1
|
Sharma A, Kashyap S, Singh S. Exploring the advances in quinoa processing: A comprehensive review enhancing nutritional quality and health benefits along with industrial feasibility of quinoa. Food Res Int 2025; 206:116093. [PMID: 40058932 DOI: 10.1016/j.foodres.2025.116093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/04/2025] [Accepted: 02/22/2025] [Indexed: 05/13/2025]
Abstract
The global dietary trend is shifting toward gluten-free crops with high nutritional value, driven by growing consumer awareness of environmental and health benefits of foods and food ingredients. Quinoa, a potential functional dietary ingredient, is rich in fiber, vitamins, and minerals. This review examines the impact of various processing methods, including thermal treatments (boiling, steaming, roasting), non-thermal techniques (germination, fermentation, microwave treatment, gamma irradiation, high hydrostatic pressure, and atmospheric pressure cold plasma), on the quality parameters of quinoa. Additionally, the health benefits of quinoa are explored in relation to human well-being. The review highlights recent advances in quinoa applications across industries, showcasing its versatility as an ingredient in functional foods and feeds. The effects of treatments vary widely, with each offering distinct advantages and limitations. Quinoa-based functional foods demonstrate the potential for developing health-promoting products, as quinoa's bioactive components exhibit antioxidant, antidiabetic, antihypertensive, anti-inflammatory, anticancer, and anti-obesity properties.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106, Punjab, India.
| | - Shweta Kashyap
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106, Punjab, India
| | - Sukhcharn Singh
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, 148106, Punjab, India
| |
Collapse
|
2
|
Ye G, Guan L, Zhang M. Research progress on processing and nutritional properties of fermented cereals. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:197-212. [PMID: 39868384 PMCID: PMC11757653 DOI: 10.1007/s13197-024-06099-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 01/28/2025]
Abstract
Fermented foods, especially those derived from cereals, are significant contributors to the diversification of global diets. As people pay increasing attention to food taste, flavor, and nutritional balance, conducting a comprehensive and integrated evaluation of the role of fermentation technology in cereals has become a top priority. This article reviews relevant research conducted in recent years, summarizing the fermentation conditions of cereals and focusing on the effects of fermentation on the nutritional value and health benefits of cereals, including its impact on basic components such as starch and dietary fiber. Fermentation can enhance the content of bioactive substances in cereals, playing a positive role in preventing chronic diseases such as type 2 diabetes, cancer, and hypertension. Finally, the article summarizes prospects for future market development of fermented cereal products, aiming to provide insights for improving the edible quality of fermented cereal-based products and developing functional fermented cereal products. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06099-6.
Collapse
Affiliation(s)
- Guodong Ye
- Present Address: School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048 China
| | - Lina Guan
- Present Address: School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048 China
| | - Min Zhang
- Present Address: School of Food and Health, Beijing Technology and Business University, 11 Fucheng Road, Beijing, 100048 China
| |
Collapse
|
3
|
Khayatan D, Nouri K, Momtaz S, Roufogalis BD, Alidadi M, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Plant-Derived Fermented Products: An Interesting Concept for Human Health. Curr Dev Nutr 2024; 8:102162. [PMID: 38800633 PMCID: PMC11126794 DOI: 10.1016/j.cdnut.2024.102162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/23/2024] [Accepted: 04/14/2024] [Indexed: 05/29/2024] Open
Abstract
The health benefits of fermenting plant-derived products remain an underexplored domain. Plants and other natural products serve as medicinal agents when consumed as part of our diets, and the role of microorganisms in fermentation garners significant scientific interest. The present narrative review investigates the effects of fermentation of substances such as plants, algae, and fungi on their therapeutic and related purposes. Among the microorganisms used in fermentation, lactic acid bacteria are often linked to fermented products, particularly dairy and animal-based ones, and take center stage. These microorganisms are adept at synthesizing vitamins, active peptides, minerals, proteinases, and enzymes. Plant-derived fermented products are a significant source of active peptides, phytochemicals, flavonoids, and bioactive molecules with a profound impact on human health. They exhibit anti-inflammatory, anticarcinogenic, antiatherosclerotic, antidiabetic, antimicrobial, and antioxidant properties, the effects being substantiated by experimental studies. Clinical investigations underscore their effectiveness in managing diverse health conditions. Various studies highlight a synergy between microorganisms and plant-based materials, with fermentation as an innovative method for daily food preparation or a treatment option for specific ailments. These promising findings highlight the need for continued scientific inquiry into the impact of fermentation-derived products in clinical settings. Clinical observations to date have offered valuable insights into health improvement for various disorders. This current narrative review explores the impact of natural and plant-originated fermented products on health and well-being.
Collapse
Affiliation(s)
- Danial Khayatan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Nouri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Basil D Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Mona Alidadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Yan X, McClements DJ, Luo S, Ye J, Liu C. A review of the effects of fermentation on the structure, properties, and application of cereal starch in foods. Crit Rev Food Sci Nutr 2024; 65:2323-2342. [PMID: 38532611 DOI: 10.1080/10408398.2024.2334269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Fermentation is one of the oldest food processing techniques known to humans and cereal fermentation is still widely used to create many types of foods and beverages. Starch is a major component of cereals and the changes in its structure and function during fermentation are of great importance for scientific research and industrial applications. This review summarizes the preparation of fermented cereals and the effects of fermentation on the structure, properties, and application of cereal starch in foods. The most important factors influencing cereal fermentation are pretreatment, starter culture, and fermentation conditions. Fermentation preferentially hydrolyzes the amorphous regions of starch and fermented starches have a coarser appearance and a smaller molecular weight. In addition, fermentation increases the starch gelatinization temperature and enthalpy and reduces the setback viscosity. This means that fermentation leads to a more stable and retrogradation-resistant structure, which could expand its application in products prone to staling during storage. Furthermore, fermented cereals have potential health benefits. This review may have important implications for the modulation of the quality and nutritional value of starch-based foods through fermentation.
Collapse
Affiliation(s)
- Xudong Yan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - David Julian McClements
- Biopolymers and Colloids Research Laboratory, Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | - Shunjing Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jiangping Ye
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Madjirebaye P, Peng F, Mueed A, Huang T, Mahamat B, Pahane MM, Xi Q, Chen X, Moussa K, Kadebe ZT, Otchom BB, Xu Y, Xie M, Xiong T, Peng Z. Exploring Impact of Probiotic-Fermented Soymilk on Dextran-Sulfate-Sodium-Induced Ulcerative Colitis via Modulating Inflammation and Gut Microbiota Profile. Mol Nutr Food Res 2024; 68:e2300586. [PMID: 38299716 DOI: 10.1002/mnfr.202300586] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/29/2023] [Indexed: 02/02/2024]
Abstract
SCOPE Lactic acid bacteria with probiotic functions and their fermentation products play a role in regulating ulcerative colitis (UC). This study investigates the potential role of fermented soymilk (FSM4) rich in isoflavones on DSS-induced UC. METHODS AND RESULTS Mice received 3% DSS and are supplemented daily once for 1 week by NFSM and FSM4. DSS usually causes intestinal inflammation and alters the gut microbiota. FSM4 intervention improves the UC-related inflammation and gut microbiota alteration. It considerably decreases pro-inflammatories such as TNF-α, IL-1β, and IL-6 in serum and COX-2 and MPO in colon tissues and pathogenic bacteria (Escherichia-Shigella). This facilitates gut-healthy bacteria growth. These healthy bacteria negatively correlat with pro-inflammatory factors but positively associated with acetic acid, butyric acid, and propionic acid, which may act for PPAR-γ pathway activating and NF-κB p65 pathway inhibiting, lowering the risk of UC. Overall, FSM4 might alleviate UC and significantly reverse the dysbiosis of gut microbiota via the PPAR-γ activation. It could be a good alternative for developing functional food to protect against UC. CONCLUSION FSM4 attenuates intestinal inflammation and modulates the SCFA-producing bacteria growth, which enable the PPAR-γ activation to alleviate the UC target, which could be a dietary intervention strategy for gut health.
Collapse
Affiliation(s)
- Philippe Madjirebaye
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Fei Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Abdul Mueed
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Tao Huang
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- International Institute of Food Innovation, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Bechir Mahamat
- Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, BP:117, Chad
| | | | - Qinghua Xi
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Kalli Moussa
- Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, BP:117, Chad
| | - Zoua Tessou Kadebe
- Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, BP:117, Chad
| | - Brahim Boy Otchom
- Faculty of Human Health Sciences, University of N'Djamena, N'Djamena, BP:117, Chad
| | - Yazhou Xu
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Tao Xiong
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| | - Zhen Peng
- State Key Laboratory of Food Science and Resources, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
- School of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, P.R. China
| |
Collapse
|
6
|
Cipollone MA, Abraham AG, Fontana A, Tironi VA. Autochthonous Fermentation as a Means to Improve the Bioaccessibility and Antioxidant Activity of Proteins and Phenolic Compounds of Yellow Pea Flour. Foods 2024; 13:659. [PMID: 38472775 DOI: 10.3390/foods13050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
This study focused on evaluating the potential of the natural fermentation of pea flour to improve the release of antioxidant compounds. Preliminary fermentations of 36.4% w/w flour dispersions were performed in tubes under different conditions (24 and 48 h, 30 and 37 °C). Finally, fermented flours (FFs) were obtained in a bioreactor under two conditions: 1: 36.4% w/w, 24 h, 30 °C (FF1); 2: 14.3% w/w, 24 h, 37 °C (FF2). The pH values decreased to 4.4-4.7, with a predominance of lactic acid bacteria. As in the fermentations in tubes, an increment in the proteolysis degree (TNBS method) (greater for FF2), polypeptide aggregation and a decrease in their solubility, an increase in <2 kDa peptides, and an increase in the Oxygen Radical Absorption Capacity (ORAC) potency of PBS-soluble fractions after fermentation were demonstrated. Also, fermentation increased the proteolysis degree after simulated gastrointestinal digestion (SGID, COST-INFOGEST) with respect to the non-fermented flour digests, with some differences in the molecular composition of the different digests. ORAC and Hydroxyl Radical Averting Capacity (HORAC) potencies increased in all cases. The digest of FF2 (FF2D) presented the greater ORAC value, with higher activities for >4 kDa, as well as for some fractions in the ranges 2-0.3 kDa and <0.10 kDa. Fermentation also increased the 60%-ethanol-extracted phenolic compounds, mainly flavonoids, and the ORAC activity. After SGID, the flavan-3-ols disappeared, but some phenolic acids increased with respect to the flour. Fermentation in condition 2 was considered the most appropriate to obtain a functional antioxidant ingredient.
Collapse
Affiliation(s)
- María Agustina Cipollone
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Universidad Nacional de La Plata (UNLP), 47 y 116, La Plata B1900AJJ, Argentina
| | - Analía G Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Universidad Nacional de La Plata (UNLP), 47 y 116, La Plata B1900AJJ, Argentina
- Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115, La Plata B1900AJJ, Argentina
| | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza (IBAM), CONICET, Facultad de Ciencias Agrarias (FCA), Universidad Nacional de Cuyo (IBAM-CONICET-FCA-UNCuyo), Almirante Brown 500, Chacras de Coria M5528AHB, Argentina
| | - Valeria A Tironi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Centro Científico Tecnológico La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), Universidad Nacional de La Plata (UNLP), 47 y 116, La Plata B1900AJJ, Argentina
| |
Collapse
|
7
|
Świder O, Roszko MŁ, Wójcicki M. The inhibitory effects of plant additives on biogenic amine formation in fermented foods - a review. Crit Rev Food Sci Nutr 2023; 64:12935-12960. [PMID: 37724793 DOI: 10.1080/10408398.2023.2258964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Fermented food has unique properties and high nutritional value, and thus, should constitute a basic element of a balanced and health-promoting diet. However, it can accumulate considerable amount of biogenic amines (BAs), which ingested in excess can lead to adverse health effects. The application of plant-derived additives represents a promising strategy to ensure safety or enhance the functional and organoleptic properties of fermented food. This review summarizes currently available data on the application of plant-origin additives with the aim to reduce BA content in fermented products. The importance of ensuring fermented food safety has been highlighted considering the growing evidence of beneficial effects resulting from the consumption of this type of food, as well as the increasing number of individuals sensitive to BAs. The examined plant-origin additives reduced the BA concentration to varying degrees, and their efficacy depended on the type of additive, matrix, autochthonous, and inoculated microorganisms, as well as the manufacturing conditions. The main mechanisms of action include antimicrobial effects and the inhibition of microbial decarboxylases. Further research on the optimization of bioactive substances extraction, standardization of their chemical composition, and development of detailed procedures for its use in fermented products manufacturing are needed.
Collapse
Affiliation(s)
- Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Marek Łukasz Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Michał Wójcicki
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
8
|
Muhammad M, Zhu Y, Wen A, Liu N, Qin L. Phenolic profile, alpha-amylase inhibitory activity, and in vitro glycemic index of adzuki beans. Front Nutr 2022; 9:1063602. [PMID: 36618697 PMCID: PMC9815551 DOI: 10.3389/fnut.2022.1063602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Regular consumption of low-glycemic index (GI) foods is a common strategy for type 2 diabetes patients. To evaluate the potential application of adzuki beans in low-GI foods, the phenolic profile and alpha-amylase inhibitor (α-AI) activity of four varieties of adzuki beans (G24, Te Xiao Li No. 1, Gui Nong No. 1, and Qian Xiao Hei) were determined. The starch digestibility properties and in vitro glycemic index (IVGI) of these beans were also evaluated using the in vitro digestion model coupled with 3,5-dinitrosalicylic acid colorimetry. The results indicated that these adzuki beans, containing numerous phenolics, showed inhibitory activities to alpha-amylase with the α-AI activities between 1.760 ± 0.044 and 3.411 ± 0.186 U/g. The resistant starch (RS) contributed predominantly to the total starch with proportions between (69.78 ± 2.45%) and (81.03 ± 0.06%); Te Xiao Li No. 1 was the highest compared with the other varieties. The adzuki beans were categorized into low- or medium-GI foods, and the IVGI ranged from (39.00 ± 0.36) to (56.76 ± 4.21). These results suggested that adzuki beans can be used as a component of low-GI foods.
Collapse
Affiliation(s)
- Mazhar Muhammad
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China
| | - Yong Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Anyan Wen
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Na Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Likang Qin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, Guizhou, China,School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China,*Correspondence: Likang Qin,
| |
Collapse
|
9
|
Comparing vibrational spectroscopic method with wet chemistry to determine nutritional and chemical changes in solid state fermented oats grain (Avena sativa L.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01672-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Liu C, Hayat U, Raza A, Jia CW, Wang JY. Zein-based injectable biomaterial and angiogenic activity through peptides produced by enzymatic degradation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
The Effect of Yogurt and Kefir Starter Cultures on Bioactivity of Fermented Industrial By-Product from Cannabis sativa Production—Hemp Press Cake. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cannabis sativa (hemp) is a plant considered to be abundant in bioactive compounds. The increasing production of hemp oil is leaving considerable amounts of hemp press cakes (HPC), which have not been sufficiently managed so far. One of the directions of development of plant-based food is the use of by-products of the agri-food industry in accordance with the idea of zero waste and the circular economy, so the purpose of this study was to determine the possibility of HPC fermentation using yogurt and kefir cultures and to determine the effect of the type of starter on the properties of the products. In the present study, starter cultures of yogurt (YO 122) and kefir (commercial grains) were used for HPC fermentation. Changes in lactic acid bacteria (LAB) and yeast population, pH, acidity, the content of bioactive compounds by spectrophotometric methods (proteins, amino acids, polyphenols, flavonoids, reducing sugars) and antioxidant activity (DDPH, ABTS, FRAP and reducing power) were determined. The results showed that it was possible to develop high-value beverages based on HPC with high fermentation efficiency: survivability of LAB and yeast (>106 CFU/g) and acidification (pH in a range of 4.82–6.36 and 5.34–6.49 for yogurt and kefir culture, respectively). Moreover, the stability of hemp protein, with its variable free amino acid composition, antioxidant potential and presented changes in polyphenolic content, was observed during storage. The presented results show a new way to manage HPC as an oil industry residue by using it as a raw material for the development of a bioactive food product and illustrate the relationship between applied starter culture, the direction of fermentation and changes in the content of bioactive compounds.
Collapse
|
12
|
Zhang J, Liu M, Zhao Y, Zhu Y, Bai J, Fan S, Zhu L, Song C, Xiao X. Recent Developments in Fermented Cereals on Nutritional Constituents and Potential Health Benefits. Foods 2022; 11:2243. [PMID: 35954011 PMCID: PMC9368413 DOI: 10.3390/foods11152243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/16/2022] Open
Abstract
Fermentation is one of the most economical and safe methods to improve the nutritional value, sensory quality and functional characteristics of raw materials, and it is also an important method for cereal processing. This paper reviews the effects of microbial fermentation on cereals, focusing on their nutritional value and health benefits, including the effects of fermentation on the protein, starch, phenolic compounds contents, and other nutrient components of cereals. The bioactive compounds produced by fermented cereals have positive effects on health regulation. Finally, the future market development of fermented cereal products is summarized and prospected.
Collapse
Affiliation(s)
- Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
- Inspection Quarantine Bureau Inspection and Quarantine Technology Center, Zhenjiang 212000, China
| | - Mengting Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Songtao Fan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Ci Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (J.Z.); (M.L.); (Y.Z.); (Y.Z.); (J.B.); (S.F.); (L.Z.); (C.S.)
| |
Collapse
|
13
|
Fadimu GJ, Le TT, Gill H, Farahnaky A, Olatunde OO, Truong T. Enhancing the Biological Activities of Food Protein-Derived Peptides Using Non-Thermal Technologies: A Review. Foods 2022; 11:1823. [PMID: 35804638 PMCID: PMC9265340 DOI: 10.3390/foods11131823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
Bioactive peptides (BPs) derived from animal and plant proteins are important food functional ingredients with many promising health-promoting properties. In the food industry, enzymatic hydrolysis is the most common technique employed for the liberation of BPs from proteins in which conventional heat treatment is used as pre-treatment to enhance hydrolytic action. In recent years, application of non-thermal food processing technologies such as ultrasound (US), high-pressure processing (HPP), and pulsed electric field (PEF) as pre-treatment methods has gained considerable research attention owing to the enhancement in yield and bioactivity of resulting peptides. This review provides an overview of bioactivities of peptides obtained from animal and plant proteins and an insight into the impact of US, HPP, and PEF as non-thermal treatment prior to enzymolysis on the generation of food-derived BPs and resulting bioactivities. US, HPP, and PEF were reported to improve antioxidant, angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, and antidiabetic properties of the food-derived BPs. The primary modes of action are due to conformational changes of food proteins caused by US, HPP, and PEF, improving the susceptibility of proteins to protease cleavage and subsequent proteolysis. However, the use of other non-thermal techniques such as cold plasma, radiofrequency electric field, dense phase carbon dioxide, and oscillating magnetic fields has not been examined in the generation of BPs from food proteins.
Collapse
Affiliation(s)
- Gbemisola J. Fadimu
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| | - Thao T. Le
- Department of Food and Microbiology, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand;
| | - Harsharn Gill
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| | - Asgar Farahnaky
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| | - Oladipupo Odunayo Olatunde
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Tuyen Truong
- School of Science, RMIT University, Melbourne, VIC 3083, Australia; (G.J.F.); (H.G.); (A.F.)
| |
Collapse
|
14
|
Gulsunoglu-Konuskan Z, Kilic-Akyilmaz M. Microbial Bioconversion of Phenolic Compounds in Agro-industrial Wastes: A Review of Mechanisms and Effective Factors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6901-6910. [PMID: 35164503 DOI: 10.1021/acs.jafc.1c06888] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Agro-industrial wastes have gained great attention as a possible source of bioactive compounds, which may be utilized in various industries including pharmaceutics, cosmetics, and food. The food processing industry creates a vast amount of waste which contains valuable compounds such as phenolics. Polyphenols can be found in soluble (extractable or free), conjugated, and insoluble-bound forms in various plant-based foods including fruits, vegetables, grains, nuts, and legumes. A substantial portion of phenolic compounds in agro-industrial wastes is present in the insoluble-bound form attached to the cell wall structural components and conjugated form which is covalently bound to sugar moieties. These bound phenolic compounds can be released from wastes by hydrolysis of the cell wall and glycosides by microbial enzymes. In addition, they can be converted into unique metabolites by methylation, carboxylation, sulfate conjugation, hydroxylation, and oxidation ability of microorganisms during fermentation. Enhancement of concentration and antioxidant activity of phenolic compounds and production of new metabolites from food wastes by microbial fermentation might be a promising way for better utilization of natural resources. This review provides an overview of mechanisms and factors affecting release and bioconversion of phenolic compounds in agro-industrial wastes by microbial fermentation.
Collapse
Affiliation(s)
- Zehra Gulsunoglu-Konuskan
- Faculty of Health Sciences, Nutrition and Dietetics Department, Istanbul Aydin University, Istanbul 34295, Turkey
| | - Meral Kilic-Akyilmaz
- Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Istanbul 34469, Turkey
| |
Collapse
|
15
|
Fermented sheep's milk enriched in gamma-amino butyric acid (GABA) by the addition of lactobacilli strains isolated from different food environments. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Li H, Zou L, Li XY, Wu DT, Liu HY, Li HB, Gan RY. Adzuki bean (Vigna angularis): Chemical compositions, physicochemical properties, health benefits, and food applications. Compr Rev Food Sci Food Saf 2022; 21:2335-2362. [PMID: 35365946 DOI: 10.1111/1541-4337.12945] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022]
Abstract
Adzuki bean (Vigna angularis), also called red bean, is a legume of Fabaceae (Leguminosae) family. This crop is native to East Asia and is also commercially available in other parts of the world. It is becoming a research focus owing to its distinct nutritional properties (e.g., abundant in polyphenols). The diverse health benefits and multiple utilization of this pulse are associated with its unique composition. However, there is a paucity of reviews focusing on the nutritional properties and potent applications of adzuki beans. This review summarizes the chemical compositions, physicochemical properties, health benefits, processing, and applications of adzuki beans. Suggestions on how to better utilize the adzuki bean are also provided to facilitate its development as a functional grain. Adzuki bean and its components can be further developed into value-added and nutritionally enhanced products.
Collapse
Affiliation(s)
- Hang Li
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Xin-Yan Li
- Department of Neonatology, Longquanyi District of Chengdu Maternal and Child Healthcare Hospital, Chengdu, China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Hong-Yan Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, China.,Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
17
|
Fidan H, Esatbeyoglu T, Simat V, Trif M, Tabanelli G, Kostka T, Montanari C, Ibrahim SA, Özogul F. Recent developments of lactic acid bacteria and their metabolites on foodborne pathogens and spoilage bacteria: Facts and gaps. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Das D, Sarkar S, Borsingh Wann S, Kalita J, Manna P. Current perspectives on the anti-inflammatory potential of fermented soy foods. Food Res Int 2022; 152:110922. [PMID: 35181093 DOI: 10.1016/j.foodres.2021.110922] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/15/2022]
Abstract
Fermented soy foods (FSF) are gaining significant attention due to promising health benefits. In recent years, FSF are being studied extensively due to the presence of diverse functional ingredients including active isoflavones and peptides along with essential micronutrients. The process of fermentation is responsible for the enrichment of various bioactive principles in soy-based fermented foods and exclusion of some anti-nutrient factors which are found predominantly in raw soybeans. Emerging evidence suggests that FSF possess immense therapeutic potential against inflammation and associated pathological complications. Extracts prepared from various FSF (e.g. fermented soy paste, milk, and sauce) were found to exert promising anti-inflammatory effects in numerous in vitro and in vivo settings. Moreover, clinical findings highlighted an inverse relationship between consumption of FSF and the prevalence of chronic inflammatory disorders among the communities which habitually consume fermented soy products. Molecular mechanisms underlying the anti-inflammatory role of FSF have been delineated in many literatures which collectively suggest that FSF extracts have regulatory actions over the expression and/or activity of several proinflammatory cytokines, inflammatory mediators, oxidative stress markers, and some other factors involved in the inflammatory pathways. The present review discusses the anti-inflammatory effects of FSF with mechanistic insights based upon the available findings from cell culture, preclinical, and clinical investigations.
Collapse
Affiliation(s)
- Dibyendu Das
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjib Sarkar
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sawlang Borsingh Wann
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Jatin Kalita
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Research Planning and Business Development Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
| | - Prasenjit Manna
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Center for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India.
| |
Collapse
|
19
|
Production and Characterization of Yogurt-Like Fermented Beverage Based on Camelina (Camelina sativa L.) Seed Press Cake. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plant-based fermented beverages are growing in popularity due to the rise in vegetarianism, health trends and ethical concerns. In this study, camelina (Camelina sativa L.) seed press cake (CPC, 15% and 20% w/w) was fermented using yogurt starter culture. The physicochemical properties of the samples, including pH, total acidity, color, viscosity, texture and rheological properties were investigated. Moreover, the lactic acid bacteria (LAB) viability, bioactive compounds and antioxidant activity were determined. During fermentation and 28-day refrigerated storage, the samples achieved a mean viable bacterial count of at least 1010 CFU/g, which is higher than the recommended bacteria level for traditional dairy yogurt (106 CFU/g). A significant acidification, consumption of reducing sugars, increase in free amino acids and polyphenolics was observed. In addition, CPC-based fermented samples showed good antioxidant potential. Textural and rheological characteristics were similar to dairy yogurt. Moreover, fermentation improved the sensory attributes of CPC, meeting consumers’ acceptance criteria. Thus, the study indicated that fermentation had a marked effect on the physicochemical, microbiological and functional properties of CPC. Therefore, the fermented CPC-based beverage has the potential to be a valid, value-added and novel alternative to dairy-based yogurt.
Collapse
|
20
|
Boeck T, Sahin AW, Zannini E, Arendt EK. Nutritional properties and health aspects of pulses and their use in plant-based yogurt alternatives. Compr Rev Food Sci Food Saf 2021; 20:3858-3880. [PMID: 34125502 DOI: 10.1111/1541-4337.12778] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022]
Abstract
Plant-based yogurt alternatives are increasing in market value, while dairy yogurt sales are stagnating or even declining. The plant-based yogurt alternatives market is currently dominated by products based on coconut or soy. Coconut-based products especially are often low in protein and high in saturated fat, while soy products raise consumer concerns regarding genetically modified soybeans, and soy allergies are common. Pulses are ideally suited as a base for plant-based yogurt alternatives due to their high protein content and beneficial amino acid composition. This review provides an overview of pulse nutrients, pro-nutritional and anti-nutritional compounds, how their composition can be altered by fermentation, and the chemistry behind pulse protein coagulation by acid or salt denaturation. An extensive market review on plant-based yogurt alternatives provides an overview of the current worldwide market situation. It shows that pulses are ideal base ingredients for yogurt alternatives due to their high protein content, amino acid composition, and gelling behavior when fermented with lactic acid bacteria. Additionally, fermentation can be used to reduce anti-nutrients such as α-galactosides and vicine or trypsin inhibitors, further increasing the nutritional value of pulse-based yogurt alternatives.
Collapse
Affiliation(s)
- Theresa Boeck
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Aylin W Sahin
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
21
|
Preparation of Vitamin K2 Mk-7 in a Process of Fermentation of Different Seeds and Cereals by Bacteria Bacillus Subtilis. ACTA UNIVERSITATIS CIBINIENSIS. SERIES E: FOOD TECHNOLOGY 2021. [DOI: 10.2478/aucft-2021-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
In this study, 10 different plant materials (seeds/beans) were fermented by Bacillus subtilis var. natto. The influence of the process on vitamin K2 MK-7 content during different fermentation periods was assessed. Fermented plant samples were analyzed by the procedure using HPLC UV/DAD. The fermented sunflower seeds, mung beans and peas appeared to be the most promising plants, reaching values of K2 of 1080.18±55.11 µg/100g, 806.45±60.95 µg/100g and 636.92±59.86 µg/100g, respectively. The experiments showed that extending of the fermentation time to 5–6 days was favorable for the menaquinone-7 yield. The results show that almost all fermented seeds/beans, apart from soybean, can be good source of vitamin K2 MK-7 and represent a new perspective, especially in terms of lower the phytoestrogen content.
Collapse
|
22
|
Abstract
Quinoa (Chenopodium quinoa Willd.) is increasingly singled out as a healthy food with an excellent nutritional profile. Besides being suitable for gluten-free diets, it is rich in proteins of excellent quality and is a good source of minerals and vitamins, as well as of natural antioxidants, such as phenolic compounds. The aim of this work is to present how fermentation can affect phenolic compound content and antioxidant capacity of quinoa. It emerged that fermentation can be used to increase phenolic compound content and antioxidant capacity in both quinoa seeds and flours. The use of fermented quinoa flours allowed obtaining bread and pasta richer in phenolic compounds and with a greater antioxidant capacity. Fungi are the main starters used in quinoa seed fermentation, while Lactobacillus strains have been applied to produce sourdoughs. Quinoa has been also fermented to obtain yogurt-like beverages with a higher content in phenolic compounds and a greater antioxidant activity. Strains of Lactobacillus sp. and Bifidobacterium sp. have been used as starters.
Collapse
|
23
|
Labba ICM, Andlid T, Lindgren Å, Sandberg AS, Sjöberg F. Isolation, identification, and selection of strains as candidate probiotics and starters for fermentation of Swedish legumes. Food Nutr Res 2020; 64:4410. [PMID: 33061883 PMCID: PMC7534948 DOI: 10.29219/fnr.v64.4410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The non-dairy sector is growing, fermented alternatives to dairy are sparse. Adapted starter cultures to substituting raw materials needs to be developed. OBJECTIVE Aims of this study were to isolate, identify, and phenotypically characterize lactic acid bacteria (LAB) that inhabit Swedish legumes, and assess properties necessary for selecting strains with the ability to ferment a bean beverage and with potential health beneficial properties. DESIGN Isolates of presumed LAB were obtained from legumes collected at Öland, Sweden. Strain diversity was assessed by repetitive polymerase chain reaction (rep-PCR). The strains were identified using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Species belonging to Enterococcus were predominant along with Pediococcus and closely related Bacillus. Strains were tested for tolerance to low pH, phenol, and bile as well as their bile salt hydrolase (BSH) activity. In addition, Enterococcus strains were tested for antibiotic resistance, and Pediococcus strains for their ability to ferment a bean beverage. RESULTS From the 25 strains characterized, five were found resistant to low pH, bile, and phenol, suggesting that they can survive a passage through the gastrointestinal tract (GIT) and hence potentially exert beneficial effects in the host. These are suggested for further investigation on specific host-beneficial properties. Two of these, belonging to Pediococcus pentosaceus, were able to ferment a bean beverage without any added nutrients, indicating that the Pediococcus strains are well adapted to the bean substrate. One of the P. pentosaceus strains were also able to markedly improve the reduction of phytate by the phytase-producing yeast strain Pichia kudriavzevii TY1322 during co-fermentation as well as increase the final cell count of the yeast strain. CONCLUSION Strain isolation and characterization performed in this study aids in selecting starter cultures for legume fermentation. Nutritional properties can be improved by co-fermentation with yeast indicating that novel nutritious fermented non-dairy products could be developed.
Collapse
Affiliation(s)
- Inger-Cecilia Mayer Labba
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Thomas Andlid
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Åsa Lindgren
- Department of Clinical Bacteriology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann-Sofie Sandberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Fei Sjöberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
24
|
Yang L, Fan W, Xu Y. Metaproteomics insights into traditional fermented foods and beverages. Compr Rev Food Sci Food Saf 2020; 19:2506-2529. [PMID: 33336970 DOI: 10.1111/1541-4337.12601] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
Abstract
Traditional fermented foods and beverages (TFFB) are important dietary components. Multi-omics techniques have been applied to all aspects of TFFB research to clarify the composition and nutritional value of TFFB, and to reveal the microbial community, microbial interactions, fermentative kinetics, and metabolic profiles during the fermentation process of TFFB. Because of the advantages of metaproteomics in providing functional information, this technology has increasingly been used in research to assess the functional diversity of microbial communities. Metaproteomics is gradually gaining attention in the field of TFFB research because it can reveal the nature of microorganism function at the protein level. This paper reviews the common methods of metaproteomics applied in TFFB research; systematically summarizes the results of metaproteomics research on TFFB, such as sauces, wines, fermented tea, cheese, and fermented fish; and compares the differences in conclusions reached through metaproteomics versus other omics methods. Metaproteomics has great advantages in revealing the microbial functions in TFFB and the interaction between the materials and microbial community. In the future, metaproteomics should be further applied to the study of functional protein markers and protein interaction in TFFB; multi-omics technology requires further integration to reveal the molecular nature of TFFB fermentation.
Collapse
Affiliation(s)
- Liang Yang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenlai Fan
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
25
|
Kitum VC, Kinyanjui PK, Mathara JM, Sila DN. Effect of Lb. plantarum BFE 5092 Fermentation on Antinutrient and Oligosaccharide Composition of Whole Red Haricot Bean ( Phaseolus vulgaris L). INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:8876394. [PMID: 32851056 PMCID: PMC7439167 DOI: 10.1155/2020/8876394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022]
Abstract
Common beans are a leguminous plant of the genus Phaseolus. They are rich in protein, energy, and minerals. They confer a wide range of health benefits when consumed. Utilization of common bean has however been poor due to high antinutrient content that results in reduced nutrient digestibility and mineral bioavailability. Flatulence after consumption is also a huge deterrent to common bean consumption. Lactic acid fermentation is the most common form of food fermentation with the Lactobacilli spp dominating most spontaneous fermentations. The objective of this study was to determine the effect of lactic acid bacteria (LAB) on the antinutrient and flatulence causing oligosaccharide composition of red haricot bean. A factorial research design was used in the study. Red haricot beans were sorted and soaked for 15 h. The soaked beans were fermented in 2% salt-sugar solutions for 120 h. Experimental batch was inoculated with Lb. plantarum BFE 5092 (IF), and the control batch was spontaneously fermented (SF). Microbial growth and pH were monitored every 24 h during fermentation. After fermentation, the beans were dried and milled, and the flours were subjected to biochemical analysis. ANOVA was done using SPSS statistics 23. The pH decreased significantly (P < 0.05) from 6.06 to 3.9 in both batches at the end of fermentation. The LAB counts significantly increased (P < 0.05) in both batches, whereas coliform counts decreased significantly (P < 0.05). Fungi were not detected in both batches. Soaking lowered tannins and phytates and raffinose concentrations significantly but had no significant effect on stachyose concentration. At the end of 120 h of fermentation, the tannin content was 109.50 and 54.04 mg/100 g in IF and SF, respectively. Phytates were at 242.52 and 163.43 mg/100 g in IF and SF, respectively. Raffinose content was 32.85 and 32.58 mg/100 g in IF and SF, respectively, while stachyose content was 593.33 and 467.49 mg/100 g in IF and SF, respectively. This research showed that LAB is able to ferment soaked whole red haricot and lower the tannin, phytate, raffinose, and stachyose content significantly. Spontaneous fermentation lowered these antinutrients and oligosaccharides better than inoculation with Lb. plantarum BFE 5092.
Collapse
Affiliation(s)
- Vivian C. Kitum
- Department of Food Science, Jomo Kenyatta University of Agriculture and technology, Nairobi, P.O. Box 62000-00200, Nairobi, Kenya
| | - Peter K. Kinyanjui
- Department of Food Science, Jomo Kenyatta University of Agriculture and technology, Nairobi, P.O. Box 62000-00200, Nairobi, Kenya
| | - Julius M. Mathara
- Department of Food Science, Jomo Kenyatta University of Agriculture and technology, Nairobi, P.O. Box 62000-00200, Nairobi, Kenya
| | - Daniel N. Sila
- Department of Food Science, Jomo Kenyatta University of Agriculture and technology, Nairobi, P.O. Box 62000-00200, Nairobi, Kenya
| |
Collapse
|
26
|
Das G, Paramithiotis S, Sundaram Sivamaruthi B, Wijaya CH, Suharta S, Sanlier N, Shin HS, Patra JK. Traditional fermented foods with anti-aging effect: A concentric review. Food Res Int 2020; 134:109269. [PMID: 32517898 DOI: 10.1016/j.foodres.2020.109269] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
Fermentation has been applied since antiquity as a way to preserve foodstuff or as a necessary step in the production of a variety of products. The research was initially focused on accurate description of production procedure and identification of parameters that may affect the composition and dynamics of the developing micro-communities, since the major aim was standardization and commercial exploitation of the products. Soon it was realized that consumption of these products was associated with an array of health benefits, such as anti-hypertensive, anti-inflammatory, anti-diabetic, anti-carcinogenic and anti-allergenic activities. These were credited to the microorganisms present in the fermented products as well as their metabolic activities and the bio-transformations that took place during the fermentation process. Aging has been defined as a gradual decline in the physiological function and concomitantly homeostasis, which is experienced by all living beings over time, leading inevitably to age-associated injuries, diseases, and finally death. Research has focused on effective strategies to delay this process and thus increase both lifespan and well-being. Fermented food products seem to be a promising alternative due to the immunomodulatory effect of microorganisms and elevated amounts of bioactive compounds. Indeed, a series of anti-aging related benefits have been reported, some of which have been attributed to specific compounds such as genistein and daidzein in soybeans, while others are yet to be discovered. The present article aims to collect and critically discuss all available literature regarding the anti-aging properties of fermented food products.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - Spiros Paramithiotis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Athens, Greece
| | - Bhagavathi Sundaram Sivamaruthi
- Innovation Center for Holistic Health, Nutraceuticals and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Christofora Hanny Wijaya
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor, Indonesia
| | - Sigit Suharta
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University, Bogor, Indonesia
| | - Nevin Sanlier
- Ankara Medipol University, School of Health Science, Department of Nutrition and Dietetics, Ankara, Turkey
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Goyang, South Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea.
| |
Collapse
|
27
|
Lactic fermentation of cooked navy beans by
Lactobacillus paracasei
CBA L74
aimed at a potential production of functional legume‐based foods. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Tsafrakidou P, Michaelidou AM, G. Biliaderis C. Fermented Cereal-based Products: Nutritional Aspects, Possible Impact on Gut Microbiota and Health Implications. Foods 2020; 9:E734. [PMID: 32503142 PMCID: PMC7353534 DOI: 10.3390/foods9060734] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Fermentation, as a process to increase the security of food supply, represents an integral part of food culture development worldwide. Nowadays, in the evolving functional food era where new sophisticated technological tools are leading to significant transformations in the field of nutritional sciences and science-driven approaches for new product design, fermentation technology is brought to the forefront again since it provides a solid foundation for the development of safe food products with unique nutritional and functional attributes. Therefore, the objective of the present review is to summarize the most recent advances in the field of fermentation processes related to cereal-based products. More specifically, this paper addresses issues that are relevant to nutritional and health aspects, including their interrelation with intestinal (gut) microbiome diversity and function, although clinical trials and/or in vitro studies testing for cereal-based fermented products are still scarce.
Collapse
Affiliation(s)
- Panagiota Tsafrakidou
- Dairy Research Institute, General Directorate of Agricultural Research, Hellenic Agricultural Organization DEMETER, Katsikas, 45221 Ioannina, Greece;
| | - Alexandra-Maria Michaelidou
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Costas G. Biliaderis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
29
|
Reque PM, Pinilla CMB, Tinello F, Corich V, Lante A, Giacomini A, Brandelli A. Biochemical and functional properties of wheat middlings bioprocessed by lactic acid bacteria. J Food Biochem 2020; 44:e13262. [PMID: 32361998 DOI: 10.1111/jfbc.13262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 11/30/2022]
Abstract
The present study aimed to investigate the bioprocessing of wheat middlings with different lactic acid bacteria (LAB) in order to improve biological activities of this by-product of wheat flour production. The concentration of lactic acid, reducing sugars, and total phenolics, as well as antioxidant, antibrowning, antibacterial and prebiotic activities of fermented samples were analyzed. All LAB strains were capable to growth on wheat middlings, and pH decreased in the medium associated with lactic acid production during cultivation. Samples inoculated with Lactobacillus plantarum DSM20174 presented the maximum growth, lactic acid concentration above 2 mg/ml, and pH values around 3.8. The amount or reducing sugars decreased after 24 hr growth, except for maltose. Bioprocessed wheat middlings exhibited antioxidant, antibrowning, antibacterial, and prebiotic properties, related with the increase of total phenolic content. Highest values for antioxidant activities were obtained for L. plantarum and Streptococcus thermophilus strains, reaching values around 400 and 640 μM Trolox equivalents (TE) ml-1 for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric ion reducing antioxidant power (FRAP) assays, respectively. Bioprocessing techniques using LAB can be an interesting approach to improve the availability of compounds with health-promoting properties from lignocellulosic waste material. PRACTICAL APPLICATIONS: The processing of secondary products from wheat milling can represent an important benefit to the industry. Wheat middlings bioprocessed with LAB showed improved biological activities and may represent an interesting ingredient to be incorporated in food and feed formulations.
Collapse
Affiliation(s)
- Priscilla Magro Reque
- Department of Food Science, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristian Mauricio Barreto Pinilla
- Department of Food Science, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Federica Tinello
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Padova, Italy
| | - Viviana Corich
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Padova, Italy
| | - Anna Lante
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Padova, Italy
| | - Alessio Giacomini
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Università degli Studi di Padova, Padova, Italy
| | - Adriano Brandelli
- Department of Food Science, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
30
|
Taniguchi M, Aida R, Saito K, Oya R, Ochiai A, Saitoh E, Tanaka T. Identification of cationic peptides derived from low protein rice by-products and evaluation of their multifunctional activities. J Biosci Bioeng 2020; 129:307-314. [DOI: 10.1016/j.jbiosc.2019.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
|
31
|
Taniguchi M, Aida R, Saito K, Kikura T, Ochiai A, Saitoh E, Tanaka T. Identification and characterization of multifunctional cationic peptides from enzymatic hydrolysates of soybean proteins. J Biosci Bioeng 2020; 129:59-66. [PMID: 31324383 DOI: 10.1016/j.jbiosc.2019.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022]
Abstract
In this study, we used the commercial soybean protein hydrolysate Hinute-DC6 as a novel starting material from which to purify and identify multifunctional cationic peptides. After fractionation, Hinute-DC6 was separated into 20 fractions with varying isoelectric points (pI) by ampholyte-free isoelectric focusing (autofocusing). Subsequently, we purified and identified the cationic peptides from fractions 19 and 20, which had pI values greater than 12, using reversed-phase high-performance liquid chromatography and matrix-assisted laser/desorption ionization-time-of-flight mass spectrometry. Of the 83 cationic peptides identified, 14 had high pI values and net charges greater than +2, and were chemically synthesized and assayed for various bioactivities, including hemolytic, antimicrobial, lipopolysaccharide (LPS)-neutralizing, and angiogenic activities. None of the 14 cationic peptides tested exhibited hemolytic activity toward mammalian red blood cells at concentrations up to 1000 μM. Five of the cationic peptides exhibited antimicrobial activities against at least one of four human-pathogenic microorganisms tested. In addition, in chromogenic LPS-neutralizing assays using Limulus amebocyte lysates, the 50% effective concentrations of these 14 peptides were between 0.069 and 5.2 μM. Tube-formation assays in human umbilical vein endothelial cells showed that each of the 14 cationic peptides exhibited significant angiogenic activities at 10 μM, with values similar to those of the positive control LL-37. Our results demonstrate that the 14 identified cationic peptides have multiple functions with negligible hemolytic activity. These data indicate that the cationic peptides isolated from Hinute-DC6 and fractions containing these cationic peptides have the potential to be used as multifunctional ingredients for healthcare applications.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
| | - Ryousuke Aida
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Kazuki Saito
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Toyotaka Kikura
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Eiichi Saitoh
- Graduate School of Technology, Niigata Institute of Technology, Niigata 945-1195, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
32
|
Chen Y, Wang Y, Chen J, Tang H, Wang C, Li Z, Xiao Y. Bioprocessing of soybeans (Glycine max L.) by solid-state fermentation with Eurotium cristatum YL-1 improves total phenolic content, isoflavone aglycones, and antioxidant activity. RSC Adv 2020; 10:16928-16941. [PMID: 35496929 PMCID: PMC9053166 DOI: 10.1039/c9ra10344a] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/22/2020] [Indexed: 12/28/2022] Open
Abstract
In this study, soybean (Glycine max L.) was bioprocessed with fungal strain Eurotium cristatum YL-1 by using the solid-state fermentation (SSF) technique. The effect of SSF on total phenolic content (TPC), isoflavone compositions, and antioxidant activity of soybean during different fermentation periods was evaluated. Results showed that TPC and isoflavone aglycones were significantly increased, whereas glucoside isoflavones were remarkably reduced during SSF. After 15 days of SSF, the TPC, daidzein, genistein, and total aglycones of soybeans were approximately 1.9-, 10.4-, 8.4-, and 9.4-fold higher, respectively, than those of non-fermented soybeans. During SSF, β-glucosidase activity was very high, whereas α-amylase and protease activities were at moderate levels, and cellulase activity was relatively low. A highly positive correlation was found between TPC and the activities of α-amylase (correlation coefficient R2 = 0.9452), β-glucosidase (R2 = 0.9559), cellulase (R2 = 0.9783), and protease (R2 = 0.6785). Linear analysis validated that the β-glucosidase produced by E. cristatum contributed to the bioconversion of soybean isoflavone glucosides into their aglycone forms. The DPPH radical and ABTS˙+ scavenging activity, reducing power, and ferric reducing antioxidant power of soybeans were considerably enhanced during SSF. Principal component analysis and Pearson's correlation analysis verified that the improvement in TPC and isoflavone aglycone content during SSF was mainly responsible for the improved antioxidant capacity of soybeans. Thus, our results demonstrated that solid-state bioprocessing with E. cristatum is an effective approach for the enhancement of the TPC, isoflavone aglycones, and antioxidant capacity of soybeans. Bioprocessed soybean products might be a healthy food supplement rich in antioxidants compared with non-fermented soybean and thus could be a source of natural antioxidants. Solid-state bioprocessing with Eurotium cristatum is an effective approach for the enhancement of total phenolic content, isoflavone aglycones, and antioxidant activity of soybeans.![]()
Collapse
Affiliation(s)
- Yulian Chen
- Hunan Yancun Ecological Farming Technology Co., Ltd
- Changsha
- China
| | - Yuanliang Wang
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
- Hunan Province Key Laboratory of Food Science and Biotechnology
| | - Jiaxu Chen
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
| | - Hao Tang
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
| | - Chuanhua Wang
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
| | - Zongjun Li
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
- Hunan Province Key Laboratory of Food Science and Biotechnology
| | - Yu Xiao
- College of Food Science and Technology
- Hunan Agricultural University
- Changsha 410128
- China
| |
Collapse
|
33
|
Tang GY, Zhao CN, Xu XY, Gan RY, Cao SY, Liu Q, Shang A, Mao QQ, Li HB. Phytochemical Composition and Antioxidant Capacity of 30 Chinese Teas. Antioxidants (Basel) 2019; 8:E180. [PMID: 31216700 PMCID: PMC6617242 DOI: 10.3390/antiox8060180] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
Tea has been reported to prevent and manage many chronic diseases, such as cancer, diabetes, obesity, and cardiovascular diseases, and the antioxidant capacity of tea may be responsible for these health benefits. In this study, the antioxidant capacities of fat-soluble, water-soluble, and bound-insoluble fractions of 30 Chinese teas belonging to six categories, namely green, black, oolong, dark, white, and yellow teas, were systematically evaluated, applying ferric-reducing antioxidant power and Trolox equivalent antioxidant capacity assays. In addition, total phenolic contents of teas were determined by Folin-Ciocalteu method, and the contents of 18 main phytochemical compounds in teas were measured by high-performance liquid chromatography (HPLC). The results found that several teas possessed very strong antioxidant capacity, and caffeine, theaflavine, gallic acid, chlorogenic acid, ellagic acid, and kaempferol-3-O-glucoside, as well as eight catechins, were the main antioxidant compounds in them. Thus, these teas could be good natural sources of dietary antioxidants, and their extracts might be developed as food additives, nutraceuticals, cosmetics, and pharmaceuticals.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Xiao-Yu Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shi-Yu Cao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
34
|
Paśko P, Tyszka-Czochara M, Namieśnik J, Jastrzębski Z, Leontowicz H, Drzewiecki J, Martinez-Ayala AL, Nemirovski A, Barasch D, Gorinstein S. Cytotoxic, antioxidant and binding properties of polyphenols from the selected gluten-free pseudocereals and their by-products: In vitro model. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Taniguchi M, Aida R, Saito K, Ochiai A, Takesono S, Saitoh E, Tanaka T. Identification and characterization of multifunctional cationic peptides from traditional Japanese fermented soybean Natto extracts. J Biosci Bioeng 2019; 127:472-478. [PMID: 30337232 DOI: 10.1016/j.jbiosc.2018.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/12/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
In this study, we investigated the lipopolysaccharide (LPS)-neutralizing and angiogenic activities of cationic peptides derived from the traditional Japanese fermented product Natto, which is made by fermenting cooked soybeans using Bacillus subtilis. Initially, we prepared 20 fractions of Natto extracts with various isoelectric points (pI's) using ampholyte-free isoelectric focusing (autofocusing). Cationic peptides were then purified from fractions 19 and 20, whose pH values were greater than 12, using reversed-phase high-performance liquid chromatography, and were identified using matrix-assisted laser/desorption ionization-time-of-flight mass spectroscopy. Among the 13 identified cationic peptides, seven (KFNKYGR, FPFPRPPHQK, GQSSRPQDRHQK, QRFDQRSPQ, ERQFPFPRPPHQK, GEIPRPRPRPQHPE, and EQPRPIPFPRPQPR) had pI's greater than 9.5, positive net charges, and differing molecular weights. These peptides were then chemically synthesized and applied to chromogenic LPS-neutralizing assays using Limulus amebocyte lysates, and 50% effective (neutralizing) concentrations of 2.6-5.5 μM were demonstrated. In addition, tube formation assays in human umbilical vein endothelial cells revealed angiogenic activities for all but one (GEIPRPRPRPQHPE) of these seven cationic peptides, with increases in relative tube lengths of 23-31% in the presence of peptides at 10 μM. Subsequent experiments showed negligible hemolytic activity of these peptides at concentrations of up to 500 μM in mammalian red blood cells. Collectively, these data demonstrate that six cationic peptides from Natto extracts, with the exception of GEIPRPRPRPQHPE, have LPS-neutralizing and angiogenic activities but do not induce hemolysis.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
| | - Ryousuke Aida
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Kazuki Saito
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Akihito Ochiai
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Satoshi Takesono
- Graduate School of Technology, Niigata Institute of Technology, Niigata 945-1195, Japan
| | - Eiichi Saitoh
- Graduate School of Technology, Niigata Institute of Technology, Niigata 945-1195, Japan
| | - Takaaki Tanaka
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| |
Collapse
|
36
|
Wang H, Huang J, Sun L, Xu F, Zhang W, Zhan J. An efficient process for co-production of γ-aminobutyric acid and probiotic Bacillus subtilis cells. Food Sci Biotechnol 2019; 28:155-163. [PMID: 30815306 PMCID: PMC6365325 DOI: 10.1007/s10068-018-0461-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/09/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022] Open
Abstract
This study was to establish an integrated process for the co-production of γ-aminobutyric acid (GABA) and live probiotics. Six probiotic bacteria were screened and Bacillus subtilis ATCC 6051 showed the highest GABA-producing capacity. The optimal temperature and initial pH value for GABA production in B. subtilis were found to be 30 °C and 8.0, respectively. A variety of carbon and nitrogen sources were tested, and potato starch and peptone were the preferred carbon and nitrogen sources for GABA production, respectively. The concentrations of carbon source, nitrogen source and substrate (sodium l-glutamate) were then optimized using the response surface methodology. The GABA titer and concentration of viable cells of B. subtilis reached 19.74 g/L and 6.0 × 108 cfu/mL at 120 h. The GABA titer represents the highest production of GABA in B. subtilis. This work thus demonstrates a highly efficient co-production process for GABA and probiotic B. subtilis cells.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
- Hubei Province Engineering Research Center for Legume Plants, School of Life Sciences, Jianghan University, 8 Xuefu Road, Wuhan, 430056 Hubei China
| | - Jinge Huang
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
| | - Lei Sun
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
| | - Fuchao Xu
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
| | - Wei Zhang
- Hangzhou Viablife Biotech Co., Ltd, 1 Jingyi Road, Yuhang District, Hangzhou, 31113 Zhejiang China
| | - Jixun Zhan
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322-4105 USA
- TCM and Ethnomedicine Innovation and Development Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208 Hunan China
| |
Collapse
|
37
|
Tao J, Li S, Gan RY, Zhao CN, Meng X, Li HB. Targeting gut microbiota with dietary components on cancer: Effects and potential mechanisms of action. Crit Rev Food Sci Nutr 2019; 60:1025-1037. [PMID: 30632784 DOI: 10.1080/10408398.2018.1555789] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancers are common chronic diseases worldwide and cause severe health burdens. There have been ongoing debates on the role of gut microbiota in the prevention and management of cancers, thus, it is worthwhile to pay high attention to the impacts of gut microbiota on several cancers, such as colon, liver, and breast cancers. In addition, it has been reported that gut microbiota may also affect the efficacy of cancer chemotherapy and immunotherapy. Among all the factors that influence gut microbiota, diet is the most influential and modifiable. The prebiotics, dietary fibers, short-chain fatty acids, and other bioactive compounds are all important dietary components to assist the growth of beneficial microbiota in the gut, which can protect against cancers and promote human health. Their beneficial effects can be due to the fermentation of dietary fibers, the metabolism of phytochemicals, the synthesis of estrogens, and interactions with chemotherapies and immunotherapies. In order to provide updated information of the relationships among dietary components, gut microbiota, and cancer, in this review, we summarize the reciprocal interactions between dietary components and gut microbiota, and highlight the impacts of dietary components on several common cancers by targeting gut microbiota, with the potential mechanisms of actions also intensively discussed. As a result, this review can be very helpful for healthy people as well as cancer patients to prevent or manage cancers via dietary factor-mediated regulation of gut microbiota.
Collapse
Affiliation(s)
- Jun Tao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China.,South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
38
|
Effect of liquid-state fermentation on the antioxidant and functional properties of raw and roasted buckwheat flours. Food Chem 2019; 271:291-297. [DOI: 10.1016/j.foodchem.2018.07.182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/17/2018] [Accepted: 07/25/2018] [Indexed: 11/19/2022]
|
39
|
Fang C, Du H, Jia W, Xu Y. Compositional Differences and Similarities between Typical Chinese Baijiu and Western Liquor as Revealed by Mass Spectrometry-Based Metabolomics. Metabolites 2018; 9:E2. [PMID: 30577624 PMCID: PMC6358772 DOI: 10.3390/metabo9010002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 12/26/2022] Open
Abstract
Distilled liquors are important products, both culturally and economically. Chemically, as a complex mixture, distilled liquor comprises various chemical compounds in addition to ethanol. However, the chemical components of distilled liquors are still insufficiently understood and compositional differences and similarities of distilled liquors from different cultures have never been compared. For the first time, both volatile organic compounds (VOCs) and non-VOCs in distilled liquors were profiled using mass spectrometry-based metabolomic approaches. A total of 879 VOCs and 268 non-VOCs were detected in 24 distilled liquors including six typical Chinese baijiu and 18 typical Western liquors. Principal component analysis and a correlation network revealed important insights into the compositional differences and similarities of the distilled liquors that were assessed. Ethyl esters, a few benzene derivatives, and alcohols were shared by most distilled liquors assessed, suggesting their important contribution to the common flavor and mouthfeel of distilled liquors. Sugars and esters formed by fatty alcohol differ significantly between the assessed Chinese baijiu and Western liquors, and are potential marker compounds that could be used for their discrimination. Factors contributing to the differences in chemical composition are proposed. Our results improve our understanding of the chemical components of distilled liquors, which may contribute to more rigorous quality control of alcoholic beverages.
Collapse
Affiliation(s)
- Cheng Fang
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Hai Du
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, HI 96813, USA.
| | - Yan Xu
- State Key Laboratory of Food Science and Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
40
|
Zhang H, Birch J, Pei J, Ma ZF, Bekhit AE. Phytochemical compounds and biological activity in Asparagus roots: a review. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Hongxia Zhang
- Department of Food Science University of Otago PO Box 56 Dunedin New Zealand
| | - John Birch
- Department of Food Science University of Otago PO Box 56 Dunedin New Zealand
| | - Jinjin Pei
- Shanxi Key Laboratory of Bioresources Shanxi University of Technology Hanzhong 723001 China
| | - Zheng Feei Ma
- Department of Public Health Xi'an Jiaotong‐Liverpool University Suzhou 215213 China
| | - Alaa El‐Din Bekhit
- Department of Food Science University of Otago PO Box 56 Dunedin New Zealand
| |
Collapse
|
41
|
Yang QQ, Gan RY, Ge YY, Zhang D, Corke H. Polyphenols in Common Beans (Phaseolus vulgaris L.): Chemistry, Analysis, and Factors Affecting Composition. Compr Rev Food Sci Food Saf 2018; 17:1518-1539. [PMID: 33350144 DOI: 10.1111/1541-4337.12391] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/29/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022]
Abstract
Common bean (Phaseolus vulgaris L.) is one of the most important grain legumes worldwide. Polyphenols are the predominant bioactive components with multifold bioactivities in diverse common bean cultivars. Phenolic acids, flavonoids, and proanthocyanidins are the main polyphenols in common beans, and colorful common beans are overall rich in polyphenols, mainly in their pigmented seed coats. In addition, factors of influence, such as genotype, environmental conditions, storage, and processing methods, play a critical role in the content and composition of common bean polyphenols. Besides, analytical methods, including extraction, separation, and identification, are of importance for precise and comparable evaluation of polyphenols in common beans. Therefore, in order to provide a comprehensive and updated understanding of polyphenols in common beans, this review first summarizes the content and different compositions of polyphenols in common beans, and next discusses the factors affecting these compositions, followed by introducing the analytical methods for common bean polyphenols, and finally highlights the antioxidant activity of polyphenols in common beans. Considering the recent surge in interest in the use of grain legumes, we hope this review will further stimulate work in this field by providing a blueprint for further analytical studies to better utilize common bean polyphenols in food products to improve human nutrition.
Collapse
Affiliation(s)
- Qiong-Qiong Yang
- Dept. of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Ren-You Gan
- Dept. of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Ying-Ying Ge
- Dept. of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Dan Zhang
- Dept. of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| | - Harold Corke
- Dept. of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong Univ., Shanghai, 200240, China
| |
Collapse
|
42
|
Sharma BR, Kumar V, Gat Y, Kumar N, Parashar A, Pinakin DJ. Microbial maceration: a sustainable approach for phytochemical extraction. 3 Biotech 2018; 8:401. [PMID: 30221114 PMCID: PMC6128812 DOI: 10.1007/s13205-018-1423-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022] Open
Abstract
A rapid change in the lifestyle has witnessed poor health with the increased incidences of numerous diseases in the recent years, and ultimately increasing the demand of nutritious foods containing phytochemicals. A wide range of phytochemicals (secondary metabolites) is being synthesized in plants, which influence the human health upon consumption as dietary component. Recently, a number of the technologies (conventional and non-conventional methods) have been standardized by the different researchers for the extraction of these phytochemicals depending upon the raw material. However, selection of extraction method for commercial use depends upon various factors such as extraction efficiency, time required, and cost of operation. Considering these factors, microbial maceration is one of the viable approaches which is easy to handle, cost-effective, energy efficient, less hazardous and having high extraction rate. Recently, researchers have utilized this technique for the maceration of different plant-based substrates (such as legumes, cereals, pulses, fruits and vegetables) and their respective wastes for the efficient extraction of numerous phytochemicals with increased efficiency. However, scale up studies and analysis of toxic compounds produced by microbes are still a lacking field and need to be explored further by the researchers and industrialists to bring it into reality. Therefore, the present review aims to document the recent findings related to microbial maceration in a crisp way to provide the complete information to the readers.
Collapse
Affiliation(s)
- Basista Rabina Sharma
- School of Biotechnology and Biosciences, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Vikas Kumar
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Yogesh Gat
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Naveen Kumar
- Food Technology, Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, Rajasthan 303002 India
| | - Aarya Parashar
- Banashthalli Vidyapeeth, Niwai-Jodhpuriya Road, Vanasthali, Rajasthan 304022 India
| | - Dave Jaydeep Pinakin
- Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411 India
| |
Collapse
|
43
|
Li Y, Zheng Y, Zhang Y, Xu J, Gao G. Antioxidant Activity of Coconut (Cocos nucifera L.) Protein Fractions. Molecules 2018; 23:E707. [PMID: 29558429 PMCID: PMC6017440 DOI: 10.3390/molecules23030707] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/11/2018] [Accepted: 03/18/2018] [Indexed: 11/16/2022] Open
Abstract
Coconut cake is an abundant and good potential edible protein source. However, until now it has not been extensively used in the food industry. To promote its usage, the characterization, nutrition value and antioxidant activity of coconut cake protein fractions (albumin, globulin, prolamine, glutelin-1 and glutelin-2) were studied. Results revealed that all the albumin, globulin, glutelin-1 and glutelin-2 fractions showed a high nutrition value. The prolamine, glutelin-1 and glutelin-2 all exhibited good radical scavenging activity and reducing power, and the globulin and prolamine showed high ion chelating ability (89.14-80.38%). Moreover, all the fractions except glutelin-2 could effectively protect DNA against oxidative damage. Several peptides containing five to eight amino acids with antioxidant activity were also identified by LC-MS/MS from the globulin and glutelin-2 fractions. The results demonstrated that the coconut cake protein fractions have potential usages in functional foods.
Collapse
Affiliation(s)
- Yan Li
- Food Science Institute of Shanxi Normal University, Linfen 041004, China.
| | - Yajun Zheng
- Food Science Institute of Shanxi Normal University, Linfen 041004, China.
| | - Yufeng Zhang
- Coconut Research Institute of Chinese Academy of Tropical Agriculture Sciences, Wenchang 571339, China.
| | - Jianguo Xu
- Food Science Institute of Shanxi Normal University, Linfen 041004, China.
| | - Gang Gao
- Food Science Institute of Shanxi Normal University, Linfen 041004, China.
| |
Collapse
|
44
|
Espinosa-Páez E, Alanis-Guzmán MG, Hernández-Luna CE, Báez-González JG, Amaya-Guerra CA, Andrés-Grau AM. Increasing Antioxidant Activity and Protein Digestibility in Phaseolus vulgaris and Avena sativa by Fermentation with the Pleurotus ostreatus Fungus. Molecules 2017; 22:E2275. [PMID: 29261152 PMCID: PMC6149908 DOI: 10.3390/molecules22122275] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/12/2017] [Accepted: 12/16/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of the research was to determine the impact of fermentation with Pleurotus ostreatus on kidney beans, black beans, and oats. The results indicate that the fungus has a positive effect on the substrates when compared to the controls. The antioxidant activity (39.5% on kidney beans and 225% on oats in relation to the controls) and content of total polyphenols (kidney beans three times higher regarding the controls) increased significantly by the presence of the fungus mycelium, even after simulated digestion. There was a significant increase in protein digestibility (from 39.99 to 48.13% in black beans, 44.06 to 69.01% in kidney beans, and 63.25 to 70.01% in oats) and a decrease of antinutrient tannins (from 65.21 to 22.07 mg in black beans, 35.54 to 23.37 in kidney beans, and 55.67 to 28.11 in oats) as well as an increase in the contents of some essential amino acids. Overall, this fermentation treatment with Pleurotus ostreatus improved the nutritional quality of cereals and legumes, making them potential ingredients for the elaboration and/or fortification of foods for human nutrition.
Collapse
Affiliation(s)
- Edith Espinosa-Páez
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Universidad s/n, Cd. Universitaria, 66450 San Nicolás de los Garza, Mexico.
| | - Ma Guadalupe Alanis-Guzmán
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Universidad s/n, Cd. Universitaria, 66450 San Nicolás de los Garza, Mexico.
| | - Carlos E Hernández-Luna
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Universidad s/n, Cd. Universitaria, 66450 San Nicolás de los Garza, Mexico.
| | - Juan G Báez-González
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Universidad s/n, Cd. Universitaria, 66450 San Nicolás de los Garza, Mexico.
| | - Carlos A Amaya-Guerra
- Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Ave. Universidad s/n, Cd. Universitaria, 66450 San Nicolás de los Garza, Mexico.
| | - Ana M Andrés-Grau
- Instituto Universitario de Ingeniería de Alimentos para el Desarrollo, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
45
|
Jakubczyk A, Karaś M, Złotek U, Szymanowska U. Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean ( Phaseolus vulgaris L.) seeds. Food Res Int 2017; 100:489-496. [DOI: 10.1016/j.foodres.2017.07.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 02/06/2023]
|