1
|
Konan YJR, Ta BTD, Berté D, Coulibaly B, Coulibaly KD, Egnankon NS, Diarrassouba F, Djabo KA, Watier-Grillot S, Demoncheaux JP, De Marie Kouadio KA, N'Dri L, Solano P, Ravel S, Adingra GP, Barreaux A, Ségard A, Kaba D, Jamonneau V, De Meeûs T, Djohan V. Challenges and lessons from a vector control campaign targeting Glossina palpalis palpalis in an isolated protected forest area in Abidjan, Côte d'Ivoire. Parasite 2025; 32:25. [PMID: 40239040 PMCID: PMC12002674 DOI: 10.1051/parasite/2025017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Vector control (VC) is one of the strategies employed to manage African trypanosomoses. This study aimed at assessing the effectiveness of a VC campaign against Glossina palpalis palpalis using tiny targets (TTs) impregnated with insecticide in an isolated, protected forest in Abidjan, Côte d'Ivoire, while considering ecological, genetic, and operational factors. Between January 2020 and September 2022, 2,712 TTs were deployed at 684 sites, covering a total area of 1.7 km2. VC monitoring was conducted using Vavoua traps during 12 evaluation surveys, between June 2020 and March 2023. Five months after the initial TT deployment, tsetse fly density had decreased by 98.53%. Although tsetse density remained low due to TT redeployment and reinforcement, there was a significant increase a few months after the last redeployment. VC appeared to have minimal impact on the genetic structuring of G. p. palpalis. This suggested recruitment of local surviving tsetse flies all along the VC campaign due to a low probability of tsetse coming into contact with TTs, or to the evolution of behavioral or physiological resistance to control efforts. The genetic study revealed that one of the microsatellite markers used, the GPCAG locus, exhibited a selection signature possibly in response to VC. This could partly explain the challenges encountered in eliminating a seemingly isolated tsetse population thriving in a particularly favorable habitat.
Collapse
Affiliation(s)
- Yao Jean Rodrigue Konan
- Institut Pierre Richet, Institut National de Sante Publique, 01 BP 1500, Bouaké, Côte d'Ivoire - Université Felix Houphouët-Boigny, 01 BPV 34, Abidjan, Côte d'Ivoire
| | - Bi Tra Dieudonné Ta
- Institut Pierre Richet, Institut National de Sante Publique, 01 BP 1500, Bouaké, Côte d'Ivoire
| | - Djakaridja Berté
- Institut Pierre Richet, Institut National de Sante Publique, 01 BP 1500, Bouaké, Côte d'Ivoire
| | - Bamoro Coulibaly
- Institut Pierre Richet, Institut National de Sante Publique, 01 BP 1500, Bouaké, Côte d'Ivoire
| | - Kinifo Donatien Coulibaly
- Institut Pierre Richet, Institut National de Sante Publique, 01 BP 1500, Bouaké, Côte d'Ivoire - Université Peleforo Gon Coulibaly, BP 1328 Korhogo, Côte d'Ivoire
| | - Nick Steven Egnankon
- Institut Pierre Richet, Institut National de Sante Publique, 01 BP 1500, Bouaké, Côte d'Ivoire - Université Jean Lorougnon Guédé, BP 150, Daloa, Côte d'Ivoire
| | | | - Kouassi Albert Djabo
- Institut Pierre Richet, Institut National de Sante Publique, 01 BP 1500, Bouaké, Côte d'Ivoire
| | - Stéphanie Watier-Grillot
- Direction interarmées du service de santé pour l'Afrique Centrale et de l'Ouest, BP 175, Abidjan, Côte d'Ivoire
| | - Jean-Paul Demoncheaux
- Direction interarmées du service de santé pour l'Afrique Centrale et de l'Ouest, BP 175, Abidjan, Côte d'Ivoire
| | | | - Louis N'Dri
- Institut Pierre Richet, Institut National de Sante Publique, 01 BP 1500, Bouaké, Côte d'Ivoire
| | - Philippe Solano
- Intertryp, Université de Montpellier, Cirad, IRD, TA A-17/G, Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| | - Sophie Ravel
- Intertryp, Université de Montpellier, Cirad, IRD, TA A-17/G, Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| | - Guy Pacôme Adingra
- Institut Pierre Richet, Institut National de Sante Publique, 01 BP 1500, Bouaké, Côte d'Ivoire
| | - Antoine Barreaux
- Intertryp, Université de Montpellier, Cirad, IRD, TA A-17/G, Campus International de Baillarguet, 34398, Montpellier Cedex 5, France - Animal health Theme, International Centre of Insect Physiology and Ecology (ICIPE), PO Box 30772-00100, Nairobi, Kenya
| | - Adeline Ségard
- Intertryp, Université de Montpellier, Cirad, IRD, TA A-17/G, Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| | - Dramane Kaba
- Institut Pierre Richet, Institut National de Sante Publique, 01 BP 1500, Bouaké, Côte d'Ivoire
| | - Vincent Jamonneau
- Institut Pierre Richet, Institut National de Sante Publique, 01 BP 1500, Bouaké, Côte d'Ivoire - Intertryp, Université de Montpellier, Cirad, IRD, TA A-17/G, Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| | - Thierry De Meeûs
- Intertryp, Université de Montpellier, Cirad, IRD, TA A-17/G, Campus International de Baillarguet, 34398, Montpellier Cedex 5, France
| | - Vincent Djohan
- Institut Pierre Richet, Institut National de Sante Publique, 01 BP 1500, Bouaké, Côte d'Ivoire - Université Felix Houphouët-Boigny, 01 BPV 34, Abidjan, Côte d'Ivoire
| |
Collapse
|
2
|
Dera KSM, Pagabeleguem S, Melachio Tanekou TT, Toé AI, Ouedraogo/Sanou GMS, Belem AMG, Ravel S, Mach RL, Vreysen MJB, Abd-Alla AMM. Impact of long-term mass-rearing on the genetic structure of tsetse fly Glossina palpalis gambiensis colonies. INSECT SCIENCE 2024. [PMID: 39663726 DOI: 10.1111/1744-7917.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/22/2024] [Accepted: 10/17/2024] [Indexed: 12/13/2024]
Abstract
Tsetse flies are the sole cyclic vectors of African trypanosomes, which cause human and animal African trypanosomiases in Africa. Tsetse fly control remains a promising option for disease management. The sterile insect technique (SIT) stands as an environmentally friendly tool to control tsetse populations. SIT requires the mass-rearing of competent sterile males to mate with wild females. However, long-term colonization might affect the genetic structure of the reared flies. This study investigated the genetic structure of four Glossina palpalis gambiensis colonies of different ages: two originating from Senegal (SEN and ICIRSEN) and two from Burkina Faso (CIR and IBD). Samples from these colonies were genotyped at ten microsatellite loci, followed by downstream population genetic analyses. The results show that the two colonies from Burkina Faso collected from close sites (∼20 km apart) over 45-year interval retained the same genetic background (FST_CIR∼IBD ≈ 0, P-value = 0.47). These flies were however, genetically different from those from the Senegal colonies (FST_CIR∼SEN ≈ 0.047; FST_IBD∼SEN ≈ 0.058, P-value = 10-4). Moreover, no significant difference was detected in the gene diversity of the CIR and IBD colonies, with HS values of 0.650 and 0.665, respectively. The inbreeding coefficient showed that all four colonies where under Hardy-Weinberg equilibrium, with FIS values of 0.026, 0.012, -0.064, and 0.001, for CIR, IBD, ICIRSEN, and SEN, respectively. Furthermore, no sign of a recent bottleneck was identified in tsetse samples from any of the four colonies. The results suggest that long-term mass-rearing of tsetse flies has no significant impact on their genetic background and diversity.
Collapse
Affiliation(s)
- Kiswend-Sida M Dera
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
- Insectarium de Bobo Dioulasso-Campagne d'Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT), Bobo Dioulasso, Burkina Faso
| | - Soumaïla Pagabeleguem
- Insectarium de Bobo Dioulasso-Campagne d'Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT), Bobo Dioulasso, Burkina Faso
- University of Daniel Ouezzin COULIBALY, Dédougou, Burkina Faso
| | - Tito Tresor Melachio Tanekou
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Faculty of Science, Department of Microbiology and Parasitology, University of Bamenda, Cameroon
| | - Ange Irénée Toé
- Insectarium de Bobo Dioulasso-Campagne d'Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT), Bobo Dioulasso, Burkina Faso
| | | | | | - Sophie Ravel
- Université Montpellier, Cirad, IRD, Intertryp, Montpellier, France
| | - Robert L Mach
- Institute of Chemical, Environmental, and Bioscience Engineering, Research Area Biochemical Technology, Vienna University of Technology, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency, Vienna, Austria
| |
Collapse
|
3
|
Purificacion M, Shah RBM, De Meeûs T, Bakar SB, Savantil AB, Yusof MM, Amalin D, Nguyen H, Sulistyowati E, Budiman A, Ekayanti A, Niogret J, Ravel S, Vreysen MJB, Abd-Alla AMM. Development and characterization of microsatellite markers for population genetics of the cocoa pod borer Conopomorpha cramerella (Snellen) (Lepidoptera: Gracillaridae). PLoS One 2024; 19:e0297662. [PMID: 38603675 PMCID: PMC11008836 DOI: 10.1371/journal.pone.0297662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/09/2024] [Indexed: 04/13/2024] Open
Abstract
The cocoa pod borer (CPB) Conopomorpha cramerella (Snellen) (Lepidoptera: Gracillaridae) is one of the major constraints for cocoa production in South East Asia. In addition to cultural and chemical control methods, autocidal control tactics such as the Sterile Insect Technique (SIT) could be an efficient addition to the currently control strategy, however SIT implementation will depend on the population genetics of the targeted pest. The aim of the present work was to search for suitable microsatellite loci in the genome of CPB that is partially sequenced. Twelve microsatellites were initially selected and used to analyze moths collected from Indonesia, Malaysia, and the Philippines. A quality control verification process was carried out and seven microsatellites found to be suitable and efficient to distinguish differences between CPB populations from different locations. The selected microsatellites were also tested against a closely related species, i.e. the lychee fruit borer Conopomorpha sinensis (LFB) from Vietnam and eight loci were found to be suitable. The availability of these novel microsatellite loci will provide useful tools for the analysis of the population genetics and gene flow of these pests, to select suitable CPB strains to implement the SIT.
Collapse
Affiliation(s)
- Marynold Purificacion
- Biological Control Research Unit, Center for Natural Science and Environmental Research, De La Salle University, Manila, Philippines
| | - Roslina Binti Mohd Shah
- Centre for Cocoa Biotechnology Research, Malaysian Cocoa Board, Kota Kinabalu, Sabah, Malaysia
| | - Thierry De Meeûs
- Intertryp, Univ Montpellier, Cirad, IRD, Montpellier, France
- IRD, UMR Intertryp, Cirad, Campus International de Baillarguet, Montpellier, France
| | | | - Anisah Bintil Savantil
- Centre for Cocoa Biotechnology Research, Malaysian Cocoa Board, Kota Kinabalu, Sabah, Malaysia
| | - Meriam Mohd Yusof
- Centre for Cocoa Biotechnology Research, Malaysian Cocoa Board, Kota Kinabalu, Sabah, Malaysia
| | - Divina Amalin
- Biological Control Research Unit, Center for Natural Science and Environmental Research, De La Salle University, Manila, Philippines
| | - Hien Nguyen
- Plant Protection Research Institute, Duc Thang, Hanoi, Vietnam
| | | | - Aris Budiman
- Indonesian Coffee and Cocoa Research Institute, Jember, Indonesia
| | - Arni Ekayanti
- Mars Cocoa Research Centre, Mars Wrigley, Sulawesi Selatan, Indonesia
| | - Jerome Niogret
- Mars Wrigley, Centre for Tropical Environmental & Sustainability Science, James Cook University Nguma-bada Campus, Smithfield, Australia
| | - Sophie Ravel
- Intertryp, Univ Montpellier, Cirad, IRD, Montpellier, France
| | - Marc J. B. Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Adly M. M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
4
|
Ravel S, Ségard A, Mollo BG, Mahamat MH, Argiles-Herrero R, Bouyer J, Rayaisse JB, Solano P, Pèka M, Darnas J, Belem AMG, Yoni W, Noûs C, de Meeûs T. Limited impact of vector control on the population genetic structure of Glossina fuscipes fuscipes from the sleeping sickness focus of Maro, Chad. Parasite 2024; 31:13. [PMID: 38450719 PMCID: PMC10918643 DOI: 10.1051/parasite/2024013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Tsetse flies (genus Glossina) transmit deadly trypanosomes to human populations and domestic animals in sub-Saharan Africa. Some foci of Human African Trypanosomiasis due to Trypanosoma brucei gambiense (g-HAT) persist in southern Chad, where a program of tsetse control was implemented against the local vector Glossina fuscipes fuscipes in 2018 in Maro. We analyzed the population genetics of G. f. fuscipes from the Maro focus before control (T0), one year (T1), and 18 months (T2) after the beginning of control efforts. Most flies captured displayed a local genetic profile (local survivors), but a few flies displayed outlier genotypes. Moreover, disturbance of isolation by distance signature (increase of genetic distance with geographic distance) and effective population size estimates, absence of any genetic signature of a bottleneck, and an increase of genetic diversity between T0 and T2 strongly suggest gene flows from various origins, and a limited impact of the vector control efforts on this tsetse population. Continuous control and surveillance of g-HAT transmission is thus recommended in Maro. Particular attention will need to be paid to the border with the Central African Republic, a country where the entomological and epidemiological status of g-HAT is unknown.
Collapse
Affiliation(s)
- Sophie Ravel
- Intertryp, Université de Montpellier, Cirad, IRD Montpellier France
| | - Adeline Ségard
- Intertryp, Université de Montpellier, Cirad, IRD Montpellier France
| | | | | | - Rafael Argiles-Herrero
- Insect Pest Control Laboratory, Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Program of Nuclear Techniques in Food and Agriculture A-1400 Vienna Austria
| | - Jérémy Bouyer
- Insect Pest Control Laboratory, Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Program of Nuclear Techniques in Food and Agriculture A-1400 Vienna Austria
- UMR Astre, Cirad, Plateforme Cyroi 2 rue Maxime Rivière 97491 Sainte-Clotilde La Réunion France
| | - Jean-Baptiste Rayaisse
- Centre International de Recherche Développement sur l’Élevage en zone Subhumide (Cirdes) Bobo-Dioulasso Burkina Faso
| | - Philippe Solano
- Intertryp, Université de Montpellier, Cirad, IRD Montpellier France
| | - Mallaye Pèka
- Programme National de Lutte contre la THA (PNLTHA) Ndjaména Chad
| | - Justin Darnas
- Programme National de Lutte contre la THA (PNLTHA) Ndjaména Chad
| | | | - Wilfrid Yoni
- Centre International de Recherche Développement sur l’Élevage en zone Subhumide (Cirdes) Bobo-Dioulasso Burkina Faso
| | - Camille Noûs
- Cogitamus Laboratory France, https://www.cogitamus.fr/
| | - Thierry de Meeûs
- Intertryp, Université de Montpellier, Cirad, IRD Montpellier France
| |
Collapse
|
5
|
Gstöttenmayer F, Moyaba P, Rodriguez M, Mulandane FC, Mucache HN, Neves L, De Beer C, Ravel S, De Meeûs T, Mach RL, Vreysen MJB, Abd-Alla AM. Development and characterization of microsatellite markers for the tsetse species Glossina brevipalpis and preliminary population genetics analyses. Parasite 2023; 30:34. [PMID: 37712836 PMCID: PMC10503490 DOI: 10.1051/parasite/2023038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023] Open
Abstract
Tsetse flies, the vectors of African trypanosomes are of key medical and economic importance and one of the constraints for the development of Africa. Tsetse fly control is one of the most effective and sustainable strategies used for controlling the disease. Knowledge about population structure and level of gene flow between neighbouring populations of the target vector is of high importance to develop appropriate strategies for implementing effective management programmes. Microsatellites are commonly used to identify population structure and assess dispersal of the target populations and have been developed for several tsetse species but were lacking for Glossina brevipalpis. In this study, we screened the genome of G. brevipalpis to search for suitable microsatellite markers and nine were found to be efficient enough to distinguish between different tsetse populations. The availability of these novel microsatellite loci will help to better understand the population biology of G. brevipalpis and to assess the level of gene flow between different populations. Such information will help with the development of appropriate strategies to implement the sterile insect technique (SIT) in the framework of an area-wide integrated pest management (AW-IPM) approach to manage tsetse populations and ultimately address the trypanosomoses problem in these targeted areas.
Collapse
Affiliation(s)
- Fabian Gstöttenmayer
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna International Centre P.O. Box 100 1400 Vienna Austria
| | - Percy Moyaba
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna International Centre P.O. Box 100 1400 Vienna Austria
- Epidemiology, Parasites and Vectors, Agricultural Research Council-Onderstepoort Veterinary Research 100 Soutpan Road Private Bag X05 Onderstepoort 0110 South Africa
| | - Montse Rodriguez
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna International Centre P.O. Box 100 1400 Vienna Austria
| | - Fernando C. Mulandane
- University Eduardo Mondlane, Centro de Biotecnologia Av. de Moçambique Km 1.5 Maputo Mozambique
| | - Hermógenes N. Mucache
- University Eduardo Mondlane, Centro de Biotecnologia Av. de Moçambique Km 1.5 Maputo Mozambique
| | - Luis Neves
- University Eduardo Mondlane, Centro de Biotecnologia Av. de Moçambique Km 1.5 Maputo Mozambique
- University of Pretoria, Department of Veterinary Tropical Diseases Private Bag X04 Onderstepoort 0110 South Africa
| | - Chantel De Beer
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna International Centre P.O. Box 100 1400 Vienna Austria
| | - Sophie Ravel
- University of Montpellier, Cirad, IRD, Intertryp Campus International de Baillarguet 34398 Montpellier Cedex 5 France
| | - Thierry De Meeûs
- University of Montpellier, Cirad, IRD, Intertryp Campus International de Baillarguet 34398 Montpellier Cedex 5 France
| | - Robert L. Mach
- Institute of Chemical, Environmental, and Bioscience Engineering, Vienna University of Technology Gumpendorfer Straße 1a 1060 Vienna Austria
| | - Marc J. B. Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna International Centre P.O. Box 100 1400 Vienna Austria
| | - Adly M.M. Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna International Centre P.O. Box 100 1400 Vienna Austria
| |
Collapse
|
6
|
Phylogeography and population genetics of a headwater-stream adapted crayfish, Cambarus pristinus (Decapoda: Cambaridae), from the Cumberland Plateau in Tennessee. CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Riquet F, De Kuyper CA, Fauvelot C, Airoldi L, Planes S, Fraschetti S, Mačić V, Milchakova N, Mangialajo L, Bottin L. Highly restricted dispersal in habitat-forming seaweed may impede natural recovery of disturbed populations. Sci Rep 2021; 11:16792. [PMID: 34408197 PMCID: PMC8373921 DOI: 10.1038/s41598-021-96027-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Cystoseira sensu lato (Class Phaeophyceae, Order Fucales, Family Sargassaceae) forests play a central role in marine Mediterranean ecosystems. Over the last decades, Cystoseira s.l. suffered from a severe loss as a result of multiple anthropogenic stressors. In particular, Gongolaria barbata has faced multiple human-induced threats, and, despite its ecological importance in structuring rocky communities and hosting a large number of species, the natural recovery of G. barbata depleted populations is uncertain. Here, we used nine microsatellite loci specifically developed for G. barbata to assess the genetic diversity of this species and its genetic connectivity among fifteen sites located in the Ionian, the Adriatic and the Black Seas. In line with strong and significant heterozygosity deficiencies across loci, likely explained by Wahlund effect, high genetic structure was observed among the three seas (ENA corrected FST = 0.355, IC = [0.283, 0.440]), with an estimated dispersal distance per generation smaller than 600 m, both in the Adriatic and Black Sea. This strong genetic structure likely results from restricted gene flow driven by geographic distances and limited dispersal abilities, along with genetic drift within isolated populations. The presence of genetically disconnected populations at small spatial scales (< 10 km) has important implications for the identification of relevant conservation and management measures for G. barbata: each population should be considered as separated evolutionary units with dedicated conservation efforts.
Collapse
Affiliation(s)
- Florentine Riquet
- Institut de Recherche pour le Développement (IRD), UMR ENTROPIE, Nouméa, New Caledonia.
- Sorbonne Université, CNRS, UMR LOV, Villefranche‑sur‑Mer, France.
| | | | - Cécile Fauvelot
- Institut de Recherche pour le Développement (IRD), UMR ENTROPIE, Nouméa, New Caledonia
- Sorbonne Université, CNRS, UMR LOV, Villefranche‑sur‑Mer, France
| | - Laura Airoldi
- Department of Biology, Chioggia Hydrobiological Station Umberto D'Ancona, University of Padova, Chioggia, Italy
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, UO CoNISMa, Ravenna, Italy
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, Perpignan, France
| | - Simonetta Fraschetti
- Department of Biology, University of Naples Federico II, Naples, Italy
- Stazione Zoologica Anton Dohrn, Naples, Italy
- CoNISMa, Rome, Italy
| | - Vesna Mačić
- Institut za biologiju mora, Univerzitet Crne Gore, Kotor, Montenegro
| | - Nataliya Milchakova
- Laboratory of Phytoresources, Kovalevsky Institute of Biology of the Southern Seas of RAS (IBSS), Sevastopol, Russia
| | | | - Lorraine Bottin
- Université Côte d'Azur, CNRS, UMR 7035 ECOSEAS, Nice, France
| |
Collapse
|
8
|
Hargrove JW, Vale GA. Negative density-dependent dispersal in tsetse (Glossina spp): red flag or red herring? MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:30-41. [PMID: 32757252 DOI: 10.1111/mve.12466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/21/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
A deterministic model of the distribution of tsetse flies (Glossina spp) was used to assess the extent to which the efficacy of control operations would be affected by three different modes of density dependence in per capita adult dispersal: (i) density-independent dispersal which has been commonly adopted in previous models, (ii) positive density-dependent dispersal which has occasionally been discussed in the tsetse literature, (iii) negative density-dependent dispersal (NDDD). The last has recently been suggested, from genetic studies, to change the dispersal rate of tsetse by up to 200-fold, thereby posing a severe risk for the success of tsetse control operations. Modelling outputs showed that NDDD poses no such risk, provided the mean daily dispersal of tsetse is below about 1 km, which is greater than any rate actually recorded in the field or indicated by the genetic studies. NDDD can be problematic only if tsetse disperse at rates that appear highly unlikely, or even impossible, on energetic grounds. Under some circumstances these high rates would help rather than hinder the control officer. NDDD is not necessary to explain the results of control operations, and not sufficient to explain the results of successful control programmes.
Collapse
Affiliation(s)
- J W Hargrove
- SACEMA, University of Stellenbosch, Stellenbosch, South Africa
| | - G A Vale
- SACEMA, University of Stellenbosch, Stellenbosch, South Africa
- Natural Resources Institute, University of Greenwich, Chatham, U.K
| |
Collapse
|
9
|
Hargrove JW, Van Sickle J, Vale GA, Lucas ER. Negative density-dependent dispersal in tsetse (Glossina spp): An artefact of inappropriate analysis. PLoS Negl Trop Dis 2021; 15:e0009026. [PMID: 33764969 PMCID: PMC8023489 DOI: 10.1371/journal.pntd.0009026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/06/2021] [Accepted: 02/24/2021] [Indexed: 11/18/2022] Open
Abstract
Published analysis of genetic material from field-collected tsetse (Glossina spp, primarily from the Palpalis group) has been used to predict that the distance (δ) dispersed per generation increases as effective population densities (De) decrease, displaying negative density-dependent dispersal (NDDD). Using the published data we show this result is an artefact arising primarily from errors in estimates of S, the area occupied by a subpopulation, and thereby in De. The errors arise from the assumption that S can be estimated as the area ([Formula: see text]) regarded as being covered by traps. We use modelling to show that such errors result in anomalously high correlations between [Formula: see text] and [Formula: see text] and the appearance of NDDD, with a slope of -0.5 for the regressions of log([Formula: see text]) on log([Formula: see text]), even in simulations where we specifically assume density-independent dispersal (DID). A complementary mathematical analysis confirms our findings. Modelling of field results shows, similarly, that the false signal of NDDD can be produced by varying trap deployment patterns. Errors in the estimates of δ in the published analysis were magnified because variation in estimates of S were greater than for all other variables measured, and accounted for the greatest proportion of variation in [Formula: see text]. Errors in census population estimates result from an erroneous understanding of the relationship between trap placement and expected tsetse catch, exacerbated through failure to adjust for variations in trapping intensity, trap performance, and in capture probabilities between geographical situations and between tsetse species. Claims of support in the literature for NDDD are spurious. There is no suggested explanation for how NDDD might have evolved. We reject the NDDD hypothesis and caution that the idea should not be allowed to influence policy on tsetse and trypanosomiasis control.
Collapse
Affiliation(s)
| | - John Van Sickle
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, United States of America
| | - Glyn A. Vale
- SACEMA, University of Stellenbosch, Stellenbosch, South Africa
- Natural Resources Institute, University of Greenwich, Chatham, United Kingdom
| | - Eric R. Lucas
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
10
|
Mignotte A, Garros C, Dellicour S, Jacquot M, Gilbert M, Gardès L, Balenghien T, Duhayon M, Rakotoarivony I, de Wavrechin M, Huber K. High dispersal capacity of Culicoides obsoletus (Diptera: Ceratopogonidae), vector of bluetongue and Schmallenberg viruses, revealed by landscape genetic analyses. Parasit Vectors 2021; 14:93. [PMID: 33536057 PMCID: PMC7860033 DOI: 10.1186/s13071-020-04522-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In the last two decades, recurrent epizootics of bluetongue virus and Schmallenberg virus have been reported in the western Palearctic region. These viruses affect domestic cattle, sheep, goats and wild ruminants and are transmitted by native hematophagous midges of the genus Culicoides (Diptera: Ceratopogonidae). Culicoides dispersal is known to be stratified, i.e. due to a combination of dispersal processes occurring actively at short distances and passively or semi-actively at long distances, allowing individuals to jump hundreds of kilometers. METHODS Here, we aim to identify the environmental factors that promote or limit gene flow of Culicoides obsoletus, an abundant and widespread vector species in Europe, using an innovative framework integrating spatial, population genetics and statistical approaches. A total of 348 individuals were sampled in 46 sites in France and were genotyped using 13 newly designed microsatellite markers. RESULTS We found low genetic differentiation and a weak population structure for C. obsoletus across the country. Using three complementary inter-individual genetic distances, we did not detect any significant isolation by distance, but did detect significant anisotropic isolation by distance on a north-south axis. We employed a multiple regression on distance matrices approach to investigate the correlation between genetic and environmental distances. Among all the environmental factors that were tested, only cattle density seems to have an impact on C. obsoletus gene flow. CONCLUSIONS The high dispersal capacity of C. obsoletus over land found in the present study calls for a re-evaluation of the impact of Culicoides on virus dispersal, and highlights the urgent need to better integrate molecular, spatial and statistical information to guide vector-borne disease control.
Collapse
Affiliation(s)
- Antoine Mignotte
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
- Cirad, UMR ASTRE, 34398 Montpellier, France
| | - Claire Garros
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
- Cirad, UMR ASTRE, 34398 Montpellier, France
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50, av. FD Roosevelt, 1050 Bruxelles, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Maude Jacquot
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50, av. FD Roosevelt, 1050 Bruxelles, Belgium
- UMR EPIA, Université Clermont Auvergne, INRAE, VetAgro Sup, 63122 Saint-Genès-Champanelle, France
| | - Marius Gilbert
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, CP160/12, 50, av. FD Roosevelt, 1050 Bruxelles, Belgium
| | - Laetitia Gardès
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
- Cirad, UMR ASTRE, 97170 Petit-Bourg, Guadeloupe France
| | - Thomas Balenghien
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
- Cirad, UMR ASTRE, 10100 Rabat, Morocco
- Unité Microbiologie, immunologie et maladies contagieuses, Institut Agronomique et Vétérinaire Hassan II, 10100 Rabat-Instituts, Morocco
| | - Maxime Duhayon
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
- Cirad, UMR ASTRE, 34398 Montpellier, France
| | - Ignace Rakotoarivony
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
- Cirad, UMR ASTRE, 34398 Montpellier, France
| | - Maïa de Wavrechin
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
- Cirad, UMR ASTRE, 34398 Montpellier, France
| | - Karine Huber
- ASTRE, Univ Montpellier, Cirad, INRAE, Montpellier, France
| |
Collapse
|
11
|
Prudhomme J, De Meeûs T, Toty C, Cassan C, Rahola N, Vergnes B, Charrel R, Alten B, Sereno D, Bañuls AL. Altitude and hillside orientation shapes the population structure of the Leishmania infantum vector Phlebotomus ariasi. Sci Rep 2020; 10:14443. [PMID: 32879357 PMCID: PMC7468129 DOI: 10.1038/s41598-020-71319-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022] Open
Abstract
Despite their role in Leishmania transmission, little is known about the organization of sand fly populations in their environment. Here, we used 11 previously described microsatellite markers to investigate the population genetic structure of Phlebotomus ariasi, the main vector of Leishmania infantum in the region of Montpellier (South of France). From May to October 2011, we captured 1,253 Ph. ariasi specimens using sticky traps in 17 sites in the North of Montpellier along a 14-km transect, and recorded the relevant environmental data (e.g., altitude and hillside). Among the selected microsatellite markers, we removed five loci because of stutter artifacts, absence of polymorphism, or non-neutral evolution. Multiple regression analyses showed the influence of altitude and hillside (51% and 15%, respectively), and the absence of influence of geographic distance on the genetic data. The observed significant isolation by elevation suggested a population structure of Ph. ariasi organized in altitudinal ecotypes with substantial rates of migration and positive assortative mating. This organization has implications on sand fly ecology and pathogen transmission. Indeed, this structure might favor the global temporal and spatial stability of sand fly populations and the spread and increase of L. infantum cases in France. Our results highlight the necessity to consider sand fly populations at small scales to study their ecology and their impact on pathogens they transmit.
Collapse
Affiliation(s)
- Jorian Prudhomme
- MIVEGEC Univ Montpellier, IRD, CNRS, Centre IRD, 911 avenue Agropolis, 34394, Montpellier, France.
| | | | - Céline Toty
- MIVEGEC Univ Montpellier, IRD, CNRS, Centre IRD, 911 avenue Agropolis, 34394, Montpellier, France
| | - Cécile Cassan
- MIVEGEC Univ Montpellier, IRD, CNRS, Centre IRD, 911 avenue Agropolis, 34394, Montpellier, France
| | - Nil Rahola
- MIVEGEC Univ Montpellier, IRD, CNRS, Centre IRD, 911 avenue Agropolis, 34394, Montpellier, France
| | - Baptiste Vergnes
- MIVEGEC Univ Montpellier, IRD, CNRS, Centre IRD, 911 avenue Agropolis, 34394, Montpellier, France
| | - Remi Charrel
- Unité des Virus Emergents (UVE: Aix Marseille Univ, IRD 190, INSERM 1207, IHU Méditerranée Infection), 13385, Marseille, France
| | - Bulent Alten
- ESRL Laboratories, Department of Biology, Ecology Section, Faculty of Science, Hacettepe University, 0680, Beytepe, Ankara, Turkey
| | - Denis Sereno
- INTERTRYP, IRD, Cirad, Univ Montpellier, Montpellier, France
| | - Anne-Laure Bañuls
- MIVEGEC Univ Montpellier, IRD, CNRS, Centre IRD, 911 avenue Agropolis, 34394, Montpellier, France
| |
Collapse
|
12
|
Coscia I, Wilmes SB, Ironside JE, Goward-Brown A, O'Dea E, Malham SK, McDevitt AD, Robins PE. Fine-scale seascape genomics of an exploited marine species, the common cockle Cerastoderma edule, using a multimodelling approach. Evol Appl 2020; 13:1854-1867. [PMID: 32908590 PMCID: PMC7463313 DOI: 10.1111/eva.12932] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Population dynamics of marine species that are sessile as adults are driven by oceanographic dispersal of larvae from spawning to nursery grounds. This is mediated by life-history traits such as the timing and frequency of spawning, larval behaviour and duration, and settlement success. Here, we use 1725 single nucleotide polymorphisms (SNPs) to study the fine-scale spatial genetic structure in the commercially important cockle species Cerastoderma edule and compare it to environmental variables and current-mediated larval dispersal within a modelling framework. Hydrodynamic modelling employing the NEMO Atlantic Margin Model (AMM15) was used to simulate larval transport and estimate connectivity between populations during spawning months (April-September), factoring in larval duration and interannual variability of ocean currents. Results at neutral loci reveal the existence of three separate genetic clusters (mean F ST = 0.021) within a relatively fine spatial scale in the north-west Atlantic. Environmental association analysis indicates that oceanographic currents and geographic proximity explain over 20% of the variance observed at neutral loci, while genetic variance (71%) at outlier loci was explained by sea surface temperature extremes. These results fill an important knowledge gap in the management of a commercially important and overexploited species, bringing us closer to understanding the role of larval dispersal in connecting populations at a fine geographic scale.
Collapse
Affiliation(s)
- Ilaria Coscia
- Ecosystems and Environment Research Centre School of Science, Engineering and Environment University of Salford Salford UK
| | - Sophie B Wilmes
- School of Ocean Sciences Marine Centre Wales Bangor University Menai Bridge UK
| | - Joseph E Ironside
- Institute of Biological, Environmental and Rural Sciences Aberystwyth University, Penglais Aberystwyth UK
| | - Alice Goward-Brown
- School of Ocean Sciences Marine Centre Wales Bangor University Menai Bridge UK
| | | | - Shelagh K Malham
- School of Ocean Sciences Marine Centre Wales Bangor University Menai Bridge UK
| | - Allan D McDevitt
- Ecosystems and Environment Research Centre School of Science, Engineering and Environment University of Salford Salford UK
| | - Peter E Robins
- School of Ocean Sciences Marine Centre Wales Bangor University Menai Bridge UK
| |
Collapse
|
13
|
Ravel S, Séré M, Manangwa O, Kagbadouno M, Mahamat MH, Shereni W, Okeyo WA, Argiles-Herrero R, De Meeûs T. Developing and quality testing of microsatellite loci for four species of Glossina. INFECTION GENETICS AND EVOLUTION 2020; 85:104515. [PMID: 32861909 DOI: 10.1016/j.meegid.2020.104515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/29/2020] [Accepted: 08/24/2020] [Indexed: 11/15/2022]
Abstract
Microsatellite loci still represent valuable resources for the study of the population biology of non-model organisms. Discovering or adapting new suitable microsatellite markers in species of interest still represents a useful task, especially so for non-model organisms as tsetse flies (genus Glossina), which remain a serious threat to the health of humans and animals in sub-Saharan Africa. In this paper, we present the development of new microsatellite loci for four species of Glossina: two from the Morsitans group, G. morsitans morsitans (Gmm) from Zimbabwe, G. pallidipes (Gpalli) from Tanzania; and the other two from the Palpalis group, G. fuscipes fuscipes (Gff) from Chad, and G. palpalis gambiensis (Gpg) from Guinea. We found frequent short allele dominance and null alleles. Stuttering could also be found and amended when possible. Cryptic species seemed to occur frequently in all taxa but Gff. This explains why it may be difficult finding ecumenical primers, which thus need adaptation according to each taxonomic and geographic context. Amplification problems occurred more often in published old markers, and Gmm and Gpg were the most affected (stronger heterozygote deficits). Trinucleotide markers displayed selection signature in some instances (Gmm). Combining old and new loci, for Gmm, eight loci can be safely used (with correction for null alleles); and five seem particularly promising; for Gpalli, only five to three loci worked well, depending on the clade, which means that the use of loci from other species (four morsitans loci seemed to work well), or other new primers will need to be used; for Gff, 14 loci behaved well, but with null alleles, seven of which worked very well; and for G. palpalis sl, only four loci, needing null allele and stuttering corrections seem to work well, and other loci from the literature are thus needed, including X-linked markers, five of which seem to work rather well (in females only), but new markers will probably be needed. Finally, the high proportion of X-linked markers (around 30%) was explained by the non-Y DNA quantity and chromosome structure of tsetse flies studied so far.
Collapse
Affiliation(s)
- Sophie Ravel
- Intertryp, IRD, Cirad, Univ Montpellier, Montpellier, France
| | - Modou Séré
- University of Dédougou, Dédougou B.P. 176, Burkina Faso
| | - Oliver Manangwa
- Vector and Vector Borne Disease Research Institute, P.O.Box 1026, Tanga, Tanzania
| | - Moise Kagbadouno
- Programme National de Lutte contre la THA (PNLTHA), Conakry, Guinea
| | | | - William Shereni
- Ministry of Lands, Agriculture, Water and Rural Resettlement, Harare, Zimbabwe
| | | | - Rafael Argiles-Herrero
- Insect Pest Control Sub-Programme, Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Programme of Nuclear Techniques in Food and Agriculture, Vienna A-1400, Austria
| | | |
Collapse
|
14
|
Poli P, Lenoir J, Plantard O, Ehrmann S, Røed KH, Leinaas HP, Panning M, Guiller A. Strong genetic structure among populations of the tick Ixodes ricinus across its range. Ticks Tick Borne Dis 2020; 11:101509. [PMID: 32993929 DOI: 10.1016/j.ttbdis.2020.101509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 01/25/2023]
Abstract
Ixodes ricinus is the most common and widely distributed tick species in Europe, responsible for several zoonotic diseases, including Lyme borreliosis. Population genetics of disease vectors is a useful tool for understanding the spread of pathogens and infection risks. Despite the threat to the public health due to the climate-driven distribution changes of I. ricinus, the genetic structure of tick populations, though essential for understanding epidemiology, remains unclear. Previous studies have demonstrated weak to no apparent spatial pattern of genetic differentiation between European populations. Here, we analysed the population genetic structure of 497 individuals from 28 tick populations sampled from 20 countries across Europe, the Middle-East, and northern Africa. We analysed 125 SNPs loci after quality control. We ran Bayesian and multivariate hierarchical clustering analyses to identify and describe clusters of genetically related individuals. Both clustering methods support the identification of three spatially-structured clusters. Individuals from the south and north-western parts of Eurasia form a separated cluster from northern European populations, while central European populations are a mix between the two groups. Our findings have important implications for understanding the dispersal processes that shape the spread of zoonotic diseases under anthropogenic global changes.
Collapse
Affiliation(s)
- Pedro Poli
- Université de Picardie Jules Verne, UMR « Ecologie et Dynamique des Systèmes Anthropisés » (EDYSAN, UMR 7058 CNRS), 33 Rue Saint Leu, 80000 Amiens CEDEX 1, France.
| | - Jonathan Lenoir
- Université de Picardie Jules Verne, UMR « Ecologie et Dynamique des Systèmes Anthropisés » (EDYSAN, UMR 7058 CNRS), 33 Rue Saint Leu, 80000 Amiens CEDEX 1, France
| | | | - Steffen Ehrmann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
| | - Knut H Røed
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, N-0033, Oslo, Norway
| | - Hans Petter Leinaas
- Department of Biosciences, University of Oslo, Box 1066 Blindern, N-0316 Oslo, Norway
| | - Marcus Panning
- Institute of Virology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hermann-Herder-Str, 11 79104, Freiburg, Germany
| | - Annie Guiller
- Université de Picardie Jules Verne, UMR « Ecologie et Dynamique des Systèmes Anthropisés » (EDYSAN, UMR 7058 CNRS), 33 Rue Saint Leu, 80000 Amiens CEDEX 1, France.
| |
Collapse
|
15
|
Bateta R, Saarman NP, Okeyo WA, Dion K, Johnson T, Mireji PO, Okoth S, Malele I, Murilla G, Aksoy S, Caccone A. Phylogeography and population structure of the tsetse fly Glossina pallidipes in Kenya and the Serengeti ecosystem. PLoS Negl Trop Dis 2020; 14:e0007855. [PMID: 32092056 PMCID: PMC7058365 DOI: 10.1371/journal.pntd.0007855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/05/2020] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
Glossina pallidipes is the main vector of animal African trypanosomiasis and a potential vector of human African trypanosomiasis in eastern Africa where it poses a large economic burden and public health threat. Vector control efforts have succeeded in reducing infection rates, but recent resurgence in tsetse fly population density raises concerns that vector control programs require improved strategic planning over larger geographic and temporal scales. Detailed knowledge of population structure and dispersal patterns can provide the required information to improve planning. To this end, we investigated the phylogeography and population structure of G. pallidipes over a large spatial scale in Kenya and northern Tanzania using 11 microsatellite loci genotyped in 600 individuals. Our results indicate distinct genetic clusters east and west of the Great Rift Valley, and less distinct clustering of the northwest separate from the southwest (Serengeti ecosystem). Estimates of genetic differentiation and first-generation migration indicated high genetic connectivity within genetic clusters even across large geographic distances of more than 300 km in the east, but only occasional migration among clusters. Patterns of connectivity suggest isolation by distance across genetic breaks but not within genetic clusters, and imply a major role for river basins in facilitating gene flow in G. pallidipes. Effective population size (Ne) estimates and results from Approximate Bayesian Computation further support that there has been recent G. pallidipes population size fluctuations in the Serengeti ecosystem and the northwest during the last century, but also suggest that the full extent of differences in genetic diversity and population dynamics between the east and the west was established over evolutionary time periods (tentatively on the order of millions of years). Findings provide further support that the Serengeti ecosystem and northwestern Kenya represent independent tsetse populations. Additionally, we present evidence that three previously recognized populations (the Mbeere-Meru, Central Kenya and Coastal "fly belts") act as a single population and should be considered as a single unit in vector control.
Collapse
Affiliation(s)
- Rosemary Bateta
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Nairobi, Kenya
| | - Norah P. Saarman
- Department of Ecology and Evolutionary Biology, Yale University, Connecticut, United States of America
| | - Winnie A. Okeyo
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Nairobi, Kenya
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kisumu, Kenya
| | - Kirstin Dion
- Department of Ecology and Evolutionary Biology, Yale University, Connecticut, United States of America
| | - Thomas Johnson
- Department of Ecology and Evolutionary Biology, Yale University, Connecticut, United States of America
| | - Paul O. Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Nairobi, Kenya
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Sylvance Okoth
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Nairobi, Kenya
| | - Imna Malele
- Vector and Vector Borne Diseases Research Institute, Tanzania Veterinary Laboratory Agency, Tanga, Tanzania
| | - Grace Murilla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Nairobi, Kenya
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Connecticut, United States of America
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, Connecticut, United States of America
| |
Collapse
|
16
|
Berté D, De Meeûs T, Kaba D, Séré M, Djohan V, Courtin F, N'Djetchi Kassi M, Koffi M, Jamonneau V, Ta BTD, Solano P, N'Goran EK, Ravel S. Population genetics of Glossina palpalis palpalis in sleeping sickness foci of Côte d'Ivoire before and after vector control. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 75:103963. [PMID: 31301424 PMCID: PMC6853165 DOI: 10.1016/j.meegid.2019.103963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Glossina palpalis palpalis remains the major vector of sleeping sickness in Côte d'Ivoire. The disease is still active at low endemic levels in Bonon and Sinfra foci in the western-central part of the country. In this study, we investigated the impact of a control campaign on G. p. palpalis population structure in Bonon and Sinfra foci in order to adapt control strategies. Genetic variation at microsatellite loci was used to examine the population structure of different G. p. palpalis cohorts before and after control campaigns. Isolation by distance was observed in our sampling sites. Before control, effective population size was high (239 individuals) with dispersal at rather short distance (731 m per generation). We found some evidence that some of the flies captured after treatment come from surrounding sites, which increased the genetic variance. One Locus, GPCAG, displayed a 1000% increase of subdivision measure after control while other loci only exhibited a substantial increase in variance of subdivision. Our data suggested a possible trap avoidance behaviour in G. p. palpalis. It is important to take into account and better understand the possible reinvasion from neighboring sites and trap avoidance for the sake of sustainability of control campaigns effects.
Collapse
Affiliation(s)
- Djakaridja Berté
- Institut Pierre Richet/Institut National de Santé Publique, Bouaké, Côte d'Ivoire; Université Felix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | | | - Dramane Kaba
- Institut Pierre Richet/Institut National de Santé Publique, Bouaké, Côte d'Ivoire
| | - Modou Séré
- Université de Dédougou (UDDG), Dédougou, Burkina Faso
| | - Vincent Djohan
- Institut Pierre Richet/Institut National de Santé Publique, Bouaké, Côte d'Ivoire; Université Felix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Fabrice Courtin
- Intertryp, IRD, Cirad, Univ Montpellier, Montpellier, France
| | - Martial N'Djetchi Kassi
- Laboratoire des Interactions Hôte-Microorganisme-Environnement et Evolution, Unité de Formation et de Recherche Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | - Mathurin Koffi
- Laboratoire des Interactions Hôte-Microorganisme-Environnement et Evolution, Unité de Formation et de Recherche Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d'Ivoire
| | | | - Bi Tra Dieudonné Ta
- Institut Pierre Richet/Institut National de Santé Publique, Bouaké, Côte d'Ivoire; Université Felix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Philippe Solano
- Intertryp, IRD, Cirad, Univ Montpellier, Montpellier, France
| | | | - Sophie Ravel
- Intertryp, IRD, Cirad, Univ Montpellier, Montpellier, France
| |
Collapse
|
17
|
Cabalzar AP, Fields PD, Kato Y, Watanabe H, Ebert D. Parasite-mediated selection in a natural metapopulation of Daphnia magna. Mol Ecol 2019; 28:4770-4785. [PMID: 31591747 DOI: 10.1111/mec.15260] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 01/03/2023]
Abstract
Parasite-mediated selection varying across time and space in metapopulations is expected to result in host local adaptation and the maintenance of genetic diversity in disease-related traits. However, nonadaptive processes like migration and extinction-(re)colonization dynamics might interfere with adaptive evolution. Understanding how adaptive and nonadaptive processes interact to shape genetic variability in life-history and disease-related traits can provide important insights into their evolution in subdivided populations. Here we investigate signatures of spatially fluctuating, parasite-mediated selection in a natural metapopulation of Daphnia magna. Host genotypes from infected and uninfected populations were genotyped at microsatellite markers, and phenotyped for life-history and disease traits in common garden experiments. Combining phenotypic and genotypic data a QST -FST -like analysis was conducted to test for signatures of parasite mediated selection. We observed high variation within and among populations for phenotypic traits, but neither an indication of host local adaptation nor a cost of resistance. Infected populations have a higher gene diversity (Hs) than uninfected populations and Hs is strongly positively correlated with fitness. These results suggest a strong parasite effect on reducing population level inbreeding. We discuss how stochastic processes related to frequent extinction-(re)colonization dynamics as well as host and parasite migration impede the evolution of resistance in the infected populations. We suggest that the genetic and phenotypic patterns of variation are a product of dynamic changes in the host gene pool caused by the interaction of colonization bottlenecks, inbreeding, immigration, hybrid vigor, rare host genotype advantage and parasitism. Our study highlights the effect of the parasite in ameliorating the negative fitness consequences caused by the high drift load in this metapopulation.
Collapse
Affiliation(s)
- Andrea P Cabalzar
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Peter D Fields
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Yasuhiko Kato
- Department of Biotechnology, Division of Advance Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Division of Advance Science and Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland.,Tvärminne Zoological Station, Tvärminne, Finland
| |
Collapse
|
18
|
De Meeûs T, Ravel S, Solano P, Bouyer J. Negative Density-dependent Dispersal in Tsetse Flies: A Risk for Control Campaigns? Trends Parasitol 2019; 35:615-621. [PMID: 31201131 DOI: 10.1016/j.pt.2019.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/13/2022]
Abstract
Tsetse flies are vectors of parasites that cause diseases responsible for significant economic losses and health issues in sub-Saharan Africa, including sleeping sickness in humans and nagana in domestic animals. Efficient vector-control campaigns require good knowledge of the demographic parameters of the targeted populations. In the last decade, population genetics emerged as a convenient way to measure population densities and dispersal in tsetse flies. Here, by revealing a strong negative density-dependent dispersal in two dimensions, we suggest that control campaigns might unleash dispersal from untreated areas. If confirmed by direct measurement of dispersal before and after control campaigns, area-wide and/or sequential treatments of neighboring sites will be necessary to prevent this issue.
Collapse
Affiliation(s)
| | - Sophie Ravel
- Intertryp, IRD, Cirad, Univ Montpellier, Montpellier, France
| | - Philippe Solano
- Intertryp, IRD, Cirad, Univ Montpellier, Montpellier, France
| | - Jérémy Bouyer
- Intertryp, IRD, Cirad, Univ Montpellier, Montpellier, France; Astre, Cirad, Inra, Montpellier, France; Insect Pest Control Laboratory, Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Program of Nuclear Techniques in Food and Agriculture, A-1400, Vienna, Austria
| |
Collapse
|