1
|
Barroso KCC, Virginio VG, Chaúque BJM, Maschio VJ, Sand STVANDER, Rott MB. Coculturing Streptomyces sp. with Acanthamoeba polyphaga enhances the antimicrobial effectiveness of its crude extract against multidrug-resistant Pseudomonas aeruginosa and Escherichia coli. AN ACAD BRAS CIENC 2025; 97:e20240655. [PMID: 40243764 DOI: 10.1590/0001-3765202520240655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/15/2025] [Indexed: 04/18/2025] Open
Abstract
Bacterial infections stand as prominent contributors to global mortality and morbidity rates. Harnessing the potential antimicrobial activity of secondary metabolites derived from natural sources holds promise for developing novel therapeutic drugs. Streptomyces spp. represents pivotal microorganisms in the synthesis of these compounds. Acanthamoeba spp. serves as natural virulence amplifiers for a wide range of bacterial pathogens. This study evaluates the antimicrobial efficacy of crude extracts of Streptomyces sp. cocultured trials with Acanthamoeba polyphaga against multidrug-resistant Pseudomonas aeruginosa and Escherichia coli. The production of crude extracts from Streptomyces sp. was monitored over 28 days. The antimicrobial activity against P. aeruginosa and E. coli was evaluated by measuring the inhibitory halos. Viability amoebae and bacteria were assessed. A slight decrease in the viability of A. polyphaga was noted during the coculture. Conversely, coculture promoted bacterial growth and facilitated the synthesis of extracts that showed antimicrobial effects against P. aeruginosa and E. coli, while showing no impact on amoebae. The extracts were active mainly against P. aeruginosa. The findings show that the interaction between A. polyphaga and Streptomyces sp. modulates the production of antimicrobial secondary metabolites by bacteria. Further investigations are needed to characterize the nature of this modulation, and the bactericidal components.
Collapse
Affiliation(s)
- Keli C C Barroso
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas e da Saúde, Rua Ramiro Barcelos, 2600, 90035-002 Porto Alegre, RS, Brazil
| | - Veridiana G Virginio
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas e da Saúde, Rua Ramiro Barcelos, 2600, 90035-002 Porto Alegre, RS, Brazil
| | - Beni J M Chaúque
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Rua Ramiro Barcelos, 2600, 90035-002 Porto Alegre, RS, Brazil
- Universidade Rovuma, Núcleo de Estudos em Ciência e Tecnologia - NECET, Curso de Biologia, Lichinga, Niassa, Caixa Postal 4, Moçambique
- Hospital de Clínicas de Porto Alegre - HCPA, Mestrado Profissional em Pesquisa Clínica - MPPC, Ramiro Barcelos 2350, 90035-903 Porto Alegre, RS, Brazil
| | - Vinicius J Maschio
- Universidade do Sul de Santa Catarina, Rua Simeão Esmeraldino de Menezes, 400, 88704-090 Tubarão, SC, Brazil
| | - Sueli T VAN DER Sand
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas e da Saúde, Rua Ramiro Barcelos, 2600, 90035-002 Porto Alegre, RS, Brazil
- Universidade Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Protozoologia, Laboratório 520, Rua Ramiro Barcelos, 2600, 90035-002 Porto Alegre, RS, Brazil
| | - Marilise B Rott
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente, Instituto de Ciências Básicas e da Saúde, Rua Ramiro Barcelos, 2600, 90035-002 Porto Alegre, RS, Brazil
- Universidade Rio Grande do Sul, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Protozoologia, Laboratório 520, Rua Ramiro Barcelos, 2600, 90035-002 Porto Alegre, RS, Brazil
| |
Collapse
|
2
|
Liu YN, Chen YL, Zhang ZJ, Wu FY, Wang HJ, Wang XL, Liu GQ. Phosphatidic acid directly activates mTOR and then regulates SREBP to promote ganoderic acid biosynthesis under heat stress in Ganoderma lingzhi. Commun Biol 2024; 7:1503. [PMID: 39537975 PMCID: PMC11560937 DOI: 10.1038/s42003-024-07225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Ganoderic acids (GAs), a class of secondary metabolites produced by the traditional medicinal mushroom Ganoderma, are a group of triterpenoids with superior biological activities. Heat stress (HS) is one of the most important environmental abiotic stresses. Understanding how organisms sense temperature and integrate this information into their metabolism is important for determining how organisms adapt to climate change and for applying this knowledge to breeding. We previously reported that HS induced GA biosynthesis, and phospholipase D (PLD)-mediated phosphatidic acid (PA) was involved in HS-induced GA biosynthesis. We screened a proteome to identify the PA-binding proteins in G. lingzhi. We reported that PA directly interacted with mTOR and positively correlated with the ability of mTOR to promote GA biosynthesis under HS. The PA-activated mTOR pathway promoted the processing of the transcription factor sterol regulatory element-binding protein (SREBP) under HS, which directly activated GA biosynthesis. Our results suggest that SREBP is an intermediate of the PLD-mediated PA-interacting protein mTOR in HS-induced GA biosynthesis. Our report established the link between PLD-mediated PA production and the activation of mTOR and SREBP in the HS response and HS-induced secondary metabolism in filamentous fungi.
Collapse
Affiliation(s)
- Yong-Nan Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China.
- Laboratory of Yuelushan Seed Industry, Changsha, China.
| | - Yu-Lin Chen
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Zi-Juan Zhang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Feng-Yuan Wu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Hao-Jin Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Xiao-Ling Wang
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China
- Laboratory of Yuelushan Seed Industry, Changsha, China
| | - Gao-Qiang Liu
- Hunan Provincial Key Laboratory of Forestry Biotechnology and International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology, Central South University of Forestry and Technology, Changsha, China.
- Laboratory of Yuelushan Seed Industry, Changsha, China.
| |
Collapse
|
3
|
Shangguan J, Wu T, Tian L, Liu Y, Zhu L, Liu R, Zhu J, Shi L, Zhao M, Ren A. Hydrogen sulfide maintains mitochondrial homeostasis and regulates ganoderic acids biosynthesis by SQR under heat stress in Ganoderma lucidum. Redox Biol 2024; 74:103227. [PMID: 38865903 PMCID: PMC11215418 DOI: 10.1016/j.redox.2024.103227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Hydrogen sulfide (H2S) has recently been recognized as an important gaseous transmitter with multiple physiological effects in various species. Previous studies have shown that H2S alleviated heat-induced ganoderic acids (GAs) biosynthesis, an important quality index of Ganoderma lucidum. However, a comprehensive understanding of the physiological effects and molecular mechanisms of H2S in G. lucidum remains unexplored. In this study, we found that heat treatment reduced the mitochondrial membrane potential (MMP) and mitochondrial DNA copy number (mtDNAcn) in G. lucidum. Increasing the intracellular H2S concentration through pharmacological and genetic means increased the MMP level, mtDNAcn, oxygen consumption rate level and ATP content under heat treatment, suggesting a role for H2S in mitigating heat-caused mitochondrial damage in G. lucidum. Further results indicated that H2S activates sulfide-quinone oxidoreductase (SQR) and complex III (Com III), thereby maintaining mitochondrial homeostasis under heat stress in G. lucidum. Moreover, SQR also mediated the negative regulation of H2S to GAs biosynthesis under heat stress. Furthermore, SQR might be persulfidated under heat stress in G. lucidum. Thus, our study reveals a novel physiological function and molecular mechanism of H2S signalling under heat stress in G. lucidum with broad implications for research on the environmental response of microorganisms.
Collapse
Affiliation(s)
- Jiaolei Shangguan
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Tao Wu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Li Tian
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Yueqian Liu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Lei Zhu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Rui Liu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Jing Zhu
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Liang Shi
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China
| | - Mingwen Zhao
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| | - Ang Ren
- Sanya Institute of Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, PR China.
| |
Collapse
|
4
|
Shen C, Feng G, Zhao F, Huang X, Li X. The multi-omics analysis in the hepatopancreas of Eriocheir sinensis provides novel insights into the response mechanism of heat stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101232. [PMID: 38598963 DOI: 10.1016/j.cbd.2024.101232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Under global warming, heat stress can induce the excessive production of reactive oxygen species, causing irreversible damage to aquatic animals. It is essential to predict potentially harmful impacts on aquatic organisms under heat stress. Eriocheir sinensis, a typical crustacean crab, is widely distributed in China, American and Europe. Parent E. sinensis need migrate to the estuaries to reproduce in winter, and temperature is a key environmental factor. Herein, we performed a comprehensive transcriptomic and proteomic analysis in the hepatopancreas of E. sinensis under heat stress (20 °C and 30 °C), focusing on heat shock protein family, antioxidant system, energy metabolism and immune defense. The results revealed that parent E. sinensis generated adaptative responses to maintain physiological function under 20 °C stress via the transcriptional up-regulation of energy metabolism enzymes, mRNA synthesis and heat shock proteins. The transcriptional inhibition of key enzymes related to energy metabolism implied that 30 °C stress may lead to the dysfunction of energy metabolism in parent E. sinensis. Meanwhile, parent E. sinensis also enhanced the expression of ferritin and phospholipase D at translational level, and the glutathione s-transferase and heat shock protein 70 at both transcriptional and translational levels, speculating that parent E. sinensis can strengthen antioxidant and immune capacity to resist oxidative stress under 30 °C stress. This study elucidated the potential molecular mechanism in response to heat stress of parent E. sinensis hepatopancreas. The preliminary selection of heat tolerance genes or proteins in E. sinensis can provide a reference for the population prediction and the study of evolutionary mechanism under heat stress in crabs.
Collapse
Affiliation(s)
- Chenchen Shen
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Guangpeng Feng
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Feng Zhao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China
| | - Xiaorong Huang
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China
| | - Xincang Li
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai Engineering Research Center of Fisheries Resources Enhancement and Ecological Restoration of the Yangtze Estuary, Shanghai 200090, China
| |
Collapse
|
5
|
Wang Y, Wakelam MJO, Bankaitis VA, McDermott MI. The wide world of non-mammalian phospholipase D enzymes. Adv Biol Regul 2024; 91:101000. [PMID: 38081756 DOI: 10.1016/j.jbior.2023.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 02/25/2024]
Abstract
Phospholipase D (PLD) hydrolyses phosphatidylcholine (PtdCho) to produce free choline and the critically important lipid signaling molecule phosphatidic acid (PtdOH). Since the initial discovery of PLD activities in plants and bacteria, PLDs have been identified in a diverse range of organisms spanning the taxa. While widespread interest in these proteins grew following the discovery of mammalian isoforms, research into the PLDs of non-mammalian organisms has revealed a fascinating array of functions ranging from roles in microbial pathogenesis, to the stress responses of plants and the developmental patterning of flies. Furthermore, studies in non-mammalian model systems have aided our understanding of the entire PLD superfamily, with translational relevance to human biology and health. Increasingly, the promise for utilization of non-mammalian PLDs in biotechnology is also being recognized, with widespread potential applications ranging from roles in lipid synthesis, to their exploitation for agricultural and pharmaceutical applications.
Collapse
Affiliation(s)
- Y Wang
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Microbiology, University of Washington, Seattle, WA98109, USA
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - M I McDermott
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX, 77843, USA.
| |
Collapse
|
6
|
Liu YN, Wu FY, Tian RY, Shi YX, Xu ZQ, Liu JY, Huang J, Xue FF, Liu BY, Liu GQ. The bHLH-zip transcription factor SREBP regulates triterpenoid and lipid metabolisms in the medicinal fungus Ganoderma lingzhi. Commun Biol 2023; 6:1. [PMID: 36596887 PMCID: PMC9810662 DOI: 10.1038/s42003-022-04154-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/21/2022] [Indexed: 01/04/2023] Open
Abstract
Ganoderic acids (GAs) are well recognized as important pharmacological components of the medicinal species belonging to the basidiomycete genus Ganoderma. However, transcription factors directly regulating the expression of GA biosynthesis genes remain poorly understood. Here, the genome of Ganoderma lingzhi is de novo sequenced. Using DNA affinity purification sequencing, we identify putative targets of the transcription factor sterol regulatory element-binding protein (SREBP), including the genes of triterpenoid synthesis and lipid metabolism. Interactions between SREBP and the targets are verified by electrophoretic mobility gel shift assay. RNA-seq shows that SREBP targets, mevalonate kinase and 3-hydroxy-3-methylglutaryl coenzyme A synthetase in mevalonate pathway, sterol isomerase and lanosterol 14-demethylase in ergosterol biosynthesis, are significantly upregulated in the SREBP overexpression (OE::SREBP) strain. In addition, 3 targets involved in glycerophospholipid/glycerolipid metabolism are upregulated. Then, the contents of mevalonic acid, lanosterol, ergosterol and 13 different GAs as well as a variety of lipids are significantly increased in this strain. Furthermore, the effects of SREBP overexpression on triterpenoid and lipid metabolisms are recovered when OE::SREBP strain are treated with exogenous fatostatin, a specific inhibitor of SREBP. Taken together, our genome-wide study clarify the role of SREBP in triterpenoid and lipid metabolisms of G. lingzhi.
Collapse
Affiliation(s)
- Yong-Nan Liu
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Feng-Yuan Wu
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Ren-Yuan Tian
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Yi-Xin Shi
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Zi-Qi Xu
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Ji-Ye Liu
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Jia Huang
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Fei-Fei Xue
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Bi-Yang Liu
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| | - Gao-Qiang Liu
- grid.440660.00000 0004 1761 0083Hunan Provincial Key Laboratory of Forestry Biotechnology, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,grid.440660.00000 0004 1761 0083International Cooperation Base of Science and Technology Innovation on Forest Resource Biotechnology of Hunan Province, Central South University of Forestry & Technology, Changsha, Hunan 410004 China ,Microbial Variety Creation Center, Yuelushan Laboratory of Seed Industry, Changsha, 410004 China
| |
Collapse
|
7
|
Heme Oxygenase/Carbon Monoxide Participates in the Regulation of Ganoderma lucidum Heat-Stress Response, Ganoderic Acid Biosynthesis, and Cell-Wall Integrity. Int J Mol Sci 2022; 23:ijms232113147. [DOI: 10.3390/ijms232113147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon monoxide (CO), a product of organic oxidation processes, arises in vivo principally from the enzymatic reaction of heme oxygenase (HO, transcription gene named HMX1). HO/CO has been found to exert many salutary effects in multiple biological processes, including the stress response. However, whether HO/CO is involved in the regulation of the heat-stress (HS) response of Ganoderma lucidum (G. lucidum) is still poorly understood. In this paper, we reported that under heat stress, the HMX1 transcription level, HO enzyme activity, and CO content increased by 5.2-fold, 6.5-fold and 2-fold, respectively. HMX1 silenced strains showed a 12% increase in ganoderic acid (GA) content under HS as analyzed by HPLC. Furthermore, according to Western blot analysis of the protein phosphorylation levels, HMX1 attenuated the increase in phosphorylation levels of slt2, but the phosphorylation levels were prolonged over a 3 h HS time period. The chitin and glucan content in HMX1 silenced strains increased by 108% and 75%, respectively. In summary, these findings showed that the HO/CO system responds to heat stress and then regulates the HS-induced GA biosynthesis and the cell-wall integrity mediated by the Slt-MAPK phosphorylation level in G. lucidum.
Collapse
|
8
|
Han X, Wang Z, Shi L, Zhu J, Shi L, Ren A, Zhao M. Phospholipase D and phosphatidic acid mediate regulation in the biosynthesis of spermidine and ganoderic acids by activating
GlMyb
in
Ganoderma lucidum
under heat stress. Environ Microbiol 2022; 24:5345-5361. [DOI: 10.1111/1462-2920.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaofei Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Lingyan Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| |
Collapse
|
9
|
Guo Q, Liu L, Rupasinghe TWT, Roessner U, Barkla BJ. Salt stress alters membrane lipid content and lipid biosynthesis pathways in the plasma membrane and tonoplast. PLANT PHYSIOLOGY 2022; 189:805-826. [PMID: 35289902 PMCID: PMC9157097 DOI: 10.1093/plphys/kiac123] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/22/2022] [Indexed: 05/25/2023]
Abstract
Plant cell membranes are the sites of sensing and initiation of rapid responses to changing environmental factors including salinity stress. Understanding the mechanisms involved in membrane remodeling is important for studying salt tolerance in plants. This task remains challenging in complex tissue due to suboptimal subcellular membrane isolation techniques. Here, we capitalized on the use of a surface charge-based separation method, free flow electrophoresis, to isolate the tonoplast (TP) and plasma membrane (PM) from leaf tissue of the halophyte ice plant (Mesembryanthemum crystallinum L.). Results demonstrated a membrane-specific lipidomic remodeling in this plant under salt conditions, including an increased proportion of bilayer forming lipid phosphatidylcholine in the TP and an increase in nonbilayer forming and negatively charged lipids (phosphatidylethanolamine and phosphatidylserine) in the PM. Quantitative proteomics showed salt-induced changes in proteins involved in fatty acid synthesis and desaturation, glycerolipid, and sterol synthesis, as well as proteins involved in lipid signaling, binding, and trafficking. These results reveal an essential plant mechanism for membrane homeostasis wherein lipidome remodeling in response to salt stress contributes to maintaining the physiological function of individual subcellular compartments.
Collapse
Affiliation(s)
- Qi Guo
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Lei Liu
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Thusitha W T Rupasinghe
- School of BioSciences, The University of Melbourne, Parkville 3010, Australia
- Sciex, Mulgrave, VIC 3170, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville 3010, Australia
| | - Bronwyn J Barkla
- Faculty of Science and Engineering, Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| |
Collapse
|
10
|
Ahmad MF, Wahab S, Ahmad FA, Ashraf SA, Abullais SS, Saad HH. Ganoderma lucidum: A potential pleiotropic approach of ganoderic acids in health reinforcement and factors influencing their production. FUNGAL BIOL REV 2022; 39:100-125. [DOI: 10.1016/j.fbr.2021.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Luo L, Zhang S, Wu J, Sun X, Ma A. Heat stress in macrofungi: effects and response mechanisms. Appl Microbiol Biotechnol 2021; 105:7567-7576. [PMID: 34536103 DOI: 10.1007/s00253-021-11574-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022]
Abstract
Temperature is one of the key factors that affects the growth and development of macrofungi. Heat stress not only negatively affects the morphology and growth rate of macrofungi, but also destroys cell structures and influences cell metabolism. Due to loosed structure of cell walls and increased membrane fluidity, which caused by heat stress, the outflow of intracellular nutrients makes macrofungi more vulnerable to invasion by pathogens. Macrofungi accumulate reactive oxygen species (ROS), Ca2+, and nitric oxide (NO) when heat-stressed, which transmit and amplify the heat stimulation signal through intracellular signal transduction pathways. Through regulation of some transcription factors including heat response factors (HSFs), POZCP26 and MYB, macrofungi respond to heat stress by different mechanisms. In this paper, we present mechanisms used by macrofungi to adapt and survive under heat stress conditions, including antioxidant defense systems that eliminate the excess ROS, increase in trehalose levels that prevent enzymes and proteins deformation, and stabilize cell structures and heat shock proteins (HSPs) that repair damaged proteins and synthesis of auxins, which increase the activity of antioxidant enzymes. All of these help macrofungi resist and adapt to heat stress. KEY POINTS: • The effects of heat stress on macrofungal growth and development were described. • The respond mechanisms to heat stress in macrofungi were summarized. • The further research directions of heat stress in macrofungi were discussed.
Collapse
Affiliation(s)
- Lu Luo
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhui Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junyue Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueyan Sun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
12
|
Heat stress promotes the conversion of putrescine to spermidine and plays an important role in regulating ganoderic acid biosynthesis in Ganoderma lucidum. Appl Microbiol Biotechnol 2021; 105:5039-5051. [PMID: 34142206 DOI: 10.1007/s00253-021-11373-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/09/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Heat stress (HS) is inescapable environmental stress that can induce the production of ganoderic acids (GAs) in Ganoderma lucidum. Our previous studies found that putrescine (Put) played an inhibitory role in GAs biosynthesis, which appeared to be inconsistent with the upregulated transcription of the Put biosynthetic gene GlOdc under HS. To uncover the mechanism underlying this phenomenon, two spermidine (Spd) biosynthetic genes, GlSpds1 and GlSpds2, were identified and upregulated under HS. Put and Spd increased by 94% and 160% under HS, respectively, suggesting that HS induces polyamine biosynthesis and promotes the conversion of Put to Spd. By using GlSpds knockdown mutants, it is confirmed that Spd played a stimulatory role in GAs biosynthesis. In GlOdc-kd mutants, Put decreased by 62-67%, Spd decreased by approximately 34%, and GAs increased by 15-22% but sharply increased by 75-89% after supplementation with Spd. In GlSpds-kd mutants, Put increased by 31-41%, Spd decreased by approximately 63%, and GAs decreased by 24-32% and were restored to slightly higher levels than a wild type after supplementation with Spd. This result suggested that Spd, rather than Put, is a crucial factor that leads to the accumulation of GAs under HS. Spd plays a more predominant and stimulative role than Put under HS, possibly because the absolute content of Spd is 10 times greater than that of Put. GABA and H2O2, two major catabolites of Spd, had little effect on GAs biosynthesis. This study provides new insight into the mechanism by which environmental stimuli regulate secondary metabolism via polyamines in fungi. KEY POINTS: • HS induces polyamine biosynthesis and promotes the conversion of Put to Spd in G. lucidum. • Put and Spd played the inhibitory and stimulatory roles in regulating GAs biosynthesis, respectively. • The stimulatory role of Spd was more predominant than the inhibitory role of Put in GAs biosynthesis.
Collapse
|
13
|
Guo Y, Balasubramanian B, Zhao ZH, Liu WC. Heat stress alters serum lipid metabolism of Chinese indigenous broiler chickens-a lipidomics study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10707-10717. [PMID: 33098000 DOI: 10.1007/s11356-020-11348-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Heat stress (HS) by high-temperature environment reduced the production performance of poultry and caused losses to the breeding industry. The present study was conducted to investigate the effects of HS on serum lipidomics in Chinese indigenous slow-growing broiler chickens (Huaixiang chickens). A total of 40 8-week-old female Huaixiang chickens were randomly allocated to two groups, including normal temperature (NT, fed basal diet) and HS (fed basal diet), and each group consisted of five replicates with four birds per replicate. NT and HS groups were exposed to 21.3 ± 1.2 °C and 32.5 ± 1.4 °C for 4 weeks, respectively. Serum lipidomics in broilers was determined by liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. The results indicated that there were significant differences in metabolic spectra between the groups, and a total of 17 differential metabolites were screened. Compared with NT group, HS group reduced the serum ceramide (cer) (d18:1/22:0), cer (d18:1/24:1), cer (d20:2/22:2), lyso-phosphatidylcholine (LPC) (18:0), phosphatidylcholine (PC) (18:0/20:4), PC (15:0/23:4), PC (18:0/22:6), PC (18:2/18:2), phosphatidylethanolamine (PE) (18:1/18:1), polyethylene terephthalate (PEt) (37:3/8:0), phosphatidylglycerol (PG) (32:1/16:2), phosphatidyl methyl ethanolamine (PMe) (19:3/13:0), PMe (26:1/9:0), sphingomyelin (SM) (d16:0/18:1), triglycerides (TG) (18:0/18:1/18:2), and TG (19:4/21:6/21:6) levels [variable importance in the projection (VIP > 1 and P < 0.05)], while HS group increased serum PC (17:0/17:0) content (VIP > 1 and P < 0.05). Also, metabolic pathway analysis showed that the pathways of glycerolphospholipid, linoleic acid and α-linolenic acid metabolism, and glycosylphosphatidylinositol (GPI)-anchored biosynthesis were changed (P < 0.05). In conclusion, HS led to the disorders of serum lipid metabolism in broilers, and mainly downregulated serum content of phospholipids. These findings provide novel insights into the effects of HS on serum lipidomics in indigenous slow-growing chickens.
Collapse
Affiliation(s)
- Yan Guo
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | | | - Zhi-Hui Zhao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
| |
Collapse
|
14
|
Fedoseeva EV, Danilova OA, Ianutsevich EA, Terekhova VA, Tereshina VM. Micromycete Lipids and Stress. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Fabri JHTM, de Sá NP, Malavazi I, Del Poeta M. The dynamics and role of sphingolipids in eukaryotic organisms upon thermal adaptation. Prog Lipid Res 2020; 80:101063. [PMID: 32888959 DOI: 10.1016/j.plipres.2020.101063] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023]
Abstract
All living beings have an optimal temperature for growth and survival. With the advancement of global warming, the search for understanding adaptive processes to climate changes has gained prominence. In this context, all living beings monitor the external temperature and develop adaptive responses to thermal variations. These responses ultimately change the functioning of the cell and affect the most diverse structures and processes. One of the first structures to detect thermal variations is the plasma membrane, whose constitution allows triggering of intracellular signals that assist in the response to temperature stress. Although studies on this topic have been conducted, the underlying mechanisms of recognizing thermal changes and modifying cellular functioning to adapt to this condition are not fully understood. Recently, many reports have indicated the participation of sphingolipids (SLs), major components of the plasma membrane, in the regulation of the thermal stress response. SLs can structurally reinforce the membrane or/and send signals intracellularly to control numerous cellular processes, such as apoptosis, cytoskeleton polarization, cell cycle arresting and fungal virulence. In this review, we discuss how SLs synthesis changes during both heat and cold stresses, focusing on fungi, plants, animals and human cells. The role of lysophospholipids is also discussed.
Collapse
Affiliation(s)
- João Henrique Tadini Marilhano Fabri
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA; Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Nivea Pereira de Sá
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, USA; Veterans Administration Medical Center, Northport, New York, USA.
| |
Collapse
|
16
|
Li JX, Xu J, Ruan JC, Meng HM, Su H, Han XF, Lu M, Li FL, Wang SA. Disrupting a phospholipase A 2 gene increasing lipid accumulation in the oleaginous yeast Yarrowia lipolytica. J Appl Microbiol 2020; 130:100-108. [PMID: 32648664 DOI: 10.1111/jam.14779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 02/05/2023]
Abstract
AIMS Phospholipase A2 (PLA2 ) is a diverse superfamily that hydrolyzes fatty acyl ester bonds at the sn-2 position of phospholipids. The correlation between phospholipid metabolism and the anabolism of neutral lipids remains unclear in yeasts. This study aims to explore the effects of PLA2 on lipid accumulation in the oleaginous yeast Yarrowia lipolytica. METHODS AND RESULTS This study identified an actively expressed phospholipase A2 gene (PLA2-3, YAIL0_E16060g) in Y. lipolytica by quantitative PCR analysis. The gene PLA2-3 was disrupted in the strain po1gΔKu70 by homologous recombination and in the strain po1g-G3 by a CRISPR-Cas9 system, which caused an increase in stress sensitivity while the cell growth was not altered under fermentative conditions. Lipid production was performed in both flasks and bioreactors. The results showed that the lipid titre and lipid content were improved over 25% and 8-30%, respectively, in PLA2-3 disrupted strains compared to the controls. CONCLUSIONS Disruption of the phospholipase PLA2-3 gene could effectively improve lipid production in Y. lipolytica. SIGNIFICANCE AND IMPACT OF THE STUDY This study presented a strategy on improving the lipid production of oleaginous yeasts and a similar strategy might be used in other oleaginous microbes.
Collapse
Affiliation(s)
- J X Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - J Xu
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,Department of Environmental Science and Engineering, Qingdao University, Qingdao, Shandong, China
| | - J C Ruan
- Zhejiang Zhenyuan Share Co., Ltd, Hangzhou, China
| | - H M Meng
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - H Su
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - X F Han
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - M Lu
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - F L Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - S A Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
17
|
He H, An F, Huang Q, Kong Y, He D, Chen L, Song H. Metabolic effect of AOS-iron in rats with iron deficiency anemia using LC-MS/MS based metabolomics. Food Res Int 2020; 130:108913. [DOI: 10.1016/j.foodres.2019.108913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/02/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022]
|
18
|
Guo J, Zhou X, Wang T, Wang G, Cao F. Regulation of flavonoid metabolism in ginkgo leaves in response to different day-night temperature combinations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:133-140. [PMID: 31862579 DOI: 10.1016/j.plaphy.2019.12.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 05/28/2023]
Abstract
Flavonoids are the most important secondary metabolites in ginkgo (Ginkgo biloba L.) leaves that determine its medicinal quality. Studies have suggested that secondary metabolism is strongly affected by temperature in other plant species, but little is known about ginkgo. In this study, we investigated the effects of different day-night temperature combinations (15/10, 25/20, and 35/30 °C (day/night)) on key enzyme activity, growth regulator concentrations, and flavonoid accumulation in ginkgo leaves. We found that phenylalanine ammonia-lyase (PAL) activity was enhanced and inhibited at 15/10 and 35/30 °C, respectively. Cinnamate-4-hydroxylase (C4H) activity was relatively stable under the three temperature conditions, and the p-coumarate CoA ligase (4CL) activity showed different trends under the three temperature conditions. The concentrations of flavonoid constituents (quercetin, kaempferol, and isorhamnetin) were decreased and increased under the 35/30 and 15/10 °C conditions, respectively. Low temperature promoted soluble sugar accumulation, while temperature had a limited impact on the accumulation of soluble protein. The pattern of change in the total flavonoid concentration was not always in agreement with PAL activity due to its complex pathway. Indoleacetic acid (IAA) and gibberellin (GA) changes shared similar patterns and had limited effects on flavonoid accumulation, while abscisic acid (ABA) acted as a promotor of flavonoid accumulation under high-temperature conditions. The total flavonoids achieved the highest content under the 15/10 °C treatment on the 40th day. Therefore, the lower temperature (15/10 °C) is more favorable for flavonoid accumulation and will provide a theoretical basis for further study.
Collapse
Affiliation(s)
- Jing Guo
- Nanjing Forestry University, Co-Innovation Centre for Sustainable Forestry in Southern China, 159 Longpan Road, Nanjing, 210037, China; Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Xin Zhou
- Nanjing Forestry University, Co-Innovation Centre for Sustainable Forestry in Southern China, 159 Longpan Road, Nanjing, 210037, China
| | - Tongli Wang
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Guibin Wang
- Nanjing Forestry University, Co-Innovation Centre for Sustainable Forestry in Southern China, 159 Longpan Road, Nanjing, 210037, China.
| | - Fuliang Cao
- Nanjing Forestry University, Co-Innovation Centre for Sustainable Forestry in Southern China, 159 Longpan Road, Nanjing, 210037, China
| |
Collapse
|
19
|
Yan Z, Zhao M, Wu X, Zhang J. Metabolic Response of Pleurotus ostreatus to Continuous Heat Stress. Front Microbiol 2020; 10:3148. [PMID: 32038581 PMCID: PMC6990131 DOI: 10.3389/fmicb.2019.03148] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/29/2019] [Indexed: 11/13/2022] Open
Abstract
Heat stress seriously threatens the growth of Pleurotus ostreatus. Various studies have been performed to study the resistance of P. ostreatus to heat stress. Here, the metabolome was evaluated to determine the response of P. ostreatus mycelia to heat stress at different times (6, 12, 24, 48 h). More than 70 differential metabolites were detected and enriched in their metabolic pathways. Dynamic metabolites changes in enrichment pathways under heat stress showed that heat stress enhanced the degradation of unsaturated fatty acids and nucleotides, increased the content of amino acids and vitamins, and accelerated glycolysis and the tricarboxylic acid cycle in P. ostreatus. The time course changes of P. ostreatus metabolites under continuous heat stress demonstrated that amino acids continuously changed with heat stress, nucleotides clearly changed with heat stress at 12 and 48 h, and lipids exhibited an increasing trend with prolonged heat stress, while few types saccharides and vitamins changed under heat stress. Additionally, heat-treated P. ostreatus produced salicylic acid and other stress-resistant substances that were reported in plants. This study first reported the metabolites changes in P. ostreatus mycelia during 48 h of heat stress. The metabolic pathways and substances that changed with heat stress in this research will aid future studies on the resistance of P. ostreatus and other edible fungi to heat stress.
Collapse
Affiliation(s)
- Zhiyu Yan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mengran Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
20
|
Fernandez M, Paulucci NS, Peppino Margutti M, Biasutti AM, Racagni GE, Villasuso AL, Agostini E, González PS. Membrane Rigidity and Phosphatidic Acid (PtdOH) Signal: Two Important Events in Acinetobacter guillouiae SFC 500-1A Exposed to Chromium(VI) and Phenol. Lipids 2019; 54:557-570. [PMID: 31475368 DOI: 10.1002/lipd.12187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 11/06/2022]
Abstract
The remodeling of membrane lipids is a mechanism that allows microorganisms to survive in unfavorable environments such as industrial effluents, which often contain inorganic and organic pollutants, like chromium and phenol. In the present work, we evaluated the effect of Cr(VI) and phenol on the membrane of Acinetobacter guillouiae SFC 500-1A, a bacterial strain isolated from tannery sediments where such pollutants can be found. The presence of lipid kinases and phospholipases and the changes in their activities under exposure to these pollutants were determined. Cr(VI) and Cr(VI) + phenol caused the membrane to become more rigid for up to 16 h after exposure. This could be due to an increase in cardiolipin (Ptd2 Gro) and a decrease in phosphatidylethanolamine (PtdEtn), which are indicative of more order and rigidity in the membrane. Increased phospholipase A activity (PLA, EC 3.1.1.4) could be responsible for the decrease in PtdEtn levels. Moreover, our results indicate that Cr(VI) and Cr(VI) + phenol trigger the phosphatidic acid (PtdOH) signal. The finding of significantly increased phosphatidylinositol-4-phosphate (PtdIns-4-P) levels means this is likely achieved via PtdIns-PLC/DGK. This report provides the first evidence that A. guillouiae SFC 500-1A is able to sense Cr(VI) and phenol, transduce this signal through changes in the physical state of the membrane, and trigger lipid-signaling events.
Collapse
Affiliation(s)
- Marilina Fernandez
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Natalia S Paulucci
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Micaela Peppino Margutti
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Alicia M Biasutti
- Departamento de Química-FCEFQyN, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Graciela E Racagni
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Ana L Villasuso
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Elizabeth Agostini
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Paola S González
- Departamento de Biología Molecular, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| |
Collapse
|
21
|
Yuan J, Zhang W, Sun K, Tang MJ, Chen PX, Li X, Dai CC. Comparative Transcriptomics and Proteomics of Atractylodes lancea in Response to Endophytic Fungus Gilmaniella sp. AL12 Reveals Regulation in Plant Metabolism. Front Microbiol 2019; 10:1208. [PMID: 31191508 PMCID: PMC6546907 DOI: 10.3389/fmicb.2019.01208] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
The fungal endophyte Gilmaniella sp. AL12 can establish a beneficial association with the medicinal herb Atractylodes lancea, and improve plant growth and sesquiterpenoids accumulation, which is termed “double promotion.” Our previous studies have uncovered the underling primary mechanism based on some physiological evidences. However, a global understanding of gene or protein expression regulation in primary and secondary metabolism and related regulatory processes is still lacking. In this study, we employed transcriptomics and proteomics of Gilmaniella sp. AL12-inoculated and Gilmaniella sp. AL12-free plants to study the impact of endophyte inoculation at the transcriptional and translational levels. The results showed that plant genes involved in plant immunity and signaling were suppressed, similar to the plant response caused by some endophytic fungi and biotroph pathogen. The downregulated plant immunity may contribute to plant-endophyte beneficial interaction. Additionally, genes and proteins related to primary metabolism (carbon fixation, carbohydrate metabolism, and energy metabolism) tended to be upregulated after Gilmaniella sp. AL12 inoculation, which was consistent with our previous physiological evidences. And, Gilmaniella sp. AL12 upregulated genes involved in terpene skeleton biosynthesis, and upregulated genes annotated as β-farnesene synthase and β-caryophyllene synthase. Based on the above results, we proposed that endophyte-plant associations may improve production (biomass and sesquiterpenoids accumulation) by increasing the source (photosynthesis), expanding the sink (glycolysis and tricarboxylic acid cycle), and enhancing the metabolic flux (sesquiterpenoids biosynthesis pathway) in A. lancea. And, this study will help to further clarify plant-endophyte interactions.
Collapse
Affiliation(s)
- Jie Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Meng-Jun Tang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Piao-Xue Chen
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xia Li
- Jiangsu High Quality Rice Research and Development Center, Nanjing Branch of Chinese National Center Rice Improvement, Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
22
|
Tian JL, Ren A, Wang T, Zhu J, Hu YR, Shi L, Yu HS, Zhao MW. Hydrogen sulfide, a novel small molecule signalling agent, participates in the regulation of ganoderic acids biosynthesis induced by heat stress in Ganoderma lucidum. Fungal Genet Biol 2019; 130:19-30. [PMID: 31028914 DOI: 10.1016/j.fgb.2019.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 11/17/2022]
Abstract
Hydrogen sulfide (H2S), an emerging small-molecule signalling agent, was recently shown to play a significant role in many physiological processes, but relatively few studies have been conducted on microorganisms compared with mammals and plants. By studying the pretreatment of H2S donor sodium hydrosulfide (NaHS) and the scavenger hypotaurine (HT) and Cystathionine β-synthase silenced strains, we found that H2S could alleviate the HS-induced ganoderic acids (GAs) biosynthesis. Our transcriptome results also showed that many signaling pathways and metabolic pathways, such as the glycolysis, TCA, oxidative phosphorylation and pentose phosphate pathway, are influenced by H2S. Further experimental results indicated that H2S could affect the physiological process of Ganoderma lucidum by interacting with multiple signals, including ROS, NO, AMPK, sphingolipid, mTOR, phospholipase D and MAPK, and physiological and pharmacological analyses showed that H2S might alleviate the biosynthesis of GAs by inhibiting the intracellular calcium in G. lucidum.
Collapse
Affiliation(s)
- Jia-Long Tian
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Ang Ren
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Ting Wang
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Jing Zhu
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Yan-Ru Hu
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Liang Shi
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Han-Shou Yu
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China.
| | - Ming-Wen Zhao
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
23
|
Ren A, Shi L, Zhu J, Yu H, Jiang A, Zheng H, Zhao M. Shedding light on the mechanisms underlying the environmental regulation of secondary metabolite ganoderic acid in Ganoderma lucidum using physiological and genetic methods. Fungal Genet Biol 2019; 128:43-48. [PMID: 30951869 DOI: 10.1016/j.fgb.2019.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/13/2019] [Accepted: 03/31/2019] [Indexed: 12/23/2022]
Abstract
The secondary metabolites of fungi are often produced at very low concentrations, and until recently the regulatory mechanisms of secondary metabolite biosynthesis have been unclear. Ganoderma lucidum is a macrofungus that is widely used as a traditional Chinese medicine or medicinal mushroom: ganoderic acid (GA) is one of the main active ingredients. Here, we review research from the last decade on which and how environmental factors regulate GA biosynthesis. These environmental factors are mainly three components: a single chemical/biological or biochemical signal, physical triggers, and nutritional conditions. Because G. lucidum is a non-model Basidiomycete, a combination of physiological and genetic research is needed to determine how those environmental factors regulate GA biosynthesis. The regulation of GA biosynthesis includes ROS, Ca2+, cAMP and phospholipid signaling, and cross-talk between different signaling pathways. The regulatory mechanisms for the synthesis of this secondary metabolite, from the perspective of physiology and genetics, in G. lucidum will provide ideas for studying the regulation of fungal secondary metabolism in other non-model species, especially those fungi with limitations in genetic manipulation.
Collapse
Affiliation(s)
- Ang Ren
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Liang Shi
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Jing Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Hanshou Yu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Ailiang Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China
| | - Huihua Zheng
- Jiangsu Alphay Bio-technology Co., Ltd./Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture, Nantong 226009, Jiangsu, PR China
| | - Mingwen Zhao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
24
|
Pokotylo I, Kravets V, Martinec J, Ruelland E. The phosphatidic acid paradox: Too many actions for one molecule class? Lessons from plants. Prog Lipid Res 2018; 71:43-53. [PMID: 29842906 DOI: 10.1016/j.plipres.2018.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 11/29/2022]
Abstract
Phosphatidic acid (PA) is a simple phospholipid observed in most organisms. PA acts as a key metabolic intermediate and a second messenger that regulates many cell activities. In plants, PA is involved in numerous cell responses induced by hormones, stress inputs and developmental processes. Interestingly, PA production can be triggered by opposite stressors, such as cold and heat, or by hormones that are considered to be antagonistic, such as abscisic acid and salicylic acid. This property questions the specificity of the responses controlled by PA. Are there generic responses to PA, meaning that cell regulation triggered by PA would be always the same, even in opposite physiological situations? Alternatively, do the responses to PA differ according to the physiological context within the cells? If so, the mechanisms that regulate the divergence of PA-controlled reactions are poorly defined. This review summarizes the latest opinions on how PA signalling is directed in plant cells and examines the intrinsic properties of PA that enable its regulatory diversity. We propose a concept whereby PA regulatory messages are perceived as complex "signatures" that take into account their production site, the availability of target proteins and the relevant cellular environments.
Collapse
Affiliation(s)
- Igor Pokotylo
- Université Paris-Est, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France; Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Volodymyr Kravets
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Jan Martinec
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eric Ruelland
- Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, Kiev, Ukraine; CNRS, UMR7618, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Créteil, France.
| |
Collapse
|
25
|
Liu YN, Lu XX, Ren A, Shi L, Zhu J, Jiang AL, Yu HS, Zhao MW. Conversion of phosphatidylinositol (PI) to PI4-phosphate (PI4P) and then to PI(4,5)P 2 is essential for the cytosolic Ca 2+ concentration under heat stress in Ganoderma lucidum. Environ Microbiol 2018; 20:2456-2468. [PMID: 29697195 DOI: 10.1111/1462-2920.14254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 11/29/2022]
Abstract
How cells drive the phospholipid signal response to heat stress (HS) to maintain cellular homeostasis is a fundamental issue in biology, but the regulatory mechanism of this fundamental process is unclear. Previous quantitative analyses of lipids showed that phosphatidylinositol (PI) accumulates after HS in Ganoderma lucidum, implying the inositol phospholipid signal may be associated with HS signal transduction. Here, we found that the PI-4-kinase and PI-4-phosphate-5-kinase activities are activated and that their lipid products PI-4-phosphate and PI-4,5-bisphosphate are increased under HS. Further experimental results showed that the cytosolic Ca2+ ([Ca2+ ]c ) and ganoderic acid (GA) contents induced by HS were decreased when cells were pretreated with Li+ , an inhibitor of inositol monophosphatase, and this decrease could be rescued by PI and PI-4-phosphate. Furthermore, inhibition of PI-4-kinases resulted in a decrease in the Ca2+ and GA contents under HS that could be rescued by PI-4-phosphate but not PI. However, the decrease in the Ca2+ and GA contents by silencing of PI-4-phosphate-5-kinase could not be rescued by PI-4-phosphate. Taken together, our study reveals the essential role of the step converting PI to PI-4-phosphate and then to PI-4,5-bisphosphate in [Ca2+ ]c signalling and GA biosynthesis under HS.
Collapse
Affiliation(s)
- Yong-Nan Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Xiao-Xiao Lu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Ai-Liang Jiang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Han-Shou Yu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| | - Ming-Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing 210095, People's Republic of China
| |
Collapse
|
26
|
Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiol Res 2018; 209:55-69. [DOI: 10.1016/j.micres.2017.12.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
|