1
|
Li YX, Ip JCH, Chen C, Xu T, Zhang Q, Sun Y, Ma PZ, Qiu JW. Phylogenomics of Bivalvia Using Ultraconserved Elements Reveal New Topologies for Pteriomorphia and Imparidentia. Syst Biol 2025; 74:16-33. [PMID: 39283716 DOI: 10.1093/sysbio/syae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/05/2024] [Accepted: 09/03/2024] [Indexed: 02/11/2025] Open
Abstract
Despite significant advances in phylogenetics over the past decades, the deep relationships within Bivalvia (phylum Mollusca) remain inconclusive. Previous efforts based on morphology or several genes have failed to resolve many key nodes in the phylogeny of Bivalvia. Advances have been made recently using transcriptome data, but the phylogenetic relationships within Bivalvia historically lacked consensus, especially within Pteriomorphia and Imparidentia. Here, we inferred the relationships of key lineages within Bivalvia using matrices generated from specifically designed ultraconserved elements (UCEs) with 16 available genomic resources and 85 newly sequenced specimens from 55 families. Our new probes (Bivalve UCE 2k v.1) for target sequencing captured an average of 849 UCEs with 1085 bp in mean length from in vitro experiments. Our results introduced novel schemes from 6 major clades (Protobranchina, Pteriomorphia, Palaeoheterodonta, Archiheterodonta, Anomalodesmata, and Imparidentia), though some inner nodes were poorly resolved, such as paraphyletic Heterodonta in some topologies potentially due to insufficient taxon sampling. The resolution increased when analyzing specific matrices for Pteriomorphia and Imparidentia. We recovered 3 Pteriomorphia topologies different from previously published trees, with the strongest support for ((Ostreida + (Arcida + Mytilida)) + (Pectinida + (Limida + Pectinida))). Limida were nested within Pectinida, warranting further studies. For Imparidentia, our results strongly supported the new hypothesis of (Galeommatida + (Adapedonta + Cardiida)), while the possible non-monophyly of Lucinida was inferred but poorly supported. Overall, our results provide important insights into the phylogeny of Bivalvia and show that target enrichment sequencing of UCEs can be broadly applied to study both deep and shallow phylogenetic relationships.
Collapse
Affiliation(s)
- Yi-Xuan Li
- Department of Biology, Hong Kong Baptist University, 224 Wateroo Road, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou, Guangdong 511458, China
| | - Jack Chi-Ho Ip
- Science Unit, Lingnan University, 8 Castle Peak Road, Tuen Mun, Hong Kong SAR, China
| | - Chong Chen
- X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Ting Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou, Guangdong 511458, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Qian Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, 6 Xianxialing Road, Laoshan District, Qingdao 266100, China
| | - Yanan Sun
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, 8 Nanhai Road, Shinan District, Qingdao 266071, China
| | - Pei-Zhen Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, 224 Wateroo Road, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Nansha District, Guangzhou, Guangdong 511458, China
| |
Collapse
|
2
|
Streicher JW, Lambert SM, Méndez de la Cruz FR, Martínez‐Méndez N, García‐Vázquez UO, Nieto Montes de Oca A, Wiens JJ. What Predicts Gene Flow During Speciation? The Relative Roles of Time, Space, Morphology and Climate. Mol Ecol 2024; 33:e17580. [PMID: 39506895 PMCID: PMC11589662 DOI: 10.1111/mec.17580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
The processes that restrict gene flow between populations are fundamental to speciation. Here, we develop a simple framework for studying whether divergence in morphology, climatic niche, time and space contribute to reduced gene flow among populations and species. We apply this framework to a model system involving a clade of spiny lizards (Sceloporus) occurring mostly in northeastern Mexico, which show striking variation in morphology and habitat among closely related species and populations. We developed a new time-calibrated phylogeny for the group using RADseq data from 152 individuals. This phylogeny identified 12 putative species-level clades, including at least two undescribed species. We then estimated levels of gene flow among 21 geographically adjacent pairs of species and populations. We also estimated divergence in morphological and climatic niche variables among these same pairs, along with divergence times and geographic distances. Using Bayesian generalised linear models, we found that gene flow between pairs of lineages is negatively related to divergence time and morphological divergence among them (which are uncorrelated), and not to geographic distance or climatic divergence. The framework used here can be applied to study speciation in many other organisms having genomic data but lacking direct data on reproductive isolation. We also found several other intriguing patterns in this system, including the parallel evolution of a strikingly similar montane blue-red morph from more dull-coloured desert ancestors within two different, nonsister species.
Collapse
Affiliation(s)
- Jeffrey W. Streicher
- Natural History MuseumLondonUK
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | - Shea M. Lambert
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| | | | - Norberto Martínez‐Méndez
- Laboratorio de Bioconservación y Manejo, Departamento de ZoologíaEscuela Nacional de Ciencias Biológicas del Instituto Politécnico NacionalMexico CityMexico
| | - Uri Omar García‐Vázquez
- Unidad Multidisciplinaria de Investigación, Facultad de Estudios Superiores ZaragozaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Adrián Nieto Montes de Oca
- Departamento de Biología Evolutiva, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - John J. Wiens
- Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
3
|
Ganguly U, France SC. Expanded distribution and a new genus for rock-inhabiting sea pens (Cnidaria, Anthozoa, Octocorallia, Pennatuloidea). Zootaxa 2024; 5507:123-139. [PMID: 39646634 DOI: 10.11646/zootaxa.5507.1.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 12/10/2024]
Abstract
Sea pens (Superfamily Pennatuloidea) are a specialized group of octocorals that evolved to live embedded in a soft-sedimented seafloor using their peduncles as anchors. Rock-inhabiting sea pens ("rock pens") were first described in 2011; their peduncle is modified into a suction cup-like structure that allows them to attach onto the surface of hard substrates, an adaptation previously unknown in sea pens. There are currently four species that have been identified as rock pens based on their peduncular morphology: three of these are in the genus Anthoptilum (Anthoptilidae), and one in the genus Calibelemnon (Scleroptilidae). Herein, we explore the geographic distribution and depth ranges of rock pens using observations from remotely operated vehicles and investigate the evolutionary origins of the rock pens. We present a phylogenomic study of sea pens, based on DNA sequences from hundreds of ultraconserved elements (UCE) and compare these trees to those constructed using mitochondrial gene regions. Our results show that the ancestral sea pen had a typical elongated peduncle. The adaptation to attach onto hard, rocky substrates using the special suction cup-like peduncle evolved along a single derived lineage that is sister to a lineage comprising the genus Anthoptilum. We propose all known rock pen species be grouped into a single new genus, described herein, in the family Anthoptilidae, to reflect the phylogenetic history.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Biology; University of Louisiana at Lafayette; Louisiana; USA 70504.
| | - Scott C France
- Department of Biology; University of Louisiana at Lafayette; Louisiana; USA 70504.
| |
Collapse
|
4
|
Benedict C, Delgado A, Pen I, Vaga C, Daly M, Quattrini AM. Sea anemone (Anthozoa, Actiniaria) diversity in Mo'orea (French Polynesia). Mol Phylogenet Evol 2024; 198:108118. [PMID: 38849066 DOI: 10.1016/j.ympev.2024.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sea anemones (Order Actiniaria) are a diverse group of marine invertebrates ubiquitous across marine ecosystems. Despite their wide distribution and success, a knowledge gap persists in our understanding of their diversity within tropical systems, owed to sampling bias of larger and more charismatic species overshadowing cryptic lineages. This study aims to delineate the sea anemone diversity in Mo'orea (French Polynesia) with the use of a dataset from the Mo'orea Biocode's "BioBlitz" initiative, which prioritized the sampling of more cryptic and understudied taxa. Implementing a target enrichment approach, we integrate 71 newly sequenced samples into an expansive phylogenetic framework and contextualize Mo'orea's diversity within global distribution patterns of sea anemones. Our analysis corroborates the presence of several previously documented sea anemones in French Polynesia and identifies for the first time the occurrence of members of genera Andvakia and Aiptasiomorpha. This research unveils the diverse sea anemone ecosystem in Mo'orea, spotlighting the area's ecological significance and emphasizing the need for continued exploration. Our methodology, encompassing a broad BLAST search coupled with phylogenetic analysis, proved to be a practical and effective approach for overcoming the limitations posed by the lack of comprehensive sequence data for sea anemones. We discuss the merits and limitations of current molecular methodologies and stress the importance of further research into lesser-studied marine organisms like sea anemones. Our work sets a precedent for future phylogenetic studies stemming from BioBlitz endeavors.
Collapse
Affiliation(s)
- Charlotte Benedict
- The Ohio State University, Department of Evolution, Ecology, and Organismal Biology, 1315 Kinnear Rd, Columbus, OH 43212, USA.
| | - Alonso Delgado
- The Ohio State University, Department of Evolution, Ecology, and Organismal Biology, 1315 Kinnear Rd, Columbus, OH 43212, USA
| | - Isabel Pen
- The Ohio State University, Department of Evolution, Ecology, and Organismal Biology, 1315 Kinnear Rd, Columbus, OH 43212, USA
| | - Claudia Vaga
- Department of Invertebrate Zoology, Smithsonian Institution's National Museum of Natural History, 10th and Constitution Ave NW, Washington, DC 20560, USA
| | - Marymegan Daly
- The Ohio State University, Department of Evolution, Ecology, and Organismal Biology, 1315 Kinnear Rd, Columbus, OH 43212, USA
| | - Andrea M Quattrini
- Department of Invertebrate Zoology, Smithsonian Institution's National Museum of Natural History, 10th and Constitution Ave NW, Washington, DC 20560, USA
| |
Collapse
|
5
|
Cairns SD, Rodriguez-Bermudez A. A new species of Plumarella (Octocorallia: Calcaxonia: Primnoidae) from the Northeast Pacific, and the redescription of Plumarella longispina Kinoshita, 1908. Zootaxa 2024; 5477:387-396. [PMID: 39646074 DOI: 10.11646/zootaxa.5477.3.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 12/10/2024]
Abstract
A new species of primnoid octocoral, Plumarella williamsi, is described from the west coast of the Unites States, ranging from Baja California to Washington at 55-735 m. Previously reported as the Japanese species P. longispina Kinoshita, 1908, it differs from that species in having fewer and more massive body wall scales, taller marginal scales, and larger and less granular coenenchymal scales. In addition, a phylogenetic tree analysis further confirms the status of the new species, and places P. williamsi as closely related to P. aurea (Deichmann, 1936) and P. longispina Kinoshita, 1908. Plumarella longispina is also redescribed based on type and topotypic specimens.
Collapse
Affiliation(s)
- Stephen D Cairns
- Department of Invertebrate Zoology; NHB-163; P. O. Box 37012; National Museum of Natural History; Smithsonian Institution; 20560; USA.
| | - Adriana Rodriguez-Bermudez
- Department of Invertebrate Zoology; NHB-163; P. O. Box 37012; National Museum of Natural History; Smithsonian Institution; 20560; USA.
| |
Collapse
|
6
|
Quattrini AM, McCartin LJ, Easton EE, Horowitz J, Wirshing HH, Bowers H, Mitchell K, González‐García MDP, Sei M, McFadden CS, Herrera S. Skimming genomes for systematics and DNA barcodes of corals. Ecol Evol 2024; 14:e11254. [PMID: 38746545 PMCID: PMC11091489 DOI: 10.1002/ece3.11254] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 01/06/2025] Open
Abstract
Numerous genomic methods developed over the past two decades have enabled the discovery and extraction of orthologous loci to help resolve phylogenetic relationships across various taxa and scales. Genome skimming (or low-coverage genome sequencing) is a promising method to not only extract high-copy loci but also 100s to 1000s of phylogenetically informative nuclear loci (e.g., ultraconserved elements [UCEs] and exons) from contemporary and museum samples. The subphylum Anthozoa, including important ecosystem engineers (e.g., stony corals, black corals, anemones, and octocorals) in the marine environment, is in critical need of phylogenetic resolution and thus might benefit from a genome-skimming approach. We conducted genome skimming on 242 anthozoan corals collected from 1886 to 2022. Using existing target-capture baitsets, we bioinformatically obtained UCEs and exons from the genome-skimming data and incorporated them with data from previously published target-capture studies. The mean number of UCE and exon loci extracted from the genome skimming data was 1837 ± 662 SD for octocorals and 1379 ± 476 SD loci for hexacorals. Phylogenetic relationships were well resolved within each class. A mean of 1422 ± 720 loci was obtained from the historical specimens, with 1253 loci recovered from the oldest specimen collected in 1886. We also obtained partial to whole mitogenomes and nuclear rRNA genes from >95% of samples. Bioinformatically pulling UCEs, exons, mitochondrial genomes, and nuclear rRNA genes from genome skimming data is a viable and low-cost option for phylogenetic studies. This approach can be used to review and support taxonomic revisions and reconstruct evolutionary histories, including historical museum and type specimens.
Collapse
Affiliation(s)
- Andrea M. Quattrini
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | - Luke J. McCartin
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| | - Erin E. Easton
- School of Earth, Environmental, and Marine SciencesUniversity of Texas Rio Grande ValleyPort IsabelTexasUSA
| | - Jeremy Horowitz
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | - Herman H. Wirshing
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | - Hailey Bowers
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | | | - María del P. González‐García
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
- Department of Marine SciencesUniversity of Puerto RicoMayagüezPuerto Rico
| | - Makiri Sei
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
| | | | - Santiago Herrera
- Department of Invertebrate Zoology, National Museum of Natural HistorySmithsonian InstitutionWashingtonDCUSA
- Department of Biological SciencesLehigh UniversityBethlehemPennsylvaniaUSA
| |
Collapse
|
7
|
Vaga CF, Seiblitz IGL, Stolarski J, Capel KCC, Quattrini AM, Cairns SD, Huang D, Quek RZB, Kitahara MV. 300 million years apart: the extreme case of macromorphological skeletal convergence between deltocyathids and a turbinoliid coral (Anthozoa, Scleractinia). INVERTEBR SYST 2024; 38:IS23053. [PMID: 38744500 DOI: 10.1071/is23053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/18/2024] [Indexed: 05/16/2024]
Abstract
The integration of morphological and molecular lines of evidence has enabled the family Deltocyathidae to be erected to accommodate Deltocyathus species that were previously ascribed to the family Caryophylliidae. However, although displaying the same morphological characteristics as other species of Deltocyathus , molecular data suggested that D. magnificus was phylogenetically distant from Deltocyathidae, falling within the family Turbinoliidae instead. To elucidate the enigmatic evolutionary history of this species and skeletal microstructural features, the phylogenetic relationships of Deltocyathidae and Turbinoliidae were investigated using nuclear ultraconserved and exon loci and complete mitochondrial genomes. Both nuclear and mitochondrial phylogenomic reconstructions confirmed the position of D. magnificus within turbinolids. Furthermore, a novel mitochondrial gene order was uncovered for Deltocyathidae species. This gene order was not present in Turbinoliidae or in D. magnificus that both have the scleractinian canonical gene order, further indicating the taxonomic utility of mitochondrial gene order. D. magnificus is therefore formally moved to the family Turbinoliidae and accommodated in a new genus (Dennantotrochus Kitahara, Vaga & Stolarski, gen. nov.). Surprisingly, turbinolids and deltocyathids do not differ in microstructural organisation of the skeleton that consists of densely packed, individualised rapid accretion deposits and thickening deposits composed of fibres perpendicular to the skeleton surface. Therefore, although both families are clearly evolutionarily divergent, macromorphological features indicate a case of skeletal convergence while these may still share conservative biomineralisation mechanisms. ZooBank: urn:lsid:zoobank.org:pub:5F1C0E25-3CC6-4D1F-B1F0-CD9D0014678E.
Collapse
Affiliation(s)
- C F Vaga
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA; and Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - I G L Seiblitz
- Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - J Stolarski
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, PL-00-818 Warsaw, Poland
| | - K C C Capel
- Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Invertebrate Department, National Museum of Rio de Janeiro, Federal University of Rio de Janeiro, 20940-040, Rio de Janeiro, Brazil
| | - A M Quattrini
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA
| | - S D Cairns
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA
| | - D Huang
- Lee Kong Chian Natural History Museum, National University of Singapore, Conservatory Drive, Singapore 117377, Singapore; and Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - R Z B Quek
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; and Yale-NUS College, National University of Singapore, Singapore 138527, Singapore
| | - M V Kitahara
- Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, 20560-0163, USA; and Center for Marine Biology, University of São Paulo, 11602-109, São Sebastião, SP, Brazil; and Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| |
Collapse
|
8
|
Oury N, Magalon H. Investigating the potential roles of intra-colonial genetic variability in Pocillopora corals using genomics. Sci Rep 2024; 14:6437. [PMID: 38499737 PMCID: PMC10948807 DOI: 10.1038/s41598-024-57136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/14/2024] [Indexed: 03/20/2024] Open
Abstract
Intra-colonial genetic variability (IGV), the presence of more than one genotype in a single colony, has been increasingly studied in scleractinians, revealing its high prevalence. Several studies hypothesised that IGV brings benefits, but few have investigated its roles from a genetic perspective. Here, using genomic data (SNPs), we investigated these potential benefits in populations of the coral Pocillopora acuta from Reunion Island (southwestern Indian Ocean). As the detection of IGV depends on sequencing and bioinformatics errors, we first explored the impact of the bioinformatics pipeline on its detection. Then, SNPs and genes variable within colonies were characterised. While most of the tested bioinformatics parameters did not significantly impact the detection of IGV, filtering on genotype depth of coverage strongly improved its detection by reducing genotyping errors. Mosaicism and chimerism, the two processes leading to IGV (the first through somatic mutations, the second through fusion of distinct organisms), were found in 7% and 12% of the colonies, respectively. Both processes led to several intra-colonial allelic differences, but most were non-coding or silent. However, 7% of the differences were non-silent and found in genes involved in a high diversity of biological processes, some of which were directly linked to responses to environmental stresses. IGV, therefore, appears as a source of genetic diversity and genetic plasticity, increasing the adaptive potential of colonies. Such benefits undoubtedly play an important role in the maintenance and the evolution of scleractinian populations and appear crucial for the future of coral reefs in the context of ongoing global changes.
Collapse
Affiliation(s)
- Nicolas Oury
- UMR ENTROPIE (Université de La Réunion, IRD, IFREMER, Université de Nouvelle-Calédonie, CNRS), Université de La Réunion, 97744, St Denis Cedex 09, La Réunion, France.
- Laboratoire Cogitamus, Paris, France.
- KAUST Red Sea Research Center and Marine Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
| | - Hélène Magalon
- UMR ENTROPIE (Université de La Réunion, IRD, IFREMER, Université de Nouvelle-Calédonie, CNRS), Université de La Réunion, 97744, St Denis Cedex 09, La Réunion, France
- Laboratoire Cogitamus, Paris, France
- Laboratoire d'Excellence CORAIL, Perpignan, France
| |
Collapse
|
9
|
Capel KCC, Zilberberg C, Carpes RM, Morrison CL, Vaga CF, Quattrini AM, Zb Quek R, Huang D, Cairns SD, Kitahara MV. How long have we been mistaken? Multi-tools shedding light into the systematics of the widespread deep-water genus Madrepora Linnaeus, 1758 (Scleractinia). Mol Phylogenet Evol 2024; 191:107994. [PMID: 38113961 DOI: 10.1016/j.ympev.2023.107994] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Deep-water coral reefs are found worldwide and harbor biodiversity levels that are comparable to their shallow-water counterparts. However, the genetic diversity and population structure of deep-water species remain poorly explored, and historical taxonomical issues still need to be resolved. Here we used microsatellite markers as well as ultraconserved elements (UCE) and exons to shed light on the population structure, genetic diversity, and phylogenetic position of the genus Madrepora, which contains M. oculata, one of the most widespread scleractinian species. Population structure of 107 samples from three Southwestern Atlantic sedimentary basins revealed the occurrence of a cryptic species, herein named M. piresae sp. nov. (authored by Kitahara, Capel and Zilberberg), which can be found in sympatry with M. oculata. Phylogeny reconstructions based on 134 UCEs and exon regions corroborated the population genetic data, with the recovery of two well-supported groups, and reinforced the polyphyly of the family Oculinidae. In order to better accommodate the genus Madrepora, while reducing taxonomical confusion associated with the name Madreporidae, we propose the monogeneric family Bathyporidae fam. nov. (authored by Kitahara, Capel, Zilberberg and Cairns). Our findings advance the knowledge on the widespread deep-water genus Madrepora, resolve a long-standing question regarding the phylogenetic position of the genus, and highlight the need of a worldwide review of the genus.
Collapse
Affiliation(s)
- Kátia C C Capel
- Center for Marine Biology, University of São Paulo, São Sebastião, São Paulo, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, 87, 45807-000 Santa Cruz Cabrália, BA, Brazil.
| | - Carla Zilberberg
- Instituto Coral Vivo, Rua dos Coqueiros, 87, 45807-000 Santa Cruz Cabrália, BA, Brazil; Department of Zoology, Institute of Biodiversity and Sustainability - Nupem, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Raphael M Carpes
- Department of Zoology, Institute of Biodiversity and Sustainability - Nupem, Federal University of Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Cheryl L Morrison
- U.S. Geological Survey, Eastern Ecological Science Center, Leetown Research Laboratory, Kearneysville, United States
| | - Claudia F Vaga
- Center for Marine Biology, University of São Paulo, São Sebastião, São Paulo, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Invertebrate Zoology, Smithsonian Institution, Washington DC, United States
| | - Andrea M Quattrini
- Department of Invertebrate Zoology, Smithsonian Institution, Washington DC, United States
| | - Randolph Zb Quek
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore; Lee Kong Chian Natural History Museum, National University of Singapore, Singapore
| | - Stephen D Cairns
- Department of Invertebrate Zoology, Smithsonian Institution, Washington DC, United States
| | - Marcelo V Kitahara
- Center for Marine Biology, University of São Paulo, São Sebastião, São Paulo, Brazil; Instituto Coral Vivo, Rua dos Coqueiros, 87, 45807-000 Santa Cruz Cabrália, BA, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Invertebrate Zoology, Smithsonian Institution, Washington DC, United States.
| |
Collapse
|
10
|
McFadden CS, Benayahu Y, Samimi-Namin K. A new genus of soft coral (Octocorallia, Malacalcyonacea, Cladiellidae) and three new species from Indo-Pacific coral reefs. Zookeys 2024; 1188:275-304. [PMID: 38239385 PMCID: PMC10795068 DOI: 10.3897/zookeys.1188.110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/23/2023] [Indexed: 01/22/2024] Open
Abstract
Molecular systematic studies of the anthozoan class Octocorallia have revealed widespread incongruence between phylogenetic relationships and taxonomic classification at all levels of the Linnean hierarchy. Among the soft coral taxa in order Malacalcyonacea, the family Alcyoniidae and its type genus Alcyonium have both been recognised to be highly polyphyletic. A recent family-level revision of Octocorallia established a number of new families for genera formerly considered to belong to Alcyoniidae, but revision of Alcyonium is not yet complete. Previous molecular studies have supported the placement of Alcyoniumverseveldti (Benayahu, 1982) in family Cladiellidae rather than Alcyoniidae, phylogenetically distinct from the other three genera in that family. Here we describe a new genus, Ofwegenumgen. nov. to accommodate O.verseveldticomb. nov. and three new species of that genus, O.coronalucissp. nov., O.kloogisp. nov., and O.collisp. nov., bringing the total number of species in this genus to four. Ofwegenumgen. nov. is a rarely encountered genus so far known from only a few locations spanning the Indian and western Pacific Oceans. We present the morphological characters of each species and use molecular data from both DNA barcoding and target-enrichment of conserved elements to explore species boundaries and phylogenetic relationships within the genus.
Collapse
Affiliation(s)
- Catherine S. McFadden
- Department of Biology, Harvey Mudd College, Claremont, CA 91711, USAHarvey Mudd CollegeClaremontUnited States of America
| | - Yehuda Benayahu
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, 69978, Tel Aviv, IsraelTel Aviv UniversityTel AvivIsrael
| | - Kaveh Samimi-Namin
- Marine Evolution and Ecology Group, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, NetherlandsMarine Evolution and Ecology Group, Naturalis Biodiversity CenterLeidenNetherlands
- Department of Biology, University of Oxford, Oxfordshire, Oxford OX1 3SZ, UKUniversity of OxfordOxfordUnited Kingdom
- Natural History Museum, Cromwell Road, London SW7 5BD, UKNatural History MuseumLondonUnited Kingdom
| |
Collapse
|
11
|
Morrissey D, Gordon JD, Saso E, Bilewitch JP, Taylor ML, Hayes V, McFadden CS, Quattrini AM, Allcock AL. Bamboozled! Resolving deep evolutionary nodes within the phylogeny of bamboo corals (Octocorallia: Scleralcyonacea: Keratoisididae). Mol Phylogenet Evol 2023; 188:107910. [PMID: 37640170 DOI: 10.1016/j.ympev.2023.107910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Keratoisididae is a globally distributed, and exclusively deep-sea, family of octocorals that contains species and genera that are polyphyletic. An alphanumeric system, based on a three-gene-region phylogeny, is widely used to describe the biodiversity within this family. That phylogeny identified 12 major groups although it did not have enough signal to explore the relationships among groups. Using increased phylogenomic resolution generated from Ultraconserved Elements and exons (i.e. conserved elements), we aim to resolve deeper nodes within the family and investigate the relationships among those predefined groups. In total, 109 libraries of conserved elements were generated from individuals representing both the genetic and morphological diversity of our keratoisidids. In addition, the conserved element data of 12 individuals from previous studies were included. Our taxon sampling included 11 of the 12 keratoisidid groups. We present two phylogenies, constructed from a 75% (231 loci) and 50% (1729 loci) taxon occupancy matrix respectively, using both Maximum Likelihood and Multiple Species Coalescence methods. These trees were congruent at deep nodes. As expected, S1 keratoisidids were recovered as a well-supported sister clade to the rest of the bamboo corals. S1 corals do not share the same mitochondrial gene arrangement found in other members of Keratoisididae. All other bamboo corals were recovered within two major clades. Clade I comprises individuals assigned to alphanumeric groups B1, C1, D1&D2, F1, H1, I4, and J3 while Clade II contains representatives from A1, I1, and M1. By combining genomics with already published morphological data, we provide evidence that group H1 is not monophyletic, and that the division between other groups - D1 and D2, and A1 and M1 - needs to be reconsidered. Overall, there is a lack of robust morphological markers within Keratoisididae, but subtle characters such as sclerite microstructure and ornamentation seem to be shared within groups and warrant further investigation as taxonomically diagnostic characters.
Collapse
Affiliation(s)
- Declan Morrissey
- Ryan Institute & School of Natural Sciences, University of Galway, University Road, Galway, Ireland.
| | - Jessica D Gordon
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Emma Saso
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Jaret P Bilewitch
- National Institute of Water & Atmospheric Research Ltd (NIWA), 301 Evans Bay Parade, Wellington 6021, New Zealand
| | - Michelle L Taylor
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Vonda Hayes
- Department of Fisheries and Oceans, St. John's, Newfoundland and Labrador, Canada
| | - Catherine S McFadden
- Department of Biology, Harvey Mudd College, 1250 N. Dartmouth Ave., Claremont, CA 91711, USA
| | - Andrea M Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - A Louise Allcock
- Ryan Institute & School of Natural Sciences, University of Galway, University Road, Galway, Ireland
| |
Collapse
|
12
|
Voolstra CR, Hume BCC, Armstrong EJ, Mitushasi G, Porro B, Oury N, Agostini S, Boissin E, Poulain J, Carradec Q, Paz-García DA, Zoccola D, Magalon H, Moulin C, Bourdin G, Iwankow G, Romac S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Furla P, Galand PE, Gilson E, Lombard F, Pesant S, Reynaud S, Sullivan MB, Sunagawa S, Thomas OP, Troublé R, Thurber RV, Wincker P, Planes S, Allemand D, Forcioli D. Disparate genetic divergence patterns in three corals across a pan-Pacific environmental gradient highlight species-specific adaptation. NPJ BIODIVERSITY 2023; 2:15. [PMID: 39242808 PMCID: PMC11332039 DOI: 10.1038/s44185-023-00020-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/13/2023] [Indexed: 09/09/2024]
Abstract
Tropical coral reefs are among the most affected ecosystems by climate change and face increasing loss in the coming decades. Effective conservation strategies that maximize ecosystem resilience must be informed by the accurate characterization of extant genetic diversity and population structure together with an understanding of the adaptive potential of keystone species. Here we analyzed samples from the Tara Pacific Expedition (2016-2018) that completed an 18,000 km longitudinal transect of the Pacific Ocean sampling three widespread corals-Pocillopora meandrina, Porites lobata, and Millepora cf. platyphylla-across 33 sites from 11 islands. Using deep metagenomic sequencing of 269 colonies in conjunction with morphological analyses and climate variability data, we can show that despite a targeted sampling the transect encompasses multiple cryptic species. These species exhibit disparate biogeographic patterns and, most importantly, distinct evolutionary patterns in identical environmental regimes. Our findings demonstrate on a basin scale that evolutionary trajectories are species-specific and can only in part be predicted from the environment. This highlights that conservation strategies must integrate multi-species investigations to discern the distinct genomic footprints shaped by selection as well as the genetic potential for adaptive change.
Collapse
Affiliation(s)
| | - Benjamin C C Hume
- Department of Biology, University of Konstanz, 78457, Konstanz, Germany
| | - Eric J Armstrong
- PSL Research University, EPHE, CNRS, Université de Perpignan, Perpignan, France
| | - Guinther Mitushasi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Barbara Porro
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- French National Institute for Agriculture, Food, and Environment (INRAE), Université Côte d'Azur, ISA, France
| | - Nicolas Oury
- UMR 250/9220 ENTROPIE UR-IRD-CNRS-Ifremer-UNC, Laboratoire d'Excellence CORAIL, Université de la Réunion, St Denis de la Réunion, France
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1, Shimoda, Shizuoka, Japan
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - Julie Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Quentin Carradec
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - David A Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. IPN 195, Col. Playa Palo de Santa Rita Sur, La Paz, 23096, Baja California Sur, México
| | - Didier Zoccola
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Hélène Magalon
- UMR 250/9220 ENTROPIE UR-IRD-CNRS-Ifremer-UNC, Laboratoire d'Excellence CORAIL, Université de la Réunion, St Denis de la Réunion, France
| | - Clémentine Moulin
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75 012, Paris, France
| | - Guillaume Bourdin
- School of Marine Sciences, University of Maine, Orono, 04469, ME, USA
| | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - Sarah Romac
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, 04469, ME, USA
| | - Chris Bowler
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Colomban de Vargas
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, 76100, Rehovot, Israel
| | - Paola Furla
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Eric Gilson
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Department of Medical Genetics, CHU Nice, Nice, France
| | - Fabien Lombard
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
- Laboratoire d'Océanographie de Villefranche, UMR 7093, Sorbonne Université, CNRS, 06230, Villefranche sur mer, France
- Institut Universitaire de France, 75231, Paris, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stéphanie Reynaud
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Matthew B Sullivan
- Department of Microbiology and Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zurich, Switzerland
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, University Road, H91 TK33, Galway, Ireland
| | - Romain Troublé
- Fondation Tara Océan, Base Tara, 8 rue de Prague, 75 012, Paris, France
| | | | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016, Paris, France
| | - Serge Planes
- PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan, France
| | - Denis Allemand
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine Ier, MC-98000, Monaco, Principality of Monaco
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France.
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco.
| |
Collapse
|
13
|
Randolph Quek ZB, Jain SS, Richards ZT, Arrigoni R, Benzoni F, Hoeksema BW, Carvajal JI, Wilson NG, Baird AH, Kitahara MV, Seiblitz IGL, Vaga CF, Huang D. A hybrid-capture approach to reconstruct the phylogeny of Scleractinia (Cnidaria: Hexacorallia). Mol Phylogenet Evol 2023:107867. [PMID: 37348770 DOI: 10.1016/j.ympev.2023.107867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
A well-supported evolutionary tree representing most major lineages of scleractinian corals is in sight with the development and application of phylogenomic approaches. Specifically, hybrid-capture techniques are shedding light on the evolution and systematics of corals. Here, we reconstructed a broad phylogeny of Scleractinia to test previous phylogenetic hypotheses inferred from a few molecular markers, in particular, the relationships among major scleractinian families and genera, and to identify clades that require further research. We analysed 449 nuclear loci from 422 corals, comprising 266 species spanning 26 families, combining data across whole genomes, transcriptomes, hybrid capture and low-coverage sequencing to reconstruct the largest phylogenomic tree of scleractinians to date. Due to the large number of loci and data completeness (<38% missing data), node supports were high across shallow and deep nodes with incongruences observed in only a few shallow nodes. The "Robust" and "Complex" clades were recovered unequivocally, and our analyses confirmed that Micrabaciidae Vaughan, 1905 is sister to the "Robust" clade, transforming our understanding of the "Basal" clade. Several families remain polyphyletic in our phylogeny, including Deltocyathiidae Kitahara, Cairns, Stolarski & Miller, 2012, Caryophylliidae Dana, 1846, and Coscinaraeidae Benzoni, Arrigoni, Stefani & Stolarski, 2012, and we hereby formally proposed the family name Pachyseridae Benzoni & Hoeksema to accommodate Pachyseris Milne Edwards & Haime, 1849, which is phylogenetically distinct from Agariciidae Gray, 1847. Results also revealed species misidentifications and inconsistencies within morphologically complex clades, such as Acropora Oken, 1815 and Platygyra Ehrenberg, 1834, underscoring the need for reference skeletal material and topotypes, as well as the importance of detailed taxonomic work. The approach and findings here provide much promise for further stabilising the topology of the scleractinian tree of life and advancing our understanding of coral evolution.
Collapse
Affiliation(s)
- Z B Randolph Quek
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Yale-NUS College, National University of Singapore, Singapore 138527, Singapore.
| | - Sudhanshi S Jain
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Zoe T Richards
- Coral Conservation and Research Group, Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia; Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Roberto Arrigoni
- Department of Biology and Evolution of Marine Organisms, Genoa Marine Centre, Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, 16126 Genoa, Italy
| | - Francesca Benzoni
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Bert W Hoeksema
- Taxonomy, Systematics and Geodiversity Group, Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands; Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Jose I Carvajal
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia
| | - Nerida G Wilson
- Collections and Research, Western Australian Museum, Welshpool, Western Australia 6106, Australia; School of Biological Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Andrew H Baird
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Marcelo V Kitahara
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560, United States of America
| | - Isabela G L Seiblitz
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Claudia F Vaga
- Centre for Marine Biology, University of São Paulo, 11612-109 São Sebastião, Brazil; Graduate Program in Zoology, Department of Zoology, Institute of Biosciences, University of São Paulo, 05508-090 São Paulo, Brazil
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Lee Kong Chian Natural History Museum, National University of Singapore, Singapore 117377, Singapore; Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore; Centre for Nature-based Climate Solutions, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
14
|
Glon H, Häussermann V, Brewin PE, Brickle P, Kong S, Smith ML, Daly M. There and Back Again: The Unexpected Journeys of Metridium de Blainville, 1824 between the Old Oceans and throughout the Modern World. THE BIOLOGICAL BULLETIN 2023; 244:9-24. [PMID: 37167618 DOI: 10.1086/723800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
AbstractMembers of the sea anemone genus Metridium are abundant in temperate rocky habitats and fouling communities. Their biogeographic history is expected to reflect changes in currents and habitats that have influenced benthic communities, such as the climate-influenced changes that occurred during the Last Glacial Maximum. More recently, however, anthropogenic influences such as shipping transportation and the creation of artificial habitat have altered and affected the composition of modern-day marine communities. Here we use sequence-capture data to examine the genetic structure of Metridium across its shallow-water distribution to (1) evaluate species boundaries within Metridium, (2) elucidate the dispersal history of Metridium between and among oceans, and (3) assess the influence of anthropogenic movement on modern-day populations. We find strong evidence for two species within Metridium: M. farcimen and M. senile. Dispersal from the Pacific to the Atlantic included a subsequent isolation of a small population in or above the Bering Sea, which has presumably moved southward. Within the native range of M. senile, admixture is prevalent even between oceans as a result of anthropogenic activities. The nonnative populations in Chile and the Falkland Islands came from at least two distinct introduction events originating from both coasts of the United States in the North Pacific and North Atlantic Oceans. Hybridization between M. senile and M. farcimen is documented as occurring in anthropogenically influenced habitats. The heavy influence from anthropogenic activities will continue to impact our understanding of marine organisms, particularly within the native range and for those that are easily transported across long distances.
Collapse
|
15
|
New Records of the Cryptogenic Soft Coral Genus Stragulum (Tubiporidae) from the Eastern Caribbean and the Persian Gulf. DIVERSITY 2022. [DOI: 10.3390/d14110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The monotypic soft coral genus Stragulum van Ofwegen and Haddad, 2011 (Octocorallia: Malacalcyonacea: Tubiporidae) was originally described from Brazil, southwest Atlantic Ocean. Here, we report the first records of the genus from the eastern Caribbean and the Persian Gulf in the northwest Indian Ocean. We compare the morphological features of specimens, together with molecular data from three commonly used barcoding markers (COI, mtMutS, 28S rDNA) and 308 ultraconserved elements (UCE) and exon loci sequenced using a target-enrichment approach. The molecular and morphological data together suggest that specimens from all three localities are the same species, i.e., Stragulum bicolor van Ofwegen and Haddad, 2011. It is still not possible to establish the native range of the species or determine whether it may be an introduced species due to the limited number of specimens included in this study. However, the lack of historical records, its fouling abilities on artificial substrates, and a growing number of observations support the invasive nature of the species in Brazilian and Caribbean waters and therefore suggest that it may have been introduced into the Atlantic from elsewhere. Interestingly, the species has not shown any invasive behaviour in the Persian Gulf, where it has been found only on natural, rocky substrates. The aim of the present report is to create awareness of this taxon with the hope that this will lead to new records from other localities and help to establish its native range.
Collapse
|
16
|
DeRaad DA, McCormack JE, Chen N, Peterson AT, Moyle RG. Combining Species Delimitation, Species Trees, and Tests for Gene Flow Clarifies Complex Speciation in Scrub-Jays. Syst Biol 2022; 71:1453-1470. [PMID: 35552760 DOI: 10.1093/sysbio/syac034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Complex speciation, involving rapid divergence and multiple bouts of post-divergence gene flow, can obfuscate phylogenetic relationships and species limits. In North America, cases of complex speciation are common, due at least in part to the cyclical Pleistocene glacial history of the continent. Scrub-jays in the genus Aphelocoma provide a useful case study in complex speciation because their range throughout North America is structured by phylogeographic barriers with multiple cases of secondary contact between divergent lineages. Here, we show that a comprehensive approach to genomic reconstruction of evolutionary history, i.e., synthesizing results from species delimitation, species tree reconstruction, demographic model testing, and tests for gene flow, is capable of clarifying evolutionary history despite complex speciation. We find concordant evidence across all statistical approaches for the distinctiveness of an endemic southern Mexico lineage (A. w. sumichrasti), culminating in support for the species status of this lineage under any commonly applied species concept. We also find novel genomic evidence for the species status of a Texas endemic lineage A. w. texana, for which equivocal species delimitation results were clarified by demographic modeling and spatially explicit models of gene flow. Finally, we find that complex signatures of both ancient and modern gene flow between the non-sister California Scrub-Jay (A. californica) and Woodhouse's Scrub-Jay (A. woodhouseii), result in discordant gene trees throughout the species' genomes despite clear support for their overall isolation and species status. In sum, we find that a multi-faceted approach to genomic analysis can increase our understanding of complex speciation histories, even in well-studied groups. Given the emerging recognition that complex speciation is relatively commonplace, the comprehensive framework that we demonstrate for interrogation of species limits and evolutionary history using genomic data can provide a necessary roadmap for disentangling the impacts of gene flow and incomplete lineage sorting to better understand the systematics of other groups with similarly complex evolutionary histories.
Collapse
Affiliation(s)
- Devon A DeRaad
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS, 66045, USA
| | - John E McCormack
- Moore Laboratory of Zoology,Occidental College, Los Angeles, CA, 90041, USA
| | - Nancy Chen
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - A Townsend Peterson
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS, 66045, USA
| | - Robert G Moyle
- Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence KS, 66045, USA
| |
Collapse
|
17
|
Titus BM, Daly M. Population genomics for symbiotic anthozoans: can reduced representation approaches be used for taxa without reference genomes? Heredity (Edinb) 2022; 128:338-351. [PMID: 35418670 PMCID: PMC9076904 DOI: 10.1038/s41437-022-00531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022] Open
Abstract
Population genetic studies of symbiotic anthozoans have been historically challenging because their endosymbioses with dinoflagellates have impeded marker development. Genomic approaches like reduced representation sequencing alleviate marker development issues but produce anonymous loci, and without a reference genome, it is unknown which organism is contributing to the observed patterns. Alternative methods such as bait-capture sequencing targeting Ultra-Conserved Elements are now possible but costly. Thus, RADseq remains attractive, but how useful are these methods for symbiotic anthozoan taxa without a reference genome to separate anthozoan from algal sequences? We explore this through a case-study using a double-digest RADseq dataset for the sea anemone Bartholomea annulata. We assembled a holobiont dataset (3854 loci) for 101 individuals, then used a reference genome to create an aposymbiotic dataset (1402 loci). For both datasets, we investigated population structure and used coalescent simulations to estimate demography and population parameters. We demonstrate complete overlap in the spatial patterns of genetic diversity, demographic histories, and population parameter estimates for holobiont and aposymbiotic datasets. We hypothesize that the unique combination of anthozoan biology, diversity of the endosymbionts, and the manner in which assembly programs identify orthologous loci alleviates the need for reference genomes in some circumstances. We explore this hypothesis by assembling an additional 21 datasets using the assembly programs pyRAD and Stacks. We conclude that RADseq methods are more tractable for symbiotic anthozoans without reference genomes than previously realized.
Collapse
Affiliation(s)
- Benjamin M Titus
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA.
- Dauphin Island Sea Lab, Dauphin Island, AL, USA.
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA.
| | - Marymegan Daly
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
18
|
Cerri F, Saliu F, Maggioni D, Montano S, Seveso D, Lavorano S, Zoia L, Gosetti F, Lasagni M, Orlandi M, Taglialatela-Scafati O, Galli P. Cytotoxic Compounds from Alcyoniidae: An Overview of the Last 30 Years. Mar Drugs 2022; 20:134. [PMID: 35200663 PMCID: PMC8874409 DOI: 10.3390/md20020134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/29/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022] Open
Abstract
The octocoral family Alcyoniidae represents a rich source of bioactive substances with intriguing and unique structural features. This review aims to provide an updated overview of the compounds isolated from Alcyoniidae and displaying potential cytotoxic activity. In order to allow a better comparison among the bioactive compounds, we focused on molecules evaluated in vitro by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, by far the most widely used method to analyze cell proliferation and viability. Specifically, we surveyed the last thirty years of research, finding 153 papers reporting on 344 compounds with proven cytotoxicity. The data were organized in tables to provide a ranking of the most active compounds, to be exploited for the selection of the most promising candidates for further screening and pre-clinical evaluation as anti-cancer agents. Specifically, we found that (22S,24S)-24-methyl-22,25-epoxyfurost-5-ene-3β,20β-diol (16), 3β,11-dihydroxy-24-methylene-9,11-secocholestan-5-en-9-one (23), (24S)-ergostane-3β,5α,6β,25 tetraol (146), sinulerectadione (227), sinulerectol C (229), and cladieunicellin I (277) exhibited stronger cytotoxicity than their respective positive control and that their mechanism of action has not yet been further investigated.
Collapse
Affiliation(s)
- Federico Cerri
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Piazza della Scienza 2, 20126 Milano, Italy;
| | - Francesco Saliu
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
| | - Davide Maggioni
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
- MaRHE Centre (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| | - Simone Montano
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
- MaRHE Centre (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| | - Davide Seveso
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
- MaRHE Centre (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| | - Silvia Lavorano
- Costa Edutainment SpA—Acquario di Genova, Area Porto Antico, Ponte Spinola, 16128 Genoa, Italy;
| | - Luca Zoia
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
| | - Fabio Gosetti
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
| | - Marina Lasagni
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
| | - Marco Orlandi
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
| | | | - Paolo Galli
- Department of Earth and Environmental Sciences DISAT, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; (D.M.); (S.M.); (D.S.); (L.Z.); (F.G.); (M.L.); (M.O.); (P.G.)
- MaRHE Centre (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| |
Collapse
|
19
|
Bentlage B, Collins AG. Tackling the phylogenetic conundrum of Hydroidolina (Cnidaria: Medusozoa: Hydrozoa) by assessing competing tree topologies with targeted high-throughput sequencing. PeerJ 2021; 9:e12104. [PMID: 34589302 PMCID: PMC8435201 DOI: 10.7717/peerj.12104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Higher-level relationships of the Hydrozoan subclass Hydroidolina, which encompasses the vast majority of medusozoan cnidarian species diversity, have been elusive to confidently infer. The most widely adopted phylogenetic framework for Hydroidolina based on ribosomal RNA data received low support for several higher level relationships. To address this issue, we developed a set of RNA baits to target more than a hundred loci from the genomes of a broad taxonomic sample of Hydroidolina for high-throughput sequencing. Using these data, we inferred the relationships of Hydroidolina using maximum likelihood and Bayesian approaches. Both inference methods yielded well-supported phylogenetic hypotheses that largely agree with each other. Using maximum likelihood and Baysian hypothesis testing frameworks, we found that several alternate topological hypotheses proposed previously may be rejected in light of the genomic data generated for this study. Both the maximum likelihood and Bayesian topologies inferred herein consistently score well across testing frameworks, suggesting that their consensus represents the most likely phylogenetic hypothesis of Hydroidolina. This phylogenetic framework places Aplanulata as sister lineage to the remainder of Hydroidolina. This is a strong deviation from previous phylogenetic analyses that placed Capitata or Siphonophorae as sister group to the remainder of Hydroidolina. Considering that Aplanulata represents a lineage comprised of species that for the most part possess a life cycle involving a solitary polyp and free-swimming medusa stage, the phylogenetic hypotheses presented herein have potentially large implications for clarifying the evolution of life cycles, coloniality, and the division of labor in Hydrozoa as taxon sampling for phylogenetic analyses becomes more complete.
Collapse
Affiliation(s)
| | - Allen G Collins
- National Museum of Natural History & National Systematics Laboratory of NOAA's Fisheries Service, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
20
|
Ramírez-Portilla C, Baird AH, Cowman PF, Quattrini AM, Harii S, Sinniger F, Flot JF. Solving the Coral Species Delimitation Conundrum. Syst Biol 2021; 71:461-475. [PMID: 34542634 DOI: 10.1093/sysbio/syab077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/15/2022] Open
Abstract
Distinguishing coral species is not only crucial for physiological, ecological and evolutionary studies, but also to enable effective management of threatened reef ecosystems. However, traditional hypotheses that delineate coral species based on morphological traits from the coral skeleton are frequently at odds with tree-based molecular approaches. Additionally, a dearth of species-level molecular markers has made species delimitation particularly challenging in species-rich coral genera, leading to the widespread assumption that inter-specific hybridization might be responsible for this apparent conundrum. Here, we used three lines of evidence - morphology, breeding trials and molecular approaches - to identify species boundaries in a group of ecologically important tabular Acropora corals. In contrast to previous studies, our morphological analyses yielded groups that were congruent with experimental crosses as well as with coalescent-based and allele sharing-based multilocus approaches to species delimitation. Our results suggest that species of the genus Acropora are reproductively isolated and independently evolving units that can be distinguished morphologically. These findings not only pave the way for a taxonomic revision of coral species, but also outline an approach that can provide a solid basis to address species delimitation and provide conservation support to a wide variety of keystone organisms.
Collapse
Affiliation(s)
- Catalina Ramírez-Portilla
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), Brussels, B-1050, Belgium.,Systematics & Biodiversity, Justus-Liebig University, Giessen, D-35392, Germany
| | - Andrew H Baird
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Peter F Cowman
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Andrea M Quattrini
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, 20560, USA
| | - Saki Harii
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Frederic Sinniger
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Jean-François Flot
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), Brussels, B-1050, Belgium.,Interuniversity Institute of Bioinformatics in Brussels - (IB)2, Brussels, B-1050, Belgium
| |
Collapse
|
21
|
Grinblat M, Cooke I, Shlesinger T, Ben-Zvi O, Loya Y, Miller DJ, Cowman PF. Biogeography, reproductive biology and phylogenetic divergence within the Fungiidae (mushroom corals). Mol Phylogenet Evol 2021; 164:107265. [PMID: 34274488 DOI: 10.1016/j.ympev.2021.107265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/15/2022]
Abstract
While the escalating impacts of climate change and other anthropogenic pressures on coral reefs are well documented at the coral community level, studies of species-specific trends are less common, owing mostly to the difficulties and uncertainties in delineating coral species. It has also become clear that traditional coral taxonomy based largely on skeletal macromorphology has underestimated the diversity of many coral families. Here, we use targeted enrichment methods to sequence 2476 ultraconserved elements (UCEs) and exonic loci to investigate the relationship between populations of Fungia fungites from Okinawa, Japan, where this species reproduces by brooding (i.e., internal fertilization), and Papua New Guinea and Australia, where it reproduces by broadcast-spawning (i.e., external fertilization). Moreover, we analyzed the relationships between populations of additional fungiid species (Herpolitha limax and Ctenactis spp.) that reproduce only by broadcast-spawning. Our phylogenetic and species delimitation analyses reveal strong biogeographic structuring in both F. fungites and Herpolitha limax, consistent with cryptic speciation in Okinawa in both species and additionally for H. limax in the Red Sea. By combining UCE/exon data and mitochondrial sequences captured in off-target reads, we reinforce earlier findings that Ctenactis, a genus consisting of three nominal morphospecies, is not a natural group. Our results highlight the need for taxonomic and systematic re-evaluations of some species and genera within the family Fungiidae. This work demonstrates that sequence data generated by the application of targeted capture methods can provide objective criteria by which we can test phylogenetic hypotheses based on morphological and/or life history traits.
Collapse
Affiliation(s)
- Mila Grinblat
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia.
| | - Ira Cooke
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia.
| | - Tom Shlesinger
- Institute for Global Ecology, Florida Institute of Technology, Melbourne, FL, USA
| | - Or Ben-Zvi
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel; The Interuniversity Institute for Marine Sciences in Eilat, Eilat, Israel
| | - Yossi Loya
- School of Zoology, Tel-Aviv University, Tel-Aviv, Israel
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia.
| | - Peter F Cowman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia; Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, Queensland, Australia.
| |
Collapse
|
22
|
Corrigendum. Mol Ecol Resour 2021; 21:1404. [PMID: 33844447 DOI: 10.1111/1755-0998.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Cowman PF, Quattrini AM, Bridge TC, Watkins-Colwell GJ, Fadli N, Grinblat M, Roberts TE, McFadden CS, Miller DJ, Baird AH. An enhanced target-enrichment bait set for Hexacorallia provides phylogenomic resolution of the staghorn corals (Acroporidae) and close relatives. Mol Phylogenet Evol 2020; 153:106944. [DOI: 10.1016/j.ympev.2020.106944] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/18/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022]
|
24
|
Population genetics of the brooding coral Seriatopora hystrix reveals patterns of strong genetic differentiation in the Western Indian Ocean. Heredity (Edinb) 2020; 126:351-365. [PMID: 33122855 DOI: 10.1038/s41437-020-00379-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 11/08/2022] Open
Abstract
Coral reefs provide essential goods and services but are degrading at an alarming rate due to local and global anthropogenic stressors. The main limitation that prevents the implementation of adequate conservation measures is that connectivity and genetic structure of populations are poorly known. Here, the genetic diversity and connectivity of the brooding scleractinian coral Seriatopora hystrix were assessed at two scales by genotyping ten microsatellite markers for 356 individual colonies. S. hystrix showed high differentiation, both at large scale between the Red Sea and the Western Indian Ocean (WIO), and at smaller scale along the coast of East Africa. As such high levels of differentiation might indicate the presence of more than one species, a haploweb analysis was conducted with the nuclear marker ITS2, confirming that the Red Sea populations are genetically distinct from the WIO ones. Based on microsatellite analyses three groups could be distinguished within the WIO: (1) northern Madagascar, (2) south-west Madagascar together with one site in northern Mozambique (Nacala) and (3) all other sites in northern Mozambique, Tanzania and Kenya. These patterns of restricted connectivity could be explained by the short pelagic larval duration of S. hystrix, and/or by oceanographic factors, such as eddies in the Mozambique Channel (causing larval retention in northern Madagascar but facilitating dispersal from northern Mozambique towards south-west Madagascar). This study provides an additional line of evidence supporting the conservation priority status of the Northern Mozambique Channel and should inform coral reef management decisions in the region.
Collapse
|