1
|
Kim D, Nguyen TTM, Moon Y, Kim J, Nam H, Cha DS, An YJ, de Guzman ACV, Park S. Time-Resolved Evaluation of L-Dopa Metabolism in Bacteria-Host Symbiotic System and the Effect on Parkinson's Molecular Pathology. SMALL METHODS 2025; 9:e2400469. [PMID: 39058017 PMCID: PMC11926514 DOI: 10.1002/smtd.202400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Indexed: 07/28/2024]
Abstract
The gut microbiome influences drug metabolism and therapeutic efficacy. Still, the lack of a general label-free approach for monitoring bacterial or host metabolic contribution hampers deeper insights. Here, a 2D nuclear magnetic resonance (NMR) approach is introduced that enables real-time monitoring of the metabolism of Levodopa (L-dopa), an anti-Parkinson drug, in both live bacteria and bacteria-host (Caenorhabditis elegans) symbiotic systems. The quantitative method reveals that discrete Enterococcus faecalis substrains produce different amounts of dopamine in live hosts, even though they are a single species and all have the Tyrosine decarboxylase (TyrDC) gene involved in L-dopa metabolism. The differential bacterial metabolic activity correlates with differing Parkinson's molecular pathology concerning alpha-synuclein aggregation as well as behavioral phenotypes. The gene's existence or expression is not an indicator of metabolic activity is also shown, underscoring the significance of quantitative metabolic estimation in vivo. This simple approach is widely adaptable to any chemical drug to elucidate pharmacomicrobiomic relationships and may help rapidly screen bacterial metabolic effects in drug development.
Collapse
Affiliation(s)
- Doyeon Kim
- Natural Products Research InstituteCollege of PharmacySeoul National UniversitySeoul08826South Korea
| | - Tin Tin Manh Nguyen
- Natural Products Research InstituteCollege of PharmacySeoul National UniversitySeoul08826South Korea
| | - Yechan Moon
- Natural Products Research InstituteCollege of PharmacySeoul National UniversitySeoul08826South Korea
| | - Jin‐Mo Kim
- Natural Products Research InstituteCollege of PharmacySeoul National UniversitySeoul08826South Korea
| | - Hoonsik Nam
- Natural Products Research InstituteCollege of PharmacySeoul National UniversitySeoul08826South Korea
| | - Dong Seok Cha
- College of Pharmacy Woosuk UniversityJeonbuk55338South Korea
| | - Yong Jin An
- Natural Products Research InstituteCollege of PharmacySeoul National UniversitySeoul08826South Korea
| | | | - Sunghyouk Park
- Natural Products Research InstituteCollege of PharmacySeoul National UniversitySeoul08826South Korea
| |
Collapse
|
2
|
Banicod RJS, Ntege W, Njiru MN, Abubakar WH, Kanthenga HT, Javaid A, Khan F. Production and transformation of biogenic amines in different food products by the metabolic activity of the lactic acid bacteria. Int J Food Microbiol 2025; 428:110996. [PMID: 39615409 DOI: 10.1016/j.ijfoodmicro.2024.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
Protein-rich diets often contain high quantities of biogenic amines (BAs), notably histamine and tyramine, which pose substantial health hazards owing to their toxicity. BAs are primarily produced by the microbial decarboxylation of free amino acids. Lactic acid bacteria (LAB) can either produce BAs using substrate-specific decarboxylase enzymes or degrade them into non-toxic compounds using amine-degrading enzymes such as amine oxidase and multicopper oxidase. Furthermore, LAB may inhibit BA-producing microbes by generating bioactive metabolites, including organic acids and bacteriocins. This paper thoroughly explores the processes underlying BA production and degradation in LAB, with a focus on the diversity of enzymes involved. Metabolic mapping of LAB strains at the genus and species levels reveals their involvement in BA metabolism, from production to degradation. The phylogenetic-based evolutionary relatedness of BA-producing and BA-degrading enzymes among LAB strains sheds light on their functional adaptability to various metabolic needs and ecological settings. These findings have significant practical implications for establishing better microbial management strategies in food production, particularly through strategically using starter or bioprotective cultures to reduce BA buildup. By highlighting the evolutionary and metabolic diversity of LAB, this review helps to optimize industrial fermentation processes, improve food safety protocols, and advance future research and innovation in BA management, ultimately protecting consumer health and supporting regulatory compliance.
Collapse
Affiliation(s)
- Riza Jane S Banicod
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Fisheries Postharvest Research and Development Division, National Fisheries Research and Development Institute, Quezon City 1103, Philippines
| | - Wilson Ntege
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Fisheries Control Regulation and Quality Assurance, Ministry of Agriculture, Animal Industry and Fisheries, Entebbe 10101, Uganda
| | - Moses Njeru Njiru
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Department of Fisheries and Aquaculture, Turkana County Government, Lodwar 30500, Kenya
| | - Woru Hamzat Abubakar
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Aquaculture and Biotechnology Department, National Institute for Freshwater Fisheries Research, New Bussa, Niger State 913003, Nigeria
| | - Hopeful Tusalifye Kanthenga
- KOICA-PKNU International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Department of Fisheries, Malawi College of Fisheries, Mangochi 301401, Malawi
| | - Aqib Javaid
- Department of Biotechnology and Bioinformatics, University of Hyderabad, India
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
3
|
Rahmdel S, Purkayastha M, Nega M, Liberini E, Li N, Luqman A, Brüggemann H, Götz F. Diversity of Neurotransmitter-Producing Human Skin Commensals. Int J Mol Sci 2024; 25:12345. [PMID: 39596410 PMCID: PMC11595044 DOI: 10.3390/ijms252212345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Recent findings indicate that human microbiota can excrete trace amines, dopamine, and serotonin. These neurotransmitters (NTs) can either affect classical neurotransmitter signaling or directly trigger trace amine-associated receptors (TAARs), with still unclear consequences for host physiology. Compared to gut microbiota, less information is available on the role of skin microbiota in NT production. To explore this, 1909 skin isolates, mainly from the genera Staphylococcus, Bacillus, and Corynebacterium, were tested for NT production. Only 6.7% of the isolates were capable of producing NTs, all of which belonged to the Staphylococcus genus. Based on substrate specificity, we identified two distinct profiles among the NT producers. One group primarily produced tryptamine (TRY) and phenylethylamine (PEA), while the other mainly produced tyramine (TYM) and dopamine (Dopa). These differing production profiles could be attributed to the activity of two distinct aromatic amino acid decarboxylase enzymes, SadA and TDC, responsible for generating the TRY/PEA and TYM/Dopa product spectra, respectively. SadA and TDC orthologues differ in structure and size; SadA has approximately 475 amino acids, whereas the TDC type consists of about 620 amino acids. The genomic localization of the respective genes also varies: tdc genes are typically found in small, conserved gene clusters, while sadA genes are not. The heterologous expression of sadA and tdc in Escherichia coli yielded the same product spectrum as the parent strains. The possible effects of skin microbiota-derived NTs on neuroreceptor signaling in the human host remain to be investigated.
Collapse
Affiliation(s)
- Samane Rahmdel
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany (E.L.)
| | - Moushumi Purkayastha
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany (E.L.)
| | - Mulugeta Nega
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany (E.L.)
| | - Elisa Liberini
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany (E.L.)
| | - Ningna Li
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany (E.L.)
| | - Arif Luqman
- Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia;
| | - Holger Brüggemann
- Department of Biomedicine, Aarhus University, 8000 Aarhus Centrum, Denmark;
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany (E.L.)
| |
Collapse
|
4
|
Tabanelli G, Barbieri F, Baños A, Madero JMG, Daza MVB, Cortimiglia C, Milani G, Bassi D, Gardini F, Montanari C. Companilactobacillus alimentarius: An extensive characterization of strains isolated from spontaneous fermented sausages. Int J Food Microbiol 2024; 410:110489. [PMID: 38039926 DOI: 10.1016/j.ijfoodmicro.2023.110489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 12/03/2023]
Abstract
Companilactobacillus alimentarius is a facultatively heterofermentative lactic acid bacterium (LAB) that is a significant constituent within the microbiota of various traditional fermented foods exerting several functions in fermentative or ripening processes. This species has been isolated from Spanish fermented sausages, where its frequency of isolation was comparable to those of Latilactobacillus sakei and Latilactobacillus curvatus. Despite to its presence in several niches, ecological information on this species is still scarce and only few publications report information about its safety features (i.e. antibiotic resistance). Since studies on C. alimentarius concern the analysis of a few individual traits regarding this species, a more extensive work on a larger number of isolates from the same matrix have been performed to allow a clearer interpretation of their phenotypic and technological characteristics. Specifically, 14 strains of C. alimentarius isolated from Mediterranean spontaneously fermented sausages, have been screened for their safety and technological characteristics (such as antibiotic resistance, biogenic amine production, inhibiting potential, growth at different temperatures and NaCl concentrations) and with phenotype microarrays with the aim to elucidate their potential role and contribution to sausage fermentation and ripening. In general, a wide variability was observed in relation to the parameters considered. Several of the tested strains were able to produce histamine, tyramine and putrescine while the antibiotic resistance greatly varied according to the strains, with the exception of vancomycin. In addition, C. alimentarius strains showed a relevant potential to grow in conditions of salt and temperature mimicking those found in fermented foods. In particular, the growth at 10 °C and in the presence of salt can explain the presence of C. alimentarius in sausages and its adaptation to fermented meat environment in which low temperature can be applied during ripening. The differentiation of the phenotypic profile reflected the environmental conditions that influenced the isolation source, including those derived by the raw materials. Given the species frequent association with spontaneous fermentations or the ripening microbiota of various products, despite not being intentionally used as starter cultures, the data presented in this study contribute to a deeper comprehension of their role, both advantageous and detrimental, in numerous significant fermented foods.
Collapse
Affiliation(s)
- Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Federica Barbieri
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Cesena, Italy.
| | - Alberto Baños
- Department of Microbiology, DOMCA S.A.U., 18620 Alhendín, Spain
| | | | - Mireya Viviana Belloso Daza
- Department for Sustainable Food Process (DISTAS), Università Cattolica del Sacro Cuore, 26100 Cremona, Italy
| | - Claudia Cortimiglia
- Department for Sustainable Food Process (DISTAS), Università Cattolica del Sacro Cuore, 26100 Cremona, Italy
| | - Giovanni Milani
- Department for Sustainable Food Process (DISTAS), Università Cattolica del Sacro Cuore, 26100 Cremona, Italy
| | - Daniela Bassi
- Department for Sustainable Food Process (DISTAS), Università Cattolica del Sacro Cuore, 26100 Cremona, Italy
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Cesena, Italy
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Cesena, Italy
| |
Collapse
|
5
|
Pellegrini M, Barbieri F, Montanari C, Iacumin L, Bernardi C, Gardini F, Comi G. Microbial Spoilage of Traditional Goose Sausages Produced in a Northern Region of Italy. Microorganisms 2023; 11:1942. [PMID: 37630502 PMCID: PMC10459116 DOI: 10.3390/microorganisms11081942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Recently, during the ripening of goose sausage, a defect consisting of ammonia and vinegar smell was noticed. The producer of the craft facility, located in Lombardia, a Northern region of Italy, asked us to identify the cause of that defect. Therefore, this study aimed to identify the potential responsible agents for the spoilage of this lot of goose sausages. Spoilage was first detected by sensory analysis using the "needle probing" technique; however, the spoiled sausages were not marketable due to the high ammonia and vinegar smell. The added starter culture did not limit or inhibit the spoilage microorganisms, which were represented by Levilactobacillus brevis, the predominant species, and by Enterococcus faecalis and E. faecium. These microorganisms grew during ripening and produced a large amount of biogenic amines, which could represent a risk for consumers. Furthermore, Lev. brevis, being a heterofermentative lactic acid bacteria (LAB), also produced ethanol, acetic acid, and a variation in the sausage colour. The production of biogenic amines was confirmed in vitro. Furthermore, as observed in a previous study, the second cause of spoilage can be attributed to moulds which grew during ripening; both the isolated strains, Penicillium nalgiovense, added as a starter culture, and P. lanosocoeruleum, present as an environmental contaminant, grew between the meat and casing, producing a large amount of total volatile nitrogen, responsible for the ammonia smell perceived in the ripening area and in the sausages. This is the first description of Levilactobacillus brevis predominance in spoiled goose sausage.
Collapse
Affiliation(s)
- Michela Pellegrini
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (M.P.); (L.I.)
| | - Federica Barbieri
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (F.B.); (C.M.); (F.G.)
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (F.B.); (C.M.); (F.G.)
| | - Lucilla Iacumin
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (M.P.); (L.I.)
| | - Cristian Bernardi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 20122 Lodi, Italy;
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, 47521 Cesena, Italy; (F.B.); (C.M.); (F.G.)
| | - Giuseppe Comi
- Department of Agricultural, Food, Environmental and Animal Science, University of Udine, 33100 Udine, Italy; (M.P.); (L.I.)
| |
Collapse
|
6
|
Montanari C, Barbieri F, Lorenzini S, Gottardi D, Šimat V, Özogul F, Gardini F, Tabanelli G. Survival, growth, and biogenic amine production of Enterococcus faecium FC12 in response to extracts and essential oils of Rubus fruticosus and Juniperus oxycedrus. Front Nutr 2023; 9:1092172. [PMID: 36712524 PMCID: PMC9880475 DOI: 10.3389/fnut.2022.1092172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Enterococci are lactic acid bacteria (LAB) usually found as food contaminants in fermented products such as cheeses and fermented sausages. Due to their antibiotic resistance, the presence of virulence factors, and the ability to produce biogenic amines (BAs), the determination of these bacteria is crucial to assure food quality and safety. BAs production and consequent accumulation in foods can cause toxicological effects on human health. Plant phenolic compounds are promising alternatives to chemical preservatives and reflect consumers' demand for "green" solutions. In this study, the antimicrobial effect of blackberry (Rubus fruticosus) leaves and prickly juniper (Juniperus oxycedrus) needles, both as phenolic extracts (PE) and essential oils (EO), were evaluated against Enterococcus faecium FC12, a known tyramine-producing strain. Methods The growth kinetics in the presence of sub-lethal concentrations of such plant derivatives were modeled (Gompertz equation) and BA production was monitored over time by HPLC. Moreover, flow cytometry (FCM) was used to study the effects of EOs and PEs on cell viability. Results The EOs showed a higher antimicrobial effect (especially R. fruticosus added at 0.75 mg/ml), determining an initial decrease of culturable cells followed by a recovery, even if with lower growth rates and final cell loads. Different rates of BA formation were observed, with tyramine concentrations ranging from 120 to 160 mg/l after 96 h of incubation, and 2-phenylethylamine was produced in lower amounts, usually after reaching the peak of tyramine. FCM confirmed the higher efficacy of R. fruticosus EO that induced cell membrane injury in 93% of the total population. However, complete recovery occurred in the following incubation, demonstrating transient damage. Discussion Although further research is required to better investigate this recovery and to assess the suitability of this approach in a real food system, the present study showed the potential antimicrobial activity of plant derivatives, especially R. fruticosus EO, against the tyramine-producing E. faecium FC12.
Collapse
Affiliation(s)
- Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Federica Barbieri
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Silvia Lorenzini
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy,Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| | - Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy,Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| | - Giulia Tabanelli
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy,Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy,*Correspondence: Giulia Tabanelli ✉
| |
Collapse
|
7
|
Barbieri F, Montanari C, Gardini F, Tabanelli G. Biogenic Amine Production by Lactic Acid Bacteria: A Review. Foods 2019; 8:E17. [PMID: 30621071 PMCID: PMC6351943 DOI: 10.3390/foods8010017] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Lactic acid bacteria (LAB) are considered as the main biogenic amine (BA) producers in fermented foods. These compounds derive from amino acid decarboxylation through microbial activities and can cause toxic effects on humans, with symptoms (headache, heart palpitations, vomiting, diarrhea) depending also on individual sensitivity. Many studies have focused on the aminobiogenic potential of LAB associated with fermented foods, taking into consideration the conditions affecting BA accumulation and enzymes/genes involved in the biosynthetic mechanisms. This review describes in detail the different LAB (used as starter cultures to improve technological and sensorial properties, as well as those naturally occurring during ripening or in spontaneous fermentations) able to produce BAs in model or in real systems. The groups considered were enterococci, lactobacilli, streptococci, lactococci, pediococci, oenococci and, as minor producers, LAB belonging to Leuconostoc and Weissella genus. A deeper knowledge of this issue is important because decarboxylase activities are often related to strains rather than to species or genera. Moreover, this information can help to improve the selection of strains for further applications as starter or bioprotective cultures, in order to obtain high quality foods with reduced BA content.
Collapse
Affiliation(s)
- Federica Barbieri
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
| | - Chiara Montanari
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
| | - Fausto Gardini
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy.
| | - Giulia Tabanelli
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy.
| |
Collapse
|
8
|
Lactobacillus rossiae strain isolated from sourdough produces putrescine from arginine. Sci Rep 2018; 8:3989. [PMID: 29507315 PMCID: PMC5838238 DOI: 10.1038/s41598-018-22309-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/21/2018] [Indexed: 11/29/2022] Open
Abstract
This work reports a Lactobacillus rossiae strain (L. rossiae D87) isolated from sourdough that synthesizes putrescine - a biogenic amine that raises food safety and spoilage concerns - from arginine via the ornithine decarboxylase (ODC) pathway. The odc and potE genes were identified and sequenced. These genes respectively encode ornithine decarboxylase (Odc), which participates in the decarboxylation of ornithine to putrescine, and the ornithine/putrescine exchanger (PotE), which exchanges ornithine for putrescine. Transcriptional analysis showed that odc and potE form an operon that is regulated transcriptionally by ornithine in a dose-dependent manner. To explore the possible role of the ODC pathway as an acid stress resistance mechanism for this bacterium, the effect of acidic pHs on its transcriptional regulation and on putrescine biosynthesis was analysed. Acidic pHs induced the transcription of the odc-potE genes and the production of putrescine over that seen at neutral pH. Further, putrescine production via the ODC system improved the survival of L. rossiae D87 by counteracting the acidification of the cytoplasm when the cells were subjected to acidic conditions. These results suggest the ODC pathway of L. rossiae D87 provides a biochemical defence mechanism against acidic environments.
Collapse
|
9
|
Bargossi E, Tabanelli G, Montanari C, Gatto V, Chinnici F, Gardini F, Torriani S. Growth, biogenic amine production and tyrDC transcription of Enterococcus faecalis in synthetic medium containing defined amino acid concentrations. J Appl Microbiol 2017; 122:1078-1091. [PMID: 28117533 DOI: 10.1111/jam.13406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 11/30/2022]
Abstract
AIMS The tyraminogenic potential of the strains Enterococcus faecalis EF37 and ATCC 29212 was investigated in a synthetic medium containing defined amounts of tyrosine and phenylalanine at different temperatures. METHODS AND RESULTS Enterococci growth and the production of biogenic amines (BA) were evaluated in relation to their pre-growth in medium containing tyrosine. Significant differences between the two strains were evidenced at metabolic level. Both the pre-adapted strains grew faster in all the tested conditions, independently of the presence of the precursor. Temperatures of 30 and 40°C positively affected the growth parameters. The tyrosine decarboxylase (tyrDC) activity of the strain EF37 was positively affected by pre-adaptation, while ATCC 29212 showed a faster and higher tyramine accumulation with not-adapted cells. The expression analysis of the gene tyrDC confirmed the influence of the growth conditions on gene transcription. CONCLUSIONS The small differences found between the two strains in the maximum transcript level reached rapidly after the inoculum and the different behaviour in the tyramine accumulation suggested the possible involvement of complex regulation mechanisms on the tyrDC or on the membrane transport systems, which could affect the different BA accumulation trend. SIGNIFICANCE AND IMPACT OF THE STUDY This study gives deeper insight into the metabolic regulation of tyrDC activity of enterococci.
Collapse
Affiliation(s)
- E Bargossi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena (FC), Italy
| | - G Tabanelli
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena (FC), Italy
| | - C Montanari
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena (FC), Italy
| | - V Gatto
- Department of Biotechnology, University of Verona, Verona (VR), Italy
| | - F Chinnici
- Department of Agricultural and Food Sciences, University of Bologna, Cesena (FC), Italy
| | - F Gardini
- Department of Agricultural and Food Sciences, University of Bologna, Cesena (FC), Italy.,Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena (FC), Italy
| | - S Torriani
- Department of Biotechnology, University of Verona, Verona (VR), Italy
| |
Collapse
|
10
|
Gatto V, Tabanelli G, Montanari C, Prodomi V, Bargossi E, Torriani S, Gardini F. Tyrosine decarboxylase activity of Enterococcus mundtii: new insights into phenotypic and genetic aspects. Microb Biotechnol 2016; 9:801-813. [PMID: 27624853 PMCID: PMC5072196 DOI: 10.1111/1751-7915.12402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/15/2016] [Indexed: 01/24/2023] Open
Abstract
Few information is available about the tyraminogenic potential of the species Enterococcus mundtii. In this study, two plant‐derived strains of E. mundtii were selected and investigated to better understand the phenotypic behaviour and the genetic mechanisms involved in tyramine accumulation. Both the strains accumulated tyramine from the beginning of exponential phase of growth, independently on the addition of tyrosine to the medium. The strains accumulated also 2‐phenylethylamine, although with lower efficiency and in greater extent when tyrosine was not added. Accordingly, the tyrosine decarboxylase (tyrDC) gene expression level increased during the exponential phase with tyrosine added, while it remained constant and high without precursor. The genetic organization as well as sequence identity levels of tyrDC and tyrosine permease (tyrP) genes indicated a correlation with those of phylogenetically closer enterococcal species, such as E. faecium, E. hirae and E. durans; however, the gene Na+/H+ antiporter (nhaC) that usually follow tyrP is missing. In addition, BLAST analysis revealed the presence of additional genes encoding for decarboxylase and permease in the genome of several E. mundtii strains. It is speculated the occurrence of a duplication event and the acquisition of different specificity for these enzymes that deserves further investigations.
Collapse
Affiliation(s)
- Veronica Gatto
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Chiara Montanari
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| | | | - Eleonora Bargossi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy
| | - Sandra Torriani
- Department of Biotechnology, University of Verona, Verona, Italy.
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, Cesena, Italy.,Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Cesena, Italy
| |
Collapse
|