1
|
Tan X, Xiao J, Liu Q, Yang T, Feng D, Zheng R, Luo L, Cheng X, Du D, Li M, Zhou J, Zhu G. Regulatory roles of an sRNA derived from the 5´ UTR and sequence internal to lapA in Pseudomonas aeruginosa PAO1. Microbiol Spectr 2025:e0130324. [PMID: 40261038 DOI: 10.1128/spectrum.01303-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/10/2025] [Indexed: 04/24/2025] Open
Abstract
Several key virulence factors of Pseudomonas aeruginosa are regulated by quorum-sensing systems, small noncoding RNAs (sRNAs), and environmental stress, leading to a high mortality rate. Our previous studies indicated that the alkaline phosphatase LapA regulated P. aeruginosa PAO1 biofilm formation in a chronic wound model established with ex vivo porcine skin explants. Notably, one particular sRNA located upstream of the lapA gene was highly expressed in the model. Therefore, the sRNA was further characterized via northern blotting and rapid amplification of cDNA ends. The results revealed that the sRNA we named LapS is 197 nucleotides in length and is derived from the 5´ UTR and sequence internal to the lapA gene. Next, LapS mutation, overexpression, and complementation strains were constructed from the PAO1 strain, and phenotypic experiments associated with lapA were performed and compared with those of the ΔlapA and wild-type strains. The results indicated that LapS is involved in regulating swarming motility, rhamnolipid and alkaline phosphatase production, las/rhl quorum-sensing systems, and biofilm formation by controlling the level of lapA mRNA under phosphate-depleted conditions. Therefore, this LapS-lapA signaling cascade is beneficial for balancing the virulence regulation of P. aeruginosa. Additionally, an in vitro study indicated that LapS directly and post-transcriptionally regulated at least one unlinked gene, putA, which encodes bifunctional proline dehydrogenase, a virulence factor of P. aeruginosa. Collectively, our findings reveal a previously unstudied regulatory sRNA and advance the understanding of the roles of sRNAs in the pathogenicity of P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is a common nosocomial pathogen that contains hundreds of virulence factors regulated by quorum-sensing systems and environmental stress. Small noncoding RNAs (sRNAs) involved in virulence regulation have been identified in P. aeruginosa. Recently, several potential sRNAs were identified in P. aeruginosa using transcriptome sequencing. However, some of these novel sRNAs have been functionally characterized. In this study, a previously uncharacterized sRNA, LapS, in P. aeruginosa PAO1 was identified as a novel sRNA. LapS is involved in regulating swarming motility, rhamnolipid production, and alkaline phosphatase production during phosphate-depleted stress by controlling the level of lapA mRNA. Furthermore, LapS deletion also reduced the mortality rate of Caenorhabditis elegans in a fast-kill assay. Additionally, LapS directly suppressed PutA, a virulence factor of P. aeruginosa. This study highlights the role of LapS in modulating P. aeruginosa virulence during phosphate-depleted stress.
Collapse
Affiliation(s)
- Xiaojuan Tan
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jingjing Xiao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qianqian Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Ting Yang
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Dandan Feng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Ruyi Zheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Liping Luo
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Xi Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Dongsheng Du
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Minghui Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jinwei Zhou
- School of Food and Biological Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
2
|
Zhou H, Negrón O, Abbondante S, Marshall M, Jones B, Ong E, Chumbler N, Tunkey C, Dixon G, Lin H, Plante O, Pearlman E, Gadjeva M. Spatial transcriptomics identifies novel Pseudomonas aeruginosa virulence factors. CELL GENOMICS 2025; 5:100805. [PMID: 40081336 PMCID: PMC11960532 DOI: 10.1016/j.xgen.2025.100805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/22/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025]
Abstract
To examine host-pathogen interactions, we leveraged a dual spatial transcriptomics approach that simultaneously captures the expression of Pseudomonas aeruginosa genes alongside the entire host transcriptome using a murine model of ocular infection. This method revealed differential pathogen- and host-specific gene expression patterns in infected corneas, which generated a unified transcriptional map of infection. By integrating these data, we developed a predictive ridge regression model trained on images from infected tissues. The model achieved an R2 score of 0.923 in predicting bacterial burden distributions and identifying novel biomarkers associated with disease severity. Among iron acquisition pathogen-specific gene transcripts that showed significant enrichment at the host-pathogen interface, we discovered the novel virulence mediator PA2590, which was required for bacterial virulence. This study therefore highlights the power of combining bacterial and host spatial transcriptomics to uncover complex host-pathogen interactions and identify potentially druggable targets.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Moderna, Inc., 325 Binney St., Cambridge, MA 02142, UK
| | - Oscar Negrón
- Moderna, Inc., 325 Binney St., Cambridge, MA 02142, UK
| | - Serena Abbondante
- Department of Ophthalmology, School of Medicine, University of California, Irvine, 843 Health Sciences Rd., Irvine, CA 92697, USA
| | - Michaela Marshall
- Department of Ophthalmology, School of Medicine, University of California, Irvine, 843 Health Sciences Rd., Irvine, CA 92697, USA
| | - Brandon Jones
- Moderna, Inc., 325 Binney St., Cambridge, MA 02142, UK
| | - Edison Ong
- Moderna, Inc., 325 Binney St., Cambridge, MA 02142, UK
| | | | | | - Groves Dixon
- Moderna, Inc., 325 Binney St., Cambridge, MA 02142, UK
| | - Haining Lin
- Moderna, Inc., 325 Binney St., Cambridge, MA 02142, UK
| | | | - Eric Pearlman
- Department of Ophthalmology, School of Medicine, University of California, Irvine, 843 Health Sciences Rd., Irvine, CA 92697, USA.
| | | |
Collapse
|
3
|
Chen H, Hu P, Wang Y, Liu H, Zheng J, Huang Z, Zhang X, Liu Y, Zhou T. From quorum sensing inhibition to antimicrobial defense: The dual role of eugenol-gold nanoparticles against carbapenem-resistant Pseudomonas aeruginosa. Colloids Surf B Biointerfaces 2025; 247:114415. [PMID: 39622152 DOI: 10.1016/j.colsurfb.2024.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025]
Abstract
To address the pressing challenge of antibiotic resistance, particularly the robust defense mechanisms of Pseudomonas aeruginosa (P. aeruginosa) against conventional antibiotics, this study employs nanotechnology to enhance antimicrobial efficacy while ensuring good biocompatibility with the host. In this study, gold nanoparticles were chemically decorated with eugenol, a phenol-rich natural compound, using a one-pot synthesis method. The successful synthesis and functionalization of eugenol-decorated gold nanoparticles (Eugenol_Au NPs) were validated by comprehensive physicochemical analyses, demonstrating their stability and biocompatibility. These nanoparticles exhibited potent antimicrobial activity against both planktonic and biofilm-embedded carbapenem-resistant P. aeruginosa strains. Eugenol_Au NPs disrupted the bacterial quorum sensing system and stimulated intracellular reactive oxygen species production, which enhance their antibacterial effects. This dual mechanism of action has promising clinical implications for the treatment of infections associated with antibiotic-resistant P. aeruginosa. In vivo assessments in a murine peritoneal infection model showed that Eugenol_Au NPs significantly reduced bacterial loads and mitigated inflammatory responses, thereby improving survival rates. The study highlights the potential of Eugenol_Au NPs as an alternative strategy for refractory infections caused by carbapenem-resistant P. aeruginosa, and underscores the feasibility and promise of further clinical research and development of new therapeutic approaches targeting this resistant pathogen.
Collapse
Affiliation(s)
- Huale Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Panjie Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yaran Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Haifeng Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Junyuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Zeyu Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Yong Liu
- Wenzhou Institute, University of Chinese Academy of Sciences, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Tümmler B, Bürger C, Kubesch P. Monitoring cystic fibrosis airway infections with Pseudomonas aeruginosa with anti-OprF serum antibodies. J Cyst Fibros 2025; 24:353-358. [PMID: 38845269 DOI: 10.1016/j.jcf.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 03/30/2025]
Abstract
BACKGROUND The management of cystic fibrosis (CF) requires knowledge of the patient's microbiological status. The serology of anti-Pseudomonas aeruginosa antibodies against exoenzymes or water-soluble antigens has gained diagnostic value, particularly to detect the onset of colonization with P. aeruginosa. However, the diversity and variable expression of these antigens, which was unknown when the ELISAs became common diagnostic procedures at CF clinics, prohibits the quantitative evaluation of bacterial antigen load during intermittent and chronic infection. METHODS An ELISA was developed to measure the serum IgG antibody levels against P. aeruginosa porin OprF, a species-specific, conserved, immunogenic and constitutively expressed protein present in the outer membrane and extracellular vesicles. RESULTS Serial serum samples were collected from 310 people with CF (pwCF) over a period of up to 15 years. Compared to a reference of P. aeruginosa - negative CF sera set to 1, OprF antibody titers ranged from 0.3 to 13.2 (median: 1.7) in 56 intermittently colonized patients and from 0.5 to 51.2 (median: 11.8) in 176 chronically colonized pwCF showing higher anti-OprF antibody levels during chronic than during intermittent colonization with P. aeruginosa (P = 0, Z = - 21.7, effect size 0.62). Inhalation with twice daily 80 mg tobramycin decreased OprF antibody titers (P = 5 × 10-5), particularly during the third and fourth year of chronic colonization. CONCLUSION The OprF ELISA should be an appropriate tool to monitor Pseudomonas serology at all stages of infection and disease severity and to study the impact of short- and long-term therapeutic interventions.
Collapse
Affiliation(s)
- Burkhard Tümmler
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany.
| | - Christiane Bürger
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, 30625 Hannover, Germany; Institute for Biophysical Chemistry and Structural Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Peter Kubesch
- Institute for Biophysical Chemistry and Structural Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
5
|
Chigozie VU, Saki M, Esimone CO. Molecular structural arrangement in quorum sensing and bacterial metabolic production. World J Microbiol Biotechnol 2025; 41:71. [PMID: 39939401 DOI: 10.1007/s11274-025-04280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
Quorum sensing (QS) regulates bacterial behaviors such as biofilm formation, virulence, and metabolite production through signaling molecules like acyl-homoserine lactones (AHLs), peptides, and AI-2. These signals are pivotal in bacterial communication, influencing pathogenicity and industrial applications. This review explores the molecular architecture of QS signals and their role in metabolite production, emphasizing structural modifications that disrupt bacterial communication to control virulence and enhance industrial processes. Key findings highlight the development of synthetic QS analogs, engineered inhibitors, and microbial consortia as innovative tools in biotechnology and medicine. The review underscores the potential of molecular engineering in managing microbial behaviors and optimizing applications like biofuel production, bioplastics, and anti-virulence therapies. Additionally, cross-species signaling mechanisms, particularly involving AI-2, reveal new opportunities for regulating interspecies cooperation and competition. This synthesis aims to bridge molecular insights with practical applications, showcasing how QS-based technologies can drive advancements in microbial biotechnology and therapeutic strategies.
Collapse
Affiliation(s)
- Victor U Chigozie
- Department of Pharmaceutical Microbiology and Biotechnology, David Umahi Federal University of Health Sciences, Ohaozara, Ebonyi State, Nigeria.
- International Institute for Pharmaceutical Research (IIPR), Ohaozara, Ebonyi State, Nigeria.
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Charles O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
6
|
Valastyan JS, Shine EE, Mook RA, Bassler BL. Inhibitors of the PqsR Quorum-Sensing Receptor Reveal Differential Roles for PqsE and RhlI in Control of Phenazine Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637488. [PMID: 39990374 PMCID: PMC11844427 DOI: 10.1101/2025.02.10.637488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Pseudomonas aeruginosa is a leading cause of hospital-acquired infections and it is resistant to many current antibiotic therapies, making development of new anti-microbial treatments imperative. The cell-to-cell communication process called quorum sensing controls P. aeruginosa pathogenicity. Quorum sensing relies on the production, release, and group-wide detection of extracellular signal molecules called autoinducers. Quorum sensing enables bacteria to synchronize group behaviors. P. aeruginosa possesses multiple quorum-sensing systems that control overlapping regulons, including those required for virulence and biofilm formation. Interventions that target P. aeruginosa quorum-sensing receptors are considered a fruitful avenue to pursue for new therapeutic advances. Here, we developed a P. aeruginosa strain that carries a bioluminescent reporter fused to a target promoter that is controlled by two P. aeruginosa quorum-sensing receptors. The receptors are PqsR, which binds and responds to the autoinducer called PQS (2-heptyl-3-hydroxy-4(1H)-quinolone) and RhlR, which binds and responds to the autoinducer called C4-HSL (C4-homoserine lactone). We used this reporter strain to screen >100,000 compounds with the aim of identifying inhibitors of either or both the PqsR and RhlR quorum-sensing receptors. We report results for 30 PqsR inhibitors from this screen. All of the identified compounds inhibit PqsR with IC50 values in the nanomolar to low micromolar range and they are readily docked into the autoinducer binding site of the PqsR crystal structure, suggesting they function competitively. The majority of hits identified are not structurally related to previously reported PqsR inhibitors. Recently, RhlR was shown to rely on the accessory protein PqsE for full function. Specifically, RhlR controls different subsets of genes depending on whether it is bound to PqsE or to C4-HSL, however, the consequences of differential regulation on the quorum-sensing output response have not been defined. PqsR regulates pqsE. That feature of the system enabled us to exploit our new set of PqsR inhibitors to show that RhlR requires PqsE to activate the biosynthetic genes for pyocyanin, a key P. aeruginosa virulence factor, while C4-HSL is dispensable. These results highlight the promise of inhibition of PqsR as a possible P. aeruginosa therapeutic to suppress production of factors under RhlR-PqsE control.
Collapse
Affiliation(s)
- Julie S Valastyan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| | - Emilee E Shine
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert A Mook
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Bonnie L Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, United States
| |
Collapse
|
7
|
Maiga A, Ampomah-Wireko M, Li H, Fan Z, Lin Z, Zhen H, Kpekura S, Wu C. Multidrug-resistant bacteria quorum-sensing inhibitors: A particular focus on Pseudomonasaeruginosa. Eur J Med Chem 2025; 281:117008. [PMID: 39500066 DOI: 10.1016/j.ejmech.2024.117008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/17/2024] [Accepted: 10/27/2024] [Indexed: 12/02/2024]
Abstract
Many widely used conventional antibiotics have failed to show clinical efficacy against Pseudomonas aeruginosa (P. aeruginosa) due to the strain's rising resistance to most clinically relevant antimicrobials. P. aeruginosa uses quorum sensing to regulate its virulence and biofilm development, which contributes to its pathogenicity and drug resistance. This mechanism is responsible for the resurgence and persistence of infections. Therefore, targeting the virulence and pathogenicity of P. aeruginosa through quorum sensing (QS) is regarded as a potential target for anti-infective therapy. However, a number of natural and synthetic compounds have been demonstrated to interfere with quorum sensing, resulting in potential antibacterial agents. In this review, we discuss the mechanisms of P. aeruginosa QS and recent advances in the development of quorum sensing inhibitors (both synthetic and natural) that have the potential to become effective antibiotics.
Collapse
Affiliation(s)
- Aichata Maiga
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hongteng Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhengmin Fan
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Ziwei Lin
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Haojie Zhen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Stephen Kpekura
- School of Nursing and Health, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou, 450001, PR China; Zhengzhou Key Laboratory of New Veterinary Drug Preparation Innovation, Zhengzhou, 450001, PR China; Henan Qunbo Pharmaceutical Research Institute Co. LTD, PR China.
| |
Collapse
|
8
|
Elshimy R, El-Shiekh RA, Okba MM, Ashour RMS, Ibrahim MA, Hassanen EI, Aboul-Ella H, Ali ME. Unveiling the antimicrobial, antivirulence, and wound-healing accelerating potentials of resveratrol against carbapenem-resistant Pseudomonas aeruginosa (CRPA)-septic wound in a murine model. Inflammopharmacology 2025; 33:401-416. [PMID: 39508957 PMCID: PMC11799074 DOI: 10.1007/s10787-024-01591-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Pseudomonas aeruginosa is a repertoire of several virulence factors that create a frightening high pathogenicity level as well as high antimicrobial resistance toward commercially used antibiotics. Therefore, finding a new alternative to traditional antimicrobials is a must. Resveratrol is a very famous phytochemical that harbors many beneficial health properties by possessing antibacterial, anti-inflammatory, and antioxidant properties. The current study aimed to explore the antimicrobial efficacy of resveratrol against P. aeruginosa and explore its ability to accelerate wound healing in a murine model. The obtained results revealed the potent antimicrobial, antivirulence, and wound-healing accelerating potentials of resveratrol against carbapenem-resistant P. aeruginosa (CRPA)-septic wounds. It significantly lowered the transcript levels of P. aeruginosa virulent genes toxA, pelA, and lasB. Additionally, resveratrol significantly accelerated skin wound healing by shortening the inflammatory phase and promoting re-vascularization, cell proliferation, re-epithelialization, and collagen deposition. Furthermore, it increased the immunoexpression of αSMA along with a reduction of the mRNA levels of VEGF, IL-1β, and TNF-α genes. Resveratrol has high therapeutic potential for the treatment of P. aeruginosa wound infection and is a prospective and promising candidate for this problem.
Collapse
Affiliation(s)
- Rana Elshimy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
- Department of Microbiology and Immunology, Egyptian Drug Authority, Cairo, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Mona M Okba
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt.
| | - Rehab M S Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman I Hassanen
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Merhan E Ali
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Zeng J, Ma X, Zheng Y, Liu D, Ning W, Xiao W, Mao Q, Bai Z, Mao R, Cheng J, Lin J. Traditional Chinese Medicine Monomer Bakuchiol Attenuates the Pathogenicity of Pseudomonas aeruginosa via Targeting PqsR. Int J Mol Sci 2024; 26:243. [PMID: 39796099 PMCID: PMC11719591 DOI: 10.3390/ijms26010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/27/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
As the antibiotic resistance of pathogens becomes increasingly severe, it is becoming more feasible to use methods that suppress the virulence of pathogens rather than exerting selective pressure on their growth. Pseudomonas aeruginosa, a dangerous opportunistic pathogen, infects hosts by producing multiple virulence factors, which are regulated by quorum-sensing (QS) systems, including the las systems, rhl systems, and pqs systems. This study used the chromosome lacZ transcription fusion reporter model to screen the traditional Chinese medicine monomer library and found that bakuchiol can effectively inhibit the pqs system and related virulence phenotypes of P. aeruginosa, including the production of virulence factors (pyocyanin, hydrogen cyanide, elastase, and lectin) and motility (swarming, swimming, and twitching motility) without affecting its growth. Subsequently, through genetic complementation analysis, we found that bakuchiol inhibited the function of the transcriptional activation protein PqsR of the pqs system in P. aeruginosa in a concentration-dependent manner. Furthermore, molecular dynamics simulation study results indicated that bakuchiol can target PqsR of the pqs system, thereby inhibiting the pqs system. Among the amino acids in PqsR, ALA-168 may be a key amino acid residue in the hydrophobic interaction between PqsR protein and bakuchiol. Finally, in vivo experiments demonstrated that bakuchiol attenuated the pathogenicity of P. aeruginosa to Chinese cabbage (Brassica pekinensis) and Caenorhabditis elegans. In summary, this study suggests that bakuchiol is an effective inhibitor that targets the pqs system of P. aeruginosa, providing a new strategy for addressing P. aeruginosa infections.
Collapse
Affiliation(s)
- Jing Zeng
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Xin Ma
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Yu Zheng
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Dandan Liu
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Wanqing Ning
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University (NWAFU), Yangling 712100, China
| | - Wei Xiao
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Qian Mao
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Zhenqing Bai
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Renjun Mao
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
| | - Juanli Cheng
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University (NWAFU), Yangling 712100, China
| | - Jinshui Lin
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan’an University, Yan’an 716000, China; (J.Z.); (X.M.); (Y.Z.); (D.L.); (W.N.); (W.X.); (Q.M.); (Z.B.); (R.M.)
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University (NWAFU), Yangling 712100, China
| |
Collapse
|
10
|
Villani S, De Matteis V, Calcagnile M, Cascione M, Pellegrino P, Vincenti L, Demitri C, Alifano P, Rinaldi R. Tuning antibacterial efficacy against Pseudomonas aeruginosa by using green AgNPs in chitosan thin films as a plastic alternative. Int J Biol Macromol 2024; 285:138277. [PMID: 39631606 DOI: 10.1016/j.ijbiomac.2024.138277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Nanotechnology advancements have facilitated the development of eco-friendly strategies to combat bacterial infections caused by antibiotic-resistant pathogens. This study promotes a green method for the synthesis of silver nanoparticles (AgNPs) utilizing Eucalyptus globulus leaf extracts as an alternative to traditional colloidal AgNPs obtained through chemical synthesis, investigating their antibacterial efficacy against Pseudomonas aeruginosa and their impact on the expression of bacterial virulence factors (pyocyanin, pyoverdine, rhamnolipids). This work demonstrates that: i. while colloidal AgNPs showed ineffective up to 120 μM, green AgNPs had a bactericidal effect already at 20 μM, without impacting bacterial virulence factors at sub-inhibitory concentrations; ii. the polyphenolic shell surrounding green AgNPs could play a crucial role in the antibacterial mechanisms, with a pro-oxidant action confirmed by a greater sensitivity to hydrogen peroxide (H2O2); iii. AgNPs improved the antibacterial properties of chitosan when incorporated into thin films. Consequently, an environmentally friendly nanocomposite film with antibacterial and antibiofilm properties was produced, which holds promise for application in food packaging to mitigate the emergence of microbial contamination in food products.
Collapse
Affiliation(s)
- Stefania Villani
- Department of Engineering for Innovation (DII), Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Valeria De Matteis
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, 73100 Lecce, Italy; Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy.
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Mariafrancesca Cascione
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, 73100 Lecce, Italy; Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy
| | - Paolo Pellegrino
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, 73100 Lecce, Italy; Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy
| | - Lorenzo Vincenti
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Christian Demitri
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Pietro Alifano
- Department of Experimental Medicine, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Rosaria Rinaldi
- Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, 73100 Lecce, Italy; Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
11
|
Ren Y, Zhu R, You X, Li D, Guo M, Fei B, Liu Y, Yang X, Liu X, Li Y. Quercetin: a promising virulence inhibitor of Pseudomonas aeruginosa LasB in vitro. Appl Microbiol Biotechnol 2024; 108:57. [PMID: 38180553 PMCID: PMC10770215 DOI: 10.1007/s00253-023-12890-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 01/06/2024]
Abstract
With the inappropriate use of antibiotics, antibiotic resistance has emerged as a major dilemma for patients infected with Pseudomonas aeruginosa. Elastase B (LasB), a crucial extracellular virulence factor secreted by P. aeruginosa, has been identified as a key target for antivirulence therapy. Quercetin, a natural flavonoid, exhibits promising potential as an antivirulence agent. We aim to evaluate the impact of quercetin on P. aeruginosa LasB and elucidate the underlying mechanism. Molecular docking and molecular dynamics simulation revealed a rather favorable intermolecular interaction between quercetin and LasB. At the sub-MICs of ≤256 μg/ml, quercetin was found to effectively inhibit the production and activity of LasB elastase, as well as downregulate the transcription level of the lasB gene in both PAO1 and clinical strains of P. aeruginosa. Through correlation analysis, significant positive correlations were shown between the virulence gene lasB and the QS system regulatory genes lasI, lasR, rhlI, and rhlR in clinical strains of P. aeruginosa. Then, we found the lasB gene expression and LasB activity were significantly deficient in PAO1 ΔlasI and ΔlasIΔrhlI mutants. In addition, quercetin significantly downregulated the expression levels of regulated genes lasI, lasR, rhlI, rhlR, pqsA, and pqsR as well as effectively attenuated the synthesis of signaling molecules 3-oxo-C12-HSL and C4-HSL in the QS system of PAO1. Quercetin was also able to compete with the natural ligands OdDHL, BHL, and PQS for binding to the receptor proteins LasR, RhlR, and PqsR, respectively, resulting in the formation of more stabilized complexes. Taken together, quercetin exhibits enormous potential in combating LasB production and activity by disrupting the QS system of P. aeruginosa in vitro, thereby offering an alternative approach for the antivirulence therapy of P. aeruginosa infections. KEY POINTS: • Quercetin diminished the content and activity of LasB elastase of P. aeruginosa. • Quercetin inhibited the QS system activity of P. aeruginosa. • Quercetin acted on LasB based on the QS system.
Collapse
Affiliation(s)
- Yanying Ren
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Rui Zhu
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xiaojuan You
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Dengzhou Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Mengyu Guo
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Bing Fei
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ying Liu
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ximing Yang
- Dongzhimen Hospital of Beijing University of Chinese Medicine, Peking, 100700, China.
| | - Xinwei Liu
- Henan University of Chinese Medicine, Zhengzhou, 450046, China.
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China.
| | - Yongwei Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, China.
- Henan Province Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450002, China.
- The Key Laboratory of Pathogenic Microbes & Antimicrobial Resistance Surveillance of Zhengzhou, Zhengzhou, 450002, China.
- Henan Engineering Research Center for Identification of Pathogenic Microbes, Zhengzhou, 450002, China.
- Henan Provincial Key Laboratory of Antibiotics-Resistant Bacterial Infection Prevention & Therapy with Traditional Chinese Medicine, Zhengzhou, 450002, China.
| |
Collapse
|
12
|
Mitra A. Combatting biofilm-mediated infections in clinical settings by targeting quorum sensing. Cell Surf 2024; 12:100133. [PMID: 39634722 PMCID: PMC11615143 DOI: 10.1016/j.tcsw.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Biofilm-associated infections constitute a significant challenge in managing infectious diseases due to their high resistance to antibiotics and host immune responses. Biofilms are responsible for various infections, including urinary tract infections, cystic fibrosis, dental plaque, bone infections, and chronic wounds. Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to coordinate gene expression in response to cell density, which is crucial for biofilm formation and maintenance.. Its disruption has been proposed as a potential strategy to prevent or treat biofilm-associated infections leading to improved treatment outcomes for infectious diseases. This review article aims to provide a comprehensive overview of the literature on QS-mediated disruption of biofilms for treating infectious diseases. It will discuss the mechanisms of QS disruption and the various approaches that have been developed to disrupt QS in reference to multiple clinical pathogens. In particular, numerous studies have demonstrated the efficacy of QS disruption in reducing biofilm formation in various pathogens, including Pseudomonas aeruginosa and Staphylococcus aureus. Finally, the review will discuss the challenges and future directions for developing QS disruption as a clinical therapy for biofilm-associated infections. This includes the development of effective delivery systems and the identification of suitable targets for QS disruption. Overall, the literature suggests that QS disruption is a promising alternative to traditional antibiotic treatment for biofilm-associated infections and warrants further investigation.
Collapse
Affiliation(s)
- Arindam Mitra
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| |
Collapse
|
13
|
Chadha J, Moudgil G, Harjai K. Synergism Between α-Terpineol and Terpinen-4-ol Potentiates Antivirulence Response Against Pseudomonas aeruginosa. Indian J Microbiol 2024; 64:1951-1955. [PMID: 39678954 PMCID: PMC11645376 DOI: 10.1007/s12088-024-01189-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/30/2023] [Indexed: 12/17/2024] Open
Abstract
Antivirulence strategies have emerged as next-generation therapies that are now becoming refractory to the use of traditional antimicrobial approaches. Considering the global medical burden associated with Pseudomonas aeruginosa infections, there is a pressing need to explore therapeutic alternatives. In this direction, the current study was aimed at investigating the combinational effects of α-terpineol (α-T) and terpinen-4-ol (T-4-ol), the principal bioactive components of tea tree oil, against P. aeruginosa. The phytochemical combination was examined for synergistic interaction and various biological properties, including antibacterial, quorum quenching (QQ), and antivirulence potential. α-T and T-4-ol displayed synergism and harbored profuse antibacterial properties against P. aeruginosa. The phytochemicals inhibited quorum sensing (QS) in biosensor strains of Agrobacterium tumefaciens and Chromobacterium violaceum by suppressing lacZ and diminishing violacein production, respectively. Moreover, α-T and T-4-ol, independently and in combination, extended antivirulence response by significantly reducing hemolysin, pyocyanin, pyochelin, and total protease production in P. aeruginosa PAO1 and PA14. Hence, this study suggests that the phytochemical combination of α-T and T-4-ol can be used as a potent antivirulence elixir over antibiotics to combat P. aeruginosa. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01189-7.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Gaurav Moudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
14
|
Sasikumar R, Saranya S, Lourdu Lincy L, Thamanna L, Chellapandi P. Genomic insights into fish pathogenic bacteria: A systems biology perspective for sustainable aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109978. [PMID: 39442738 DOI: 10.1016/j.fsi.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fish diseases significantly challenge global aquaculture, causing substantial financial losses and impacting sustainability, trade, and socioeconomic conditions. Understanding microbial pathogenesis and virulence at the molecular level is crucial for disease prevention in commercial fish. This review provides genomic insights into fish pathogenic bacteria from a systems biology perspective, aiming to promote sustainable aquaculture. It covers the genomic characteristics of various fish pathogens and their industry impact. The review also explores the systems biology of zebrafish, fish bacterial pathogens, and probiotic bacteria, offering insights into fish production, potential vaccines, and therapeutic drugs. Genome-scale metabolic models aid in studying pathogenic bacteria, contributing to disease management and antimicrobial development. Researchers have also investigated probiotic strains to improve aquaculture health. Additionally, the review highlights bioinformatics resources for fish and fish pathogens, which are essential for researchers. Systems biology approaches enhance understanding of bacterial fish pathogens by revealing virulence factors and host interactions. Despite challenges from the adaptability and pathogenicity of bacterial infections, sustainable alternatives are necessary to meet seafood demand. This review underscores the potential of systems biology in understanding fish pathogen biology, improving production, and promoting sustainable aquaculture.
Collapse
Affiliation(s)
- R Sasikumar
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - S Saranya
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Lourdu Lincy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Thamanna
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
15
|
Ringshausen FC, Baumann I, de Roux A, Dettmer S, Diel R, Eichinger M, Ewig S, Flick H, Hanitsch L, Hillmann T, Koczulla R, Köhler M, Koitschev A, Kugler C, Nüßlein T, Ott SR, Pink I, Pletz M, Rohde G, Sedlacek L, Slevogt H, Sommerwerck U, Sutharsan S, von Weihe S, Welte T, Wilken M, Rademacher J, Mertsch P. [Management of adult bronchiectasis - Consensus-based Guidelines for the German Respiratory Society (DGP) e. V. (AWMF registration number 020-030)]. Pneumologie 2024; 78:833-899. [PMID: 39515342 DOI: 10.1055/a-2311-9450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Bronchiectasis is an etiologically heterogeneous, chronic, and often progressive respiratory disease characterized by irreversible bronchial dilation. It is frequently associated with significant symptom burden, multiple complications, and reduced quality of life. For several years, there has been a marked global increase in the prevalence of bronchiectasis, which is linked to a substantial economic burden on healthcare systems. This consensus-based guideline is the first German-language guideline addressing the management of bronchiectasis in adults. The guideline emphasizes the importance of thoracic imaging using CT for diagnosis and differentiation of bronchiectasis and highlights the significance of etiology in determining treatment approaches. Both non-drug and drug treatments are comprehensively covered. Non-pharmacological measures include smoking cessation, physiotherapy, physical training, rehabilitation, non-invasive ventilation, thoracic surgery, and lung transplantation. Pharmacological treatments focus on the long-term use of mucolytics, bronchodilators, anti-inflammatory medications, and antibiotics. Additionally, the guideline covers the challenges and strategies for managing upper airway involvement, comorbidities, and exacerbations, as well as socio-medical aspects and disability rights. The importance of patient education and self-management is also emphasized. Finally, the guideline addresses special life stages such as transition, family planning, pregnancy and parenthood, and palliative care. The aim is to ensure comprehensive, consensus-based, and patient-centered care, taking into account individual risks and needs.
Collapse
Affiliation(s)
- Felix C Ringshausen
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Ingo Baumann
- Hals-, Nasen- und Ohrenklinik, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Andrés de Roux
- Pneumologische Praxis am Schloss Charlottenburg, Berlin, Deutschland
| | - Sabine Dettmer
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Roland Diel
- Institut für Epidemiologie, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel, Deutschland; LungenClinic Grosshansdorf, Airway Research Center North (ARCN), Deutsches Zentrum für Lungenforschung (DZL), Grosshansdorf, Deutschland
| | - Monika Eichinger
- Klinik für Diagnostische und Interventionelle Radiologie, Thoraxklinik am Universitätsklinikum Heidelberg, Heidelberg, Deutschland; Translational Lung Research Center Heidelberg (TLRC), Deutsches Zentrum für Lungenforschung (DZL), Heidelberg, Deutschland
| | - Santiago Ewig
- Thoraxzentrum Ruhrgebiet, Kliniken für Pneumologie und Infektiologie, EVK Herne und Augusta-Kranken-Anstalt Bochum, Bochum, Deutschland
| | - Holger Flick
- Klinische Abteilung für Pulmonologie, Universitätsklinik für Innere Medizin, LKH-Univ. Klinikum Graz, Medizinische Universität Graz, Graz, Österreich
| | - Leif Hanitsch
- Institut für Medizinische Immunologie, Charité - Universitätsmedizin Berlin, Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Deutschland
| | - Thomas Hillmann
- Ruhrlandklinik, Westdeutsches Lungenzentrum am Universitätsklinikum Essen, Essen, Deutschland
| | - Rembert Koczulla
- Abteilung für Pneumologische Rehabilitation, Philipps Universität Marburg, Marburg, Deutschland
| | | | - Assen Koitschev
- Klinik für Hals-, Nasen-, Ohrenkrankheiten, Klinikum Stuttgart - Olgahospital, Stuttgart, Deutschland
| | - Christian Kugler
- Abteilung Thoraxchirurgie, LungenClinic Grosshansdorf, Grosshansdorf, Deutschland
| | - Thomas Nüßlein
- Klinik für Kinder- und Jugendmedizin, Gemeinschaftsklinikum Mittelrhein gGmbH, Koblenz, Deutschland
| | - Sebastian R Ott
- Pneumologie/Thoraxchirurgie, St. Claraspital AG, Basel; Universitätsklinik für Pneumologie, Allergologie und klinische Immunologie, Inselspital, Universitätsspital und Universität Bern, Bern, Schweiz
| | - Isabell Pink
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Mathias Pletz
- Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Jena, Deutschland
| | - Gernot Rohde
- Pneumologie/Allergologie, Medizinische Klinik 1, Universitätsklinikum Frankfurt, Goethe-Universität, Frankfurt am Main, Deutschland
| | - Ludwig Sedlacek
- Institut für Medizinische Mikrobiologie und Krankenhaushygiene, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
| | - Hortense Slevogt
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- Center for Individualised Infection Medicine, Hannover, Deutschland
| | - Urte Sommerwerck
- Klinik für Pneumologie, Allergologie, Schlaf- und Beatmungsmedizin, Cellitinnen-Severinsklösterchen Krankenhaus der Augustinerinnen, Köln, Deutschland
| | | | - Sönke von Weihe
- Abteilung Thoraxchirurgie, LungenClinic Grosshansdorf, Grosshansdorf, Deutschland
| | - Tobias Welte
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | | | - Jessica Rademacher
- Klinik für Pneumologie und Infektiologie, Medizinische Hochschule Hannover (MHH), Hannover, Deutschland
- Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Deutsches Zentrum für Lungenforschung (DZL), Hannover, Deutschland
- European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Deutschland
| | - Pontus Mertsch
- Medizinische Klinik und Poliklinik V, Klinikum der Universität München (LMU), Comprehensive Pneumology Center (CPC), Deutsches Zentrum für Lungenforschung (DZL), München, Deutschland
| |
Collapse
|
16
|
Tayyeb JZ, Guru A, Kandaswamy K, Jain D, Manivannan C, Mat KB, Shah MA, Arockiaraj J. Synergistic effect of zinc oxide-cinnamic acid nanoparticles for wound healing management: in vitro and zebrafish model studies. BMC Biotechnol 2024; 24:78. [PMID: 39390421 PMCID: PMC11468080 DOI: 10.1186/s12896-024-00906-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Wound infections resulting from pathogen infiltration pose a significant challenge in healthcare settings and everyday life. When the skin barrier is compromised due to injuries, surgeries, or chronic conditions, pathogens such as bacteria, fungi, and viruses can enter the body, leading to infections. These infections can range from mild to severe, causing discomfort, delayed healing, and, in some cases, life-threatening complications. Zinc oxide (ZnO) nanoparticles (NPs) have been widely recognized for their antimicrobial and wound healing properties, while cinnamic acid is known for its antioxidant and anti-inflammatory activities. Based on these properties, the combination of ZnO NPs with cinnamic acid (CA) was hypothesized to have enhanced efficacy in addressing wound infections and promoting healing. This study aimed to synthesize and evaluate the potential of ZnO-CN NPs as a multifunctional agent for wound treatment. ZnO-CN NPs were synthesized and characterized using key techniques to confirm their structure and composition. The antioxidant and anti-inflammatory potential of ZnO-CN NPs was evaluated through standard in vitro assays, demonstrating strong free radical scavenging and inhibition of protein denaturation. The antimicrobial activity of the nanoparticles was tested against common wound pathogens, revealing effective inhibition at a minimal concentration. A zebrafish wound healing model was employed to assess both the safety and therapeutic efficacy of the nanoparticles, showing no toxicity at tested concentrations and facilitating faster wound closure. Additionally, pro-inflammatory cytokine gene expression was analyzed to understand the role of ZnO-CN NPs in wound healing mechanisms. In conclusion, ZnO-CN NPs demonstrate potent antioxidant, anti-inflammatory, and antimicrobial properties, making them promising candidates for wound treatment. Given their multifunctional properties and non-toxicity at tested concentrations, ZnO-CN NPs hold significant potential as a therapeutic agent for clinical wound management, warranting further investigation in human models.
Collapse
Affiliation(s)
- Jehad Zuhair Tayyeb
- Division of Clinical Biochemistry, Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, 23890, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Karthikeyan Kandaswamy
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Divya Jain
- Department of Microbiology, School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, 248007, India
| | - Chandrakumar Manivannan
- Division of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Tiruchirapalli, India
| | - Khairiyah Binti Mat
- Department of Agricultural Sciences, Faculty of Agro‑Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Malaysia.
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro‑Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli, 17600, Malaysia.
| | - Mohd Asif Shah
- Department of Economics, Kardan University, Parwane Du, Kabul, 1001, Afghanistan.
- Division of Research and Development, Lovely Professional University, Phagwara, 144001, Punjab, India.
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
17
|
Vadakkan K, Sathishkumar K, Mapranathukaran VO, Ngangbam AK, Nongmaithem BD, Hemapriya J, Nair JB. Critical review on plant-derived quorum sensing signaling inhibitors in pseudomonas aeruginosa. Bioorg Chem 2024; 151:107649. [PMID: 39029321 DOI: 10.1016/j.bioorg.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/21/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Pseudomonas aeruginosa, a biofilm-forming organism with complex quorum mechanisms (Las, Rhl, PQS, and IQS), poses an imminent danger to the healthcare sector and renders current treatment options for chemotherapy ineffectual. The pathogen's diverse pathogenicity, antibiotic resistance, and biofilms make it difficult to eradicate it effectively. Quorum sensing, a complex system reliant on cell density, controls P. aeruginosa's pathogenesis. Quorum-sensing genes are key components of P. aeruginosa's pathogenic arsenal, and their expression determines how severe the spread of infection becomes. Over the past ten years, there has been a noticeable increase in the quest for and development of new antimicrobial medications. Quorum sensing may be an effective treatment for infections triggered by bacteria. Introducing quorum-sensing inhibitors as an anti-virulent strategy might be an intriguing therapeutic method that can be effectively employed along with current medications. Amongst the several speculated processes, a unique anti-virulence strategy using anti-quorum sensing and antibiofilm medications for targeting pseudomonal infestations seems to be at the forefront. Due to their noteworthy quorum quenching capabilities, biologically active phytochemicals have become more well-known in the realm of science in this context. Recent research showed how different phytochemical quorum quenching actions affect P. aeruginosa's QS-dependent pathogenicity. This review focuses on the most current data supporting the implementation of plant bio-actives to treat P.aeruginosa-associated diseases, as well as the benefits and future recommendationsof employing them in anti-virulence therapies as a supplementary drug development approach towards conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | - Janarthanam Hemapriya
- Department of Microbiology, DKM College for Women, Vellore, Tamil Nadu 632001, India
| | - Jyotsna B Nair
- Department of Biotechnology, JDT Islam College of Arts and Science, Vellimadukunnu, Kozhikode, Kerala 673012, India
| |
Collapse
|
18
|
Chadha J, Mudgil U, Khullar L, Ahuja P, Harjai K. Revitalizing common drugs for antibacterial, quorum quenching, and antivirulence potential against Pseudomonas aeruginosa: in vitro and in silico insights. 3 Biotech 2024; 14:219. [PMID: 39239248 PMCID: PMC11371971 DOI: 10.1007/s13205-024-04070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
In the post-antibiotic era, antivirulence therapies are becoming refractory to the clinical application of existing antimicrobial regimens. Moreover, in an attempt to explore alternate intervention strategies, drug repurposing is gaining attention over development of novel drugs/antimicrobials. With the prevalence of multidrug resistance and high medical burden associated with Pseudomonas aeruginosa, there is an urgent need to devise novel therapeutics to combat this bacterial pathogen. In this context, the present study was undertaken to scrutinize the anti-quorum sensing (QS) and antivirulence potential of commonly consumed drugs such as fexofenadine (FeX), ivermectin (IvM), nitrofurantoin (NiT), levocetrizine (LvC), atorvastatin (AtS), and aceclofenac (AcF), against P. aeruginosa. The methodology involved assessment of antibacterial activity against P. aeruginosa PAO1 and quorum quenching (QQ) potential using Agrobacterium tumefaciens NTL4 biosensor strain. The antivirulence prospects were investigated by estimating the production of hallmark virulence factors in P. aeruginosa accompanied by molecular docking to predict drug associations with the QS receptors. Interestingly, all the drugs harbored antibacterial, anti-QS, and antivirulence potential in vitro, which consequently disrupted QS circuits and attenuated pseudomonal virulence phenotypically by significantly lowering the production of pyocyanin, hemolysin, pyochelin, and total bacterial protease in vitro. Moreover, the findings were validated by computational studies that predicted strong molecular interactions between the test drugs and QS receptors of P. aeruginosa. Hence, this study is the first to suggest the prospect of repurposing FeX, IvM, NiT, LvC, AtS, and AcF against P. aeruginosa.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Umang Mudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Prerna Ahuja
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
19
|
Sujith S, Naresh R, Srivisanth BU, Sajeevan A, Rajaramon S, David H, Solomon AP. Aptamers: precision tools for diagnosing and treating infectious diseases. Front Cell Infect Microbiol 2024; 14:1402932. [PMID: 39386170 PMCID: PMC11461471 DOI: 10.3389/fcimb.2024.1402932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infectious diseases represent a significant global health challenge, with bacteria, fungi, viruses, and parasitic protozoa being significant causative agents. The shared symptoms among diseases and the emergence of new pathogen variations make diagnosis and treatment complex. Conventional diagnostic methods are laborious and intricate, underscoring the need for rapid, accurate techniques. Aptamer-based technologies offer a promising solution, as they are cost-effective, sensitive, specific, and convenient for molecular disease diagnosis. Aptamers, which are single-stranded RNA or DNA sequences, serve as nucleotide equivalents of monoclonal antibodies, displaying high specificity and affinity for target molecules. They are structurally robust, allowing for long-term storage without substantial activity loss. Aptamers find applications in diverse fields such as drug screening, material science, and environmental monitoring. In biomedicine, they are extensively studied for biomarker detection, diagnostics, imaging, and targeted therapy. This comprehensive review focuses on the utility of aptamers in managing infectious diseases, particularly in the realms of diagnostics and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
20
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
21
|
Chi SI, Akuma M, Xu R, Plante V, Hadinezhad M, Tambong JT. Phenazines are involved in the antagonism of a novel subspecies of Pseudomonas chlororaphis strain S1Bt23 against Pythium ultimum. Sci Rep 2024; 14:20517. [PMID: 39227476 PMCID: PMC11372166 DOI: 10.1038/s41598-024-71418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
Long-term use of chemical fungicides to control plant diseases caused by fungi and oomycetes has led to pathogen resistance and negative impacts on public health and environment. There is a global search for eco-friendly methods and antagonistic bacteria are emerging as alternatives. We isolated a potent antagonistic bacterial strain (S1Bt23) from woodland soil in Québec, Canada. Taxonomic characterization by 16S rRNA, multi-locus sequence analysis, pairwise whole-genome comparisons, phylogenomics and phenotypic data identified strain S1Bt23 as a novel subspecies within Pseudomonas chlororaphis. In dual culture studies, strain S1Bt23 exhibited potent mycelial growth inhibition (60.2-66.7%) against Pythium ultimum. Furthermore, strain S1Bt23 was able to significantly bioprotect potato tuber slices from the development of necrosis inducible by P. ultimum. Annotations of the whole genome sequence of S1Bt23 revealed the presence of an arsenal of secondary metabolites including the complete phenazine biosynthetic cluster (phzABCDEFG). Thin-layer (TLC) and high-performance liquid (HPLC) chromatographic analyses of S1Bt23 extracts confirmed the production of phenazines, potent antifungal compounds. CRISPR/Cas9-mediated deletion of phzB (S1Bt23ΔphzB) or phzF (S1Bt23ΔphzF) gene abrogated phenazine production based on TLC and HPLC analyses. Also, S1Bt23ΔphzB and S1Bt23ΔphzF mutants lost antagonistic activity and bioprotection ability of potato tubers against P. ultimum. This demonstrated that phenazines are involved in the antagonistic activity of S1Bt23 against P. ultimum. Finally, based on genotypic and phenotypic data, we taxonomically conclude that S1Bt23 represents a novel subspecies for which the name Pseudomonas chlororaphis subsp. phenazini is proposed.
Collapse
Affiliation(s)
- Sylvia I Chi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
- Canadian Blood Service, Ottawa, ON, K1G 4J5, Canada
| | - Mercy Akuma
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
- University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Renlin Xu
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Véronique Plante
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - Mehri Hadinezhad
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada
| | - James T Tambong
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, K1A 0C6, Canada.
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
22
|
Sachdeva C, Satyamoorthy K, Murali TS. Pseudomonas aeruginosa: metabolic allies and adversaries in the world of polymicrobial infections. Crit Rev Microbiol 2024:1-20. [PMID: 39225080 DOI: 10.1080/1040841x.2024.2397359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 08/10/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Pseudomonas aeruginosa (PA), an opportunistic human pathogen that is frequently linked with chronic infections in immunocompromised individuals, is also metabolically versatile, and thrives in diverse environments. Additionally, studies report that PA can interact with other microorganisms, such as bacteria, and fungi, producing unique metabolites that can modulate the host immune response, and contribute to disease pathogenesis. This review summarizes the current knowledge related to the metabolic interactions of PA with other microorganisms (Staphylococcus, Acinetobacter, Klebsiella, Enterococcus, and Candida) and human hosts, and the importance of these interactions in a polymicrobial context. Further, we highlight the potential applications of studying these metabolic interactions toward designing better diagnostic tools, and therapeutic strategies to prevent, and treat infections caused by this pathogen.
Collapse
Affiliation(s)
- Chandni Sachdeva
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kapaettu Satyamoorthy
- Department of Cell & Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
- SDM College of Medical Sciences and Hospital, Shri Dharmasthala Manjunatheshwara (SDM) University, Sattur, Karnataka, India
| | - Thokur Sreepathy Murali
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
23
|
Ozma MA, Moaddab SR, Hosseini H, Khodadadi E, Ghotaslou R, Asgharzadeh M, Abbasi A, Kamounah FS, Aghebati Maleki L, Ganbarov K, Samadi Kafil H. A critical review of novel antibiotic resistance prevention approaches with a focus on postbiotics. Crit Rev Food Sci Nutr 2024; 64:9637-9655. [PMID: 37203933 DOI: 10.1080/10408398.2023.2214818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance is a significant public health issue, causing illnesses that were once easily treatable with antibiotics to develop into dangerous infections, leading to substantial disability and even death. To help fight this growing threat, scientists are developing new methods and techniques that play a crucial role in treating infections and preventing the inappropriate use of antibiotics. These effective therapeutic methods include phage therapies, quorum-sensing inhibitors, immunotherapeutics, predatory bacteria, antimicrobial adjuvants, haemofiltration, nanoantibiotics, microbiota transplantation, plant-derived antimicrobials, RNA therapy, vaccine development, and probiotics. As a result of the activity of probiotics in the intestine, compounds derived from the structure and metabolism of these bacteria are obtained, called postbiotics, which include multiple agents with various therapeutic applications, especially antimicrobial effects, by using different mechanisms. These compounds have been chosen in particular because they don't promote the spread of antibiotic resistance and don't include substances that can increase antibiotic resistance. This manuscript provides an overview of the novel approaches to preventing antibiotic resistance with emphasis on the various postbiotic metabolites derived from the gut beneficial microbes, their activities, recent related progressions in the food and medical fields, as well as concisely giving an insight into the new concept of postbiotics as "hyperpostbiotic".
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Moaddab
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas-Fayetteville, Fayetteville, AR, USA
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Republic of Azerbaijan
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Rickard H, Cloutman-Green E, Ciric L. A microbiological survey approach to understanding the virulence factors of Pseudomonas species in healthcare sinks. J Hosp Infect 2024; 151:84-91. [PMID: 38992838 DOI: 10.1016/j.jhin.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Hospital water is involved in both the prevention and spread of healthcare-associated infections (HCAIs). Handwashing is key to reducing the transmission of pathogens, yet numerous outbreaks have been found to be caused by organisms within sinks, taps and showers. Pseudomonas aeruginosa and increasingly non-aeruginosa Pseudomonas cause waterborne HCAI, however, little is known about the virulence potential of Pseudomonas species found within hospital environments. METHODS Swabs were taken from 62 sinks within two newly opened wards at Great Ormond Street Hospital, samples were taken before and after the wards opened to understand the impact of patient occupancy on sink micro-organisms. Culturable bacteria were identified by MALDI-TOF and virulence factors assessed through phenotypic methods. RESULTS A total of 106 bacterial isolates were recovered including 24 Pseudomonas isolates. Of these 25% were identified as P. oleovorans, 21% P. aeruginosa, 17% P. composti, 13% P. alicalipha, 8% P. monteilii, 4% P. putida, 4% P. stutzeri and 8% could only be identified to genus level by MALDI-TOF. Differences were seen in both the number of Pseudomonas isolates and virulence production between the two wards, overall 25% of the Pseudomonas isolates produced pigment, 58% were capable of haemolysis, 87.5% were able to swim, 83.3% were capable of twitching motility, 33.3% produced alkaline protease and 8.3% produced gelatinase. CONCLUSIONS Results suggest that patients may be back-contaminating sinks with colonizing organisms which has ongoing implications for infection prevention and control. Additionally, this work highlights the ability of non-aeruginosa Pseudomonas to produce virulence factors traditionally associated with P. aeruginosa.
Collapse
Affiliation(s)
- H Rickard
- Healthy Infrastructure Research Group, Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK.
| | - E Cloutman-Green
- Healthy Infrastructure Research Group, Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK; Camelia Botnar Laboratories, Department of Microbiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - L Ciric
- Healthy Infrastructure Research Group, Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK
| |
Collapse
|
25
|
Abril AG, Calo-Mata P, Böhme K, Villa TG, Barros-Velázquez J, Sánchez-Pérez Á, Pazos M, Carrera M. Shotgun proteomic analyses of Pseudomonas species isolated from fish products. Food Chem 2024; 450:139342. [PMID: 38631198 DOI: 10.1016/j.foodchem.2024.139342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024]
Abstract
Numerous Pseudomonas species can infect aquatic animals, such as farmed rainbow trout, sea trout, sea bass, and sea bream, by causing disease or stress reactions. In aquaculture facilities, a number of Pseudomonas species have been isolated and identified as the main pathogens. The present study describes the characterization of 18 Pseudomonas strains, isolated from fish products using shotgun proteomics. The bacterial proteomes obtained were further analyzed to identify the main functional pathway proteins involved. In addition, this study revealed the presence of 1015 non-redundant peptides related to virulence factors. An additional 25 species-specific peptides were identified as putative Pseudomonas spp. biomarkers. The results constitute the largest dataset, described thus far for the rapid identification and characterization of Pseudomonas species present in edible fish; furthermore, these data can provide the basis for further research into the development of new therapies against these harmful pathogens.
Collapse
Affiliation(s)
- Ana G Abril
- Department of Food Technology, Marine Research Institute (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain; Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain.
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain.
| | - Karola Böhme
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Tomás G Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain.
| | - Ángeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, NSW 2006, Australia
| | - Manuel Pazos
- Department of Food Technology, Marine Research Institute (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain.
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain.
| |
Collapse
|
26
|
Kessler E. The Secreted Aminopeptidase of Pseudomonas aeruginosa (PaAP). Int J Mol Sci 2024; 25:8444. [PMID: 39126017 PMCID: PMC11313473 DOI: 10.3390/ijms25158444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes severe infections in compromised hosts. P. aeruginosa infections are difficult to treat because of the inherent ability of the bacteria to develop antibiotic resistance, secrete a variety of virulence factors, and form biofilms. The secreted aminopeptidase (PaAP) is an emerging virulence factor, key in providing essential low molecular weight nutrients and a cardinal modulator of biofilm development. PaAP is therefore a new potential target for therapy of P. aeruginosa infections. The present review summarizes the current knowledge of PaAP, with special emphasis on its biochemical and enzymatic properties, activation mechanism, biological roles, regulation, and structure. Recently developed specific inhibitors and their potential as adjuncts in the treatment of P. aeruginosa infections are also described.
Collapse
Affiliation(s)
- Efrat Kessler
- Maurice and Gabriela Goldschleger Eye Research Institute, Faculty of Medicine and Health Sciences, Sheba Medical Center, Tel Aviv University, Ramat-Gan 5262000, Israel
| |
Collapse
|
27
|
Mudgil U, Khullar L, Chadha J, Prerna, Harjai K. Beyond antibiotics: Emerging antivirulence strategies to combat Pseudomonas aeruginosa in cystic fibrosis. Microb Pathog 2024; 193:106730. [PMID: 38851361 DOI: 10.1016/j.micpath.2024.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that poses a significant threat to individuals suffering from cystic fibrosis (CF). The pathogen is highly prevalent in CF individuals and is responsible for chronic infection, resulting in severe tissue damage and poor patient outcome. Prolonged antibiotic administration has led to the emergence of multidrug resistance in P. aeruginosa. In this direction, antivirulence strategies achieving targeted inhibition of bacterial virulence pathways, including quorum sensing, efflux pumps, lectins, and iron chelators, have been explored against CF isolates of P. aeruginosa. Hence, this review article presents a bird's eye view on the pulmonary infections involving P. aeruginosa in CF patients by laying emphasis on factors contributing to bacterial colonization, persistence, and disease progression along with the current line of therapeutics against P. aeruginosa in CF. We further collate scientific literature and discusses various antivirulence strategies that have been tested against P. aeruginosa isolates from CF patients.
Collapse
Affiliation(s)
- Umang Mudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Prerna
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
28
|
Tang D, Lin Y, Yao H, Liu Y, Xi Y, Li M, Mao A. Effect of L-HSL on biofilm and motility of Pseudomonas aeruginosa and its mechanism. Appl Microbiol Biotechnol 2024; 108:418. [PMID: 39012538 PMCID: PMC11252199 DOI: 10.1007/s00253-024-13247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/17/2024]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) biofilm formation is a crucial cause of enhanced antibiotic resistance. Quorum sensing (QS) is involved in regulating biofilm formation; QS inhibitors block the QS signaling pathway as a new strategy to address bacterial resistance. This study investigated the potential and mechanism of L-HSL (N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide) as a QS inhibitor for P. aeruginosa. The results showed that L-HSL effectively inhibited the biofilm formation and dispersed the pre-formed biofilm of P. aeruginosa. The production of extracellular polysaccharides and the motility ability of P. aeruginosa were suppressed by L-HSL. C. elegans infection experiment showed that L-HSL was non-toxic and provided protection to C. elegans against P. aeruginosa infection. Transcriptomic analysis revealed that L-HSL downregulated genes related to QS pathways and biofilm formation. L-HSL exhibits a promising potential as a therapeutic drug for P. aeruginosa infection. KEY POINTS: • Chemical synthesis of N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide, named L-HSL. • L-HSL does not generate survival pressure on the growth of P. aeruginosa and can inhibit the QS system. • KEGG enrichment analysis found that after L-HSL treatment, QS-related genes were downregulated.
Collapse
Affiliation(s)
- Deping Tang
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Yanyan Lin
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Huihui Yao
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Yali Liu
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Yanpeng Xi
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Mengjiao Li
- School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, China
| | - Aihong Mao
- Gansu Provincial Academic Institute for Medical Research, Lanzhou, 730050, Gansu, China.
| |
Collapse
|
29
|
Samreen, Ahmad I, Khan SA, Naseer A, Nazir A. Green synthesized silver nanoparticles from Phoenix dactylifera synergistically interact with bioactive extract of Punica granatum against bacterial virulence and biofilm development. Microb Pathog 2024; 192:106708. [PMID: 38782213 DOI: 10.1016/j.micpath.2024.106708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The global rise of antibiotic resistance poses a substantial risk to mankind, underscoring the necessity for alternative antimicrobial options. Developing novel drugs has become challenging in matching the pace at which microbial resistance is evolving. Recently, nanotechnology, coupled with natural compounds, has emerged as a promising solution to combat multidrug-resistant bacteria. In the present study, silver nanoparticles were green-synthesized using aqueous extract of Phoenix dactylifera (variety Ajwa) fruits and characterized by UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) coupled with Energy dispersive X-ray analysis (EDX), Transmission electron microscopy (TEM) and Thermogravimetric-differential thermal analysis (TGA-DTA). The in-vitro synergy of green synthesized P. dactylifera silver nanoparticle (PD-AgNPs) with selected antibiotics and bioactive extract of Punica granatum, i.e., ethyl acetate fraction (PGEF), was investigated using checkerboard assays. The most effective synergistic combination was evaluated against the QS-regulated virulence factors production and biofilm of Pseudomonas aeruginosa PAO1 by spectroscopic assays and electron microscopy. In-vivo anti-infective efficacy was examined in Caenorhabditis elegans N2 worms. PD-AgNPs were characterized as spherical in shape with an average diameter of 28.9 nm. FTIR analysis revealed the presence of functional groups responsible for the decrease and stabilization of PD-AgNPs. The signals produced by TGA-DTA analysis indicated the generation of thermally stable and pure crystallite AgNPs. Key phytocompounds detected in bioactive fractions include gulonic acid, dihydrocaffeic acid 3-O-glucuronide, and various fatty acids. The MIC of PD-AgNPs and PGEF ranged from 32 to 128 μg/mL and 250-500 μg/mL, respectively, against test bacterial strains. In-vitro, PD-AgNPs showed additive interaction with selected antibiotics (FICI 0.625-0.75) and synergy with PGEF (FICI 0.25-0.375). This combination inhibited virulence factors by up to 75 % and biofilm formation by 84.87 % in P. aeruginosa PAO1. Infected C. elegans worms with P. aeruginosa PAO1 had a 92.55 % survival rate when treated with PD-AgNPs and PGEF. The combination also reduced the reactive oxygen species (ROS) level in C. elegans N2 compared to the untreated control. Overall, these findings highlight that biosynthesized PD-AgNPs and bioactive P. granatum extract may be used as a potential therapeutic formulation against MDR bacteria.
Collapse
Affiliation(s)
- Samreen
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India.
| | - Sarah Ahmad Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, UP, India
| | - Anam Naseer
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Aamir Nazir
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Division of Toxicology & Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| |
Collapse
|
30
|
Gad AI, El-Ganiny AM, Eissa AG, Noureldin NA, Nazeih SI. Miconazole and phenothiazine hinder the quorum sensing regulated virulence in Pseudomonas aeruginosa. J Antibiot (Tokyo) 2024; 77:454-465. [PMID: 38724627 PMCID: PMC11208154 DOI: 10.1038/s41429-024-00731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/20/2024] [Accepted: 04/13/2024] [Indexed: 06/28/2024]
Abstract
Antibiotic resistance is a major health problem worldwide. Pseudomonas aeruginosa is a Gram-negative pathogen with an arsenal of virulence factors and elevated antimicrobial resistance. It is a leading cause of nosocomial infections with high morbidity and mortality. The significant time and effort required to develop new antibiotics can be circumvented using alternative therapeutic strategies, including anti-virulence targets. This study aimed to investigate the anti-virulence activity of the FDA-approved drugs miconazole and phenothiazine against P. aeruginosa. The phenotypic effect of sub-inhibitory concentrations of miconazole and phenothiazine on biofilm, pyocyanin, protease, rhamnolipid and hemolysin activities in PAO1 strain was examined. qRT-PCR was used to assess the effect of drugs on quorum-sensing genes that regulate virulence. Further, the anti-virulence potential of miconazole and phenothiazine was evaluated in silico and in vivo. Miconazole showed significant inhibition of Pseudomonas virulence by reducing biofilm-formation approximately 45-48%, hemolytic-activity by 59%, pyocyanin-production by 47-49%, rhamnolipid-activity by approximately 42-47% and protease activity by 36-40%. While, phenothiazine showed lower anti-virulence activity, it inhibited biofilm (31-35%), pyocyanin (37-39%), protease (32-40%), rhamnolipid (35-40%) and hemolytic activity (47-56%). Similarly, there was significantly reduced expression of RhlR, PqsR, LasI and LasR following treatment with miconazole, but less so with phenothiazine. In-silico analysis revealed that miconazole had higher binding affinity than phenothiazine to LasR, RhlR, and PqsR QS-proteins. Furthermore, there was 100% survival in mice injected with PAO1 treated with miconazole. In conclusion, miconazole and phenothiazine are promising anti-virulence agents for P. aeruginosa.
Collapse
Affiliation(s)
- Amany I Gad
- Microbiology and Immunology Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Amira M El-Ganiny
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Ahmed G Eissa
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Nada A Noureldin
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Shaimaa I Nazeih
- Microbiology and Immunology Department, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
31
|
Riahi A, Mabudi H, Tajbakhsh E, Roomiani L, Momtaz H. Optimizing chitosan derived from Metapenaeus affinis: a novel anti-biofilm agent against Pseudomonas aeruginosa. AMB Express 2024; 14:77. [PMID: 38949677 PMCID: PMC11217230 DOI: 10.1186/s13568-024-01732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024] Open
Abstract
Pseudomonas aeruginosa is a commonly found Gram-negative bacterium in healthcare facilities and is renowned for its ability to form biofilms and its virulence factors that are controlled by quorum sensing (QS) systems. The increasing prevalence of multidrug-resistant strains of this bacterium poses a significant challenge in the field of medicine. Consequently, the exploration of novel antimicrobial agents has become a top priority. This research aims to optimize chitosan derived from white shrimp (Metapenaeus affinis) using the Response Surface Methodology (RSM) computational approach. The objective is to investigate chitosan's potential as a solution for inhibiting QS activity and biofilm formation in P. aeruginosa ATCC 10,145. Under optimized conditions, chitin was treated with NaOH (1.41 M) for 15.75 h, HCl (7.49% vol) for 2.01 h, and at a deacetylation temperature of 81.15 °C. The resulting chitosan exhibited a degree of deacetylation (DD%) exceeding 93.98%, as confirmed by Fourier-transform infrared (FTIR) spectral analysis, indicating its high purity. The extracted chitosan demonstrated a significant synergistic antibiotic effect against P. aeruginosa when combined with ceftazidime, enhancing its bactericidal activity by up to 15-fold. In addition, sub-MIC (minimum inhibitory concentration) concentrations of extracted chitosan (10 and 100 µg/mL) successfully reduced the production of pyocyanin and rhamnolipid, as well as the swimming motility, protease activity and biofilm formation ability in comparison to the control group (P < 0.05). Moreover, chitosan treatment downregulated the RhlR and LasR genes in P. aeruginosa when compared to the control group (P < 0.05). The optimized chitosan extract shows significant potential as a coating agent for surgical equipment, effectively preventing nosocomial infections caused by P. aeruginosa pathogens.
Collapse
Affiliation(s)
- Anali Riahi
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hadideh Mabudi
- Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
| | - Elahe Tajbakhsh
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Laleh Roomiani
- Department of Fisheries, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran
| | - Hasan Momtaz
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
32
|
Chadha J, Ahuja P, Mudgil U, Khullar L, Harjai K. Citral and triclosan synergistically silence quorum sensing and potentiate antivirulence response in Pseudomonas aeruginosa. Arch Microbiol 2024; 206:324. [PMID: 38913239 DOI: 10.1007/s00203-024-04059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Among the ESKAPE pathogens, Pseudomonas aeruginosa is an extensively notorious superbug that causes difficult-to-treat infections. Since quorum sensing (QS) directly promotes pseudomonal virulence, targeting QS circuits is a promising approach for disarming phenotypic virulence. Hence, this study scrutinizes the anti-QS, antivirulence, and anti-biofilm potential of citral (CiT; phytochemical) and triclosan (TcN; disinfectant), alone and in combination, against P. aeruginosa PAO1/PA14. The findings confirmed synergism between CiT and TcN and revealed their quorum quenching (QQ) potential. At sub-inhibitory levels, CiT-TcN combination significantly impeded pyocyanin, total bacterial protease, hemolysin, and pyochelin production alongside inhibiting biofilm formation in P. aeruginosa. Moreover, the QQ and antivirulence potential of CiT and TcN was positively correlated by molecular docking studies that predicted strong associations of the drugs with QS receptors of P. aeruginosa. Collectively, the study identifies CiT-TcN as an effective drug combination that harbors QQ, antivirulence, and anti-biofilm prospects against P. aeruginosa.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Prerna Ahuja
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Umang Mudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
33
|
Liu Y, Yao Z, Mao Z, Tang M, Chen H, Qian C, Zeng W, Zhou T, Wu Q. Quorum sensing gene lasR promotes phage vB_Pae_PLY infection in Pseudomonas aeruginosa. BMC Microbiol 2024; 24:207. [PMID: 38858621 PMCID: PMC11163716 DOI: 10.1186/s12866-024-03349-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Quorum sensing (QS) is a cell density-based intercellular communication system that controls virulence gene expression and biofilm formation. In Pseudomonas aeruginosa (P. aeruginosa), the LasR system sits at the top of the QS hierarchy and coordinates the expression of a series of important traits. However, the role of lasR in phage infection remains unclear. This study aims to investigate the role of lasR QS in phage infection. METHODS The P. aeruginosa phage was isolated from sewage, and its biological characteristics and whole genome were analyzed. The adsorption receptor was identified via a phage adsorption assay. Following lasR gene knockout, the adsorption rate and bactericidal activity of phage were analyzed. Finally, real-time quantitative polymerase chain reaction (RT-qPCR) was conducted to explore how lasR promoting phage infection. RESULTS The lytic phage vB_Pae_PLY was isolated and lipopolysaccharide (LPS) was identified as its adsorption receptor. The adsorption rate and bactericidal activity of vB_Pae_PLY were reduced after lasR knockout. RT-qPCR results showed that the expression of galU, a key gene involved in LPS synthesis, was down-regulated, and several genes related to type IV pili (T4P) were also down-regulated in the lasR mutant PaΔlasR. CONCLUSIONS The study showed that QS lasR may promote phage vB_Pae_PLY infection by involving in the synthesis of LPS and T4P. This study provides an example of QS in promoting phage infection and deepens the understanding of phage-bacteria interactions.
Collapse
Affiliation(s)
- Yan Liu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhuocheng Yao
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhenzhi Mao
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Miran Tang
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Huanchang Chen
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Changrui Qian
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weiliang Zeng
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Tieli Zhou
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Qing Wu
- Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
34
|
Kaur M, Mingeot-Leclercq MP. Maintenance of bacterial outer membrane lipid asymmetry: insight into MlaA. BMC Microbiol 2024; 24:186. [PMID: 38802775 PMCID: PMC11131202 DOI: 10.1186/s12866-023-03138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/29/2023] [Indexed: 05/29/2024] Open
Abstract
The outer membrane (OM) of Gram-negative bacteria acts as an effective barrier to protect against toxic compounds. By nature, the OM is asymmetric with the highly packed lipopolysaccharide (LPS) at the outer leaflet and glycerophospholipids at the inner leaflet. OM asymmetry is maintained by the Mla system, in which is responsible for the retrograde transport of glycerophospholipids from the OM to the inner membrane. This system is comprised of six Mla proteins, including MlaA, an OM lipoprotein involved in the removal of glycerophospholipids that are mis-localized at the outer leaflet of the OM. Interestingly, MlaA was initially identified - and called VacJ - based on its role in the intracellular spreading of Shigella flexneri.Many open questions remain with respect to the Mla system and the mechanism involved in the translocation of mislocated glycerophospholipids at the outer leaflet of the OM, by MlaA. After summarizing the current knowledge on MlaA, we focus on the impact of mlaA deletion on OM lipid composition and biophysical properties of the OM. How changes in OM lipid composition and biophysical properties can impact the generation of membrane vesicles and membrane permeability is discussed. Finally, we explore whether and how MlaA might be a candidate for improving the activity of antibiotics and as a vaccine candidate.Efforts dedicated to understanding the relationship between the OM lipid composition and the mechanical strength of the bacterial envelope and, in turn, how such properties act against external stress, are needed for the design of new targets or drugs for Gram-negative infections.
Collapse
Affiliation(s)
- M Kaur
- Louvain Drug Research Institute, Université catholique de Louvain, Unité de Pharmacologie cellulaire et moléculaire, B1.73.05; 73 Av E. Mounier, Brussels, 1200, Belgium
| | - M-P Mingeot-Leclercq
- Louvain Drug Research Institute, Université catholique de Louvain, Unité de Pharmacologie cellulaire et moléculaire, B1.73.05; 73 Av E. Mounier, Brussels, 1200, Belgium.
| |
Collapse
|
35
|
Fu S, Song W, Han X, Chen L, Shen L. Veratryl Alcohol Attenuates the Virulence and Pathogenicity of Pseudomonas aeruginosa Mainly via Targeting las Quorum-Sensing System. Microorganisms 2024; 12:985. [PMID: 38792814 PMCID: PMC11123940 DOI: 10.3390/microorganisms12050985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that usually causes chronic infections and even death in patients. The treatment of P. aeruginosa infection has become more challenging due to the prevalence of antibiotic resistance and the slow pace of new antibiotic development. Therefore, it is essential to explore non-antibiotic methods. A new strategy involves screening for drugs that target the quorum-sensing (QS) system. The QS system regulates the infection and drug resistance in P. aeruginosa. In this study, veratryl alcohol (VA) was found as an effective QS inhibitor (QSI). It effectively suppressed the expression of QS-related genes and the subsequent production of virulence factors under the control of QS including elastase, protease, pyocyanin and rhamnolipid at sub-inhibitory concentrations. In addition, motility activity and biofilm formation, which were correlated with the infection of P. aeruginosa, were also suppressed by VA. In vivo experiments demonstrated that VA could weaken the pathogenicity of P. aeruginosa in Chinese cabbage, Drosophila melanogaster, and Caenorhabditis elegans infection models. Molecular docking, combined with QS quintuple mutant infection analysis, identified that the mechanism of VA could target the LasR protein of the las system mainly. Moreover, VA increased the susceptibility of P. aeruginosa to conventional antibiotics of tobramycin, kanamycin and gentamicin. The results firstly demonstrate that VA is a promising QSI to treat infections caused by P. aeruginosa.
Collapse
Affiliation(s)
| | | | | | | | - Lixin Shen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi’an 710069, China; (S.F.); (W.S.); (X.H.); (L.C.)
| |
Collapse
|
36
|
Torres MA, Valdez AL, de Lourdes Olea C, Figueroa MF, Nieto-Peñalver CG. Multi-focused laboratory experiments based on Quorum Sensing and Quorum Quenching for acquiring Microbial Physiology concepts. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 52:359-368. [PMID: 38217452 DOI: 10.1002/bmb.21815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/13/2023] [Accepted: 12/30/2023] [Indexed: 01/15/2024]
Abstract
After a time away from the classrooms and laboratories due to the global pandemic, the return to teaching activities during the semester represented a challenge to both teachers and students. Our particular situation in a Microbial Physiology course was the necessity of imparting in shorter time, laboratory practices that usually take longer. This article describes a 2-week-long laboratory exercise that covers several concepts in an interrelated way: conjugation as a gene transfer mechanism, regulation of microbial physiology, production of secondary metabolites, degradation of macromolecules, and biofilm formation. Utilizing a Quorum Quenching (QQ) strategy, the Quorum Sensing (QS) system of Pseudomonas aeruginosa is first attenuated. Then, phenotypes regulated by QS are evidenced. QS is a regulatory mechanism of microbial physiology that relies on signal molecules. QS is related in P. aeruginosa to several virulence factors, some of which are exploited in the laboratory practices presented in this work. QQ is a phenomenon by which QS is interrupted or attenuated. We utilized a QQ approach based on the enzymatic degradation of the P. aeruginosa QS signals to evidence QS-regulated traits that are relevant to our Microbial Physiology course. Results obtained with the same test performed by a random group of students before and after the activities show the positive effectiveness of the approach presented in this work.
Collapse
Affiliation(s)
- Mariela Analía Torres
- PROIMI, CONICET (Planta Piloto de Procesos Industriales Microbiológicos), Tucumán, Argentina
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Alejandra Leonor Valdez
- PROIMI, CONICET (Planta Piloto de Procesos Industriales Microbiológicos), Tucumán, Argentina
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | | | - María Fernanda Figueroa
- Facultad de Agronomía, Zootecnia y Veterinaria, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Carlos Gabriel Nieto-Peñalver
- PROIMI, CONICET (Planta Piloto de Procesos Industriales Microbiológicos), Tucumán, Argentina
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
37
|
Vieira TF, Leitão MM, Cerqueira NMFSA, Sousa SF, Borges A, Simões M. Montelukast and cefoperazone act as antiquorum sensing and antibiofilm agents against Pseudomonas aeruginosa. J Appl Microbiol 2024; 135:lxae088. [PMID: 38587815 DOI: 10.1093/jambio/lxae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
AIMS Drug repurposing is an attractive strategy to control biofilm-related infectious diseases. In this study, two drugs (montelukast and cefoperazone) with well-established therapeutic applications were tested on Pseudomonas aeruginosa quorum sensing (QS) inhibition and biofilm control. METHODS AND RESULTS The activity of montelukast and cefoperazone was evaluated for Pqs signal inhibition, pyocyanin synthesis, and prevention and eradication of Ps. aeruginosa biofilms. Cefoperazone inhibited the Pqs system by hindering the production of the autoinducer molecules 2-heptyl-4-hydroxyquinoline (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (the Pseudomonas quinolone signal or PQS), corroborating in silico results. Pseudomonas aeruginosa pyocyanin production was reduced by 50%. The combination of the antibiotics cefoperazone and ciprofloxacin was synergistic for Ps. aeruginosa biofilm control. On the other hand, montelukast had no relevant effects on the inhibition of the Pqs system and against Ps. aeruginosa biofilm. CONCLUSION This study provides for the first time strong evidence that cefoperazone interacts with the Pqs system, hindering the formation of the autoinducer molecules HHQ and PQS, reducing Ps. aeruginosa pathogenicity and virulence. Cefoperazone demonstrated a potential to be used in combination with less effective antibiotics (e.g. ciprofloxacin) to potentiate the biofilm control action.
Collapse
Affiliation(s)
- Tatiana F Vieira
- Faculty of Medicine, LAQV/REQUIMTE, BioSIM, Departamento de Medicina, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Miguel M Leitão
- Faculty of Engineering, LEPABE Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
- Faculty of Sciences, CIQUP-IMS - Department of Chemistry and Biochemistry, University of Porto, Rua Campo Alegre 687, 4169-007 Porto, Portugal
| | - Nuno M F S A Cerqueira
- Faculty of Medicine, LAQV/REQUIMTE, BioSIM, Departamento de Medicina, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Sérgio F Sousa
- Faculty of Medicine, LAQV/REQUIMTE, BioSIM, Departamento de Medicina, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Anabela Borges
- Faculty of Engineering, LEPABE Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Manuel Simões
- Faculty of Engineering, LEPABE Laboratory for Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
- Faculty of Engineering, ALiCE - Associate Laboratory in Chemical Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
38
|
Talaat R, Abu El-Naga MN, El-Bialy HAA, El-Fouly MZ, Abouzeid MA. Quenching of quorum sensing in multi-drug resistant Pseudomonas aeruginosa: insights on halo-bacterial metabolites and gamma irradiation as channels inhibitors. Ann Clin Microbiol Antimicrob 2024; 23:31. [PMID: 38600513 PMCID: PMC11007959 DOI: 10.1186/s12941-024-00684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/03/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Anti-virulence therapy is a promising strategy to treat multi-drug resistant (MDR) pathogens. Pseudomonas aeruginosa is a potent opportunistic pathogen because of an array of virulence factors that are regulated by quorum sensing systems. METHODS The virulence features of four multi-drug resistant P. aeruginosa strains were investigated upon exposure to the sub-lethal dose of gamma rays (1 kGy), and sub-inhibitory concentrations of bioactive metabolites recovered from local halophilic strains in comparison to control. Then, the gene expression of AHL-mediated quorum sensing systems (las/rhl) was quantitatively determined in treated and untreated groups by real-time PCR. RESULTS The bioactive metabolites recovered from halophilic strains previously isolated from saline ecosystems were identified as Halomonas cupida (Halo-Rt1), H. elongate (Halo-Rt2), Vigibacillus natechei (Halo-Rt3), Sediminibacillus terrae (Halo-Rt4) and H. almeriensis (Halo-Rt5). Results revealed that both gamma irradiation and bioactive metabolites significantly reduced the virulence factors of the tested MDR strains. The bioactive metabolites showed a maximum efficiency for inhibiting biofilm formation and rhamnolipids production whereas the gamma irradiation succeeded in decreasing other virulence factors to lower levels in comparison to control. Quantitative-PCR results showed that AHL-mediated quorum sensing systems (las/rhl) in P. aeruginosa strains were downregulated either by halo-bacterial metabolites or gamma irradiation in all treatments except the upregulation of both lasI internal gene and rhlR intact gene in P. aeruginosa NCR-RT3 and both rhlI internal gene and rhlR intact gene in P. aeruginosa U3 by nearly two folds or more upon exposure to gamma irradiation. The most potent result was observed in the expression of lasI internal gene that was downregulated by more than ninety folds in P. aeruginosa NCR-RT2 after treatment with metabolites of S. terrae (Halo-Rt4). Analyzing metabolites recovered from H. cupida (Halo-Rt1) and H. elongate (Halo-Rt2) using LC-ESI-MS/MS revealed many chemical compounds that have quorum quenching properties including glabrol, 5,8-dimethoxyquinoline-2-carbaldehyde, linoleoyl ethanolamide, agelasine, penigequinolones derivatives, berberine, tetracosanoic acid, and liquidambaric lactone in the former halophile and phloretin, lycoctonine, fucoxanthin, and crassicauline A in the latter one. CONCLUSION QS inhibitors can significantly reduce the pathogenicity of MDR P. aeruginosa strains; and thus can be an effective and successful strategy for treating antibiotic resistant traits.
Collapse
Affiliation(s)
- Reham Talaat
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Mohamed N Abu El-Naga
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Heba Abd Alla El-Bialy
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Mohie Z El-Fouly
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Mohamed A Abouzeid
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
- Faculty of Science, Galala University, Suez, Egypt
| |
Collapse
|
39
|
Banerjee R, Robinson SM, Lahiri A, Verma P, Banerjee AK, Basak S, Basak K, Paul S. Exploring the resistome and virulome in major sequence types of Acinetobacter baumannii genomes: Correlations with genome divergence and sequence types. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 119:105579. [PMID: 38417638 DOI: 10.1016/j.meegid.2024.105579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
The increasing global prevalence of antimicrobial resistance in Acinetobacter baumannii has led to concerns regarding the effectiveness of infection treatment. Moreover, the critical role of virulence factor genes in A. baumannii's pathogenesis and its propensity to cause severe disease is of particular importance. Comparative genomics, including multi-locus sequence typing (MLST), enhances our understanding of A. baumannii epidemiology. While there is substantial documentation on A. baumannii, a comprehensive study of the antibiotic-resistant mechanisms and the virulence factors contributing to pathogenesis, and their correlation with Sequence Types (STs) remains incompletely elucidated. In this study, we aim to explore the relationship between antimicrobial resistance genes, virulence factor genes, and STs using genomic data from 223 publicly available A. baumannii strains. The core phylogeny analysis revealed five predominant STs in A. baumannii genomes, linked to their geographical sources of isolation. Furthermore, the resistome and virulome of A. baumannii followed an evolutionary pattern consistent with their pan-genome evolution. Among the major STs, we observed significant variations in resistant genes against "aminoglycoside" and "sulphonamide" antibiotics, highlighting the role of genotypic variations in determining resistance profiles. Furthermore, the presence of virulence factor genes, particularly exotoxin and nutritional / metabolic factor genes, played a crucial role in distinguishing the major STs, suggesting a potential link between genetic makeup and pathogenicity. Understanding these associations can provide valuable insights into A. baumannii's virulence potential and clinical outcomes, enabling the development of effective strategies to combat infections caused by this opportunistic pathogen.
Collapse
Affiliation(s)
- Rachana Banerjee
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, WB, India.
| | - Stephy Mol Robinson
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, WB, India
| | - Abhishake Lahiri
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, WB, India
| | - Prateek Verma
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, WB, India
| | - Ayushman Kumar Banerjee
- Department of Bioinformatics, Maulana Abul Kalam Azad University of Technology, West Bengal 741249, India
| | - Sohom Basak
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Kausik Basak
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, WB, India
| | - Sandip Paul
- Centre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, Kolkata, WB, India
| |
Collapse
|
40
|
Zhang H, Mi Z, Wang J, Zhang J. D-histidine combated biofilm formation and enhanced the effect of amikacin against Pseudomonas aeruginosa in vitro. Arch Microbiol 2024; 206:148. [PMID: 38462558 PMCID: PMC10925579 DOI: 10.1007/s00203-024-03918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic gram-negative pathogenic microorganism that poses a significant challenge in clinical treatment. Antibiotics exhibit limited efficacy against mature biofilm, culminating in an increase in the number of antibiotic-resistant strains. Therefore, novel strategies are essential to enhance the effectiveness of antibiotics against Pseudomonas aeruginosa biofilms. D-histidine has been previously identified as a prospective anti-biofilm agent. However, limited attention has been directed towards its impact on Pseudomonas aeruginosa. Therefore, this study was undertaken to explore the effect of D-histidine on Pseudomonas aeruginosa in vitro. Our results demonstrated that D-histidine downregulated the mRNA expression of virulence and quorum sensing (QS)-associated genes in Pseudomonas aeruginosa PAO1 without affecting bacterial growth. Swarming and swimming motility tests revealed that D-histidine significantly reduced the motility and pathogenicity of PAO1. Moreover, crystal violet staining and confocal laser scanning microscopy demonstrated that D-histidine inhibited biofilm formation and triggered the disassembly of mature biofilms. Notably, D-histidine increased the susceptibility of PAO1 to amikacin compared to that in the amikacin-alone group. These findings underscore the efficacy of D-histidine in combating Pseudomonas aeruginosa by reducing biofilm formation and increasing biofilm disassembly. Moreover, the combination of amikacin and D-histidine induced a synergistic effect against Pseudomonas aeruginosa biofilms, suggesting the potential utility of D-histidine as a preventive strategy against biofilm-associated infections caused by Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Haichuan Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Zhongwen Mi
- Anhui Medical University, Hefei, Anhui, 230032, China
| | - Junmin Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China
| | - Jing Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, China.
| |
Collapse
|
41
|
Chadha J, Thakur N, Chhibber S, Harjai K. A comprehensive status update on modification of foley catheter to combat catheter-associated urinary tract infections and microbial biofilms. Crit Rev Microbiol 2024; 50:168-195. [PMID: 36651058 DOI: 10.1080/1040841x.2023.2167593] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/01/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023]
Abstract
Present-day healthcare employs several types of invasive devices, including urinary catheters, to improve medical wellness, the clinical outcome of disease, and the quality of patient life. Among urinary catheters, the Foley catheter is most commonly used in patients for bladder drainage and collection of urine. Although such devices are very useful for patients who cannot empty their bladder for various reasons, they also expose patients to catheter-associated urinary tract infections (CAUTIs). Catheter provides an ideal surface for bacterial colonization and biofilm formation, resulting in persistent bacterial infection and severe complications. Hence, rigorous efforts have been made to develop catheters that harbour antimicrobial and anti-fouling properties to resist colonization by bacterial pathogens. In this regard, catheter modification by surface functionalization, impregnation, blending, or coating with antibiotics, bioactive compounds, and nanoformulations have proved to be effective in controlling biofilm formation. This review attempts to illustrate the complications associated with indwelling Foley catheters, primarily focussing on challenges in fighting CAUTI, catheter colonization, and biofilm formation. In this review, we also collate scientific literature on catheter modification using antibiotics, plant bioactive components, bacteriophages, nanoparticles, and studies demonstrating their efficacy through in vitro and in vivo testing.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Navdisha Thakur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
42
|
Xi W, Zhang X, Zhu X, Wang J, Xue H, Pan H. Distribution patterns and influential factors of pathogenic bacteria in freshwater aquaculture sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16028-16047. [PMID: 38308166 DOI: 10.1007/s11356-024-31897-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Pathogenic bacteria, the major causative agents of aquaculture diseases, are a serious impediment to the aquaculture industry. However, the bioinformatics of pathogenic bacteria and virulence factors (VFs) in sediments, an important component of freshwater aquaculture ecosystems, are not well characterized. In this study, 20 sediment samples were collected from fish pond sediments (FPS), shrimp field sediments (SFS), fish pond sediment control (FPSC), and shrimp field sediment control (SFSC). Molecular biological information was obtained on a total of 173 pathogenic bacteria, 1093 virulence factors (VFs), and 8475 mobile genetic elements (MGEs) from these samples. The results indicated that (1) aquaculture patterns and sediment characteristics can affect the distribution of pathogenic bacteria. According to the results of the Kruskal-Wallis H test, except for Mycobacterium gilvum, there were significant differences (P < 0.05) among the four sediment types in the average abundance of major pathogenic bacteria (top 30 in abundance), and the average abundance of major pathogenic bacteria in the four sediment types followed the following pattern: FPS > SFS > FPSC > SFSC. (2) Pathogenic bacteria are able to implement a variety of complex pathogenic mechanisms such as adhesion, invasion, immune evasion, and metabolic regulation in the host because they carry a variety of VFs such as type IV pili, HSI-I, Alginate, Colibactin, and Capsule. According to the primary classification of the Virulence Factor Database (VFDB), the abundance of VFs in all four types of sediments showed the following pattern: offensive VFs > non-specific VFs > defensive VFs > regulation of virulence-related genes. (3) Total organic carbon (TOC), total phosphorus (TP), available phosphorus (AP), nitrite, and nitrate were mostly only weakly positively correlated with the major pathogenic bacteria and could promote the growth of pathogenic bacteria to some extent, whereas ammonia was significantly positively correlated with most of the major pathogenic bacteria and could play an important role in promoting the growth and reproduction of pathogenic bacteria. (4) Meanwhile, there was also a significant positive correlation between CAZyme genes and major pathogenic bacteria (0.62 ≤ R ≤ 0.89, P < 0.05). This suggests that these pathogenic bacteria could be the main carriers of CAZyme genes and, to some extent, gained a higher level of metabolic activity by degrading organic matter in the sediments to maintain their competitive advantage. (5) Worryingly, the results of correlation analyses indicated that MGEs in aquaculture sediments could play an important role in the spread of VFs (R = 0.82, P < 0.01), and in particular, plasmids (R = 0.75, P < 0.01) and integrative and conjugative elements (ICEs, R = 0.65, P < 0.05) could be these major vectors of VFs. The results of this study contribute to a comprehensive understanding of the health of freshwater aquaculture sediments and provide a scientific basis for aquaculture management and conservation.
Collapse
Affiliation(s)
- Wenxiang Xi
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Xun Zhang
- China Coal Mine Construction Group Co., LTD, Hefei, 230071, Anhui, China
| | - Xianbin Zhu
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Jiaming Wang
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Han Xue
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China
| | - Hongzhong Pan
- Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan, 430100, Hubei, China.
- College of Resources and Environment, Yangtze University, Wuhan, 430100, Hubei, China.
| |
Collapse
|
43
|
Chadha J, Khullar L, Gulati P, Chhibber S, Harjai K. Repurposing albendazole as a potent inhibitor of quorum sensing-regulated virulence factors in Pseudomonas aeruginosa: Novel prospects of a classical drug. Microb Pathog 2024; 186:106468. [PMID: 38036112 DOI: 10.1016/j.micpath.2023.106468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Pseudomonas aeruginosa has emerged as a critical superbug that poses a serious threat to public health. Owing to its virulence and multidrug resistance profiles, the pathogen demands immediate attention for devising alternate intervention strategies. In an attempt to repurpose drugs against P. aeruginosa, this preclinical study was aimed at investigating the antivirulence prospects of albendazole (AbZ), an FDA-approved anti-helminthic drug, recently predicted to disrupt quorum sensing (QS) in Chromobacterium violaceum. AbZ was scrutinized for its quorum quenching (QQ) prospects, effect on bacterial virulence, different motility phenotypes, and biofilm formation in vitro. Additionally, in silico analysis was employed to predict the molecular interactions between AbZ and QS receptors. At sub-inhibitory levels, AbZ demonstrated anti-QS activity and significantly abrogated AHL biosynthesis in P. aeruginosa. Moreover, AbZ significantly downregulated the transcript levels of QS- (lasI/lasR, rhlI/rhlR, and pqsA/pqsR) and QS-dependent virulence (aprA, lasA, lasB, plcH, and toxA) genes in P. aeruginosa. This coincided with reduced hemolysin, alginate, pyocyanin, rhamnolipids, total protease, and elastase production, thereby lowering phenotypic virulence. Molecular docking with AbZ further revealed strong associations and high binding energies with LasR (-8.8 kcal/mol), RhlR (-6.5 kcal/mol), and PqsR (-6.3 kcal/mol) receptors. AbZ also impeded bacterial motility and abolished EPS production, severely compromising pseudomonal biofilm formation. For the first time, AbZ was shown to interfere with QS circuitry and consequently disarming pseudomonal virulence. Hence, AbZ can be exploited for its antivirulence properties against P. aeruginosa.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Pallavi Gulati
- RLA College, University of Delhi (South Campus), New Delhi, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
44
|
Khan MA, Shahid M, Celik I, Khan HM, Shahzad A, Husain FM, Adil M. Attenuation of quorum sensing regulated virulence functions and biofilm of pathogenic bacteria by medicinal plant Artemisia annua and its phytoconstituent 1, 8-cineole. Microsc Res Tech 2024; 87:133-148. [PMID: 37728140 DOI: 10.1002/jemt.24418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/26/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023]
Abstract
The emergence of multidrug resistance (MDR) in bacterial pathogens is a serious public health concern. A significant therapeutic target for MDR infections is the quorum sensing-regulated bacterial pathogenicity. Determining the anti-quorum sensing abilities of certain medicinal plants against bacterial pathogens as well as the in-silico interactions of particular bioactive phytocompounds with QS and biofilm-associated proteins were the objectives of the present study. In this study, 6 medicinal plants were selected based on their ethnopharmacological usage, screened for Anti-QS activity and Artemisia annua leaf extract (AALE) demonstrated pigment inhibitory activity against Chromobacterium violaceum CV12472. Further, the methanol active fraction significantly inhibited the virulence factors (pyocyanin, pyoverdine, rhamnolipid and swarming motility) of Pseudomonas aeruginosa PAO1 and Serratia marcescens MTCC 97 at respective sub-MICs. The inhibition of biofilm was determined using a microtiter plate test and scanning electron microscopy. Biofilm formation was impaired by 70%, 72% and 74% in P. aeruginosa, C. violaceum and S. marcescens, respectively at 0.5xMIC of the extract. The phytochemical content of the extract was studied using GC-MS and 1, 8-cineole was identified as major bioactive compound. Furthermore, 1, 8-cineole was docked with quorum sensing (QS) proteins (LasI, LasR, CviR, and rhlR) and biofilm proteins (PilY1 and PilT). In silico docking and dynamics simulations studies suggested interactions with QS-receptors CviR', LasI, LasR, and biofilm proteins PilY1, PilT for anti-QS activity. Further, 1, 8-cineole demonstrated 66% and 51% reduction in violacein production and biofilm formation, respectively to validate the findings of computational analysis. Findings of the present investigation suggests that 1, 8-cineole plays a crucial role in the QS and biofilm inhibitory activity demonstrated by Artemisia annua extract. RESEARCH HIGHLIGHTS: Artemisia annua leaf extract (AALE) methanol fraction demonstrated broad-spectrum QS and biofilm inhibition Scanning electron microscopy (SEM) confirmed biofilm inhibition Molecular docking and simulation studies suggested positive interactions of 1,8-cineol with QS-receptors and biofilm proteins.
Collapse
Affiliation(s)
- Mo Ahamad Khan
- Department of Microbiology, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Mohammad Shahid
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Science, Arabian Gulf University, Manama, Bahrain
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Haris M Khan
- Department of Microbiology, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Anwar Shahzad
- Department of Botany, Faculty of Life Science, Aligarh Muslim University, Aligarh, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Adil
- Department of Environmental Sciences, Dalhousie University, Truro, Nova Scotia, Canada
| |
Collapse
|
45
|
Maha Swetha BR, Saravanan M, Piruthivraj P. Emerging trends in the inhibition of bacterial molecular communication: An overview. Microb Pathog 2024; 186:106495. [PMID: 38070626 DOI: 10.1016/j.micpath.2023.106495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/02/2024]
Abstract
Quorum sensing (QS) is a molecular cell-cell communication utilized by several bacteria and some fungi. It involves cell density dependent gene expression that includes extra polymeric substance production, sporulation, antibiotic production, motility, competence, symbiosis and conjugation. These expressions were carried out by different signaling molecules like acyl homo-serine lactone (AHL) and auto-inducing peptides (AIPs) which was effluxed by gram negative and gram positive bacteria. Pathogenic bacteria and biofilms often exhibit high resistance to antibiotics, attributed to the presence of antibiotic efflux pumps, reduced membrane permeability, and enzymes that deactivate quorum sensing (QS) inhibitors. To counteract virulence and multi-drug resistance (MDR), novel strategies such as employing quorum sensing (QS) inhibitors and quorum quenchers are employed. It targets signaling molecules with synthesis and prevents the signal from binding to receptors. In this present review, the mechanisms of QS along with inhibitors from different sources are described. These strategies potentially interfere with QS and it can be applied in different fields, mainly in hospitals and marine environments where the pathogenic infections and biofilm formation are highly involved.
Collapse
Affiliation(s)
- B R Maha Swetha
- Department of Biotechnoloy, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli, Tamil Nadu, India
| | - M Saravanan
- Department of Physics, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirapalli, 620 024, Tamil Nadu, India
| | - Prakash Piruthivraj
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha Univerisy, Chennai, 600 077, Tamil Nadu, India; Department of Biotechnoloy, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
46
|
Vadakkan K, Ngangbam AK, Sathishkumar K, Rumjit NP, Cheruvathur MK. A review of chemical signaling pathways in the quorum sensing circuit of Pseudomonas aeruginosa. Int J Biol Macromol 2024; 254:127861. [PMID: 37939761 DOI: 10.1016/j.ijbiomac.2023.127861] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Pseudomonas aeruginosa, an increasingly common competitive and biofilm organism in healthcare infection with sophisticated, interlinked and hierarchic quorum systems (Las, Rhl, PQS, and IQS), creates the greatest threats to the medical industry and has rendered prevailing chemotherapy medications ineffective. The rise of multidrug resistance has evolved into a concerning and potentially fatal occurrence for human life. P. aeruginosa biofilm development is assisted by exopolysaccharides, extracellular DNA, proteins, macromolecules, cellular signaling and interaction. Quorum sensing is a communication process between cells that involves autonomous inducers and regulators. Quorum-induced infectious agent biofilms and the synthesis of virulence factors have increased disease transmission, medication resistance, infection episodes, hospitalizations and mortality. Hence, quorum sensing may be a potential therapeutical target for bacterial illness, and developing quorum inhibitors as an anti-virulent tool could be a promising treatment strategy for existing antibiotics. Quorum quenching is a prevalent technique for treating infections caused by microbes because it diminishes microbial pathogenesis and increases microbe biofilm sensitivity to antibiotics, making it a potential candidate for drug development. This paper examines P. aeruginosa quorum sensing, the hierarchy of quorum sensing mechanism, quorum sensing inhibition and quorum sensing inhibitory agents as a drug development strategy to supplement traditional antibiotic strategies.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biology, St. Mary's College, Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | | | - Kuppusamy Sathishkumar
- Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | | | | |
Collapse
|
47
|
Tan X, Cheng X, Xiao J, Liu Q, Du D, Li M, Sun Y, Zhou J, Zhu G. Alkaline phosphatase LapA regulates quorum sensing-mediated virulence and biofilm formation in Pseudomonas aeruginosa PAO1 under phosphate depletion stress. Microbiol Spectr 2023; 11:e0206023. [PMID: 37796007 PMCID: PMC10715133 DOI: 10.1128/spectrum.02060-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/19/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Our previous study demonstrated that the expression of lapA was induced under phosphate depletion conditions, but its roles in virulence and biofilm formation by Pseudomonas aeruginosa remain largely unknown. This study presents a systematic investigation of the roles of lapA in virulence induction and biofilm formation by constructing a lapA-deficient strain with P. aeruginosa PAO1. The results showed that deletion of the lapA gene evidently reduced elastase activity, swimming motility, C4-HSL, and 3-oxo-C12-HSL production, and increased rhamnolipid production under phosphate depletion stress. Moreover, lapA gene deletion inhibited PAO1 biofilm formation in porcine skin explants by reducing the expression levels of las and rhl quorum sensing systems and extracellular polymeric substance synthesis. Finally, lapA gene deletion also reduced the virulence of PAO1 in Caenorhabditis elegans in fast-kill and slow-kill infection assays. This study provides insights into the roles of lapA in modulating P. aeruginosa virulence and biofilm formation under phosphate depletion stress.
Collapse
Affiliation(s)
- Xiaojuan Tan
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Xi Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jingjing Xiao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Qianqian Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Dongsheng Du
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Minghui Li
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Yang Sun
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Jinwei Zhou
- School of Food and Biology Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, China
| | - Guoping Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| |
Collapse
|
48
|
Rajapitamahuni S, Lyou ES, Kang BR, Lee TK. Microbial interaction-induced siderophore dynamics lead to phenotypic differentiation of Staphylococcus aureus. Front Cell Infect Microbiol 2023; 13:1277176. [PMID: 38045757 PMCID: PMC10690949 DOI: 10.3389/fcimb.2023.1277176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
This study investigated the impact of microbial interactions on siderophore dynamics and phenotypic differentiation of Staphylococcus aureus under iron-deficient conditions. Optimization of media demonstrated that the glycerol alanine salts medium was best suited for analyzing the dynamics of siderophore production because of its stable production of diverse siderophore types. The effects of pH and iron concentration on siderophore yield revealed a maximum yield at neutral pH and low iron concentration (10 µg). Microbial interaction studies have highlighted variations in siderophore production when different strains (Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli) are co-cultured with S. aureus. Co-culture of S. aureus with P. aeruginosa eliminated siderophore production in S. aureus, while co-culture of S. aureus with E. coli and S. epidermidis produced one or two siderophores, respectively. Raman spectroscopy revealed that microbial interactions and siderophore dynamics play a crucial role in directing the phenotypic differentiation of S. aureus, especially under iron-deficient conditions. Our results suggest that microbial interactions profoundly influence siderophore dynamics and phenotypic differentiation and that the study of these interactions could provide valuable insights for understanding microbial survival strategies in iron-limited environments.
Collapse
Affiliation(s)
| | | | | | - Tae Kwon Lee
- Department of Environmental and Energy Engineering, Yonsei University, Wonju, Republic of Korea
| |
Collapse
|
49
|
Kushwaha A, Agarwal V. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone mediates Ca +2 dysregulation, mitochondrial dysfunction, and apoptosis in human peripheral blood lymphocytes. Heliyon 2023; 9:e21462. [PMID: 38027911 PMCID: PMC10660034 DOI: 10.1016/j.heliyon.2023.e21462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2023] [Accepted: 10/21/2023] [Indexed: 12/01/2023] Open
Abstract
N-(3-oxododecanoyl)-l-homoserine lactone is a Pseudomonas aeruginosa secreted quorum-sensing molecule that mediates the secretion of virulence factors, biofilm formation and plays a pivotal role in proliferation and persistence in the host. Apart from regulating quorum-sensing, the autoinducer signal molecule N-(3-oxododecanoyl)-l-homoserine lactone (3O-C12-HSL or C12) of a LasI-LasR circuit exhibits immunomodulatory effects and induces apoptosis in various host cells. However, the precise pathophysiological impact of C12 on human peripheral blood lymphocytes and its involvement in mitochondrial dysfunction remained largely elusive. In this study, the results suggest that C12 (100 μM) induces upregulation of cytosolic and mitochondrial Ca+2 levels and triggers mitochondrial dysfunction through the generation of mitochondrial ROS (mROS), disruption of mitochondrial transmembrane potential (ΔΨm), and opening of the mitochondrial permeability transition pore (mPTP). Additionally, it was observed that C12 induces phosphatidylserine (PS) exposure and promotes apoptosis in human peripheral blood lymphocytes. However, apoptosis plays a critical role in the homeostasis and development of lymphocytes, whereas enhanced apoptosis can cause immunodeficiency through cell loss. These findings suggest that C12 exerts a detrimental effect on lymphocytes by mediating mitochondrial dysfunction and enhancing apoptosis, which might further impair the effective mounting of immune responses during Pseudomonas aeruginosa-associated infections.
Collapse
Affiliation(s)
- Ankit Kushwaha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, 211004, India
| |
Collapse
|
50
|
Bayat M, Nahand JS, Farsad-Akhatr N, Memar MY. Bile effects on the Pseudomonas aeruginosa pathogenesis in cystic fibrosis patients with gastroesophageal reflux. Heliyon 2023; 9:e22111. [PMID: 38034726 PMCID: PMC10685303 DOI: 10.1016/j.heliyon.2023.e22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/10/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023] Open
Abstract
Gastroesophageal reflux (GER) occurs in most cystic fibrosis (CF) patients and is the primary source of bile aspiration in the airway tract of CF individuals. Aspirated bile is associated with the severity of lung diseases and chronic inflammation caused by Pseudomonas aeruginosa as the most common pathogen of CF respiratory tract infections. P. aeruginosa is equipped with several mechanisms to facilitate the infection process, including but not limited to the expression of virulence factors, biofilm formation, and antimicrobial resistance, all of which are under the strong regulation of quorum sensing (QS) mechanism. By increasing the expression of lasI, rhlI, and pqsA-E, bile exposure directly impacts the QS network. An increase in psl expression and pyocyanin production can promote biofilm formation. Along with the loss of flagella and reduced swarming motility, GER-derived bile can repress the expression of genes involved in creating an acute infection, such as expression of Type Three Secretion (T3SS), hydrogen cyanide (hcnABC), amidase (amiR), and phenazine (phzA-E). Inversely, to cause persistent infection, bile exposure can increase the Type Six Secretion System (T6SS) and efflux pump expression, which can trigger resistance to antibiotics such as colistin, polymyxin B, and erythromycin. This review will discuss the influence of aspirated bile on the pathogenesis, resistance, and persistence of P. aeruginosa in CF patients.
Collapse
Affiliation(s)
- Mobina Bayat
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nader Farsad-Akhatr
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|