1
|
Zhang H, Wang XY, Sun TF, Chen TJ, Ding JL, Feng MG, Ying SH. A family of nitronate monooxygenase-domain proteins are essential for biocontrol potential of the insect mycopathogen Beauveria bassiana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106317. [PMID: 40015909 DOI: 10.1016/j.pestbp.2025.106317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 03/01/2025]
Abstract
Beauveria bassiana has been assumed a promising biocontrol agent in integrated pest management. Nitronate monooxygenase (NMO) catalyzes the conversion of alkyl nitronates into aldehydes and nitrite as well as nitroalkanes into the corresponding carbonyl compounds and nitrite. In fungi, enzymatic characteristics have been biochemically determined for NMOs; however, the understanding of their biological functions remains largely unknown in entomopathogenic fungi. In this study, a domain annotation analysis revealed that there were eight NMO proteins (BbNmo1-BbNmo8) in the entomopathogenic fungus B. bassiana. The first six NMO proteins contained peroxisomal targeting signal type 1 (PTS1), in which BbNmo2 carried an atypical one. Except for BbNMO1 and BbNMO4, other NMO genes were functionally analyzed. The gene loss of six genes did not cause significant change in fungal vegetative growth, but resulted in convergent defects in fungal resistance to cell-wall integrity stress and conidial hydrophobicity. In addition, BbNmo3 was also required for fungal response to oxidative, osmotic, and nitro-compound stresses as well as extracellular acidification. All these six genes were required for fungal conidiation; however, except for BbNMO3, the other five contributed to blastospore formation. All tested NMO genes were involved in fungal virulence; significantly, BbNMO3 had the greatest contribution. The functionally-characterized NMO proteins were localized to peroxisomes and cytoplasm, which was in accordance with whether they had the PTS1. Current findings indicate that the NMO-domain proteins play essential roles in unique lifestyle in the insect pathogenic fungi.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-Yi Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ting-Fei Sun
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tian-Jing Chen
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Wen Y, Wang M, Liu X, Yin X, Gong S, Yin J. Deletion of FgAtg27 decreases the pathogenicity of Fusarium graminearum through influence autophagic process. Int J Biol Macromol 2025; 297:139818. [PMID: 39814284 DOI: 10.1016/j.ijbiomac.2025.139818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Autophagy is a conserved and unique degradation system in eukaryotic cells, which plays crucial roles in the growth, development and pathogenesis of Fungi. Despite that, it is poorly understood in Fusarium graminearum currently. Here, we identified an autophagy gene FgAtg27 from F. graminearum, and investigated its possible roles in regulating morphogenesis and pathogenicity. Results showed that FgAtg27 is homologous to Saccharomyces cerevisiae Atg27 and with an active signal peptide at N-terminal. Then, the ΔFgAtg27 mutant was generated and gene deletion did not change growth and sporulation, whereas significantly decreased pathogenicity. FgAtg27 showed subcellular localization at pre-autophagosomal structure (PAS). After starvation induction, amount of autophagosomes in ΔFgAtg27 was significantly less than wild type and complemented strain, indicating that FgAtg27 deletion affects the autophagosome formation in F. graminearum. Meanwhile, under high Ca2+ concentration conditions, ΔFgAtg27 exhibited slowed growth, confirming that FgAtg27 also involved in F. graminearum's hyperosmotic reaction to Ca2+ concentration stress. In addition, yeast two-hybrid experiments, revealed that FgAtg27 interacts with the autophagy key protein FgAtg9. Collectively, we found that the deletion of FgAtg27 did not impact the growth phenotype of F. graminearum, whereas significantly reduced its pathogenicity and Ca2+ stress through affecting autophagic process.
Collapse
Affiliation(s)
- Yong Wen
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Mengru Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xi Liu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiaohui Yin
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Shuangjun Gong
- Key Laboratory of Integrated Pest Management of Crops in Central China, Ministry of Agriculture, Hubei Key Laboratory of Crop Diseases, Insect Pests and Weeds Control, Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
| | - Junliang Yin
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Research Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
3
|
Ding JL, Li L, Wei K, Zhang H, Keyhani NO, Feng MG, Ying SH. Alcohol dehydrogenase 1 acts as a scaffold protein in mitophagy essential for fungal pathogen adaptation to hypoxic niches within hosts. Int J Biol Macromol 2025; 295:139651. [PMID: 39793830 DOI: 10.1016/j.ijbiomac.2025.139651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Fungi have evolved diverse physiological adaptations to hypoxic environments. However, the mechanisms mediating such adaptations remain obscure for many filamentous pathogenic fungi. Here, we show that autophagy mediated mitophagy occurs in the insect pathogenic fungus Beauveria bassiana under hypoxic conditions induced by host cellular immune responses. Mitophagy was essential for fungal evasion from insect hemocyte encapsulation, allowing for fungal proliferation and colonization in the host hemocoel. Our data showed that B. bassiana autophagy-related protein 11 (Atg11) interacts with Atg8 as a scaffold mediating mitophagy. The mitochondrial protein Atg43 was demonstrated to act as a receptor for the selective mitophagy, directly interacting with Atg8 for the autophagosomal targeting. Alcohol dehydrogenase BbAdh1, as a novel scaffold protein, participates in mitophagy through interacting with Atg8 and Atg11 under hypoxic stress. BbAdh1 was critical for fungal intracellular redox homeostasis and energy metabolism under hypoxic conditions. These data provide a pathway for mitochondrial degradation via metabolism linked autophagosome- to-vacuole targeting during hypoxic stress. This mitophagy results in depletion of oxidative mitochondrial dependent functions as a cellular adaptation to the low oxygen levels.
Collapse
Affiliation(s)
- Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kang Wei
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hao Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nemat O Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Wang G, Zhang X, Chen B, Peng Y. Construction of an Efficient Agrobacterium tumefaciens-Based Transformation System in the Entomopathogenic fungus Metahizium rileyi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21711-21719. [PMID: 39287555 DOI: 10.1021/acs.jafc.4c05535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Metarhizium rileyi is a filamentous entomopathogenic fungus that is highly pathogenic to lepidopteran insects. In our study, we constructed an Agrobacterium tumefaciens-mediated transgene system using the hygromycin resistance gene (Hyg R) as a selection marker in M. rileyi through homologous recombination. Binary knockout vectors for two genes (NOR_03501, longevity assurance gene, and NOR_03153, ATP-binding domain protein domain gene) in the M. rileyi strain SZCY201010 were successfully developed. We compared the genetic transformation efficiency using five kinds of asexual spores. The initial genetic transformation rates using a competent blastospore for NOR_03501 and NOR_03153 were 54.35 and 47.19%, respectively. Subsequently, both genes were successfully knocked out, and the transformed fungi were verified by PCR, RT-qPCR, and green fluorescent protein labeling. The biological phenotypes of the two genes were analyzed. The NOR_03501 gene plays a crucial role in carbon source utilization, stress resistance, and cuticle infection of fungal mycelium growth, while the NOR_03153 gene is significant for conidial production, stress resistance, and body wall infection. This study provides a promising tool for gene manipulation in M. rileyi, enhancing research in functional genomics and the exploration of fungal gene resources.
Collapse
Affiliation(s)
- Guang Wang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Xu Zhang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Yuejin Peng
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
5
|
Wang G, Chen B, Zhang X, Du G, Han G, Liu J, Peng Y. The basic leucine zipper domain (bZIP) transcription factor BbYap1 promotes evasion of host humoral immunity and regulates lipid homeostasis contributing to fungal virulence in Beauveria bassiana. mSphere 2024; 9:e0035124. [PMID: 38926907 PMCID: PMC11288043 DOI: 10.1128/msphere.00351-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Basic leucine zipper domain transcription factors (TFs), of which yeast activator protein (Yap) is a significant class, are crucial for the development of sclerotia, the stress response, vegetative growth, and spore adhesion. Nevertheless, nothing is known about how Yap TFs contribute to the pathogenicity of entomopathogenic fungus. In this work, Beauveria bassiana was used to identify and knock out the yeast gene BbYap1, which is similar to Yap. The BbYap1 gene deletion has an impact on lipid homeostasis of B. bassiana; oleic acid, for example, dropped by 95.69%. The BbYap1 mutant exhibited much less virulence and vegetative development in comparison to the wild strain, while demonstrating a greater sensitivity to chemical stress. It is noteworthy that the physiological abnormalities brought on by BbYap1 deletion were largely repaired by the addition of exogenous oleic acid, as seen by the notable increase in insect survival in the blood cavity injection group. Following infection with the BbYap1 mutant, the host exhibits a considerable down-regulation of the expression of β-1,3-glucan recognition protein, gallerimycin, gloverin, and moricin-like protein genes. Likewise, the introduction of exogenous oleic acid markedly increased the host's expression of the aforementioned genes. In summary, BbYap1 regulates cellular enzyme lipid homeostasis and fungal virulence by eluding host humoral defense, which contributes to fungal chemical stress and vegetative development. IMPORTANCE Entomopathogenic fungi (EPF) offer an effective and eco-friendly alternative to curb insect populations in biocontrol strategy. When EPF enter the hemolymph of their host, they encounter a variety of stress reactions, such as immunological and oxidative stress. Basic leucine zipper domain transcription factors, of which yeast activator protein (Yap) is a significant class, have diverse biological functions related to metabolism, development, reproduction, conidiation, stress responses, and pathogenicity. This study demonstrates that BbYap1 of Beauveria bassiana regulates cellular enzyme lipid homeostasis and fungal virulence by eluding host humoral defense, which contributes to fungal chemical stress and vegetative development. These findings offer fresh perspectives for comprehending molecular roles of YAP in EPF.
Collapse
Affiliation(s)
- Guang Wang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Xu Zhang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Guangzu Du
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Guangyu Han
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| | - Jing Liu
- Yunnan Key Laboratory of Potato Biology, School of Life Science, Yunnan Normal University, Kunming, China
| | - Yuejin Peng
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, College of Plant Protection, Kunming, China
| |
Collapse
|
6
|
Ding JL, Wei K, Feng MG, Ying SH. Two aminopeptidase I homologs convergently contribute to pathobiology of fungal entomopathogen Beauveria bassiana via divergent physiology-dependent autophagy pathways for vacuolar targeting. J Adv Res 2024; 59:1-17. [PMID: 37339721 PMCID: PMC11081967 DOI: 10.1016/j.jare.2023.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/20/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
INTRODUCTION In yeast, the cytoplasm-to-vacuole targeting (Cvt) pathway acts as a biosynthetic autophagy-related process, in which vacuolar targeting of hydrolase is mediated by the machineries involved in the selective autophagy. However, the mechanistic insights into vacuolar targeting of hydrolases through the selective autophagy pathway still remain enigmatic in filamentous fungi. OBJECTIVES Our study aims to investigate the mechanisms involved in vacuolar targeting of hydrolases in filamentous fungi. METHODS The filamentous entomopathogenic fungus Beauveria bassiana was used as a representative of filamentous fungi. We identified the homologs of yeast aminopeptidase I (Ape1) in B. bassiana by bioinformatic analyses and characterized their physiological roles by gene function analyses. Pathways for vacuolar targeting of hydrolases were investigated via molecular trafficking analyses. RESULTS B. bassiana has two homologs of yeast aminopeptidase I (Ape1) which are designated as BbApe1A and BbApe1B. The two homologs of yeast Ape1 contribute to starvation tolerance, development, and virulence in B. bassiana. Significantly, BbNbr1 acts as a selective autophagy receptor to mediate the vacuolar targeting of the two Ape1 proteins, in which BbApe1B interacts with BbNbr1 also directly interacting with BbAtg8, and BbApe1A has an additional requirement of the scaffold protein BbAtg11 that interacts with BbNbr1 and BbAtg8. Protein processing occurs at both terminuses of BbApe1A and only at carboxyl terminus of BbApe1B, which is also dependent on the autophagy-related proteins. Together, the functions and translocation processes of the two Ape1 proteins are associated with autophagy in fungal lifecycle. CONCLUSION This study reveals the functions and translocation processes for vacuolar hydrolases in the insect-pathogenic fungi and improves our understandings of the Nbr1-mediated vacuolar targeting pathway in the filamentous fungi.
Collapse
Affiliation(s)
- Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kang Wei
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Ying SH. Subcellular biochemistry and biology of filamentous entomopathogenic fungi. ADVANCES IN APPLIED MICROBIOLOGY 2024; 129:35-58. [PMID: 39389707 DOI: 10.1016/bs.aambs.2024.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Filamentous entomopathogenic fungi (EPF) function as important biotic factors regulating the arthropod population in natural ecosystems and have great potential as biocontrol agents in modern agriculture. In the infection cycle, EPF undergo a plethora of physiological processes, including metabolism (e.g., cuticle hydrolysis and nutrient utilization), development (e.g., dimorphism and conidiation), stress response (e.g., oxidative and osmotic stresses), and immune evasion from the host. In-depth explorations of the mechanisms involved in the lifecycle of EPF offer excellent opportunities to increase their virulence and stability, which increases the efficacy of EPF in biocontrol programs. This review discusses the current state of knowledge relating to the biological roles and regulatory mechanisms of organelles and subcellular structures in the physiology of EPF, as well as some suggestions for future investigation.
Collapse
Affiliation(s)
- Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, P.R. China.
| |
Collapse
|
8
|
Peng YJ, Zhang H, Wang G, Feng MG, Ying SH. MARVEL family proteins contribute to vegetative growth, development, and virulence of the insect fungal pathogen Beauveria bassiana. J Invertebr Pathol 2024; 203:108076. [PMID: 38382734 DOI: 10.1016/j.jip.2024.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 02/23/2024]
Abstract
Beauveria bassiana is one of the most extensively studied entomopathogenic fungi (EPF) and is widely used as a biocontrol agent against various insect pests. Proteins containing the MARVEL domain are conserved in eukaryotes, typically with four transmembrane structures. In this study, we identified the five MARVEL domain proteins in B. bassiana. Five MARVEL domain proteins were localized to cytomembrane and vacuoles in B. bassiana, but had different roles in maintaining the lipid-droplet homeostasis. These proteins were required for fungal virulence, but differentially contributed to fungal utilization of nutrients, stress tolerance, and development under aerial and submerged conditions. Notably, BbMARVEL2 was essential for conidial surface morphology. Additionally, these five MARVEL domain proteins contributed to fungal interaction with the host immune defense. This study provides new mechanistic insights into the life cycle of B. bassiana as a biocontrol agent.
Collapse
Affiliation(s)
- Yue-Jin Peng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Hao Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guang Wang
- College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Lei JH, Sun TF, Feng MG, Ying SH. Functional insights of three RING-finger peroxins in the life cycle of the insect pathogenic fungus Beauveria bassiana. Curr Genet 2023; 69:267-276. [PMID: 37910177 DOI: 10.1007/s00294-023-01275-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Peroxisomes play important roles in fungal physiological processes. The RING-finger complex consists of peroxins Pex2, Pex10, and Pex12 and is essential for recycling of receptors responsible for peroxisomal targeting of matrix proteins. In this study, these three peroxins were functionally characterized in the entomopathogenic fungus Beauveria bassiana (Bb). These three peroxins are associated with peroxisomes, in which BbPex2 interacted with BbPex10 and BbPex12. Ablation of these peroxins did not completely block the peroxisome biogenesis, but abolish peroxisomal targeting of matrix proteins via both PTS1 and PTS2 pathways. Three disruptants displayed different phenotypic defects in growth on nutrients and under stress conditions, but have similar defects in acetyl-CoA biosynthesis, development, and virulence. Strikingly, BbPex10 played a less important role in fungal growth on tested nutrients than other two peroxins; whereas, BbPex2 performed a less important contribution to fungal growth under stresses. This investigation reinforces the peroxisomal roles in the lifecycle of entomopathogenic fungi and highlights the unequal functions of different peroxins in peroxisomal biology.
Collapse
Affiliation(s)
- Jia-Hui Lei
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ting-Fei Sun
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Zhou Z, Liu J, Zhang J, Yan H, Yi T, Shim WB. Characterization of Fusarium verticillioides Med1 LxxLL Motif Involved in Fumonisin Biosynthesis. Toxins (Basel) 2023; 15:652. [PMID: 37999515 PMCID: PMC10675092 DOI: 10.3390/toxins15110652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/31/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The Med1 transcriptional coactivator is a crucial component of the Mediator middle complex, which regulates the expression of specific genes involved in cell development, differentiation, reproduction, and homeostasis. The Med1 LxxLL motif, a five-amino-acid peptide sequence, is essential for Med1-mediated gene expression. Our previous study revealed that the disruption of the Med1 subunit leads to a significant increase in fumonisin B1 (FB1) production in the maize pathogen Fusarium verticillioides. However, our understanding of how Med1 regulates FB1 biosynthesis in F. verticillioides, particularly through the Med1 LxxLL motifs, remains limited. To characterize the role of LxxLL motifs, we generated a series of Med1 LxxLL deletion and amino acid substitution mutants. These mutants exhibited impaired mycelial growth and conidia germination while demonstrating enhanced conidia production and virulence. Similar to the Med1 deletion mutant, Med1 LxxLL motif mutants also exhibited increased FB1 biosynthesis in F. verticillioides. Proteomic profiling revealed that the Med1 LxxLL motif regulated the biosynthesis of several key substances that affected FB1 production, including starch and carotenoid. Subsequent studies demonstrated that the production of amylopectin, which is strongly linked to FB1 biosynthesis, was significantly increased in Med1 LxxLL motif mutants. In addition, the disruption of carotenoid metabolic genes decreased carotenoid content, thus stimulating FB1 biosynthesis in F. verticillioides. Taken together, our results provide valuable insights into how the Med1 LxxLL motif regulates FB1 biosynthesis in the mycotoxigenic fungus F. verticillioides.
Collapse
Affiliation(s)
- Zehua Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, Hunan Agricultural University, Changsha 410128, China; (Z.Z.); (J.L.)
| | - Jie Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, Hunan Agricultural University, Changsha 410128, China; (Z.Z.); (J.L.)
| | - Jie Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Huijuan Yan
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Tuyong Yi
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, Hunan Agricultural University, Changsha 410128, China; (Z.Z.); (J.L.)
| | - Won Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Peng Y, Wen S, Wang G, Zhang X, Di T, Du G, Chen B, Zhang L. Reconstruction of Gut Bacteria in Spodoptera frugiperda Infected by Beauveria bassiana Affects the Survival of Host Pest. J Fungi (Basel) 2023; 9:906. [PMID: 37755014 PMCID: PMC10532432 DOI: 10.3390/jof9090906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023] Open
Abstract
Spodoptera frugiperda (Lepidoptera: Noctuidae) is a migratory agricultural pest that is devastating on a global scale. Beauveria bassiana is a filamentous entomopathogenic fungus that has a strong pathogenic effect on Lepidoptera pests but little is known about the microbial community in the host gut and the dominant populations in fungus-infected insects. B. bassiana AJS91881 was isolated and identified from the infected larvae of Spodoptera litura. The virulence of AJS91881 to the eggs, larvae, pupae and adults of S. frugiperda was measured. Moreover, the gut microbial community diversity of healthy and fungus-infected insects was analyzed. Our results showed that after treatment with B. bassiana AJS91881, the egg hatching rate, larval survival rate and adult lifespan of the insects were significantly reduced, and the pupae rigor rate was significantly increased compared to that of the control group. Additionally, the gut microbial community was reconstructed after B. bassiana infection. At the phylum and genus level, the relative abundance of the Proteobacteria and Serratia increased significantly in the B. bassiana treatment group. The KEGG function prediction results showed that fungal infection affected insect gut metabolism, environmental information processing, genetic information processing, organism systems and cellular processes. Fungal infection was closely related to the metabolism of various substances in the insect gut. Serratia marcescens was the bacterium with the highest relative abundance after infection by B. bassiana; intestinal bacteria S. marcescens inhibited the infection of insect fungi B. bassiana against the S. frugiperda. The presence of gut bacteria also significantly reduced the virulence of the fungi against the insects when compared to the group with the larvae fed antibiotics that were infected with fungal suspension (Germfree, GF) and healthy larvae that were infected with fungal suspension prepared with an antibiotic solution (+antibiotic). In conclusion, the reconstruction of the insect intestinal bacterial community is an indispensable link for understanding the pathogenicity of B. bassiana against S. frugiperda. Most importantly, in the later stage of fungal infection, the increased abundance of S. marcescens in the insect intestine inhibited the virulence of B. bassiana to some extent. The findings aid in understanding changes in the gut microbiota during the early stages of entomopathogenic fungal infection of insects and the involvement of insect gut microbes in host defense mediated by pathogenic fungal infection. This study is also conducive to understanding the interaction between entomopathogenic fungi, hosts and gut microbes, and provides a new idea for the joint use of entomopathogenic fungi and gut bacteria to control pests.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.P.); (S.W.); (G.W.); (X.Z.); (T.D.); (G.D.)
| | - Limin Zhang
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Y.P.); (S.W.); (G.W.); (X.Z.); (T.D.); (G.D.)
| |
Collapse
|
12
|
Ding JL, Wei K, Feng MG, Ying SH. Autophagy-Related Gene 4 Participates in the Asexual Development, Stress Response and Virulence of Filamentous Insect Pathogenic Fungus Beauveria bassiana. J Fungi (Basel) 2023; 9:jof9050543. [PMID: 37233254 DOI: 10.3390/jof9050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Autophagy is a conserved mechanism for the turnover of intracellular components. Among the 'core' autophagy-related genes (ATGs), the cysteine protease Atg4 plays an important role in the activation of Atg8 by exposing the glycine residue at its extreme carboxyl terminus. In the insect fungal pathogen Beauveria bassiana, a yeast ortholog of Atg4 was identified and functionally analyzed. Ablation of the BbATG4 gene blocks the autophagic process during fungal growth under aerial and submerged conditions. Gene loss did not affect fungal radial growth on various nutrients, but ΔBbatg4 exhibited an impaired ability to accumulate biomass. The mutant displayed increased sensitivity to stress caused by menadione and hydrogen peroxide. ΔBbatg4 generated abnormal conidiophores with reduced production of conidia. Additionally, fungal dimorphism was significantly attenuated in gene disruption mutants. Disruption of BbATG4 resulted in significantly weakened virulence in topical and intrahemocoel injection assays. Our study indicates that BbAtg4 contributes to the lifecycle of B. bassiana via its autophagic roles.
Collapse
Affiliation(s)
- Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kang Wei
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
The Entomopathogenic Fungus Beauveria bassiana Employs Autophagy as a Persistence and Recovery Mechanism during Conidial Dormancy. mBio 2023; 14:e0304922. [PMID: 36809079 PMCID: PMC10128008 DOI: 10.1128/mbio.03049-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Many filamentous fungi develop a conidiation process as an essential mechanism for their dispersal and survival in natural ecosystems. However, the mechanisms underlying conidial persistence in environments are still not fully understood. Here, we report that autophagy is crucial for conidial lifespans (i.e., viability) and vitality (e.g., stress responses and virulence) in the filamentous mycopathogen Beauveria bassiana. Specifically, Atg11-mediated selective autophagy played an important, but not dominant, role in the total autophagic flux. Furthermore, the aspartyl aminopeptidase Ape4 was found to be involved in conidial vitality during dormancy. Notably, the vacuolar translocation of Ape4 was dependent on its physical interaction with autophagy-related protein 8 (Atg8) and associated with the autophagic role of Atg8, as determined through a truncation assay of a critical carboxyl-tripeptide. These observations revealed that autophagy acted as a subcellular mechanism for conidial recovery during dormancy in environments. In addition, a novel Atg8-dependent targeting route for vacuolar hydrolase was identified, which is essential for conidial exit from a long-term dormancy. These new insights improved our understanding of the roles of autophagy in the physiological ecology of filamentous fungi as well as the molecular mechanisms involved in selective autophagy. IMPORTANCE Conidial environmental persistence is essential for fungal dispersal in ecosystems while also serving as a determinant for the biocontrol efficacy of entomopathogenic fungi during integrated pest management. This study identified autophagy as a mechanism to safeguard conidial lifespans and vitality postmaturation. In this mechanism, the aspartyl aminopeptidase Ape4 translocates into vacuoles via its physical interaction with autophagy-related protein 8 (Atg8) and is involved in conidial vitality during survival. The study revealed that autophagy acted as a subcellular mechanism for maintaining conidial persistence during dormancy, while also documenting an Atg8-dependent targeting route for vacuolar hydrolase during conidial recovery from dormancy. Thus, these observations provided new insight into the roles of autophagy in the physiological ecology of filamentous fungi and documented novel molecular mechanisms involved in selective autophagy.
Collapse
|
14
|
Ding JL, Zhang H, Feng MG, Ying SH. Divergent Physiological Functions of Four Atg22-like Proteins in Conidial Germination, Development, and Virulence of the Entomopathogenic Fungus Beauveria bassiana. J Fungi (Basel) 2023; 9:jof9020262. [PMID: 36836376 PMCID: PMC9959203 DOI: 10.3390/jof9020262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
In yeast, Atg22 functions as a vacuolar efflux transporter to release the nutrients from the vacuole to the cytosol after the degradation of autophagic bodies. There are more than one Atg22 domain-containing proteins in filamentous fungi, but their physiological roles are largely unknown. In this study, four Atg22-like proteins (BbAtg22A through D) were functionally characterized in the filamentous entomopathogenic fungus Beauveria bassiana. These Atg22-like proteins exhibit different sub-cellular distributions. BbAtg22A localizes in lipid droplets. BbAtg22B and BbAtg22C are completely distributed in the vacuole, and BbAtg22D has an additional association with the cytomembrane. The ablation of Atg22-like proteins did not block autophagy. Four Atg22-like proteins systematically contribute to the fungal response to starvation and virulence in B. bassiana. With the exception of ∆Bbatg22C, the other three proteins contribute to dimorphic transmission. Additionally, BbAtg22A and BbAtg22D are required for cytomembrane integrity. Meanwhile, four Atg22-like proteins contribute to conidiation. Therefore, Atg22-like proteins link distinct sub-cellular structures for the development and virulence in B. bassiana. Our findings provide a novel insight into the non-autophagic roles of autophagy-related genes in filamentous fungi.
Collapse
|
15
|
Li X, Zhu M, Liu Y, Yang L, Yang J. Aoatg11 and Aoatg33 are indispensable for mitophagy, and contribute to conidiation, the stress response, and pathogenicity in the nematode-trapping fungus Arthrobotrys oligospora. Microbiol Res 2022; 266:127252. [DOI: 10.1016/j.micres.2022.127252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
16
|
Succinate Dehydrogenase Subunit C Contributes to Mycelial Growth and Development, Stress Response, and Virulence in the Insect Parasitic Fungus Beauveria bassiana. Microbiol Spectr 2022; 10:e0289122. [PMID: 35972281 PMCID: PMC9602434 DOI: 10.1128/spectrum.02891-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Succinate dehydrogenase (SDH), also known as respiratory chain complex II, plays a crucial role in energy production in which SdhC functions as an anchored subunit in the inner membrane of mitochondria. In this study, domain annotation analyses revealed that two SdhC domain-containing proteins were present in the filamentous insect-pathogenic fungus Beauveria bassiana, and they were named BbSdhC1 and BbSdhC2, respectively. Only BbSdhC1 localized to mitochondria; hence, this protein is considered the ortholog of SdhC in B. bassiana. Ablation of BbSdhC1 led to significantly reduced vegetative growth on various nutrients. The ΔBbsdhc1 mutant displayed the significantly reduced ATP synthesis and abnormal differentiation under aerial and submerged conditions. Notably, the BbSdhC1 loss resulted in enhanced intracellular levels of reactive oxygen species (ROS) and impaired growth of mycelia under oxidative stress. Finally, insect bioassays (via cuticle and intrahemocoel injection infection) revealed that disruption of BbSdhC1 significantly attenuated fungal virulence against the insect hosts. These findings indicate that BbSdhC1 contributes to vegetative growth, resistance to oxidative stress, differentiation, and virulence of B. bassiana due to its roles in energy generation and maintaining the homeostasis of the intracellular ROS levels. IMPORTANCE The electron transport chain (ETC) is critical for energy supply by mediating the electron flow along the mitochondrial membrane. Succinate dehydrogenase (SDH) is also known as complex II in the ETC, in which SdhC is a subunit anchored in mitochondrial membrane. However, the physiological roles of SdhC remain enigmatic in filamentous fungi. In filamentous insect-pathogenic fungus B. bassiana, SdhC is required for maintaining mitochondrial functionality, which is critical for fungal stress response, development, and pathogenicity. These findings improve our understanding of physiological mechanisms of ETC components involved in pathogenicity of the entomopathogenic fungi.
Collapse
|
17
|
Wu P, Choo CYL, Lu H, Wei X, Chen Y, Yago JI, Chung K. Pexophagy is critical for fungal development, stress response, and virulence in Alternaria alternata. MOLECULAR PLANT PATHOLOGY 2022; 23:1538-1554. [PMID: 35810316 PMCID: PMC9452759 DOI: 10.1111/mpp.13247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 06/09/2023]
Abstract
Alternaria alternata can resist high levels of reactive oxygen species (ROS). The protective roles of autophagy or autophagy-mediated degradation of peroxisomes (termed pexophagy) against oxidative stress remain unclear. The present study, using transmission electron microscopy and fluorescence microscopy coupled with a GFP-AaAtg8 proteolysis assay and an mCherry tagging assay with peroxisomal targeting tripeptides, demonstrated that hydrogen peroxide (H2 O2 ) and nitrogen depletion induced autophagy and pexophagy. Experimental evidence showed that H2 O2 triggered autophagy and the translocation of peroxisomes into the vacuoles. Mutational inactivation of the AaAtg8 gene in A. alternata led to autophagy impairment, resulting in the accumulation of peroxisomes, increased ROS sensitivity, and decreased virulence. Compared to the wild type, ΔAaAtg8 failed to detoxify ROS effectively, leading to ROS accumulation. Deleting AaAtg8 down-regulated the expression of genes encoding an NADPH oxidase and a Yap1 transcription factor, both involved in ROS resistance. Deleting AaAtg8 affected the development of conidia and appressorium-like structures. Deleting AaAtg8 also compromised the integrity of the cell wall. Reintroduction of a functional copy of AaAtg8 in the mutant completely restored all defective phenotypes. Although ΔAaAtg8 produced wild-type toxin levels in axenic culture, the mutant induced a lower level of H2 O2 and smaller necrotic lesions on citrus leaves. In addition to H2 O2 , nitrogen starvation triggered peroxisome turnover. We concluded that ΔAaAtg8 failed to degrade peroxisomes effectively, leading to the accumulation of peroxisomes and the reduction of the stress response. Autophagy-mediated peroxisome turnover could increase cell adaptability and survival under oxidative stress and starvation conditions.
Collapse
Affiliation(s)
- Pei‐Ching Wu
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Celine Yen Ling Choo
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Hsin‐Yu Lu
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Xian‐Yong Wei
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Yu‐Kun Chen
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| | - Jonar I. Yago
- Plant Science Department, College of AgricultureNueva Vizcaya State UniversityBayombongPhilippines
| | - Kuang‐Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural ResourcesNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
18
|
Lei JH, Lin HY, Ding JL, Feng MG, Ying SH. Functional characterization of two homologs of yeast acetyl-coenzyme A synthetase in the entomopathogenic fungus Beauveria bassiana. Arch Microbiol 2022; 204:653. [PMID: 36175799 DOI: 10.1007/s00203-022-03269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/22/2022] [Indexed: 11/25/2022]
Abstract
Acetyl-coenzyme A (CoA) synthetase (Acs) links cellular metabolism and physiology by catalyzing acetate and CoA into acetyl-CoA. However, the biological roles of Acs are not well studied in entomopathogenic fungi. In this study, two Acs proteins (BbAcs1 and BbAcs2) was functionally characterized in the filamentous insect pathogenic fungus Beauveria bassiana. BbAcs1 and BbAcs2 localize in cytoplasm and peroxisome, respectively. BbAcs1 contributes to vegetative growth on fatty acids as carbon source, and BbAcs2 did not. Both genes did not contribute to fungal response to stresses. The BbAcs1 loss conferred a slight influence on conidiation, and did not result in the defects in blastospore formation. On the contrary, BbAcs2 significantly contributes to lipid metabolism in germlings, blastospore formation, and virulence. The results indicated that Acs2 played a more predominant role than Acs1 in B. bassiana, which links the acetyl-CoA metabolism with the lifestyle of entomopathogenic fungi.
Collapse
Affiliation(s)
- Jia-Hui Lei
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hai-Yan Lin
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
LIU N, LIAN S, ZHOU SY, WANG CX, REN WC, LI BH. Involvement of the autophagy-related gene BdATG8 in development and pathogenicity in Botryosphaeria dothidea. JOURNAL OF INTEGRATIVE AGRICULTURE 2022; 21:2319-2328. [DOI: 10.1016/s2095-3119(21)63863-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Mitochondrial prohibitin complex regulates fungal virulence via ATG24-assisted mitophagy. Commun Biol 2022; 5:698. [PMID: 35835849 PMCID: PMC9283515 DOI: 10.1038/s42003-022-03666-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Prohibitins are highly conserved eukaryotic proteins in mitochondria that function in various cellular processes. The roles of prohibitins in fungal virulence and their regulatory mechanisms are still unknown. Here, we identified the prohibitins ChPhb1 and ChPhb2 in a plant pathogenic fungus Colletotrichum higginsianum and investigated their roles in the virulence of this anthracnose fungus attacking crucifers. We demonstrate that ChPhb1 and ChPhb2 are required for the proper functioning of mitochondria, mitophagy and virulence. ChPhb1 and ChPhb2 interact with the autophagy-related protein ChATG24 in mitochondria, and ChATG24 shares similar functions with these proteins in mitophagy and virulence, suggesting that ChATG24 is involved in prohibitin-dependent mitophagy. ChPhb1 and ChPhb2 modulate the translocation of ChATG24 into mitochondria during mitophagy. The role of ChATG24 in mitophagy is further confirmed to be conserved in plant pathogenic fungi. Our study presents that prohibitins regulate fungal virulence by mediating ATG24-assisted mitophagy. Prohibitins recruit ChATG24 into the mitochondria to modulate mitophagy, thereby affecting the virulence of Colletotrichum higginsianum.
Collapse
|
21
|
Hou J, Lin H, Ding J, Feng M, Ying S. Peroxins in Peroxisomal Receptor Export System Contribute to Development, Stress Response, and Virulence of Insect Pathogenic Fungus Beauveria bassiana. J Fungi (Basel) 2022; 8:622. [PMID: 35736105 PMCID: PMC9224678 DOI: 10.3390/jof8060622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/06/2023] Open
Abstract
In filamentous fungi, recycling of receptors responsible for protein targeting to peroxisomes depends on the receptor export system (RES), which consists of peroxins Pex1, Pex6, and Pex26. This study seeks to functionally characterize these peroxins in the entomopathogenic fungus Beauveria bassiana. BbPex1, BbPex6, and BbPex26 are associated with peroxisomes and interact with each other. The loss of these peroxins did not completely abolish the peroxisome biogenesis. Three peroxins were all absolutely required for PTS1 pathway; however, only BbPex6 and BbPex26 were required for protein translocation via PTS2 pathway. Three gene disruption mutants displayed the similar phenotypic defects in assimilation of nutrients (e.g., fatty acid, protein, and chitin), stress response (e.g., oxidative and osmotic stress), and virulence. Notably, all disruptant displayed significantly enhanced sensitivity to linoleic acid, a polyunsaturated fatty acid. This study reinforces the essential roles of the peroxisome in the lifecycle of entomopathogenic fungi and highlights peroxisomal roles in combating the host defense system.
Collapse
Affiliation(s)
| | | | | | | | - Shenghua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (J.H.); (H.L.); (J.D.); (M.F.)
| |
Collapse
|
22
|
Qiu L, Song JZ, Li J, Zhang TS, Li Z, Hu SJ, Liu JH, Dong JC, Cheng W, Wang JJ. The transcription factor Ron1 is required for chitin metabolism, asexual development and pathogenicity in Beauveria bassiana, an entomopathogenic fungus. Int J Biol Macromol 2022; 206:875-885. [PMID: 35278517 DOI: 10.1016/j.ijbiomac.2022.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 11/05/2022]
Abstract
Ndt80-like transcription factor Ron1 is best known for its essential role in the regulation of N-acetylglucosamine (GlcNAc) catabolism. Ron1 was again found to be essential for sensing GlcNAc in Beauveria bassiana. Importantly, our study revealed that Ron1 is involved in the metabolic processes of chitin and asexual development. To further investigate the novel functions of Ron1 in B. bassiana, extracellular chitinase activity in the ΔRon1 mutant was found to decrease by 84.73% compared with wild type. The deletion of Ron1 made it difficult for the fungus to accumulate intracellular GlcNAc. Furthermore, transcriptomic analysis revealed that Ron1 exerted a significant effect on global transcription and positively regulated genes encoding chitin metabolism in respond to chitin nutrition. Yeast one-hybrid assay confirmed that Ron1 could bind to specific cis-acting elements in the promoters of chitinase and hexokinase. In addition, ΔRon1 displayed an impaired chitin component of the cell wall, with a chitin synthetase (ChsVII) predicted to function downstream of Ron1. Finally, the virulence of ΔRon1 mutant was significantly reduced in the Galleria mellonella insect model through cuticle infection or cuticle bypassing infection. These data functionally characterize Ron1 in B. bassiana and expand our understanding of how the transcription factor Ron1 works in pathogens.
Collapse
Affiliation(s)
- Lei Qiu
- School of Biological Science and Technology, University of Jinan, Jinan, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Ji-Zheng Song
- School of Biological Science and Technology, University of Jinan, Jinan, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China; Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Juan Li
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Tong-Sheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Ze Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Shun-Juan Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jia-Hua Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jing-Chong Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Wen Cheng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Juan-Juan Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China.
| |
Collapse
|
23
|
Proteomic and Phosphoryproteomic Investigations Reveal that Autophagy-Related Protein 1, a Protein Kinase for Autophagy Initiation, Synchronously Deploys Phosphoregulation on the Ubiquitin-Like Conjugation System in the Mycopathogen Beauveria bassiana. mSystems 2022; 7:e0146321. [PMID: 35133188 PMCID: PMC8823290 DOI: 10.1128/msystems.01463-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a conserved intracellular degradation mechanism in eukaryotes and is initiated by the protein kinase autophagy-related protein 1 (Atg1). However, except for the autophosphorylation activity of Atg1, the target proteins phosphorylated by Atg1 are largely unknown in filamentous fungi. In Beauveria bassiana (a filamentous insect-pathogenic fungus), Atg1 is indispensable for autophagy and is associated with fungal development. Comparative omics-based analyses revealed that B. bassiana Atg1 (BbAtg1) has key influence on the proteome and phosphoproteome during conidiogenesis. In terms of its physiological functions, the BbAtg1-mediated phosphoproteome is primarily associated with metabolism, signal transduction, cell cycle, and autophagy. At the proteomic level, BbAtg1 mainly regulates genes involved in protein synthesis, protein fate, and protein with binding function. Furthermore, integrative analyses of phosphoproteomic and proteomic data led to the identification of several potential targets regulated by BbAtg1 phosphorylation activity. Notably, we demonstrated that BbAtg1 phosphorylated BbAtg3, an essential component of the ubiquitin-like conjugation system in autophagic progress. Our findings indicate that in addition to being a critical component of the autophagy initiation, Atg1 orchestrates autophagosome elongation via its phosphorylation activity. The data from our study will facilitate future studies on the noncanonical targets of Atg1 and help decipher the Atg1-mediated phosphorylation networks. IMPORTANCE Autophagy-related protein 1 (Atg1) is a serine/threonine protein kinase for autophagy initiation. In contrast to the unicellular yeast, the target proteins phosphorylated by Atg1 are largely unknown in filamentous fungi. In this study, the entomopathogenic fungus Beauveria bassiana was used as a representative of filamentous fungi due to its importance in the applied and fundamental research. We revealed that Atg1 mediates the comprehensive proteome and phosphoproteome, which differ from those revealed in yeast. Further investigation revealed that Atg1 directly phosphorylates the E2-like enzyme Atg3 of the ubiquitin-like conjugation system (ULCS), and the phosphorylation of Atg3 is indispensable for ULCS functionality. Interestingly, the phosphorylation site of Atg3 is conserved among a set of insect- and plant-pathogenic fungi but not in human-pathogenic fungi. This study reveals new regulatory mechanisms of autophagy and provides new insights into the evolutionary diversity of the Atg1 kinase signaling pathways among different pathogenic fungi.
Collapse
|
24
|
Li R, Zhao L, Li S, Chen F, Qiu J, Bai L, Chen B. The Autophagy-Related Gene CpAtg4 Is Required for Fungal Phenotypic Traits, Stress Tolerance, and Virulence in Cryphonectria parasitica. PHYTOPATHOLOGY 2022; 112:299-307. [PMID: 34033505 DOI: 10.1094/phyto-01-21-0015-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Autophagy is an evolutionarily ancient process wherein cells are able to break down intracellular contents to support normal physiology and development. Autophagosome formation is regulated by several different proteins, including the key cysteine protease Atg4. The contribution of Atg4 protein in the pathogenic fungus Cryphonectria parasitica, which causes blight in chestnut plants, has not been completely understood. In this context, we aimed to investigate the role of Atg4 during autophagy formation and their contribution to nonautophagic events in C. parasitica. By complementation assay, we determined that the CpAtg4 gene from C. parasitica was able to functionally complement the deletion of yeast Atg4. Using a yeast two-hybrid assay system, we confirmed that CpAtg4 and CpAtg8 directly interact with one another, and amino acids 377 to 409 of CpAtg4 were identified as being responsible for its binding with CpAtg8. The deletion mutant of CpAtg4 did not demonstrate positive monodansylcadaverine staining, which indicated that CpAtg4 is required for autophagy in C. parasitica. Moreover, the ΔCpAtg4 strain exhibited a decrease in aerial hyphae formation and sporulation, and reduction in virulence on apple and chestnut stem. The ΔCpAtg4 strains were also more sensitive to H2O2 and Congo red-induced stress. We further determined that amino acids 377 to 409 of CpAtg4 were essential for the function of CpAtg4 in vivo. Together, our findings indicated that CpAtg4 is required for the autophagy formation, fungal phenotypic traits, stress tolerance, and virulence in C. parasitica.
Collapse
Affiliation(s)
- Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Lijiu Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Shuangcai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Fengyue Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Jinfeng Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Lingyun Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
25
|
Li XH, Peng YJ, Ding JL, Feng MG, Ying SH. A homologue of yeast acyl-CoA synthetase Faa1 contributes to cytomembrane functionality involved in development and virulence in the insect pathogenic fungus Beauveria bassiana. Microb Pathog 2022; 164:105419. [DOI: 10.1016/j.micpath.2022.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
26
|
Lin HY, Pang MY, Feng MG, Ying SH. A peroxisomal sterol carrier protein 2 (Scp2) contributes to lipid trafficking in differentiation and virulence of the insect pathogenic fungus Beauveria bassiana. Fungal Genet Biol 2021; 158:103651. [PMID: 34906632 DOI: 10.1016/j.fgb.2021.103651] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023]
Abstract
Sterol carrier protein 2 (SCP2) represents a family of proteins binding a variety of lipids and plays essential roles in cellular physiology. However, its physiological roles are largely unknown in filamentous fungi. In this study, we functionally characterized an orthologous Scp2 gene in the filamentous insect pathogenic fungus Beauveria bassiana (BbScp2). BbScp2 was verified to be a peroxisomal protein and displayed different affinities to various lipids, with strong affinity to palmitic acid (PA) and ergosterol (ES). No significant binding activity was detected between protein and oleic acid (OA) or linoleic acid (LA). Ablation of BbScp2 did not cause significant effects on fungal growth on various carbon sources, but resulted in a modest reduction in conidial (49%) and blastospore yield (45%). In addition, exogenous lipids could recover the defectives in conidiation of ΔBbScp2 mutant strain. BbScp2 was required for the cytomembrane functionality in germlings, and its loss resulted in a more significant decrease in virulence indicated by cuticle infection assay than intrahemocoel injection assay. Our findings indicate that Scp2 links the lipid trafficking to the asexual differentiation and virulence of B. bassiana.
Collapse
Affiliation(s)
- Hai-Yan Lin
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meei-Yuan Pang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
27
|
Peng YJ, Ding JL, Lin HY, Feng MG, Ying SH. A virulence-related lectin traffics into eisosome and contributes to functionality of cytomembrane and cell-wall in the insect-pathogenic fungus Beauveria bassiana. Fungal Biol 2021; 125:914-922. [PMID: 34649678 DOI: 10.1016/j.funbio.2021.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/29/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Lectins are characterized of the carbohydrate-binding ability and play comprehensive roles in fungal physiology (e.g., defense response, development and host-pathogen interaction). Beauveria bassiana, a filamentous entomopathogenic fungus, has a lectin-like protein containing a Fruit Body_domain (BbLec1). BbLec1 could bind to chitobiose and chitin in fungal cell wall. BbLec1 proteins interacted with each other to form multimers, and translocated into eisosomes. Further, the interdependence between BbLec1 and the eisosome protein PliA was essential for stabilizing the eisosome architecture. To test the BbLec1 roles in B. bassiana, we constructed the gene disruption and complementation mutants. Notably, the BbLec1 loss resulted in the impaired cell wall in mycelia and conidia as well as conidial formation capacity. In addition, disruption of BbLec1 led to the reduced cytomembrane integrity and the enhanced sensitivity to osmotic stress. Finally, ΔBbLec1 mutant strain displayed the weakened virulence when compared with the wild-type strain. Taken together, BbLec1 traffics into eisosome and links the functionality of eisosome to development and virulence of B. bassiana.
Collapse
Affiliation(s)
- Yue-Jin Peng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hai-Yan Lin
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
28
|
Qiu L, Zhang TS, Song JZ, Zhang J, Li Z, Wang JJ. BbWor1, a Regulator of Morphological Transition, Is Involved in Conidium-Hypha Switching, Blastospore Propagation, and Virulence in Beauveria bassiana. Microbiol Spectr 2021; 9:e0020321. [PMID: 34319134 PMCID: PMC8552717 DOI: 10.1128/spectrum.00203-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Morphological transition is an important adaptive mechanism in the host invasion process. Wor1 is a conserved fungal regulatory protein that controls the phenotypic switching and pathogenicity of Candida albicans. By modulating growth conditions, we simulated three models of Beauveria bassiana morphological transitions, including CTH (conidia to hyphae), HTC (hyphae to conidia), and BTB (blastospore to blastospore). Disruption of BbWor1 (an ortholog of Wor1) resulted in a distinct reduction in the time required for conidial germination (CTH), a significant increase in hyphal growth, and a decrease in the yield of conidia (HTC), indicating that BbWor1 positively controls conidium production and negatively regulates hyphal growth in conidium-hypha switching. Moreover, ΔBbWor1 prominently decreased blastospore yield, shortened the G0/G1 phase, and prolonged the G2/M phase under the BTB model. Importantly, BbWor1 contributed to conidium-hypha switching and blastospore propagation via different genetic pathways, and yeast one-hybrid testing demonstrated the necessity of BbWor1 to control the transcription of an allergen-like protein gene (BBA_02580) and a conidial wall protein gene (BBA_09998). Moreover, the dramatically weakened virulence of ΔBbWor1 was examined by immersion and injection methods. Our findings indicate that BbWor1 is a vital participant in morphological transition and pathogenicity in entomopathogenic fungi. IMPORTANCE As a well-known entomopathogenic fungus, Beauveria bassiana has a complex life cycle and involves transformations among single-cell conidia, blastospores, and filamentous hyphae. This study provides new insight into the regulation of the fungal cell morphological transitions by simulating three models. Our research identified BbWor1 as a core transcription factor of morphological differentiation that positively regulates the production of conidia and blastospores but negatively regulates hyphal growth. More importantly, BbWor1 affects fungal pathogenicity and the global transcription profiles within three models of growth stage transformation. The present study lays a foundation for the exploration of the transition mechanism of entomopathogenic fungi and provides material for the morphological study of fungi.
Collapse
Affiliation(s)
- Lei Qiu
- School of Biological Science and Technology, University of Jinan, Jinan, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Tong-Sheng Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Ji-Zheng Song
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jing Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Ze Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Juan-Juan Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| |
Collapse
|
29
|
Huang YJ, Klionsky DJ. Yeast mitophagy: Unanswered questions. Biochim Biophys Acta Gen Subj 2021; 1865:129932. [PMID: 34022298 PMCID: PMC8205991 DOI: 10.1016/j.bbagen.2021.129932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 01/18/2023]
Abstract
Superfluous and damaged mitochondria need to be efficiently repaired or removed. Mitophagy is a selective type of autophagy that can engulf a portion of mitochondria within a double-membrane structure, called a mitophagosome, and deliver it to the vacuole for degradation. Mitophagy has significant physiological functions from yeast to human, and recent advances in yeast mitophagy shed light on the molecular mechanisms of mitophagy, especially the regulation of mitophagy induction. This review summarizes our current knowledge about yeast mitophagy and considers several unsolved questions, with a particular focus on Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Yuxiang J Huang
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Pang MY, Lin HY, Hou J, Feng MG, Ying SH. Different contributions of the peroxisomal import protein Pex5 and Pex7 to development, stress response and virulence of insect fungal pathogen Beauveria bassiana. J Appl Microbiol 2021; 132:509-519. [PMID: 34260798 DOI: 10.1111/jam.15216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022]
Abstract
AIMS Peroxins Pex5 and Pex7 belong to the peroxisomal import machinery and recognize proteins containing peroxisomal targeting signal (PTS) type 1 and type 2, respectively. This study seeks to characterize these two peroxins in the entomopathogenic fungus Beauveria bassiana. METHODS AND RESULTS The orthologs of Pex5 and Pex7 in B. bassiana (BbPex5 and BbPex7) were functionally analyzed via protein localization and gene disruption. BbPex5 and BbPex7 were associated with peroxisome and specifically required for PTS1 and PTS2 pathways, respectively, which were demonstrated to be involved in development, tolerance to oxidative stress and virulence. ΔBbPex5 mutant displayed additionally defectives that were undetected in ΔBbPex7 in vegetative growth and resistance to osmotic and cell wall-perturbing stresses. Notably, Woronin body major protein Hex1 with PTS1 linked this organelle to the development and virulence of B. bassiana, which indicates that Woronin body is associated with the roles of PTS1 pathway. CONCLUSION Both PTS1 and PTS2 pathways are involved in broad physiological process, and the PTS1 pathway acts as a main peroxisomal import pathway. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows the functional divergence of different peroxins and improves our understanding of organellar physiology involved in biocontrol potential of the entomopathogenic fungi.
Collapse
Affiliation(s)
- Meei-Yuan Pang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hai-Yan Lin
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jia Hou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
31
|
Wang D, Lv C, Guan Y, Ni X, Wu F. Dsk2 involves in conidiation, multi-stress tolerance and thermal adaptation in Beauveria bassiana. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:384-393. [PMID: 33870613 DOI: 10.1111/1758-2229.12946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Dsk2 is a nuclear-enriched ubiquitin-like polyubiquitin-binding protein that regulates protein degradation in yeast but has not been explored yet in filamentous fungi, such as Beauveria bassiana. Here, we report Beauveria bassiana Dsk2 located both in the nucleus and in cytoplasm of hyphal cells. Deletion of Dsk2 resulted in mild growth defect on scant media with various carbon/nitrogen sources and dramatic attenuation in conidiation capability at optimal condition. Compared to the wild-type, ΔDsk2 strains are much more sensitive to high osmotic and oxidative pressure during vegetative growth. Meanwhile, the mutant strains showed an increased chemical tolerance to Congo red and calcofluor white, two cell wall perturbing agents. The transcriptional changes of genes involved in central development, superoxide dismutase and chitin synthesis pathway indicate that Dsk2 acts as a multi-functional regulator in adapting to environmental changes. Importantly, Dsk2 negatively regulated the ability of thermal resistance in B. bassiana, which makes it a potential target gene for constructing engineering anti-thermal strains in the circumstance of global warming. Altogether, our finding highlights novel roles of Dsk2 involved in the asexual cycle, multi-stress tolerance and pest control potential of B. bassiana.
Collapse
Affiliation(s)
- Dingyi Wang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Chao Lv
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yi Guan
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xiangyin Ni
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Fuzhong Wu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
32
|
Zhou D, Xie M, Bai N, Yang L, Zhang KQ, Yang J. The Autophagy-Related Gene Aolatg4 Regulates Hyphal Growth, Sporulation, Autophagosome Formation, and Pathogenicity in Arthrobotrys oligospora. Front Microbiol 2020; 11:592524. [PMID: 33304340 PMCID: PMC7701090 DOI: 10.3389/fmicb.2020.592524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/28/2020] [Indexed: 12/30/2022] Open
Abstract
Autophagy plays an important role in cell growth and development. The autophagy-related gene atg4 encodes a cysteine protease, which can cleave the carboxyl terminus of Atg8, thus plays a role in autophagosome formation in yeast and filamentous fungi. Arthrobotrys oligospora is well known for producing special trapping-devices (traps) and capturing nematodes. In this study, two ΔAolatg4 mutants were generated using targeted gene replacement and were used to investigate the biological functions of autophagy in A. oligospora. Autophagic process was observed using the AoAtg8-GFP fusion protein. The mutants showed a defective in hyphal growth and sporulation and were sensitive to chemical stressors, including menadione and Congo red. The spore yield of the ΔAolatg4 mutants was decreased by 88.5% compared to the wild type (WT), and the transcript levels of six sporulation-related genes, such as abaA, fluG, brlA, and wetA, were significantly downregulated during the conidiation stage. Deletion of Aolatg4 also affected the cell nuclei and mycelial septal development in A. oligospora. Importantly, autophagosome formation and the autophagic process were impaired in the ΔAolatg4 mutant. Moreover, the ΔAolatg4 mutant lost its ability to form mature traps. Our results provide novel insights into the roles of autophagy in A. oligospora.
Collapse
Affiliation(s)
- Duanxu Zhou
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Le Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
33
|
Shin TY, Lee MR, Park SE, Lee SJ, Kim WJ, Kim JS. Pathogenesis-related genes of entomopathogenic fungi. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21747. [PMID: 33029869 DOI: 10.1002/arch.21747] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
All living things on Earth experience various diseases such as those caused by viruses, bacteria, and fungi. Insects are no exception to this rule, and fungi that cause disease in insects are called entomopathogenic fungi. These fungi have been developed as microbial insecticides and are used to control various pests. Generally, the mode of action of entomopathogenic fungi is divided into the attachment of conidia, germination, penetration, growth, and generation of secondary infectious conidia. In each of these steps, that entomopathogenic fungi use genes in a complex manner (specific or diverse) has been shown by gene knock-out and RNA-sequencing analysis. In this review, the information mechanism of entomopathogenic fungi was divided into six steps: (1) attachment of conidia to host, (2) germination and appressorium, (3) penetration, (4) fungal growth in hemolymph, (5) conidia production on host, and (6) transmission and dispersal. The strategy used by the fungi in each step was described at the genetic level. In addition, an approach for studying the mode of action of the fungi is presented.
Collapse
Affiliation(s)
- Tae Young Shin
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mi Rong Lee
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - So Eun Park
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Se Jin Lee
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Woo Jin Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
34
|
Navarro-Espíndola R, Suaste-Olmos F, Peraza-Reyes L. Dynamic Regulation of Peroxisomes and Mitochondria during Fungal Development. J Fungi (Basel) 2020; 6:E302. [PMID: 33233491 PMCID: PMC7711908 DOI: 10.3390/jof6040302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisomes and mitochondria are organelles that perform major functions in the cell and whose activity is very closely associated. In fungi, the function of these organelles is critical for many developmental processes. Recent studies have disclosed that, additionally, fungal development comprises a dynamic regulation of the activity of these organelles, which involves a developmental regulation of organelle assembly, as well as a dynamic modulation of the abundance, distribution, and morphology of these organelles. Furthermore, for many of these processes, the dynamics of peroxisomes and mitochondria are governed by common factors. Notably, intense research has revealed that the process that drives the division of mitochondria and peroxisomes contributes to several developmental processes-including the formation of asexual spores, the differentiation of infective structures by pathogenic fungi, and sexual development-and that these processes rely on selective removal of these organelles via autophagy. Furthermore, evidence has been obtained suggesting a coordinated regulation of organelle assembly and dynamics during development and supporting the existence of regulatory systems controlling fungal development in response to mitochondrial activity. Gathered information underscores an important role for mitochondrial and peroxisome dynamics in fungal development and suggests that this process involves the concerted activity of these organelles.
Collapse
Affiliation(s)
| | | | - Leonardo Peraza-Reyes
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (R.N.-E.); (F.S.-O.)
| |
Collapse
|
35
|
HapX, an Indispensable bZIP Transcription Factor for Iron Acquisition, Regulates Infection Initiation by Orchestrating Conidial Oleic Acid Homeostasis and Cytomembrane Functionality in Mycopathogen Beauveria bassiana. mSystems 2020; 5:5/5/e00695-20. [PMID: 33051379 PMCID: PMC7567583 DOI: 10.1128/msystems.00695-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Conidial maturation and germination are highly coupled physiological processes in filamentous fungi that are critical for the pathogenicity of mycopathogens. Compared to the mechanisms involved in conidial germination, those of conidial reserves during maturation are less understood. The insect-pathogenic fungus Beauveria bassiana, as a representative species of filamentous fungi, is important for applied and fundamental research. In addition to its conserved roles in fungal adaptation to iron status, the bZIP transcription factor HapX acts as a master regulator involved in conidial virulence and regulates fatty acid/lipid metabolism. Further investigation revealed that the Δ9-fatty acid desaturase gene (Ole1) is a direct downstream target of HapX. This study reveals the HapX-Ole1 pathway involved in the fatty acid/lipid accumulation associated with conidial maturation and provides new insights into the startup mechanism of infection caused by spores from pathogenic fungi. In pathogenic filamentous fungi, conidial germination not only is fundamental for propagation in the environment but is also a critical step of infection. In the insect mycopathogen Beauveria bassiana, we genetically characterized the role of the basic leucine zipper (bZIP) transcription factor HapX (BbHapX) in conidial nutrient reserves and pathogen-host interaction. Ablation of BbHapX resulted in an almost complete loss of virulence in the topical inoculation and intrahemocoel injection assays. Comparative transcriptomic analysis revealed that BbHapX is required for fatty acid (FA)/lipid metabolism, and biochemical analyses indicated that BbHapX loss caused a significant reduction in conidial FA contents. Exogenous oleic acid could partially or completely restore the impaired phenotypes of the ΔBbHapX mutant, including germination rate, membrane integrity, vegetative growth, and virulence. BbHapX mediates fungal iron acquisition which is not required for desaturation of stearic acid. Additionally, inactivation of the Δ9-fatty acid desaturase gene (BbOle1) generated defects similar to those of the ΔBbHapX mutant; oleic acid also had significant restorative effects on the defective phenotypes of the ΔBbOle1 mutant. A gel retarding assay revealed that BbHapX directly regulated the expression of BbOle1. Lipidomic analyses indicated that both BbHapX and BbOle1 contributed to the homeostasis of phospholipids with nonpolar tails derived from oleic acid; therefore, exogenous phospholipids could significantly restore membrane integrity. These data reveal that the HapX-Ole1 pathway contributes to conidial fatty acid/lipid reserves and that there are important links between the lipid biology and membrane functionality involved in the early stages of infection caused by B.bassiana. IMPORTANCE Conidial maturation and germination are highly coupled physiological processes in filamentous fungi that are critical for the pathogenicity of mycopathogens. Compared to the mechanisms involved in conidial germination, those of conidial reserves during maturation are less understood. The insect-pathogenic fungus Beauveria bassiana, as a representative species of filamentous fungi, is important for applied and fundamental research. In addition to its conserved roles in fungal adaptation to iron status, the bZIP transcription factor HapX acts as a master regulator involved in conidial virulence and regulates fatty acid/lipid metabolism. Further investigation revealed that the Δ9-fatty acid desaturase gene (Ole1) is a direct downstream target of HapX. This study reveals the HapX-Ole1 pathway involved in the fatty acid/lipid accumulation associated with conidial maturation and provides new insights into the startup mechanism of infection caused by spores from pathogenic fungi.
Collapse
|
36
|
Hou J, Wang JJ, Lin HY, Feng MG, Ying SH. Roles of autophagy-related genes in conidiogenesis and blastospore formation, virulence, and stress response of Beauveria bassiana. Fungal Biol 2020; 124:1052-1057. [PMID: 33213785 DOI: 10.1016/j.funbio.2020.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
Autophagy is a conserved intracellular recycling mechanism, in which autophagy-related genes 12 and 16 (ATG12 and ATG16) function in a complex controlling the ubiquitin-like conjugation system. In the insect-pathogenic fungus Beauveria bassiana, ATG12 and ATG16 were functionally characterized. Disruption of BbATG12 or BbATG16 resulted in the absence of autophagic bodies under starvation stress. ΔBbATG12 and ΔBbATG16 mutant strains displayed similar defects in asexual development (conidiation and blastospore formation) and tolerance to oxidative stress. ΔBbATG16 strain exhibited the impaired growth on the media with gelatin or chitin as a single nitrogen source, and ΔBbATG12 displayed decreased growth on the media with sucrose, fructose or maltose as a single carbon source. Both BbATG12 and BbATG16 were required for fungal virulence. BbATG16 mutation had more effects on fungal virulence than BbATG12 in topical infection assay, although both genes had similar contributions to fungal virulence in intrahemocoel injection assay. This study indicates that BbATG12 and BbATG16 mediate diverse biological functions in addition to their convergent roles in autophagy.
Collapse
Affiliation(s)
- Jia Hou
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Jia Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hai-Yan Lin
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
37
|
Wang JJ, Peng YJ, Ding JL, Feng MG, Ying SH. Mitochondrial fission is necessary for mitophagy, development and virulence of the insect pathogenic fungus Beauveria bassiana. J Appl Microbiol 2020; 129:411-421. [PMID: 32086853 DOI: 10.1111/jam.14619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022]
Abstract
AIMS Mitochondrial fission is an essential dynamics that maintains mitochondrial morphology and function. This study seeks to determine the roles of mitochondrial fission in the filamentous entomopathogenic fungus Beauveria bassiana. MATERIAL AND METHODS Three fission-related genes (BbFis1, BbMdv1 and BbDnm1) were functionally characterized via protein intracellular localization and construction of gene disruption mutants. RESULTS Mitochondrial localization was only observed for BbFis1 which interacts with BbMdv1, but BbMdv1 did not have interaction with BbDnm1. Single disruption mutant of three genes generated the elongated and enlarged mitochondria which could not be eliminated via the mitophagy. Three mutant strains displayed the reduced ATP synthesis and vegetative growth compared with the wild type. Three genes were involved in the early stage of conidiation and unnecessary for the late stage. However, all three genes significantly contribute to blastospore development under submerged condition, and the loss of BbMdv1 had the greatest effects compared with the losses of BbFis1 or BbDnm1. Finally, disruption of three genes significantly attenuated fungal virulence, but their mutations had different influences. CONCLUSIONS In addition to their consistent roles in mitochondrial division and mitophagy, three fission-related genes perform divergent roles in the development and virulence of the entomopathogenic fungus B. bassiana. SIGNIFICANCE AND IMPACT OF THE STUDY This study shows that mitochondrial fission is associated with lifecycle of B. bassiana. These findings provide information for the manipulation of fungal physiology and facilitate the application of entomopathogenic fungi.
Collapse
Affiliation(s)
- J-J Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Y-J Peng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - J-L Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - M-G Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - S-H Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Ding J, Lin H, Feng M, Ying S. Mbp1, a component of the MluI cell cycle box‐binding complex, contributes to morphological transition and virulence in the filamentous entomopathogenic fungus
Beauveria bassiana. Environ Microbiol 2019; 22:584-597. [DOI: 10.1111/1462-2920.14868] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Jin‐Li Ding
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou 310058 China
| | - Hai‐Yan Lin
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou 310058 China
| | - Ming‐Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou 310058 China
| | - Sheng‐Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University Hangzhou 310058 China
| |
Collapse
|
39
|
Wang JJ, Peng YJ, Feng MG, Ying SH. Functional analysis of the mitochondrial gene mitofilin in the filamentous entomopathogenic fungus Beauveria bassiana. Fungal Genet Biol 2019; 132:103250. [DOI: 10.1016/j.fgb.2019.103250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/21/2019] [Accepted: 06/30/2019] [Indexed: 02/06/2023]
|
40
|
Lin HY, Wang JJ, Feng MG, Ying SH. Autophagy-related gene ATG7 participates in the asexual development, stress response and virulence of filamentous insect pathogenic fungus Beauveria bassiana. Curr Genet 2019; 65:1015-1024. [PMID: 30879087 DOI: 10.1007/s00294-019-00955-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/21/2022]
Abstract
Autophagy is a sophisticated mechanism for maintaining cellular homeostasis, in which E1-like enzyme (ATG7) controls the activation of ubiquitin-like conjugation system in the autophagy pathway. In the insect pathogenic fungus Beauveria bassiana, a yeast ortholog of ATG7 was identified and functionally analyzed. Ablation of BbATG7 gene blocks the autophagic process under starvation stress. The mutant ΔBbATG7 exhibited impaired growth on the media with chitin as single nitrogen source. On rich media, gene loss did not cause notable effect on vegetative growth, but resulted in a considerable reduction in conidiation (71.6%) and blastospore yield (61.1%) in the mutant. In addition, the ΔBbATG7 mutant displayed increased sensitivity to stress caused by menadione and Congo red. The virulence of ΔBbATG7 mutant was significantly attenuated as indicated in topical and intrahemocoel injection assays. Our study indicates that BbATG7 contributes to B. bassiana virulence via regulating autophagy pathway and playing non-autophagic functions in the infection cycle.
Collapse
Affiliation(s)
- Hai-Yan Lin
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Jia Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
41
|
Ying SH, Feng MG. Insight into vital role of autophagy in sustaining biological control potential of fungal pathogens against pest insects and nematodes. Virulence 2018; 10:429-437. [PMID: 30257619 PMCID: PMC6550541 DOI: 10.1080/21505594.2018.1518089] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a conserved self-degradation mechanism that governs a large array of cellular processes in filamentous fungi. Filamentous insect and nematode mycopthogens function in the natural control of host populations and have been widely applied for biological control of insect and nematode pests. Entomopathogenic and nematophagous fungi have conserved “core” autophagy machineries that are analogous to those found in yeast but also feature several proteins involved in specific aspects of the autophagic pathways. Here, we review the functions of autophagy in protecting fungal cells from starvation and stress cues and sustaining cell differentiation, asexual development and virulence. An emphasis is placed upon the regulatory mechanisms involved in autophagic and non-autophagic roles of some autophagy-related genes. Methods used for monitoring conserved or specific autophagic events in fungal pathogens are also discussed.
Collapse
Affiliation(s)
- Sheng-Hua Ying
- a Institute of Microbiology, College of Life Sciences , Zhejiang University , Hangzhou , China
| | - Ming-Guang Feng
- a Institute of Microbiology, College of Life Sciences , Zhejiang University , Hangzhou , China
| |
Collapse
|