093/femsec/fiae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/07/2024] [Accepted: 09/13/2024] [Indexed: 09/17/2024] Open
Abstract
Bacterial communities in river sediments are shaped by a trade-off between dispersal from upstream or nearby land and selection by the local environmental conditions. In temporary rivers (i.e. those characterized by long drying periods and subsequent rewetting) seasonal hydrological dynamics shape bacterial communities by connecting or disconnecting different river habitats. In this study, we tracked and compared the temporal and spatial changes in the composition of bacterial communities in streambed sediments and floodplain habitats across both permanent and intermittent river segments. Our findings revealed that environmental selection played a key role in assembling bacterial communities in both segments. We argue that distinct environmental features act as filters at the local scale, favoring specific bacterial taxa in isolated pools and promoting some typically terrestrial taxa in dry areas. Considering the prospective extension of drying intervals due to climate change, our results suggest an emerging trend wherein bacterial assemblages in temporary streams progressively incorporate microorganisms of terrestrial origin, well-adapted to tolerate desiccation phases. This phenomenon may constitute an integral facet of the broader adaptive dynamics of temporary river ecosystems in response to the impacts of climate change.
Collapse
Affiliation(s)
- Anna Freixa
- Catalan Institute for Water Research, (ICRA-CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - Juan David González-Trujillo
- Facultad de Ciencias, Departamento de Biología, Universidad Nacional de Colombia, Cra 30 45 02, Ciudad universitaria, Bogotá 111321, Colombia
| | - Oriol Sacristán-Soriano
- Catalan Institute for Water Research, (ICRA-CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain
| | - Carles M Borrego
- Catalan Institute for Water Research, (ICRA-CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain
- Institute of Aquatic Ecology, University of Girona,, Campus de Montilivi, Facultat de Ciències, 17071 Girona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research, (ICRA-CERCA), Carrer Emili Grahit 101, 17003 Girona, Spain
- Institute of Aquatic Ecology, University of Girona,, Campus de Montilivi, Facultat de Ciències, 17071 Girona, Spain
| |
Collapse
|
3
|
Duan Y, Li Y, Zhao J, Zhang J, Luo C, Jia R, Liu X. Changes in Microbial Composition During the Succession of Biological Soil Crusts in Alpine Hulun Buir Sandy Land, China. MICROBIAL ECOLOGY 2024; 87:43. [PMID: 38363394 PMCID: PMC10873229 DOI: 10.1007/s00248-024-02359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Biological soil crusts (biocrusts) are considered "desert ecosystem engineers" because they play a vital role in the restoration and stability maintenance of deserts, including those cold sandy land ecosystems at high latitudes, which are especially understudied. Microorganisms participate in the formation and succession of biocrusts, contributing to soil properties' improvement and the stability of soil aggregates, and thus vegetation development. Accordingly, understanding the composition and successional characteristics of microorganisms is a prerequisite for analyzing the ecological functions of biocrusts and related applications. Here, the Hulun Buir Sandy Land region in northeastern China-lying at the highest latitude of any sandy land in the country-was selected for study. Through a field investigation and next-generation sequencing (Illumina MiSeq PE300 Platform), our goal was to assess the shifts in diversity and community composition of soil bacteria and fungi across different stages during the succession of biocrusts in this region, and to uncover the main factors involved in shaping their soil microbial community. The results revealed that the nutrient enrichment capacity of biocrusts for available nitrogen, total nitrogen, total phosphorus, total content of water-soluble salt, available potassium, soil organic matter, and available phosphorus was progressively enhanced by the succession of cyanobacterial crusts to lichen crusts and then to moss crusts. In tandem, soil bacterial diversity increased as biocrust succession proceeded but fungal diversity decreased. A total of 32 bacterial phyla and 11 fungal phyla were identified, these also known to occur in other desert ecosystems. Among those taxa, the relative abundance of Proteobacteria and Cyanobacteria significantly increased and decreased, respectively, along the cyanobacterial crust-lichen-moss crust successional gradient. However, for Actinobacteria, Chloroflexi, and Acidobacteria their changed relative abundance was significantly hump-shaped, increasing in the shift from cyanobacterial crust to lichen crust, and then decreasing as lichen crust shifted to moss crust. In this process, the improved soil properties effectively enhanced soil bacterial and fungal community composition. Altogether, these findings broaden our understanding about how soil microbial properties can change during the succession of biocrusts in high-latitude, cold sandy land ecosystems.
Collapse
Affiliation(s)
- Yulong Duan
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, 028300, China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, 730000, China
| | - Yuqiang Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, 028300, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Strategic Mineral Resources of the Upper Yellow River, Ministry of Natural Resources, Lanzhou, 730000, China
| | - Jianhua Zhao
- Shanghai Majorbio Bio-Pharm Technology Co., Ltd, Shanghai, 200120, China
| | - Junbiao Zhang
- Shanghai Majorbio Bio-Pharm Technology Co., Ltd, Shanghai, 200120, China
| | - Chun Luo
- Shanghai Majorbio Bio-Pharm Technology Co., Ltd, Shanghai, 200120, China
| | - Rongliang Jia
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Zhongwei, 755007, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xinping Liu
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Tongliao, 028300, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Naidoo Y, Valverde A, Pierneef RE, Cowan DA. Differences in Precipitation Regime Shape Microbial Community Composition and Functional Potential in Namib Desert Soils. MICROBIAL ECOLOGY 2022; 83:689-701. [PMID: 34105010 DOI: 10.1007/s00248-021-01785-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Precipitation is one of the major constraints influencing the diversity, structure, and activity of soil microbial communities in desert ecosystems. However, the effect of changes in precipitation on soil microbial communities in arid soil microbiomes remains unresolved. In this study, using 16S rRNA gene high-throughput sequencing and shotgun metagenome sequencing, we explored changes in taxonomic composition and functional potential across two zones in the Namib Desert with contrasting precipitation regime. We found that precipitation regime had no effect on taxonomic and functional alpha-diversity, but that microbial community composition and functional potential (beta-diversity) changed with increased precipitation. For instance, Acidobacteriota and 'resistance to antibiotics and toxic compounds' related genes were relatively more abundant in the high-rainfall zone. These changes were largely due to a small set of microbial taxa, some of which were present in low abundance (i.e. members of the rare biosphere). Overall, these results indicate that key climatic factors (i.e. precipitation) shape the taxonomic and functional attributes of the arid soil microbiome. This research provides insight into how changes in precipitation patterns associated with global climate change may impact microbial community structure and function in desert soils.
Collapse
Affiliation(s)
- Yashini Naidoo
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
| | - Angel Valverde
- IRNASA-CSIC, C/Cordel de Merinas 40-52, 37008, Salamanca, Spain
| | - Rian E Pierneef
- Biotechnology Platform, Agricultural Research Council, Soutpan Road, Onderstepoort Campus, Pretoria, 0110, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| |
Collapse
|
5
|
Biocrust microbiomes influence ecosystem structure and function in the Mu Us Sandland, northwest China. ECOL INFORM 2021. [DOI: 10.1016/j.ecoinf.2021.101441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Huby TJC, Clark DR, McKew BA, McGenity TJ. Extremely halophilic archaeal communities are resilient to short-term entombment in halite. Environ Microbiol 2021; 23:3370-3383. [PMID: 31919959 PMCID: PMC8359394 DOI: 10.1111/1462-2920.14913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
Some haloarchaea avoid the harsh conditions present in evaporating brines by entombment in brine inclusions within forming halite crystals, where a subset of haloarchaea survives over geological time. However, shifts in the community structure of halite-entombed archaeal communities remain poorly understood. Therefore, we analysed archaeal communities from in situ hypersaline brines collected from Trapani saltern (Sicily) and their successional changes in brines versus laboratory-grown halite over 21 weeks, using high-throughput sequencing. Haloarchaea were dominant, comprising >95% of the archaeal community. Unexpectedly, the OTU richness of the communities after 21 weeks was indistinguishable from the parent brine and overall archaeal abundance in halite showed no clear temporal trends. Furthermore, the duration of entombment was less important than the parent brine from which the halite derived in determining the community composition and relative abundances of most genera in halite-entombed communities. These results show that halite-entombed archaeal communities are resilient to entombment durations of up to 21 weeks, and that entombment in halite may be an effective survival strategy for near complete communities of haloarchaea. Additionally, the dominance of 'halite specialists' observed in ancient halite must occur over periods of years, rather than months, hinting at long-term successional dynamics in this environment.
Collapse
Affiliation(s)
- Tom J. C. Huby
- School of Life SciencesUniversity of EssexColchesterEssexUK
| | - Dave R. Clark
- School of Life SciencesUniversity of EssexColchesterEssexUK
| | - Boyd A. McKew
- School of Life SciencesUniversity of EssexColchesterEssexUK
| | | |
Collapse
|
7
|
Isoprene-Degrading Bacteria from Soils Associated with Tropical Economic Crops and Framework Forest Trees. Microorganisms 2021; 9:microorganisms9051024. [PMID: 34068745 PMCID: PMC8150984 DOI: 10.3390/microorganisms9051024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 11/17/2022] Open
Abstract
Isoprene, a volatile hydrocarbon emitted largely by plants, plays an important role in regulating the climate in diverse ways, such as reacting with free radicals in the atmosphere to produce greenhouse gases and pollutants. Isoprene is both deposited and formed in soil, where it can be consumed by some soil microbes, although much remains to be understood about isoprene consumption in tropical soils. In this study, isoprene-degrading bacteria from soils associated with tropical plants were investigated by cultivation and cultivation-independent approaches. Soil samples were taken from beneath selected framework forest trees and economic crops at different seasons, and isoprene degradation in soil microcosms was measured after 96 h of incubation. Isoprene losses were 4-31% and 15-52% in soils subjected to a lower (7.2 × 105 ppbv) and a higher (7.2 × 106 ppbv) concentration of isoprene, respectively. Sequencing of 16S rRNA genes revealed that bacterial communities in soil varied significantly across plant categories (framework trees versus economic crops) and the presence of isoprene, but not with isoprene concentration or season. Eight isoprene-degrading bacterial strains were isolated from the soils and, among these, four belong to the genera Ochrobactrum, Friedmanniella, Isoptericola and Cellulosimicrobium, which have not been previously shown to degrade isoprene.
Collapse
|
8
|
Bonetti G, Trevathan-Tackett SM, Carnell PE, Macreadie PI. The potential of viruses to influence the magnitude of greenhouse gas emissions in an inland wetland. WATER RESEARCH 2021; 193:116875. [PMID: 33550166 DOI: 10.1016/j.watres.2021.116875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Wetlands are among the earth's most efficient ecosystems for carbon sequestration, but can also emit potent greenhouse gases (GHGs) depending on how they are managed. Global management strategies have sought to maximize carbon drawdown by wetlands by manipulating wetland hydrology to inhibit bacterially-mediated emissions. However, it has recently been hypothesized within wetlands that viruses have the potential to dictate the magnitude and direction of GHG emissions by attacking prokaryotes involved in the carbon cycle. Here we tested this hypothesis in a whole-ecosystem manipulation by hydrologically-restoring a degraded wetland ('rewetting') and investigated the changes in GHG emissions, prokaryotes, viruses, and virus-host interactions. We found that hydrological restoration significantly increased prokaryotic diversity, methanogenic Methanomicrobia, as well as putative iron/sulfate-cyclers (Geobacteraceae), nitrogen-cyclers (Nitrosomonadaceae), and fermentative bacteria (Koribacteraceae). These results provide insights into successional microbial community shifts during rehabilitation. Additionally, in response to watering, viral-induced prokaryotic mortality declined by 77%, resulting in limited carbon released by viral shunt that was significantly correlated with the 2.8-fold reduction in wetland carbon emissions. Our findings highlight, for the first time, the potential implications of viral infections in soil prokaryotes on wetland greenhouse gas dynamics and confirm the importance of wetland rehabilitation as a tool to offset carbon emissions.
Collapse
Affiliation(s)
- Giuditta Bonetti
- Deakin University, Centre for Integrative Ecology, School of Life and Environmental Sciences, Burwood Campus, Victoria 3125, Australia..
| | - Stacey M Trevathan-Tackett
- Deakin University, Centre for Integrative Ecology, School of Life and Environmental Sciences, Burwood Campus, Victoria 3125, Australia..
| | - Paul E Carnell
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Queenscliff Campus, Queenscliff, VIC 3225, Australia.
| | - Peter I Macreadie
- Deakin University, Centre for Integrative Ecology, School of Life and Environmental Sciences, Burwood Campus, Victoria 3125, Australia..
| |
Collapse
|
9
|
Genderjahn S, Lewin S, Horn F, Schleicher AM, Mangelsdorf K, Wagner D. Living Lithic and Sublithic Bacterial Communities in Namibian Drylands. Microorganisms 2021; 9:235. [PMID: 33498742 PMCID: PMC7911874 DOI: 10.3390/microorganisms9020235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/26/2022] Open
Abstract
Dryland xeric conditions exert a deterministic effect on microbial communities, forcing life into refuge niches. Deposited rocks can form a lithic niche for microorganisms in desert regions. Mineral weathering is a key process in soil formation and the importance of microbial-driven mineral weathering for nutrient extraction is increasingly accepted. Advances in geobiology provide insight into the interactions between microorganisms and minerals that play an important role in weathering processes. In this study, we present the examination of the microbial diversity in dryland rocks from the Tsauchab River banks in Namibia. We paired culture-independent 16S rRNA gene amplicon sequencing with culture-dependent (isolation of bacteria) techniques to assess the community structure and diversity patterns. Bacteria isolated from dryland rocks are typical of xeric environments and are described as being involved in rock weathering processes. For the first time, we extracted extra- and intracellular DNA from rocks to enhance our understanding of potentially rock-weathering microorganisms. We compared the microbial community structure in different rock types (limestone, quartz-rich sandstone and quartz-rich shale) with adjacent soils below the rocks. Our results indicate differences in the living lithic and sublithic microbial communities.
Collapse
Affiliation(s)
- Steffi Genderjahn
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (S.L.); (F.H.); (D.W.)
| | - Simon Lewin
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (S.L.); (F.H.); (D.W.)
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (S.L.); (F.H.); (D.W.)
| | - Anja M. Schleicher
- GFZ German Research Centre for Geosciences, Section Organic Geochemistry, Telegrafenberg, 14473 Potsdam, Germany;
| | - Kai Mangelsdorf
- GFZ German Research Centre for Geosciences, Section Anorganic Chemistry, Telegrafenberg, 14473 Potsdam, Germany;
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (S.L.); (F.H.); (D.W.)
- Institute of Geosciences, University of Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
10
|
Evidence for signatures of ancient microbial life in paleosols. Sci Rep 2020; 10:16830. [PMID: 33033361 PMCID: PMC7545160 DOI: 10.1038/s41598-020-73938-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/23/2020] [Indexed: 11/08/2022] Open
Abstract
Loess-paleosol sequences are terrestrial archives of past climate change. They may host traces of ancient microbial life, but little information is available on the recovery of microbial biomarkers from such deposits. We hypothesized that microbial communities in soil horizons up to an age of 127 kyr carry information related to past environments. We extracted DNA from a loess-paleosol sequence near Toshan, Northern Iran, with 26 m thick deposits showing different degrees of soil development, performed quantitative PCR and 16S rRNA gene amplicon sequencing. Periods of soil formation archived within the loess sediment led to higher diversity and bacterial abundance in the paleosol horizons. Community composition fluctuated over the loess-paleosol sequence and was mainly correlated with age and depth, (ADONIS R2 < 0.14, P ≤ 0.002), while responses to paleosol soil traits were weaker. Phyla like Bacteriodetes, Proteobacteria or Acidobacteria were more prevalent in paleosol horizons characterized by intense soil formation, while weakly developed paleosols or loess horizons hosted a higher percentage and diversity of Actinobacteria. Taken together, our findings indicate that the microbial community in loess-paleosol sequences carries signatures of earlier environmental conditions that are preserved until today.
Collapse
|
11
|
Gionchetta G, Artigas J, Arias-Real R, Oliva F, Romaní AM. Multi-model assessment of hydrological and environmental impacts on streambed microbes in Mediterranean catchments. Environ Microbiol 2020; 22:2213-2229. [PMID: 32227440 DOI: 10.1111/1462-2920.14990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/29/2022]
Abstract
Microbes inhabiting intermittent streambeds are responsible for controlling and developing many biogeochemical processes essential for the ecosystem functions. Although streambed microbiota is adapted to intermittency the intensification of water scarcity and prolonged dry periods may jeopardise their capacity to cope with hydrological changes. This study aims to evaluate whether, and to what extent, the duration of dry periods affects streambed microbial density, diversity, composition (16S rRNA gene diversity) and functions (extracellular enzyme activities and respiration). Our results highlight the fact that hydrology modulates the community composition and, to some extent, the functions carried out under different environmental conditions. The relative abundance of certain taxa inhabiting the driest intermittent communities differs significantly from those found at sites with continuous flow. Microbial functional metrics revealed a progressive increase in recalcitrant carbon degradation activity at sites with an extended dry phase. In contrast, bacterial density and diversity were mainly influenced by the catchment land use, agriculture enhanced density but reduced diversity, and the presence of riparian vegetation supported greater streambed bacterial diversity. From this perspective, a combination of prolonged dryness with reduced riparian vegetation and increased agricultural land cover could compromise the ecosystem functioning by threaten microbially mediated processes linked to the carbon cycle.
Collapse
Affiliation(s)
- Giulia Gionchetta
- GRECO, Institute of Aquatic Ecology, University of Girona, 17003, Girona, Spain
| | - Joan Artigas
- Université Clermont Auvergne, CNRS, Laboratoire Microorganismes: Genome et Environnement, F-63000, Clermont-Ferrand, France
| | - Rebeca Arias-Real
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Francesc Oliva
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Anna Maria Romaní
- GRECO, Institute of Aquatic Ecology, University of Girona, 17003, Girona, Spain
| |
Collapse
|
12
|
An Z, Guo F, Chen Y, Bai G, Chen Z. Rhizosphere bacterial and fungal communities during the growth of Angelica sinensis seedlings cultivated in an Alpine uncultivated meadow soil. PeerJ 2020; 8:e8541. [PMID: 32257632 PMCID: PMC7103203 DOI: 10.7717/peerj.8541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 01/09/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Angelica sinensis seedlings are grown in alpine uncultivated meadow soil with rainfed agroecosystems to ensure the quality of A. sinensis after seedling transplantation. The aim was to investigate the rhizosphere bacterial and fungal communities during the growth stages of A. sinensis seedlings. METHODS The bacterial and fungal communities were investigated by HiSeq sequencing of 16S and 18S rDNA, respectively. RESULTS Proteobacteria and Bacteroidetes were bacterial dominant phyla throughout growth stages. Fungal dominant phyla varied with growth stages, dominant phyla Ascomycota and Chytridiomycota in AM5, dominant phyla Basidiomycota, Ascomycota and Zygomycota in BM5, and dominant phyla Basidiomycota and Ascomycota in CM5. There was no significant variation in the alpha-diversity of the bacterial and fungal communities, but significant variation was in the beta-diversity. We found that the variation of microbial community composition was accompanied by the changes in community function. The relative abundance of fungal pathogens increased with plant growth. We also identified the core microbes, significant-changing microbes, stage-specific microbes, and host-specific microbes. Plant weight, root length, root diameter, soil pH, rainfall, and climate temperature were the key divers to microbial community composition. CONCLUSIONS Our findings reported the variation and environmental drivers of rhizosphere bacterial and fungal communities during the growth of A. sinensis seedlings, which enhance the understanding of the rhizosphere microbial community in this habitat.
Collapse
Affiliation(s)
- Zhigang An
- College of Life Science and Technology, College of Agronomy, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicine, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Provincial Key Lab of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- Pharmacy Department, Gansu University of Chinese Medicine, Dingxi, China
| | - Fengxia Guo
- College of Life Science and Technology, College of Agronomy, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicine, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Provincial Key Lab of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Yuan Chen
- College of Life Science and Technology, College of Agronomy, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicine, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Provincial Key Lab of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- Gansu Engineering Lab of Resource Reservation and Utilization for Characteristic Chinese Medicine, Gansu Tasly Zhongtian Pharmaceutical Co., Ltd., Dingxi, China
| | - Gang Bai
- College of Life Science and Technology, College of Agronomy, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicine, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Provincial Key Lab of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Zhengjun Chen
- College of Life Science and Technology, College of Agronomy, Gansu Provincial Key Lab of Good Agricultural Production for Traditional Chinese Medicine, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Provincial Key Lab of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
13
|
Rain induces temporary shifts in epiphytic bacterial communities of cucumber and tomato fruit. Sci Rep 2020; 10:1765. [PMID: 32020033 PMCID: PMC7000718 DOI: 10.1038/s41598-020-58671-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/13/2020] [Indexed: 11/09/2022] Open
Abstract
Understanding weather-related drivers of crop plant-microbiome relationships is important for food security and food safety in the face of a changing climate. Cucumber and tomato are commercially important commodities that are susceptible to plant disease and have been implicated in foodborne disease outbreaks. To investigate the influence of precipitation on plant-associated microbiomes, epiphytically associated bacterial communities of cucumber and tomato samples were profiled by 16 S rRNA gene sequencing (V1-V3) in the days surrounding two rain events over a 17-day period. Following rain, α (within-sample) diversity measured on cucumber and tomato fruit surfaces, but not tomato leaf surfaces, increased significantly and remained elevated for several days. Bacterial β (between-sample) diversity on cucumber and tomato fruit responded to precipitation. In the cucumber fruit surface (carpoplane), notable shifts in the families Xanthomonadaceae, Oxalobacteriaceae, Sphingobacteriaceae and Comamonadaceae were detected following precipitation. In the tomato carpoplane, shifts were detected in the families Enterobacteriaceae and Xanthomonadaceae following the first rain event, and in the Pseudomonadaceae and Oxalobacteriaceae following the second rain event. Few taxonomic shifts were detected in the tomato leaf surface (phylloplane). Exploring rain-induced shifts in plant microbiomes is highly relevant to crop protection, food safety and agroecology, and can aid in devising ways to enhance crop resilience to stresses and climate fluctuations.
Collapse
|
14
|
Folwell BD, McGenity TJ, Whitby C. Diamondoids are not forever: microbial biotransformation of diamondoid carboxylic acids. Microb Biotechnol 2019; 13:495-508. [PMID: 31714688 PMCID: PMC7017837 DOI: 10.1111/1751-7915.13500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/19/2019] [Accepted: 10/07/2019] [Indexed: 02/02/2023] Open
Abstract
Oil sands process‐affected waters (OSPW) contain persistent, toxic naphthenic acids (NAs), including the abundant yet little‐studied diamondoid carboxylic acids. Therefore, we investigated the aerobic microbial biotransformation of two of the most abundant, chronically toxic and environmentally relevant diamondoid carboxylic acids: adamantane‐1‐carboxylic acid (A1CA) and 3‐ethyl adamantane carboxylic acid (3EA). We inoculated into minimal salts media with diamondoid carboxylic acids as sole carbon and energy source two samples: (i) a surface water sample (designated TPW) collected from a test pit from the Mildred Lake Settling Basin and (ii) a water sample (designated 2 m) collected at a water depth of 2 m from a tailings pond. By day 33, in TPW enrichments, 71% of A1CA and 50% of 3EA was transformed, with 50% reduction in EC20 toxicity. Similar results were found for 2 m enrichments. Biotransformation of A1CA and 3EA resulted in the production of two metabolites, tentatively identified as 2‐hydroxyadamantane‐1‐carboxylic acid and 3‐ethyladamantane‐2‐ol respectively. Accumulation of both metabolites was less than the loss of the parent compound, indicating that they would have continued to be transformed beyond 33 days and not accumulate as dead‐end metabolites. There were shifts in bacterial community composition during biotransformation, with Pseudomonas species, especially P. stutzeri, dominating enrichments irrespective of the diamondoid carboxylic acid. In conclusion, we demonstrated the microbial biotransformation of two diamondoid carboxylic acids, which has potential application for their removal and detoxification from vast OSPW that are a major environmental threat.
Collapse
Affiliation(s)
- Benjamin D Folwell
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Terry J McGenity
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Corinne Whitby
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
15
|
Distinct responses from bacterial, archaeal and fungal streambed communities to severe hydrological disturbances. Sci Rep 2019; 9:13506. [PMID: 31534180 PMCID: PMC6751160 DOI: 10.1038/s41598-019-49832-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/24/2019] [Indexed: 11/08/2022] Open
Abstract
Stream microbes that occur in the Mediterranean Basin have been shown to possess heightened sensitivity to intensified water stress attributed to climate change. Here, we investigate the effects of long-term drought (150 days), storms and rewetting (7 days) on the diversity and composition of archaea, bacteria and fungi inhabiting intermittent streambed sediment (surface and hyporheic) and buried leaves. Hydrological alterations modified the archaeal community composition more than the bacterial community composition, whereas fungi were the least affected. Throughout the experiment, archaeal communities colonizing sediments showed greater phylogenetic distances compared to those of bacteria and fungi, suggesting considerable adaptation to severe hydrological disturbances. The increase in the class abundances, such as those of Thermoplasmata within archaea and of Actinobacteria and Bacilli within bacteria, revealed signs of transitioning to a drought-favoured and soil-like community composition. Strikingly, we found that in comparison to the drying phase, water return (as sporadic storms and rewetting) led to larger shifts in the surface microbial community composition and diversity. In addition, microhabitat characteristics, such as the greater capacity of the hyporheic zone to maintain/conserve moisture, tended to modulate the ability of certain microbes (e.g., bacteria) to cope with severe hydrological disturbances.
Collapse
|
16
|
Fernández-Martínez MÁ, dos Santos Severino R, Moreno-Paz M, Gallardo-Carreño I, Blanco Y, Warren-Rhodes K, García-Villadangos M, Ruiz-Bermejo M, Barberán A, Wettergreen D, Cabrol N, Parro V. Prokaryotic Community Structure and Metabolisms in Shallow Subsurface of Atacama Desert Playas and Alluvial Fans After Heavy Rains: Repairing and Preparing for Next Dry Period. Front Microbiol 2019; 10:1641. [PMID: 31396176 PMCID: PMC6668633 DOI: 10.3389/fmicb.2019.01641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/02/2019] [Indexed: 11/13/2022] Open
Abstract
The Atacama Desert, the oldest and driest desert on Earth, displays significant rains only once per decade. To investigate how microbial communities take advantage of these sporadic wet events, we carried out a geomicrobiological study a few days after a heavy rain event in 2015. Different physicochemical and microbial community analyses were conducted on samples collected from playas and an alluvial fan from surface, 10, 20, 50, and 80 cm depth. Gravimetric moisture content peaks were measured in 10 and 20 cm depth samples (from 1.65 to 4.1% w/w maximum values) while, in general, main anions such as chloride, nitrate, and sulfate concentrations increased with depth, with maximum values of 13-1,125; 168-10,109; and 9,904-30,952 ppm, respectively. Small organic anions such as formate and acetate had maximum concentrations from 2.61 to 3.44 ppm and 6.73 to 28.75 ppm, respectively. Microbial diversity inferred from DNA analysis showed Actinobacteria and Alphaproteobacteria as the most abundant and widespread bacterial taxa among the samples, followed by Chloroflexi and Firmicutes at specific sites. Archaea were mainly dominated by Nitrososphaerales, Methanobacteria, with the detection of other groups such as Halobacteria. Metaproteomics showed a high and even distribution of proteins involved in primary metabolic processes such as energy production and biosynthetic pathways, and a limited but remarkable presence of proteins related to resistance to environmental stressors such as radiation, oxidation, or desiccation. The results indicated that extra humidity in the system allows the microbial community to repair, and prepare for the upcoming hyperarid period. Additionally, it supplies biomarkers to the medium whose preservation potential could be high under strong desiccation conditions and relevant for planetary exploration.
Collapse
Affiliation(s)
| | | | | | | | | | - Kimberley Warren-Rhodes
- Carl Sagan Center, SETI Institute, Mountain View, CA, United States
- NASA Ames Research Center, Moffett Field, Mountain View, CA, United States
| | | | | | - Albert Barberán
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ, United States
| | - David Wettergreen
- Carnegie Mellon University, Robotics Institute, Pittsburgh, PA, United States
| | - Nathalie Cabrol
- Carl Sagan Center, SETI Institute, Mountain View, CA, United States
- NASA Ames Research Center, Moffett Field, Mountain View, CA, United States
| | - Víctor Parro
- Centro de Astrobiología (CAB, CSIC-INTA), Madrid, Spain
| |
Collapse
|
17
|
Luláková P, Perez-Mon C, Šantrůčková H, Ruethi J, Frey B. High-Alpine Permafrost and Active-Layer Soil Microbiomes Differ in Their Response to Elevated Temperatures. Front Microbiol 2019; 10:668. [PMID: 31001236 PMCID: PMC6456652 DOI: 10.3389/fmicb.2019.00668] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/18/2019] [Indexed: 02/01/2023] Open
Abstract
The response of microbial communities to the predicted rising temperatures in alpine regions might be an important part of the ability of these ecosystems to deal with climate change. Soil microbial communities might be significantly affected by elevated temperatures, which influence the functioning of soils within high-alpine ecosystems. To evaluate the potential of the permafrost microbiome to adapt to short-term moderate and extreme warming, we set up an incubation experiment with permafrost and active soil layers from northern and southern slopes of a high-alpine mountain ridge on Muot da Barba Peider in the Swiss Alps. Soils were acclimated to increasing temperatures (4–40°C) for 26 days before being exposed to a heat shock treatment of 40°C for 4 days. Alpha-diversity in all soils increased slightly under gradual warming, from 4 to 25°C, but then dropped considerably at 40°C. Similarly, heat shock induced strong changes in microbial community structures and functioning in the active layer of soils from both northern and southern slope aspects. In contrast, permafrost soils showed only minor changes in their microbial community structures and no changes in their functioning, except regarding specific respiration activity. Shifts in microbial community structures with increasing temperature were significantly more pronounced for bacteria than for fungi, regardless of the soil origin, suggesting higher resistance of high-alpine fungi to short-term warming. Firmicutes, mainly represented by Tumebacillus and Alicyclobacillaceae OTUs, increased strongly at 40°C in active layer soils, reaching almost 50% of the total abundance. In contrast, Saccharibacteria decreased significantly with increasing temperature across all soil samples. Overall, our study highlights the divergent responses of fungal and bacterial communities to increased temperature. Fungi were highly resistant to increased temperatures compared to bacteria, and permafrost communities showed surprisingly low response to rising temperature. The unique responses were related to both site aspect and soil origin indicating that distinct differences within high-alpine soils may be driven by substrate limitation and legacy effects of soil temperatures at the field site.
Collapse
Affiliation(s)
- Petra Luláková
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Carla Perez-Mon
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Hana Šantrůčková
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Joel Ruethi
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
18
|
Drylands soil bacterial community is affected by land use change and different irrigation practices in the Mezquital Valley, Mexico. Sci Rep 2018; 8:1413. [PMID: 29362388 PMCID: PMC5780513 DOI: 10.1038/s41598-018-19743-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 01/03/2018] [Indexed: 11/09/2022] Open
Abstract
Dryland agriculture nourishes one third of global population, although crop irrigation is often mandatory. As freshwater sources are scarce, treated and untreated wastewater is increasingly used for irrigation. Here, we investigated how the transformation of semiarid shrubland into rainfed farming or irrigated agriculture with freshwater, dam-stored or untreated wastewater affects the total (DNA-based) and active (RNA-based) soil bacterial community composition, diversity, and functionality. To do this we collected soil samples during the dry and rainy seasons and isolated DNA and RNA. Soil moisture, sodium content and pH were the strongest drivers of the bacterial community composition. We found lineage-specific adaptations to drought and sodium content in specific land use systems. Predicted functionality profiles revealed gene abundances involved in nitrogen, carbon and phosphorous cycles differed among land use systems and season. Freshwater irrigated bacterial community is taxonomically and functionally susceptible to seasonal environmental changes, while wastewater irrigated ones are taxonomically susceptible but functionally resistant to them. Additionally, we identified potentially harmful human and phytopathogens. The analyses of 16 S rRNA genes, its transcripts and deduced functional profiles provided extensive understanding of the short-term and long-term responses of bacterial communities associated to land use, seasonality, and water quality used for irrigation in drylands.
Collapse
|