1
|
Carney BC, Simbulan-Rosenthal CM, Gaur A, Browne BJ, Moghe M, Crooke E, Moffatt LT, Shupp JW, Rosenthal DS. Inorganic polyphosphate in platelet rich plasma accelerates re-epithelialization in vitro and in vivo. Regen Ther 2020; 15:138-148. [PMID: 33426212 PMCID: PMC7770352 DOI: 10.1016/j.reth.2020.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/25/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Wound healing requires well-coordinated events including hemostasis, inflammation, proliferation, and remodeling. Delays in any of these stages leads to chronic wounds, infections, and hypertrophic scarring. Burn wounds are particularly problematic, and may require intervention to ensure timely progression to reduce morbidity and mortality. To accelerate burn wound healing, Platelet-Rich Plasma (PRP)1 can be of value, since platelets release growth factor proteins and inorganic polyphosphates (polyP) that may be integral to wound healing. We used polyP-depleted keratinocyte (HaCaT) and fibroblast cell culture models to determine cell proliferation and scratch-wound repair to determine if polyP, platelet lysate, or combined treatment could accelerate wound healing. While polyP and PRP significantly reduced the open scratch-wound area in fibroblasts and keratinocytes, polyP had no effect on keratinocyte or fibroblast proliferation. PRP was also evaluated as a treatment in a murine model of full thickness wound healing in vivo, including a treatment in which PRP was supplemented with purified polyP. PRP induced significantly more rapid re-epithelialization by Day 3. Pure polyP enhanced the effects of PRP on epithelial tongues, which were significantly elongated in the PRP + high-dose polyP treatment groups compared to PRP alone. Thus, PRP and polyP may serve as an effective therapeutic combination for treating wounds.
Collapse
Key Words
- Inorganic polyphosphate
- Keratinocytes
- PPX1 exopolyphosphatase
- Wound healing
- endopolyphosphatase, PPN
- epidermal growth factor, EGF
- exopolyphosphatase, PPX
- human foreskin fibroblasts, HFF
- mammalian target of rapamycin, mTOR
- platelet-derived growth factor, PDGF
- platelet-poor plasma, PPP
- platelet-rich plasma, PRP
- polyP kinase, PPK
- polyphosphates, polyP
- reactive oxygen species, ROS
- total body surface area, TBSA
- transforming growth factor beta, TGFβ
- vacuolar transporter chaperone 4, VTC4
Collapse
Affiliation(s)
- Bonnie C. Carney
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
| | - Cynthia M. Simbulan-Rosenthal
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA
| | - Anirudh Gaur
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA
| | - Benjamin J. Browne
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
| | - Manish Moghe
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA
| | - Elliott Crooke
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA
| | - Lauren T. Moffatt
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
| | - Jeffrey W. Shupp
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC, USA
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, USA
| | - Dean S. Rosenthal
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA
- Corresponding author. Department of Biochemistry, 3900 Reservoir Road, BSB 333, Washington, DC, 20010, USA.Tel.: 202 687 1056; Fax: 202 687 4632.
| |
Collapse
|
2
|
DiVito KA, Simbulan-Rosenthal CM, Chen YS, Trabosh VA, Rosenthal DS. Id2, Id3 and Id4 overcome a Smad7-mediated block in tumorigenesis, generating TGF-β-independent melanoma. Carcinogenesis 2013; 35:951-8. [PMID: 24343358 DOI: 10.1093/carcin/bgt479] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The role for the inhibitors of differentiation (Ids) proteins in melanomagenesis has been poorly explored. In other cell types, Ids have been shown to contribute to cell proliferation, migration and angiogenesis and, along with a number of other genes, are direct downstream targets of the transforming growth factor (TGF)-β pathway. Expression of Smad7, which suppress TGF-β signaling, or synthetic TGF-β inhibitors, was shown to potently suppress melanomagenesis. We found that endogenous Id2, Id3 and Id4 expression was elevated in 1205Lu versus 1205Lu cells constitutively expressing Smad7, indicating Ids may play a role in melanomagenesis. Therefore, the effects of Tet-inducible expression of Id2, Id3 or Id4 along with Smad7 in TGF-β-dependent 1205Lu human melanoma cells were explored in vitro and in vivo. 1205Lu cells formed subcutaneous tumors in athymic mice, whereas cells expressing Smad7 failed to form tumors. However, 1205Lu cells expressing Smad7 along with doxycycline-induced Id2, Id3 or Id4 were able to overcome the potent tumorigenic block mediated by S7, to varying degrees. Conversely, Id small interfering RNA knockdown suppressed anchorage-independent growth of melanoma. Histology of tumors from 1205Lu cells expressing Smad7 + Id4 revealed an average of 31% necrosis, compared with 5.2% in tumors from 1205Lu with vector only. Downstream, Ids suppressed cyclin-dependent kinase inhibitors, and re-upregulated invasion and metastasis-related genes matrix metalloproteinase 2 (MMP2), MMP9, CXCR4 and osteopontin, shown previously to be downregulated in response to Smad7. This study shows that Id2, Id3 and Id4 are each able to overcome TGF-β dependence, and establish a role for Ids as key mediators of TGF-β melanomagenesis.
Collapse
Affiliation(s)
- Kyle A DiVito
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
3
|
DiVito KA, Trabosh VA, Chen YS, Chen Y, Albanese C, Javelaud D, Mauviel A, Simbulan-Rosenthal CM, Rosenthal DS. Smad7 restricts melanoma invasion by restoring N-cadherin expression and establishing heterotypic cell-cell interactions in vivo. Pigment Cell Melanoma Res 2010; 23:795-808. [PMID: 20738806 DOI: 10.1111/j.1755-148x.2010.00758.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The list of transforming growth factor-beta (TGF-β)-related proteins in non-canonical TGF-β signaling is growing. Examples include receptor-Smads directing micro-RNA processing and inhibitory-Smads, e.g. Smad7, directing cell adhesion. Human skin grafts with fluorescently tagged melanoma cells revealed Smad7-expressing cells positioned themselves proximal to the dermal-epidermal junction and failed to form tumors, while control cells readily invaded and formed tumors within the dermis. Smad7 significantly inhibited β-catenin T41/S45 phosphorylation associated with degradation and induced a 4.5-fold increase in full-length N-cadherin. Cell adhesion assays confirmed a strong interaction between Smad7-expressing cells and primary dermal fibroblasts mediated via N-cadherin, while control cells were incapable of such interaction. Immunofluorescent analysis of skin grafts indicated N-cadherin homotypic interaction at the surface of both Smad7 cells and primary dermal fibroblasts, in contrast to control melanoma cells. We propose that Smad7 suppresses β-catenin degradation and promotes interaction with N-cadherin, stabilizing association with neighboring dermal fibroblasts, thus mitigating invasion.
Collapse
Affiliation(s)
- Kyle A DiVito
- Department of Biochemistry & Molecular Biology, Georgetown University School of Medicine Washington, DC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Trabosh VA, Divito KA, D Aguda B, Simbulan-Rosenthal CM, Rosenthal DS. Sequestration of E12/E47 and suppression of p27KIP1 play a role in Id2-induced proliferation and tumorigenesis. Carcinogenesis 2009; 30:1252-9. [PMID: 19451188 DOI: 10.1093/carcin/bgp115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Id2 is a member of the helix-loop-helix (HLH) family of transcription regulators known to antagonize basic HLH transcription factors and proteins of the retinoblastoma tumor suppressor family and is implicated in the regulation of proliferation, differentiation, apoptosis and carcinogenesis. To investigate its proposed role in tumorigenesis, Id2 or deletion mutants were re-expressed in Id2(-/-) dermal fibroblasts. Ectopic expression of Id2 or mutants containing the central HLH domain increased S-phase cells, cell proliferation in low and normal serum and induced tumorigenesis when grafted or subcutaneously injected into athymic mice. Similar to their downregulation in human tumors, the expression of cyclin-dependent kinase inhibitors p27(KIP1) and p15(INK4b) was decreased by Id2; the former by downregulation of its promoter by the Id2 HLH domain-mediated sequestration of E12/E47. Re-expression of p27(KIP1) in Id2-overexpressing cells reverted the hyperproliferative and tumorigenic phenotype, implicating Id2 as an oncogene working through p27(KIP1). These results tie together the previously observed misregulation of Id2 with a novel mechanism for tumorigenesis.
Collapse
Affiliation(s)
- Valerie A Trabosh
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
5
|
Bhat KR, Benton BJ, Ray R. Poly (ADP-ribose) polymerase (PARP) is essential for sulfur mustard-induced DNA damage repair, but has no role in DNA ligase activation. J Appl Toxicol 2006; 26:452-7. [PMID: 16906506 DOI: 10.1002/jat.1161] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Concurrent activation of poly (ADP-ribose) polymerase (PARP) and DNA ligase was observed in cultured human epidermal keratinocytes (HEK) exposed to the DNA alkylating compound sulfur mustard (SM), suggesting that DNA ligase activation could be due to its modification by PARP. Using HEK, intracellular 3H-labeled NAD+ (3H-adenine) was metabolically generated and then these cells were exposed to SM (1 mM). DNA ligase I isolated from these cells was not 3H-labeled, indicating that DNA ligase I is not a substrate for (ADP-ribosyl)ation by PARP. In HEK, when PARP was inhibited by 3-amino benzamide (3-AB, 2 mM), SM-activated DNA ligase had a half-life that was four-fold higher than that observed in the absence of 3-AB. These results suggest that DNA repair requires PARP, and that DNA ligase remains activated until DNA damage repair is complete. The results show that in SM-exposed HEK, DNA ligase I is activated by phosphorylation catalysed by DNA-dependent protein kinase (DNA-PK). Therefore, the role of PARP in DNA repair is other than that of DNA ligase I activation. By using the DNA ligase I phosphorylation assay and decreasing PARP chemically as well as by PARP anti-sense mRNA expression in the cells, it was confirmed that PARP does not modify DNA ligase I. In conclusion, it is proposed that PARP is essential for efficient DNA repair; however, PARP participates in DNA repair by altering the chromosomal structure to make the DNA damage site(s) accessible to the repair enzymes.
Collapse
Affiliation(s)
- K Ramachandra Bhat
- Department of Chemistry, Lincoln University, Lincoln University PA-19352-0999, USA.
| | | | | |
Collapse
|
6
|
Rosenthal DS, Velena A, Chou FP, Schlegel R, Ray R, Benton B, Anderson D, Smith WJ, Simbulan-Rosenthal CM. Expression of dominant-negative Fas-associated death domain blocks human keratinocyte apoptosis and vesication induced by sulfur mustard. J Biol Chem 2003; 278:8531-40. [PMID: 12482751 DOI: 10.1074/jbc.m209549200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA damaging agents up-regulate levels of the Fas receptor or its ligand, resulting in recruitment of Fas-associated death domain (FADD) and autocatalytic activation of caspase-8, consequently activating the executioner caspases-3, -6, and -7. We found that human epidermal keratinocytes exposed to a vesicating dose (300 microm) of sulfur mustard (SM) exhibit a dose-dependent increase in the levels of Fas receptor and Fas ligand. Immunoblot analysis revealed that the upstream caspases-8 and -9 are both activated in a time-dependent fashion, and caspase-8 is cleaved prior to caspase-9. These results are consistent with the activation of both death receptor (caspase-8) and mitochondrial (caspase-9) pathways by SM. Pretreatment of keratinocytes with a peptide inhibitor of caspase-3 (Ac-DEVD-CHO) suppressed SM-induced downstream markers of apoptosis. To further analyze the importance of the death receptor pathway in SM toxicity, we utilized Fas- or tumor necrosis factor receptor-neutralizing antibodies or constructs expressing a dominant-negative FADD (FADD-DN) to inhibit the recruitment of FADD to the death receptor complex and block the Fas/tumor necrosis factor receptor pathway following SM exposure. Keratinocytes pretreated with Fas-blocking antibody or stably expressing FADD-DN and exhibiting reduced levels of FADD signaling demonstrated markedly decreased caspase-3 activity when treated with SM. In addition, the processing of procaspases-3, -7, and -8 into their active forms was observed in SM-treated control keratinocytes, but not in FADD-DN cells. Blocking the death receptor complex by expression of FADD-DN additionally inhibited SM-induced internucleosomal DNA cleavage and caspase-6-mediated nuclear lamin cleavage. Significantly, we further found that altering the death receptor pathway by expressing FADD-DN in human skin grafted onto nude mice reduces vesication and tissue injury in response to SM. These results indicate that the death receptor pathway plays a pivotal role in SM-induced apoptosis and is therefore a target for therapeutic intervention to reduce SM injury.
Collapse
Affiliation(s)
- Dean S Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, D. C. 20007, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Rosenthal DS, Simbulan-Rosenthal CM, Liu WF, Velena A, Anderson D, Benton B, Wang ZQ, Smith W, Ray R, Smulson ME. PARP determines the mode of cell death in skin fibroblasts, but not keratinocytes, exposed to sulfur mustard. J Invest Dermatol 2001; 117:1566-73. [PMID: 11886524 DOI: 10.1046/j.0022-202x.2001.01578.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sulfur mustard is cytotoxic to dermal fibroblasts as well as epidermal keratinocytes. We demonstrated that poly(ADP-ribose) polymerase (PARP) modulates Fas-mediated apoptosis, and other groups and we have shown that PARP plays a role in the modulation of other types of apoptotic and necrotic cell death. We have now utilized primary dermal fibroblasts, immortalized fibroblasts, and keratinocytes derived from PARP(-/-) mice and their wildtype littermates (PARP(+/+)) to determine the contribution of PARP to sulfur mustard toxicity. Following sulfur mustard exposure, primary skin fibroblasts from PARP-deficient mice demonstrated increased internucleosomal DNA cleavage, caspase-3 processing and activity, and annexin V positivity, compared to those derived from PARP(+/+) animals. Conversely, propidium iodide staining, PARP cleavage patterns, and random DNA fragmentation revealed a dose-dependent increase in necrosis in PARP(+/+) but not PARP(-/-) cells. Using immortalized PARP(-/-) fibroblasts stably transfected with the human PARP cDNA or with empty vector alone, we show that PARP inhibits markers of apoptosis in these cells as well. Finally, primary keratinocytes were derived from newborn PARP(+/+) and PARP(-/-) mice and immortalized with the E6 and E7 genes of human papilloma virus. In contrast to fibroblasts, keratinocytes from both PARP(-/-) and PARP(+/+) mice express markers of apoptosis in response to sulfur mustard exposure. The effects of PARP on the mode of cell death in different skin cell types may determine the severity of vesication in vivo, and thus have implications for the design of PARP inhibitors to reduce sulfur mustard pathology.
Collapse
Affiliation(s)
- D S Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington DC 20007, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rosenthal DS, Simbulan-Rosenthal CM, Liu WF, Stoica BA, Smulson ME. Mechanisms of JP-8 jet fuel cell toxicity. II. Induction of necrosis in skin fibroblasts and keratinocytes and modulation of levels of Bcl-2 family members. Toxicol Appl Pharmacol 2001; 171:107-16. [PMID: 11222086 DOI: 10.1006/taap.2000.9109] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
JP-8 induces apoptosis in rat lung epithelial cells, primary mouse T lymphocytes, Jurkat T lymphoma cells, and U937 monocytic cells (Stoica et al., 2001). Here, we have observed a different mechanism of cytotoxicity in human keratinocytes grown in culture as well as when grafted onto nude mice. At lower levels of JP-8 (80 microg/ml; 1 x 10(-4) dilution), sufficient to induce apoptosis in other cell types, including lung epithelial cells (Stoica et al., 2001), no apoptosis was observed. At higher levels (>200 microg/ml; 2.5 x 10(-4) dilution), JP-8 is cytotoxic to both primary and immortalized human keratinocytes, as evidenced by the metabolism of calcein, as well as by morphological changes such as cell rounding and cell detachment. There was no evidence of activation of caspases-3, -7, or -8 either by enzyme activity or immunoblot analysis, and the stable expression of a dominant-negative inhibitor of apoptosis (FADD-DN) did not increase the survival of keratinocytes to JP-8. The pattern of poly(ADP-ribose) polymerase (PARP) cleavage was also characteristic of necrosis. PARP has been also been implicated in necrosis via its ability to lower levels of ATP in damaged cells. However, fibroblasts derived from PARP-/- mice underwent necrotic cell death similar to those derived from PARP+/+ mice, indicating that the effects of JP-8 are independent of PARP. Immunoblot analysis further revealed that exposure of keratinocytes to the toxic higher levels of JP-8 markedly downregulates the expression of the prosurvival members of the Bcl-2 family, Bcl-2 and Bcl-x(L), and upregulates the expression of antisurvival members of this family, including Bad and Bak. Bcl-2 and Bcl-x(L) have been shown to preserve mitochondrial integrity and suppress cell death. In contrast, Bak and Bad both promote cell death by alteration of the mitochondrial membrane potential, in part by heterodimerization with and inactivation of Bcl-2 and Bcl-x(L), and either inducing necrosis or activating a downstream caspase program. High intrinsic levels of Bcl-2 and Bcl-x(L) may prevent apoptotic death of keratinocytes at lower levels of JP-8, while perturbation of the balance between pro- and antiapoptotic Bcl-2 family members at higher levels may ultimately play a role in necrotic cell death in human keratinocytes. Finally, when human keratinocytes were grafted to form a human epidermis on nude mice, treatment of these grafts with JP-8 revealed cytotoxicity and altered histology in vivo.
Collapse
Affiliation(s)
- D S Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, 3900 Reservoir Road NW, Washington, DC 20007, USA.
| | | | | | | | | |
Collapse
|
9
|
Bhat KR, Benton BJ, Rosenthal DS, Smulson ME, Ray R. Role of poly(ADP-ribose) polymerase (PARP) in DNA repair in sulfur mustard-exposed normal human epidermal keratinocytes (NHEK). J Appl Toxicol 2000; 20 Suppl 1:S13-7. [PMID: 11428624 DOI: 10.1002/1099-1263(200012)20:1+<::aid-jat695>3.0.co;2-g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We previously reported that, in normal human epidermal keratinocytes (NHEK) cultures exposed to the alkylating compound sulfur mustard (bis-(2-chloroethyl) sulfide, HD, 0.3-1 mM), there is a rapid (< or =1 h) activation (100% above unexposed control) of the DNA repair enzyme DNA ligase I (130 kD) followed by a first-order decay (1-5 h). The DNA ligase activation is accompanied by a time-dependent (0.5-4 h) and significant DNA repair. Inhibition of another putative DNA repair enzyme, poly(ADP-ribose) polymerase (PARP), by using 3-amino benzamide does not affect DNA ligase activation following HD exposure, but increases the half-life of the activated enzyme threefold. To examine the role of PARP in HD-induced DNA ligase activation and subsequent DNA repair, we conducted studies using cultured keratinocytes in which the level of PARP had been selectively lowered (> or =85%) by the use of induced expression of antisense RNA. In these cells, there was no stimulation of DNA ligase up to 3 h, and a small stimulation (ca. 30% above unexposed control at 5-6 h after HD exposure. A time-course (0.5-6 h) study of DNA repair in HD-exposed PARP-deficient keratinocytes revealed a much slower rate of repair compared with HD-exposed NHEK. The results suggest an active role of PARP in DNA ligase activation and DNA repair in mammalian cells, and also indicate that modulation of PARP-mediated mechanisms may provide a useful approach in preventing HD toxicity.
Collapse
|
10
|
Rosenthal DS, Simbulan-Rosenthal CM, Iyer S, Smith WJ, Ray R, Smulson ME. Calmodulin, poly(ADP-ribose)polymerase and p53 are targets for modulating the effects of sulfur mustard. J Appl Toxicol 2000; 20 Suppl 1:S43-9. [PMID: 11428642 DOI: 10.1002/1099-1263(200012)20:1+<::aid-jat691>3.0.co;2-s] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe two pathways by which the vesicating agent sulfur mustard (HD) may cause basal cell death and detachment: induction of terminal differentiation and apoptosis. Following treatment of normal human epidermal keratinocytes (NHEK) with 10 or 100 microM HD, the differentiation-specific keratin pair K1/K10 was induced and the cornified envelope precursor protein, involucrin, was cross-linked by epidermal transglutaminase. Fibronectin levels were reduced in a time- and dose-dependent manner. The rapid increase in p53 and decrease in Bcl-2 levels was consistent not only with epidermal differentiation but with apoptosis as well. Further examination of biochemical markers of apoptosis following treatment of either NHEK or human papillomavirus (HPV)-immortalized keratinocytes revealed a burst of poly(ADP-ribose) synthesis, specific cleavage of poly(ADP-ribose)polymerase (PARP) in vivo and in vitro into characteristic 89 and 24 kDa fragments, processing of caspase-3 into its active form and the formation of DNA ladders. The intracellular calcium chelator BAPTA suppressed the differentiation markers, whereas antisense oligonucleotides and chemical inhibitors specific for calmodulin blocked both markers of differentiation and apoptosis. Modulation of p53 levels utilizing retroviral constructs expressing the E6, E7 or E6 + E7 genes of HPV-16 revealed that HD-induced apoptosis was partially p53-dependent. Finally, immortalized fibroblasts derived from PARP -/- 'knockout mice' were exquisitely sensitive to HD-induced apoptosis. These cells became HD resistant when wild-type PARP was stably expressed in these cells. These results indicate that HD exerts its effects via calmodulin, 3 and PARP-sensitive pathways.
Collapse
Affiliation(s)
- D S Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
11
|
Smulson ME, Simbulan-Rosenthal CM, Boulares AH, Yakovlev A, Stoica B, Iyer S, Luo R, Haddad B, Wang ZQ, Pang T, Jung M, Dritschilo A, Rosenthal DS. Roles of poly(ADP-ribosyl)ation and PARP in apoptosis, DNA repair, genomic stability and functions of p53 and E2F-1. ADVANCES IN ENZYME REGULATION 2000; 40:183-215. [PMID: 10828352 DOI: 10.1016/s0065-2571(99)00024-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- M E Smulson
- Georgetown University School of Medicine, Department of Biochemistry and Molecular Biology, 3900 Reservoir Rd, NW, Washington, DC 20007, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Simbulan-Rosenthal CM, Rosenthal DS, Luo R, Smulson ME. Poly(ADP-ribose) polymerase upregulates E2F-1 promoter activity and DNA pol alpha expression during early S phase. Oncogene 1999; 18:5015-23. [PMID: 10490838 DOI: 10.1038/sj.onc.1202900] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
E2F-1, a transcription factor implicated in the activation of genes required for S phase such as DNA pol alpha, is regulated by interactions with Rb and by cell-cycle dependent alterations in E2F-1 abundance. We have shown that depletion of poly(ADP-ribose) polymerase (PARP) by antisense RNA expression downregulates pol alpha and E2F-1 expression during early S phase. To examine the role of PARP in the regulation of pol alpha and E2F-1 gene expression, we utilized immortalized mouse fibroblasts derived from wild-type and PARP knockout (PARP-/-) mice as well as PARP-/- cells stably transfected with PARP cDNA [PARP-/-(+PARP)]. After release from serum deprivation, wild-type and PARP-/-(+PARP) cells, but not PARP-/- cells, exhibited a peak of cells in S phase by 16 h and had progressed through the cell cycle by 22 h. Whereas [3H]thymidine incorporation remained negligible in PARP-/- cells, in vivo DNA replication maximized after 18 h in wild-type and PARP-/-(+PARP) cells. To investigate the effect of PARP on E2F-1 promoter activity, a construct containing the E2F-1 gene promoter fused to a luciferase reporter gene was transiently transfected into these cells. E2F-1 promoter activity in control and PARP-/-(+PARP) cells increased eightfold after 9 h, but not in PARP-/- cells. PARP-/- cells did not show the marked induction of E2F-1 expression during early S phase apparent in control and PARP-/-(+PARP) cells. RT - PCR analysis and pol alpha activity assays revealed the presence of pol alpha transcripts and a sixfold increase in activity in both wild-type and PARP-/-(+PARP) cells after 20 h, but not in PARP-/- cells. These results suggest that PARP plays a role in the induction of E2F-1 promoter activity, which then positively regulates both E2F-1 and pol alpha expression, when quiescent cells reenter the cell cycle upon recovery from aphidicolin exposure or removal of serum.
Collapse
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry, Georgetown University School of Medicine, Basic Science Building, Room 351, 3900 Reservoir Road NW, Washington DC 20007, USA
| | | | | | | |
Collapse
|
13
|
Smith KJ. The prevention and treatment of cutaneous injury secondary to chemical warfare agents. Application of these finding to other dermatologic conditions and wound healing. Dermatol Clin 1999; 17:41-60, viii. [PMID: 9986995 DOI: 10.1016/s0733-8635(05)70069-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical warfare agents are easily and inexpensively produced and are therefore potentially accessible to even underdeveloped nations and are a threat to civilian populations as well as advancing troops. Sulfur mustard is by far the most significant chemical warfare agent that produces cutaneous injury. Significant advances over the past few years have been made in understanding the pathophysiology of the lesions produced by sulfur mustard, as well as development of barrier creams and pre and post exposure therapies to moderate the damage and accelerate healing. Not only have these advances improved our understanding of the sulfur mustard injury and the care of the patients, these are potentially numerous applications for these findings in other dermatologic conditions including the treatment of chronic wounds.
Collapse
Affiliation(s)
- K J Smith
- Department of Dermatology, National Naval Medical Center, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Simbulan-Rosenthal CM, Rosenthal DS, Ding R, Bhatia K, Smulson ME. Prolongation of the p53 response to DNA strand breaks in cells depleted of PARP by antisense RNA expression. Biochem Biophys Res Commun 1998; 253:864-8. [PMID: 9918821 DOI: 10.1006/bbrc.1998.9792] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The observation that 3-aminobenzamide, which inhibits a variety of ADP-ribose transferases, prolongs the gamma-irradiation-induced increase in intracellular p53 concentration suggested that one or more of such enzymes may determine the duration of the p53 response during G1 arrest. The role of poly(ADP-ribose) polymerase (PARP), an abundant nuclear enzyme activated by DNA strand breaks, in the p53 response to y-irradiation was investigated in Burkitt's lymphoma AG876 cells stably transfected with an inducible PARP antisense construct. Immunoblot analysis revealed that the cellular content of PARP was reduced to virtually undetectable levels after incubation of transfected cells for 72 h with the inducer dexamethasone. In noninduced antisense cells, the p53 concentration reached a maximum 2 h after exposure to 6.3 Gy of gamma-radiation and returned to control values by 4 h. In contrast, the p53 response in PARP-depleted antisense cells peaked at 4 h, with the levels of p53 remaining elevated for up to 12 h after y-irradiation. The maximal increase in p53 concentration was similar in both induced and noninduced cells. These results thus indicate that PARP activity, in part, determines the duration, but not the magnitude, of the p53 response to DNA damage.
Collapse
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | | | |
Collapse
|
15
|
Rosenthal DS, Simbulan-Rosenthal CM, Iyer S, Spoonde A, Smith W, Ray R, Smulson ME. Sulfur mustard induces markers of terminal differentiation and apoptosis in keratinocytes via a Ca2+-calmodulin and caspase-dependent pathway. J Invest Dermatol 1998; 111:64-71. [PMID: 9665388 DOI: 10.1046/j.1523-1747.1998.00250.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sulfur mustard (SM) induces vesication via poorly understood pathways. The blisters that are formed result primarily from the detachment of the epidermis from the dermis at the level of the basement membrane. In addition, there is toxicity to the basal cells, although no careful study has been performed to determine the precise mode of cell death biochemically. We describe here two potential mechanisms by which SM causes basal cell death and detachment: namely, induction of terminal differentiation and apoptosis. In the presence of 100 microM SM, terminal differentiation was rapidly induced in primary human keratinocytes that included the expression of the differentiation-specific markers K1 and K10 and the cross-linking of the cornified envelope precursor protein involucrin. The expression of the attachment protein, fibronectin, was also reduced in a time- and dose-dependent fashion. Features common to both differentiation and apoptosis were also induced in 100 microM SM, including the rapid induction of p53 and the reduction of Bcl-2. At higher concentrations of SM (i.e., 300 microM), formation of the characteristic nucleosome-sized DNA ladders, TUNEL-positive staining of cells, activation of the cysteine protease caspase-3/apopain, and cleavage of the death substrate poly(ADP-ribose) polymerase, were observed both in vivo and in vitro. Both the differentiation and the apoptotic processes appeared to be calmodulin dependent, because the calmodulin inhibitor W-7 blocked the expression of the differentiation-specific markers, as well as the apoptotic response, in a concentration-dependent fashion. In addition, the intracellular Ca2+ chelator, BAPTA-AM, blocked the differentiation response and attenuated the apoptotic response. These results suggest a strategy for designing inhibitors of SM vesication via the Ca2+-calmodulin or caspase-3/PARP pathway.
Collapse
Affiliation(s)
- D S Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Simbulan-Rosenthal CM, Rosenthal DS, Boulares AH, Hickey RJ, Malkas LH, Coll JM, Smulson ME. Regulation of the expression or recruitment of components of the DNA synthesome by poly(ADP-ribose) polymerase. Biochemistry 1998; 37:9363-70. [PMID: 9649317 DOI: 10.1021/bi9731089] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) is a component of the multiprotein DNA replication complex (MRC, DNA synthesome) that catalyzes replication of viral DNA in vitro. PARP poly(ADP-ribosyl)ates 15 of the approximately 40 proteins of the MRC, including DNA polymerase alpha (DNA pol alpha), DNA topoisomerase I (topo I), and proliferating-cell nuclear antigen (PCNA). Although about equal amounts of MRC-complexed and free forms of PCNA were detected by immunoblot analysis of HeLa cell extracts, only the complexed form was poly(ADP-ribosyl)ated, suggesting that poly(ADP-ribosyl)ation of PCNA may regulate its function within the MRC. NAD inhibited the activity of DNA pol delta in the MRC in a dose-dependent manner, whereas the PARP inhibitor, 3-AB, reversed this inhibitory effect. The roles of PARP in modulating the composition and enzyme activities of the DNA synthesome were further investigated by characterizing the complex purified from 3T3-L1 cells before and 24 h after induction of a round of DNA replication required for differentiation of these cells; at the latter time point, approximately 95% of the cells are in S phase and exhibit a transient peak of PARP expression. The MRC was also purified from similarly treated 3T3-L1 cells depleted of PARP by antisense RNA expression; these cells do not undergo DNA replication nor terminal differentiation. Both PARP protein and activity and essentially all of the DNA pol alpha and delta activities exclusively cosedimented with the MRC fractions from S phase control cells, and were not detected in the MRC fractions from PARP-antisense or uninduced control cells. Immunoblot analysis further revealed that, although PCNA and topo I were present in total extracts from both control and PARP-antisense cells, they were present in the MRC fraction only from induced control cells, indicating that PARP may play a role in their assembly into an active DNA synthesome. In contrast, expression of DNA pol alpha, DNA primase, and RPA was down-regulated in PARP-antisense cells, suggesting that PARP may be involved in the expression of these proteins. Depletion of PARP also prevented induction of the expression of the transcription factor E2F-1, which positively regulates transcription of the DNA pol alpha and PCNA genes; thus, PARP may be necessary for expression of these genes when quiescent cells are stimulated to proliferate.
Collapse
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Simbulan-Rosenthal CM, Rosenthal DS, Iyer S, Boulares AH, Smulson ME. Transient poly(ADP-ribosyl)ation of nuclear proteins and role of poly(ADP-ribose) polymerase in the early stages of apoptosis. J Biol Chem 1998; 273:13703-12. [PMID: 9593711 DOI: 10.1074/jbc.273.22.13703] [Citation(s) in RCA: 207] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A transient burst of poly(ADP-ribosyl)ation of nuclear proteins occurs early, prior to commitment to death, in human osteosarcoma cells undergoing apoptosis, followed by caspase-3-mediated cleavage of poly(ADP-ribose) polymerase (PARP). The generality of this early burst of poly(ADP-ribosyl)ation has now been investigated with human HL-60 cells, mouse 3T3-L1, and immortalized fibroblasts derived from wild-type mice. The effects of eliminating this early transient modification of nuclear proteins by depletion of PARP protein either by antisense RNA expression or by gene disruption on various morphological and biochemical markers of apoptosis were then examined. Marked caspase-3-like PARP cleavage activity, proteolytic processing of CPP32 to its active form, internucleosomal DNA fragmentation, and nuclear morphological changes associated with apoptosis were induced in control 3T3-L1 cells treated for 24 h with anti-Fas and cycloheximide but not in PARP-depleted 3T3-L1 antisense cells exposed to these inducers. Similar results were obtained with control and PARP-depleted human Jurkat T cells. Whereas immortalized PARP +/+ fibroblasts showed the early burst of poly(ADP-ribosyl)ation and a rapid apoptotic response when exposed to anti-Fas and cycloheximide, PARP -/- fibroblasts exhibited neither the early poly (ADP-ribosyl)ation nor any of the biochemical or morphological changes characteristic of apoptosis when similarly treated. Stable transfection of PARP -/- fibroblasts with wild-type PARP rendered the cells sensitive to Fas-mediated apoptosis. These results suggest that PARP and poly(ADP-ribosyl)ation may trigger key steps in the apoptotic program. Subsequent degradation of PARP by caspase-3-like proteases may prevent depletion of NAD and ATP or release certain nuclear proteins from poly(ADP-ribosyl)ation-induced inhibition, both of which might be required for late stages of apoptosis.
Collapse
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, D. C. 20007, USA
| | | | | | | | | |
Collapse
|
18
|
Bergeron MJ, Leclerc S, Laniel MA, Poirier GG, Guérin SL. Transcriptional regulation of the rat poly(ADP-ribose) polymerase gene by Sp1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:342-53. [PMID: 9428683 DOI: 10.1111/j.1432-1033.1997.0342a.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Expression of the gene encoding poly(ADP-ribose) polymerase (PARP), although ubiquitous, nevertheless varies substantially between tissues. We have recently shown that Sp1 binds five distinct target sequences (US-1 and F1-F4) in the rat PARP (rPARP) gene promoter. Here we used deletion analyses and site-directed mutagenesis to address the regulatory function played by these Sp1 sites on the basal transcriptional activity directed by the rPARP promoter. Transfection experiments revealed that the most proximal Sp1 site is insufficient by itself to direct any promoter activity. In addition, a weak negative regulatory element was identified between positions -101 and -60. The rPARP promoter directed high levels of chloramphenicol acetyltransferase activity in Jurkat T-lymphoblastoid and Ltk- fibroblast cells but only moderate levels in pituitary GH4C1 and liver HTC cells, correlating with the amounts of PARP detected in these cells by western blot analysis. However, the reduced promoter efficiency in HTC and GH4C1 cells did not result from the lack of Sp1 activity in these cells but suggested that yet uncharacterized regulatory proteins might turn off PARP gene expression by binding negative regulatory elements from the rPARP promoter. Similarly, site-directed mutagenesis on the three most proximal Sp1 elements suggested the influence exerted by Sp1 on the rPARP promoter activity to vary substantially between cell types. It also provided evidence for a basal rPARP promoter activity driven through the recognition of unidentified cis-acting elements by transcription factors other than Sp1.
Collapse
Affiliation(s)
- M J Bergeron
- Laboratory of Molecular Endocrinology, CHUL Research Center, Ste-Foy, Qc, Canada
| | | | | | | | | |
Collapse
|
19
|
Rosenthal DS, Ding R, Simbulan-Rosenthal CM, Vaillancourt JP, Nicholson DW, Smulson M. Intact cell evidence for the early synthesis, and subsequent late apopain-mediated suppression, of poly(ADP-ribose) during apoptosis. Exp Cell Res 1997; 232:313-21. [PMID: 9168807 DOI: 10.1006/excr.1997.3536] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP), which is catalytically activated by DNA strand breaks, has been implicated in apoptosis, or programmed cell death. A protease (CPP32) responsible for the cleavage of PARP and necessary for apoptosis was recently purified and characterized. The coordinated sequence of events related to PARP activation and cleavage in apoptosis has now been examined in individual cells. Apoptosis was studied in a human osteosarcoma cell line that undergoes a slow (8 to 10 days), spontaneous, and reproducible death program in culture. Changes in the abundance of intact PARP, poly(ADP-ribose) (PAR), and a proteolytic cleavage product of PARP that contains the DNA-binding domain were examined during apoptosis in the context of individual, whole cells by immunofluorescence with specific antibodies. The synthesis of PAR from NAD increased early, within 2 days of cell plating for apoptosis, prior to the appearance of internucleosomal DNA cleavage and before the cells become irreversibly committed to apoptosis, since replating yields viable, nonapoptotic cells. Strong expression of full-length PARP was also detected, by immunofluorescence as well as by Western analysis, during this same time period. However, after approximately 4 days in culture, the abundance of both full-length PARP and PAR decreased markedly. After 6 days, a proteolytic cleavage product containing the DNA-binding domain of PARP was detected immunocytochemically and confirmed by Western analysis, both in the nuclei and in the cytoplasm of cells. A recombinant peptide spanning the DNA-binding domain of PARP was expressed, purified, and biotinylated, and was then used as a probe for DNA strand breaks. Fluorescence microscopy with this probe revealed extensive DNA fragmentation during the later stages of apoptosis. This is the first report, using individual, intact cells, demonstrating that poly(ADP-ribosyl)ation of nuclear proteins occurs prior to the commitment to apoptosis, that inactivation and cleavage of PARP begin shortly thereafter, and that very little PAR per se is present during the later stages of apoptosis, despite the presence of a very large number of DNA strand breaks. These results suggest a negative regulatory role for PARP during apoptosis, which in turn may reflect the requirement for adequate NAD and ATP during the later stages of programmed cell death.
Collapse
Affiliation(s)
- D S Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
20
|
Rosenthal DS, Ding R, Simbulan-Rosenthal CM, Cherney B, Vanek P, Smulson M. Detection of DNA breaks in apoptotic cells utilizing the DNA binding domain of poly(ADP-ribose) polymerase with fluorescence microscopy. Nucleic Acids Res 1997; 25:1437-41. [PMID: 9060441 PMCID: PMC146589 DOI: 10.1093/nar/25.7.1437] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The DNA binding domain (DBD) of poly(ADP-ribose) polymerase (PARP) has proved to be a novel, highly sensitive probe for detecting DNA breaks in intact cells undergoing apoptosis. A recombinant peptide spanning the DNA binding domain of PARP was expressed, purified and used to detect DNA strand breaks in fixed cells. Fluorescence microscopy with this probe followed by detection with anti-PARP antisera initially revealed an increased binding following treatment of cells with DNA strand-breaking agents (such asN-methyl-N'-nitro-N-nitrosoguanidine) and, subsequently, using biotinylated PARP DBD, during the later stages of apoptosis in several cell systems, when internucleosomal strand breaks became evident. This procedure was found to be at least as sensitive and required fewer steps to detect DNA strand breaks than those utilizing Klenow incorporation of biotinylated nucleotides.
Collapse
Affiliation(s)
- D S Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
21
|
Smith KJ, Casillas R, Graham J, Skelton HG, Stemler F, Hackley BE. Histopathologic features seen with different animal models following cutaneous sulfur mustard exposure. J Dermatol Sci 1997; 14:126-35. [PMID: 9039976 DOI: 10.1016/s0923-1811(96)00560-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In an effort to understand the pathophysiology of sulfur mustard (2,2' dichlorodiethyl sulfide, HD)-induced cutaneous lesions, a number of animal models have been used. Animal models have been and will continue to be used in the development of therapeutic strategies to protect against and/or moderate lesions, and to potentiate wound healing after HD exposure. Upon reviewing the histopathologic features seen after HD-exposure, we propose roles for different animal models in HD-research. Hematoxylin and eosin slides from protocols done originally as dose response studies for either liquid or vapor HD-exposures were examined. The animal models reported include the hairless guinea pig (HGP), weanling pig (WP), mouse ear (ME) and hairless mouse (HM). In all these animal models. HD induces subepidermal blister formation as well as epidermal cell death. The HGP appears to be the most sensitive model for epidermal necrosis. The HGP and, to a lesser degree, the HM react with a marked neutrophilic infiltrate. The ME provides a quantitative measure for HD effects and a mild inflammatory infiltrate similar to what is seen in human skin. Doses necessary to produce microblister formation in the WP are usually associated with more significant stromal and vascular changes than in other animal models. In addition to a quantitative measure of the HD effect and a mild inflammatory response, the cost, as well as the availability of specific antibodies, and DNA and RNA probes and primers gives the ME advantages for both drug screening and for the study of the pathophysiology of HD-induced cutaneous lesions. The sensitivity of the HGP and the abundant experience with vapor exposures establishes a place for this animal model in barrier cream and drug screening. The similarity of WP skin to human skin is important in the study of wound healing after HD exposure, as well as in the study of the pathophysiology of the cutaneous lesion and in more definitive therapeutic studies.
Collapse
Affiliation(s)
- K J Smith
- United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, USA
| | | | | | | | | | | |
Collapse
|
22
|
Oei SL, Griesenbeck J, Schweiger M. The role of poly(ADP-ribosyl)ation. Rev Physiol Biochem Pharmacol 1997; 131:127-73. [PMID: 9204691 DOI: 10.1007/3-540-61992-5_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- S L Oei
- Institut für Biochemie, Freie Universität Berlin, Germany
| | | | | |
Collapse
|
23
|
Simbulan-Rosenthal CM, Rosenthal DS, Hilz H, Hickey R, Malkas L, Applegren N, Wu Y, Bers G, Smulson ME. The expression of poly(ADP-ribose) polymerase during differentiation-linked DNA replication reveals that it is a component of the multiprotein DNA replication complex. Biochemistry 1996; 35:11622-33. [PMID: 8794742 DOI: 10.1021/bi953010z] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
3T3-L1 preadipocytes have been shown to exhibit a transient increase in poly(ADP-ribose) polymerase (PARP) protein and activity, as well as an association of PARP with DNA polymerase alpha, within 12-24 h of exposure to inducers of differentiation, whereas 3T3-L1 cells expressing PARP antisense RNA showed no increase in PARP and are unable to complete the round of DNA replication required for differentiation into adipocytes. The role of PARP in differentiation-linked DNA replication has now been further clarified at both the cellular and enzymological levels. Flow cytometric analysis revealed that control 3T3-L1 cells progressed through one round of DNA replication prior to the onset of terminal differentiation, whereas cells expressing PARP antisense RNA were blocked at the G0/G1 phase of the cell cycle. Confocal microscope image analysis of control S phase cells demonstrated that PARP was localized within distinct intranuclear granular foci associated with DNA replication centers. On the basis of these results, purified replicative complexes from other cell types that had been characterized for their ability to catalyze viral DNA replication in vitro were analyzed for the presence of PARP. PARP exclusively copurified through a series of centrifugation and chromatography steps with core proteins of an 18-21S multiprotein replication complex (MRC) from human HeLa cells, as well as with the corresponding mouse MRC from FM3A cells. The MRC were shown to contain DNA polymerases alpha and delta, DNA primase, DNA helicase, DNA ligase, and topoisomerases I and II, as well as accessory proteins such as PCNA, RF-C, and RP-A. Finally, immunoblot analysis of MRCs from both cell types with monoclonal antibodies to poly (ADP-ribose) revealed the presence of approximately 15 poly(ADP-ribosyl)ated proteins, some of which were further confirmed to be DNA polymerase alpha, DNA topoisomerase I, and PCNA by immunoprecipitation experiments. These results suggest that PARP may play a regulatory role within the replicative apparatus as a molecular nick sensor controlling the progression of the replication fork or modulates component replicative enzymes or factors in the complex by directly associating with them or by catalyzing their poly(ADP-ribosyl)ation.
Collapse
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Simbulan-Rosenthal CM, Rosenthal DS, Ding R, Jackman J, Smulson ME. Depletion of nuclear poly(ADP-ribose) polymerase by antisense RNA expression: influence on genomic stability, chromatin organization, DNA repair, and DNA replication. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 55:135-56. [PMID: 8787609 DOI: 10.1016/s0079-6603(08)60192-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- C M Simbulan-Rosenthal
- Department of Biochemistry and Molecular Biology, Georgetown University School of Medicine, Washington, D.C. 20007, USA
| | | | | | | | | |
Collapse
|