1
|
Cousson A, Pablo AL, Cournac L, Piton G, Dezette D, Robin A, Taschen E, Bernard L. Ultra pure high molecular weight DNA from soil for Nanopore shotgun metagenomics and metabarcoding sequencing. MethodsX 2025; 14:103134. [PMID: 39846015 PMCID: PMC11751509 DOI: 10.1016/j.mex.2024.103134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/25/2024] [Indexed: 01/24/2025] Open
Abstract
Soil microbes are among the most abundant and diverse organisms on Earth but remain poorly characterized. New technologies have made possible to sequence the DNA of uncultivated microorganisms in soil and other complex ecosystems. Genome assembly is crucial for understanding their functional potential. Nanopore sequencing technologies allow to sequence long DNA fragments, optimizing production of metagenome-assembled genomes compared to short-read technology. Extracting DNA with a very high purity and high molecular weight is key to get the most out of this long read technologies. Here we present two extraction protocols to get DNA with high purity. First protocol is optimized to reach DNA quality suiting Nanopore shotgun metagenomics. It uses a non-toxic centrifugation gradient to separate bacterial cells from soil to extract DNA directly on cells. The median length of the acquired DNA sequences (N50) was 3 to 7 times greater than previously published in the literature, achieving an N50 of ∼14 kb. The other, a modification of a commercially available MP Biomedical DNA extraction kit, yielded high-purity DNA for full-length 16S Oxford Nanopore metabarcoding, with an N50 of ∼8 kb. The MP-based protocol achieves higher yields of ultra-pure DNA compared to the Nycodenz protocol, at the expense of shorter fragment lengths.
Collapse
Affiliation(s)
- Arthur Cousson
- IRD, UMR Eco&Sols, INRAE, CIRAD, Institut Agro, Université Montpellier, Montpellier, France
| | - Anne-Laure Pablo
- IRD, UMR Eco&Sols, INRAE, CIRAD, Institut Agro, Université Montpellier, Montpellier, France
| | - Laurent Cournac
- IRD, UMR Eco&Sols, INRAE, CIRAD, Institut Agro, Université Montpellier, Montpellier, France
| | - Gabin Piton
- INRAe, UMR Eco&Sols, IRD, CIRAD, Institut Agro, Université Montpellier, Montpellier, France
| | - Damien Dezette
- INRAe, UMR Eco&Sols, IRD, CIRAD, Institut Agro, Université Montpellier, Montpellier, France
| | - Agnès Robin
- CIRAD, UMR Eco&Sols, INRAE, IRD, Institut Agro, Université Montpellier, Montpellier, France
| | - Elisa Taschen
- INRAe, UMR Eco&Sols, IRD, CIRAD, Institut Agro, Université Montpellier, Montpellier, France
| | - Laetitia Bernard
- IRD, UMR Eco&Sols, INRAE, CIRAD, Institut Agro, Université Montpellier, Montpellier, France
| |
Collapse
|
2
|
Wirth T, Kumar KR, Zech M. Long-Read Sequencing: The Third Generation of Diagnostic Testing for Dystonia. Mov Disord 2025. [PMID: 40265723 DOI: 10.1002/mds.30208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/14/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Long-read sequencing methodologies provide powerful capacity to identify all types of genomic variations in a single test. Long-read platforms such as Oxford Nanopore and PacBio have the potential to revolutionize molecular diagnostics by reaching unparalleled accuracies in genetic discovery and long-range phasing. In the field of dystonia, promising results have come from recent pilot studies showing improved detection of disease-causing structural variants and repeat expansions. Increases in throughput and ongoing reductions in cost will facilitate the incorporation of long-read approaches into mainstream diagnostic practice. Although these developments are likely to transform clinical care, there is currently a discrepancy between the potential benefits of long-read sequencing and the application of this technique to dystonia. In this review we highlight current opportunities and limitations of adopting long-read sequencing methods for the investigation of patients with dystonia. We provide examples of long-read sequencing integration into diagnostic evaluation and the study of pathomechanisms in individuals with dystonic disorders. The goal of this article is to stimulate research into the application and optimization of long-read analysis strategies in dystonia, thus enabling more precise understanding of the underlying etiology in the future. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Thomas Wirth
- Neurology Department, Strasbourg University Hospital, Strasbourg, France
- Institute of Genetics and of Molecular and Cellular Biology (IGBMC), INSERM-U964/CNRS-UMR7104/Strasbourg University, Illkirch-Graffenstaden, France
- Strasbourg Translational Medicine Federation (FMTS), Strasbourg University, Strasbourg, France
| | - Kishore R Kumar
- Translational Neurogenomics Group, Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology and Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michael Zech
- Institute of Human Genetics, Technical University of Munich, School of Medicine and Health, Munich, Germany
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
3
|
van Olst B, Eerden SA, Eštok NA, Roy S, Abbas B, Lin Y, van Loosdrecht MCM, Pabst M. Metaproteomic Profiling of the Secretome of a Granule-forming Ca. Accumulibacter Enrichment. Proteomics 2025; 25:e202400189. [PMID: 40066478 PMCID: PMC12019908 DOI: 10.1002/pmic.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 04/25/2025]
Abstract
Extracellular proteins are supposed to play crucial roles in the formation and structure of biofilms and aggregates. However, often little is known about these proteins, in particular for microbial communities. Here, we use two advanced metaproteomic approaches to study the extracellular proteome in a granular Candidatus Accumulibacter enrichment as a proxy for microbial communities that form solid microbial granules, such as those used in biological wastewater treatment. Limited proteolysis of whole granules and metaproteome isolation from the culture's supernatant successfully classified over 50% of the identified protein biomass to be secreted. Moreover, structural and sequence-based classification identified 387 proteins, corresponding to over 50% of the secreted protein biomass, with characteristics that could aid the formation of aggregates, including filamentous, beta-barrel containing, and cell surface proteins. While various of these aggregate-forming proteins originated from Ca. Accumulibacter, some proteins associated with other taxa. This suggests that not only a range of different proteins but also multiple organisms contribute to granular biofilm formation. Therefore, the obtained extracellular metaproteome data from the granular Ca. Accumulibacter enrichment provides a resource for exploring proteins that potentially support the formation and stability of granular biofilms, whereas the demonstrated approaches can be applied to explore biofilms of microbial communities in general.
Collapse
Affiliation(s)
- Berdien van Olst
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - Simon A. Eerden
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - Nella A. Eštok
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - Samarpita Roy
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - Ben Abbas
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | - Yuemei Lin
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| | | | - Martin Pabst
- Department of BiotechnologyDelft University of TechnologyDelftthe Netherlands
| |
Collapse
|
4
|
Singh A, Chauhan R, Prasad R, Agrawal AA, Sah P, Goel A. Unveiling the potential of bioslurry and biogenic ZnO nanoparticles formulation as significant bionanofertilizer by ameliorating rhizospheric microbiome of Vigna radiata. Int Microbiol 2025:10.1007/s10123-025-00649-4. [PMID: 40032755 DOI: 10.1007/s10123-025-00649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/05/2025]
Abstract
Advancements in nanotechnology, particularly the use of bionanofertilizers, show promise for sustainable agriculture by enhancing soil health and reducing reliance on conventional fertilizers. This study explored the impact of a bioslurry and biogenic zinc oxide (ZnO) nanoparticle formulation on microbial diversity in the rhizosphere of Vigna radiata (mung bean) using 16S rRNA sequencing. High-quality reads from both untreated and treated soil samples revealed a dominance of Archaea, though its proportion was reduced in the treated sample (66% in untreated, 58% in treated). The treated soil showed an increased abundance of beneficial bacterial phyla, including Acidobacteria (+ 6%), Actinobacteria (+ 2%), and Firmicutes (+ 2%). Notably, Acidobacteria-6 and Chloroacidobacteria, essential for nutrient cycling, were enriched in treated soil. Alpha diversity (Chao1 and Shannon indices) was lower in treated samples, indicating selective enhancement of beneficial microbes. Functional analyses like Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) and Statistical Analysis of Taxonomic and Functional Profiles (STAMP) analysis highlighted increased pathways related to motility, chemotaxis, and metabolic processes in the treated soil. These findings suggest that ZnO NPs and bioslurry treatment at 250 ppm improves soil microbial composition and functional attributes, supporting its potential as a bionanofertilizer for soil health restoration and enhanced plant growth.
Collapse
Affiliation(s)
- Abhinav Singh
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India
| | - Ritika Chauhan
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845801, Bihar, India
| | - Amay A Agrawal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), University of Saarland, Saarbrücken, Germany
| | - Pankaj Sah
- Department of Applied Sciences, College of Applied Sciences and Pharmacy, University of Technology and Applied Sciences-Muscat, P.O. Box 74, Muscat, 133, Oman
| | - Arti Goel
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India.
| |
Collapse
|
5
|
Stoljarova-Bibb M, Sadam M, Erg S, Väli M. The effect of commonly employed forensic DNA extraction protocols on ssDNA/dsDNA proportion and DNA integrity. Forensic Sci Int Genet 2025; 76:103210. [PMID: 39708438 DOI: 10.1016/j.fsigen.2024.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
The utilisation of massively parallel sequencing (MPS) in forensic DNA analysis is on the rise, driven by the expansion of targeted MPS panels in the market and the introduction of forensic investigative genetic genealogy. The MPS library preparation process, integral to both whole-genome sequencing (WGS) and targeted MPS panel data generation, is largely based on converting double-stranded DNA (dsDNA) into sequencing libraries. In the current study, we examined the effect of seven routinely used forensic DNA extraction methods on the strandedness (single-stranded or double-stranded) and the fragment size of the DNA extracted from buccal swab, blood, bone and tooth samples. Our findings reveal a variation in the proportion of dsDNA and single-stranded DNA (ssDNA), with the phenol-chloroform and silica column-based extraction methods tested predominantly yielding dsDNA, while the tested Chelex and magnetic bead-based extraction methods predominantly yielded ssDNA. Additionally, fragment size analysis showed that high molecular weight dsDNA was recovered from buccal swab samples with all of the extraction methods except Chelex, which yielded relatively short dsDNA fragments. DNA extracted from tooth samples with tested magnetic bead-based extraction methods resulted in longer dsDNA fragments compared to the silica column-based extraction protocol.
Collapse
Affiliation(s)
| | - Maarja Sadam
- Estonian Forensic Science Institute, Tallinn, Estonia
| | - Silja Erg
- Estonian Forensic Science Institute, Tallinn, Estonia
| | - Marika Väli
- Estonian Forensic Science Institute, Tallinn, Estonia
| |
Collapse
|
6
|
Kumar A, Häggblom MM, Kerkhof LJ. A Step-by-Step Guide to Sequencing and Assembly of Complete Bacterial Genomes Using the Oxford Nanopore MinION. Methods Mol Biol 2025; 2866:31-43. [PMID: 39546195 DOI: 10.1007/978-1-0716-4192-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The Oxford Nanopore (ONT) MinION enables sequencing of longer DNA/RNA fragments compared to other sequencers, such as Illumina, etc. This nanopore method provides distinct advantages for generating complete genome assemblies from microorganisms. Specifically, the R9.4 flow cells used for MinION sequencing have much lower error rates compared with earlier versions of the ONT platform. Coupled with base calling using Dorado software, higher-quality long reads can now be generated for complete bacterial genome assembly. In this chapter, we describe a detailed MinION method to assemble a complete genome from a microorganism, polish the final assembly, and evaluate the genome quality using various software tools. Because of the low cost for MinION sequencing, this platform could be an asset for virtually any laboratory interested in generating complete genomes from microorganisms.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Max M Häggblom
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
7
|
Chaves M, Hashish A, Osemeke O, Sato Y, Suarez DL, El-Gazzar M. Evaluation of Commercial RNA Extraction Protocols for Avian Influenza Virus Using Nanopore Metagenomic Sequencing. Viruses 2024; 16:1429. [PMID: 39339905 PMCID: PMC11437427 DOI: 10.3390/v16091429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
Avian influenza virus (AIV) is a significant threat to the poultry industry, necessitating rapid and accurate diagnosis. The current AIV diagnostic process relies on virus identification via real-time reverse transcription-polymerase chain reaction (rRT-PCR). Subsequently, the virus is further characterized using genome sequencing. This two-step diagnostic process takes days to weeks, but it can be expedited by using novel sequencing technologies. We aim to optimize and validate nucleic acid extraction as the first step to establishing Oxford Nanopore Technologies (ONT) as a rapid diagnostic tool for identifying and characterizing AIV from clinical samples. This study compared four commercially available RNA extraction protocols using AIV-known-positive clinical samples. The extracted RNA was evaluated using total RNA concentration, viral copies as measured by rRT-PCR, and purity as measured by a 260/280 absorbance ratio. After NGS testing, the number of total and influenza-specific reads and quality scores of the generated sequences were assessed. The results showed that no protocol outperformed the others on all parameters measured; however, the magnetic particle-based method was the most consistent regarding CT value, purity, total yield, and AIV reads, and it was less error-prone. This study highlights how different RNA extraction protocols influence ONT sequencing performance.
Collapse
Affiliation(s)
- Maria Chaves
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (M.C.); (A.H.); (O.O.); (Y.S.)
| | - Amro Hashish
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (M.C.); (A.H.); (O.O.); (Y.S.)
- National Laboratory for Veterinary Quality Control on Poultry Production, Giza 12618, Egypt
| | - Onyekachukwu Osemeke
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (M.C.); (A.H.); (O.O.); (Y.S.)
| | - Yuko Sato
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (M.C.); (A.H.); (O.O.); (Y.S.)
| | - David L. Suarez
- US National Poultry Research Center, Agricultural Research Service, US Department of Agriculture, Athens, GA 30605, USA;
| | - Mohamed El-Gazzar
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (M.C.); (A.H.); (O.O.); (Y.S.)
| |
Collapse
|
8
|
Schreiber M, Jayakodi M, Stein N, Mascher M. Plant pangenomes for crop improvement, biodiversity and evolution. Nat Rev Genet 2024; 25:563-577. [PMID: 38378816 PMCID: PMC7616794 DOI: 10.1038/s41576-024-00691-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2023] [Indexed: 02/22/2024]
Abstract
Plant genome sequences catalogue genes and the genetic elements that regulate their expression. Such inventories further research aims as diverse as mapping the molecular basis of trait diversity in domesticated plants or inquiries into the origin of evolutionary innovations in flowering plants millions of years ago. The transformative technological progress of DNA sequencing in the past two decades has enabled researchers to sequence ever more genomes with greater ease. Pangenomes - complete sequences of multiple individuals of a species or higher taxonomic unit - have now entered the geneticists' toolkit. The genomes of crop plants and their wild relatives are being studied with translational applications in breeding in mind. But pangenomes are applicable also in ecological and evolutionary studies, as they help classify and monitor biodiversity across the tree of life, deepen our understanding of how plant species diverged and show how plants adapt to changing environments or new selection pressures exerted by human beings.
Collapse
Affiliation(s)
- Mona Schreiber
- Department of Biology, University of Marburg, Marburg, Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| |
Collapse
|
9
|
Graham KA, Gomez J, Primm TP, Houston R. Comparison of nine extraction methods for bacterial identification using the ONT MinION sequencer. Int J Legal Med 2024; 138:351-360. [PMID: 37775594 DOI: 10.1007/s00414-023-03092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
The Anthrax mailings bioterrorism attack in 2001 revealed the need for universal and rapid microbial forensic analyses on unknown biological evidence. However, the gold standard for bacterial identification includes culturing isolates, which is laborious. Molecular approaches for bacterial identification revolve around 16S ribosomal gene sequencing using Sanger or next generation sequencing (NGS) platforms, but these techniques are laboratory-based and can also be time-consuming. The Oxford Nanopore Technologies (ONT) MinION sequencer can generate long read lengths that span the entire bacterial 16S rRNA gene and accurately identify the species level. This platform can be used in the field, allowing on-site evidence analysis. However, it requires higher quantities of pure DNA compared to other sequencing platforms; thus, the extraction method for bacterial DNA is critical for downstream analysis, which to date are tailored toward a priori knowledge of the species' taxonomic grouping. During an attack, the investigative team may not know what species they are handling; therefore, identifying an extraction method that can handle all bacterial groups and generate clean DNA for the MinION is useful for microbial forensic analysis. The purpose of this study was to identify a "universal" extraction method that can be coupled with ONT MinION sequencing for use in forensic situations for rapid identification. It also evaluated the cloud-based data analysis software provided by ONT, EPI2ME. No "universal" extraction method was identified as optimal for downstream MinION sequencing. However, the DNeasy PowerSoil Kit and Noda et al. Chelex-100 method gave comparable sequencing results and could be used as rapid extraction techniques. This study showed that the ONT 16S Barcoding Kit 1-24 coupled with the 16S FASTQ workflow might not be the best for use in forensic situations where species-level identification needs to be obtained, as most alignments were approximately 89% accurate. In all seven test organisms and nine extraction methods, accurate species identification was only obtained in 63% of the cases.
Collapse
Affiliation(s)
- Kari A Graham
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX, 77340-2525, USA
| | - Javier Gomez
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, 2000 Ave I, Huntsville, TX, 77341, USA
| | - Todd P Primm
- Department of Biological Sciences, College of Science and Engineering Technology, Sam Houston State University, 2000 Ave I, Huntsville, TX, 77341, USA
| | - Rachel Houston
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Bowers Blvd., Huntsville, TX, 77340-2525, USA.
| |
Collapse
|
10
|
Yu MK, Fogarty EC, Eren AM. Diverse plasmid systems and their ecology across human gut metagenomes revealed by PlasX and MobMess. Nat Microbiol 2024; 9:830-847. [PMID: 38443576 PMCID: PMC10914615 DOI: 10.1038/s41564-024-01610-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/17/2024] [Indexed: 03/07/2024]
Abstract
Plasmids alter microbial evolution and lifestyles by mobilizing genes that often confer fitness in changing environments across clades. Yet our ecological and evolutionary understanding of naturally occurring plasmids is far from complete. Here we developed a machine-learning model, PlasX, which identified 68,350 non-redundant plasmids across human gut metagenomes and organized them into 1,169 evolutionarily cohesive 'plasmid systems' using our sequence containment-aware network-partitioning algorithm, MobMess. Individual plasmids were often country specific, yet most plasmid systems spanned across geographically distinct human populations. Cargo genes in plasmid systems included well-known determinants of fitness, such as antibiotic resistance, but also many others including enzymes involved in the biosynthesis of essential nutrients and modification of transfer RNAs, revealing a wide repertoire of likely fitness determinants in complex environments. Our study introduces computational tools to recognize and organize plasmids, and uncovers the ecological and evolutionary patterns of diverse plasmids in naturally occurring habitats through plasmid systems.
Collapse
Affiliation(s)
- Michael K Yu
- Toyota Technological Institute at Chicago, Chicago, IL, USA.
| | - Emily C Fogarty
- Department of Medicine, University of Chicago, Chicago, IL, USA
- Committee On Microbiology, University of Chicago, Chicago, IL, USA
| | - A Murat Eren
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany.
- Marine 'Omics Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
11
|
Sapoval N, Tanevski M, Treangen TJ. KombOver: Efficient k-core and K-truss based characterization of perturbations within the human gut microbiome. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2024; 29:506-520. [PMID: 38160303 PMCID: PMC10764071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The microbes present in the human gastrointestinal tract are regularly linked to human health and disease outcomes. Thanks to technological and methodological advances in recent years, metagenomic sequencing data, and computational methods designed to analyze metagenomic data, have contributed to improved understanding of the link between the human gut microbiome and disease. However, while numerous methods have been recently developed to extract quantitative and qualitative results from host-associated microbiome data, improved computational tools are still needed to track microbiome dynamics with short-read sequencing data. Previously we have proposed KOMB as a de novo tool for identifying copy number variations in metagenomes for characterizing microbial genome dynamics in response to perturbations. In this work, we present KombOver (KO), which includes four key contributions with respect to our previous work: (i) it scales to large microbiome study cohorts, (ii) it includes both k-core and K-truss based analysis, (iii) we provide the foundation of a theoretical understanding of the relation between various graph-based metagenome representations, and (iv) we provide an improved user experience with easier-to-run code and more descriptive outputs/results. To highlight the aforementioned benefits, we applied KO to nearly 1000 human microbiome samples, requiring less than 10 minutes and 10 GB RAM per sample to process these data. Furthermore, we highlight how graph-based approaches such as k-core and K-truss can be informative for pinpointing microbial community dynamics within a myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) cohort. KO is open source and available for download/use at: https://github.com/treangenlab/komb.
Collapse
Affiliation(s)
- Nicolae Sapoval
- Department of Computer Science, Rice University, Houston, TX 77005, USA,
| | | | | |
Collapse
|
12
|
Simon SA, Schmidt K, Griesdorn L, Soares AR, Bornemann TLV, Probst AJ. Dancing the Nanopore limbo - Nanopore metagenomics from small DNA quantities for bacterial genome reconstruction. BMC Genomics 2023; 24:727. [PMID: 38041056 PMCID: PMC10693096 DOI: 10.1186/s12864-023-09853-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND While genome-resolved metagenomics has revolutionized our understanding of microbial and genetic diversity in environmental samples, assemblies of short-reads often result in incomplete and/or highly fragmented metagenome-assembled genomes (MAGs), hampering in-depth genomics. Although Nanopore sequencing has increasingly been used in microbial metagenomics as long reads greatly improve the assembly quality of MAGs, the recommended DNA quantity usually exceeds the recoverable amount of DNA of environmental samples. Here, we evaluated lower-than-recommended DNA quantities for Nanopore library preparation by determining sequencing quality, community composition, assembly quality and recovery of MAGs. RESULTS We generated 27 Nanopore metagenomes using the commercially available ZYMO mock community and varied the amount of input DNA from 1000 ng (the recommended minimum) down to 1 ng in eight steps. The quality of the generated reads remained stable across all input levels. The read mapping accuracy, which reflects how well the reads match a known reference genome, was consistently high across all libraries. The relative abundance of the species in the metagenomes was stable down to input levels of 50 ng. High-quality MAGs (> 95% completeness, ≤ 5% contamination) could be recovered from metagenomes down to 35 ng of input material. When combined with publicly available Illumina reads for the mock community, Nanopore reads from input quantities as low as 1 ng improved the quality of hybrid assemblies. CONCLUSION Our results show that the recommended DNA amount for Nanopore library preparation can be substantially reduced without any adverse effects to genome recovery and still bolster hybrid assemblies when combined with short-read data. We posit that the results presented herein will enable studies to improve genome recovery from low-biomass environments, enhancing microbiome understanding.
Collapse
Affiliation(s)
- Sophie A Simon
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany.
| | - Katharina Schmidt
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
| | - Lea Griesdorn
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
| | - André R Soares
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Till L V Bornemann
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Alexander J Probst
- Environmental Metagenomics, Faculty of Chemistry, Research Center One Health Ruhr of the University Alliance Ruhr, University of Duisburg-Essen, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
13
|
Meslier V, Menozzi E, David A, Morabito C, Lucas Del Pozo S, Famechon A, North J, Quinquis B, Koletsi S, Macnaughtan J, Mezabrovschi R, Ehrlich SD, Schapira AHV, Almeida M. Evaluation of an Adapted Semi-Automated DNA Extraction for Human Salivary Shotgun Metagenomics. Biomolecules 2023; 13:1505. [PMID: 37892187 PMCID: PMC10604855 DOI: 10.3390/biom13101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Recent attention has highlighted the importance of oral microbiota in human health and disease, e.g., in Parkinson's disease, notably using shotgun metagenomics. One key aspect for efficient shotgun metagenomic analysis relies on optimal microbial sampling and DNA extraction, generally implementing commercial solutions developed to improve sample collection and preservation, and provide high DNA quality and quantity for downstream analysis. As metagenomic studies are today performed on a large number of samples, the next evolution to increase study throughput is with DNA extraction automation. In this study, we proposed a semi-automated DNA extraction protocol for human salivary samples collected with a commercial kit, and compared the outcomes with the DNA extraction recommended by the manufacturer. While similar DNA yields were observed between the protocols, our semi-automated DNA protocol generated significantly higher DNA fragment sizes. Moreover, we showed that the oral microbiome composition was equivalent between DNA extraction methods, even at the species level. This study demonstrates that our semi-automated protocol is suitable for shotgun metagenomic analysis, while allowing for improved sample treatment logistics with reduced technical variability and without compromising the structure of the oral microbiome.
Collapse
Affiliation(s)
- Victoria Meslier
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| | - Elisa Menozzi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - Aymeric David
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| | - Christian Morabito
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| | - Sara Lucas Del Pozo
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - Alexandre Famechon
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| | - Janet North
- Research Department of Hematology, Cancer Institute, University College London (UCL), London WC1E 6BT, UK
| | - Benoit Quinquis
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| | - Sofia Koletsi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - Jane Macnaughtan
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, London WC1E 6BT, UK
| | - Roxana Mezabrovschi
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - S. Dusko Ehrlich
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - Anthony H. V. Schapira
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London (UCL), London WC1E 6BT, UK
| | - Mathieu Almeida
- MetaGenoPolis, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France (C.M.)
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA (S.K.); (R.M.); (S.D.E.)
| |
Collapse
|
14
|
van Dijk EL, Naquin D, Gorrichon K, Jaszczyszyn Y, Ouazahrou R, Thermes C, Hernandez C. Genomics in the long-read sequencing era. Trends Genet 2023; 39:649-671. [PMID: 37230864 DOI: 10.1016/j.tig.2023.04.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Long-read sequencing (LRS) technologies have provided extremely powerful tools to explore genomes. While in the early years these methods suffered technical limitations, they have recently made significant progress in terms of read length, throughput, and accuracy and bioinformatics tools have strongly improved. Here, we aim to review the current status of LRS technologies, the development of novel methods, and the impact on genomics research. We will explore the most impactful recent findings made possible by these technologies focusing on high-resolution sequencing of genomes and transcriptomes and the direct detection of DNA and RNA modifications. We will also discuss how LRS methods promise a more comprehensive understanding of human genetic variation, transcriptomics, and epigenetics for the coming years.
Collapse
Affiliation(s)
- Erwin L van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kévin Gorrichon
- National Center of Human Genomics Research (CNRGH), 91000 Évry-Courcouronnes, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Rania Ouazahrou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Claude Thermes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Céline Hernandez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
15
|
Kennedy MS, Zhang M, DeLeon O, Bissell J, Trigodet F, Lolans K, Temelkova S, Carroll KT, Fiebig A, Deutschbauer A, Sidebottom AM, Lake J, Henry C, Rice PA, Bergelson J, Chang EB. Dynamic genetic adaptation of Bacteroides thetaiotaomicron during murine gut colonization. Cell Rep 2023; 42:113009. [PMID: 37598339 PMCID: PMC10528517 DOI: 10.1016/j.celrep.2023.113009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/17/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
To understand how a bacterium ultimately succeeds or fails in adapting to a new host, it is essential to assess the temporal dynamics of its fitness over the course of colonization. Here, we introduce a human-derived commensal organism, Bacteroides thetaiotaomicron (Bt), into the guts of germ-free mice to determine whether and how the genetic requirements for colonization shift over time. Combining a high-throughput functional genetics assay and transcriptomics, we find that gene usage changes drastically during the first days of colonization, shifting from high expression of amino acid biosynthesis genes to broad upregulation of diverse polysaccharide utilization loci. Within the first week, metabolism becomes centered around utilization of a predominant dietary oligosaccharide, and these changes are largely sustained through 6 weeks of colonization. Spontaneous mutations in wild-type Bt also evolve around this locus. These findings highlight the importance of considering temporal colonization dynamics in developing more effective microbiome-based therapies.
Collapse
Affiliation(s)
- Megan S Kennedy
- Medical Scientist Training Program, Pritzker School of Medicine, The University of Chicago, Chicago, IL, USA; Department of Ecology & Evolution, The University of Chicago, Chicago, IL, USA
| | - Manjing Zhang
- Committee on Microbiology, The University of Chicago, Chicago, IL, USA
| | - Orlando DeLeon
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Jacie Bissell
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Florian Trigodet
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Karen Lolans
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Sara Temelkova
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Adam Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ashley M Sidebottom
- Duchossois Family Institute, Department of Biomedical Sciences, The University of Chicago, Chicago, IL, USA
| | - Joash Lake
- Committee on Immunology, The University of Chicago, Chicago, IL, USA
| | - Chris Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Phoebe A Rice
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Joy Bergelson
- Committee on Microbiology, The University of Chicago, Chicago, IL, USA
| | - Eugene B Chang
- Department of Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
16
|
Edwards J, Hoffbeck C, West AG, Pas A, Taylor MW. 16S rRNA gene-based microbiota profiles from diverse avian faeces are largely independent of DNA preservation and extraction method. Front Microbiol 2023; 14:1239167. [PMID: 37675430 PMCID: PMC10477782 DOI: 10.3389/fmicb.2023.1239167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/24/2023] [Indexed: 09/08/2023] Open
Abstract
The avian gut microbiota has been the subject of considerable recent attention, with potential implications for diverse fields such as the poultry industry, microbial ecology, and conservation. Faecal microbiotas are frequently used as a non-invasive proxy for the gut microbiota, however the extraction of high-quality microbial DNA from avian faeces has often proven challenging. Here we aimed to evaluate the performance of two DNA preservation methods (95% ethanol and RNAlater) and five extraction approaches (IndiSpin Pathogen Kit, QIAamp PowerFecal Pro DNA Kit, MicroGEM PrepGEM Bacteria Kit, ZymoBIOMICS DNA Miniprep Kit, and an in-house phase separation-based method) for studying the avian gut microbiota. Systematic testing of the efficacy of these approaches on faecal samples from an initial three avian species (chicken, ostrich, and the flightless parrot kākāpō) revealed substantial differences in the quality, quantity and integrity of extracted DNA, but negligible influence of applied method on 16S rRNA gene-based microbiota profiles. Subsequent testing with a selected combination of preservation and extraction method on 10 further phylogenetically and ecologically diverse avian species reiterated the efficacy of the chosen approach, with bacterial community structure clustering strongly by technical replicates for a given avian species. Our finding that marked differences in extraction efficacy do not appear to influence 16S rRNA gene-based bacterial community profiles provides an important foundation for ongoing research on the avian gut microbiota.
Collapse
Affiliation(s)
- Johnson Edwards
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Carmen Hoffbeck
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Annie G. West
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - An Pas
- New Zealand Centre for Conservation Medicine, Auckland Zoo, Auckland, New Zealand
| | - Michael W. Taylor
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Gand M, Bloemen B, Vanneste K, Roosens NHC, De Keersmaecker SCJ. Comparison of 6 DNA extraction methods for isolation of high yield of high molecular weight DNA suitable for shotgun metagenomics Nanopore sequencing to detect bacteria. BMC Genomics 2023; 24:438. [PMID: 37537550 PMCID: PMC10401787 DOI: 10.1186/s12864-023-09537-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Oxford Nanopore Technologies (ONT) offers an accessible platform for long-read sequencing, which improves the reconstruction of genomes and helps to resolve complex genomic contexts, especially in the case of metagenome analysis. To take the best advantage of long-read sequencing, DNA extraction methods must be able to isolate pure high molecular weight (HMW) DNA from complex metagenomics samples, without introducing any bias. New methods released on the market, and protocols developed at the research level, were specifically designed for this application and need to be assessed. RESULTS In this study, with different bacterial cocktail mixes, analyzed as pure or spiked in a synthetic fecal matrix, we evaluated the performances of 6 DNA extraction methods using various cells lysis and purification techniques, from quick and easy, to more time-consuming and gentle protocols, including a portable method for on-site application. In addition to the comparison of the quality, quantity and purity of the extracted DNA, the performance obtained when doing Nanopore sequencing on a MinION flow cell was also tested. From the obtained results, the Quick-DNA HMW MagBead Kit (Zymo Research) was selected as producing the best yield of pure HMW DNA. Furthermore, this kit allowed an accurate detection, by Nanopore sequencing, of almost all the bacterial species present in a complex mock community. CONCLUSION Amongst the 6 tested methods, the Quick-DNA HMW MagBead Kit (Zymo Research) was considered as the most suitable for Nanopore sequencing and would be recommended for bacterial metagenomics studies using this technology.
Collapse
Affiliation(s)
- Mathieu Gand
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Bram Bloemen
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Nancy H C Roosens
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Sigrid C J De Keersmaecker
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium.
| |
Collapse
|
18
|
O’Connor L, Heyderman R. The challenges of defining the human nasopharyngeal resistome. Trends Microbiol 2023:S0966-842X(23)00056-2. [DOI: 10.1016/j.tim.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 04/03/2023]
|
19
|
Lin Y, Dai Y, Zhang S, Guo H, Yang L, Li J, Wang K, Ni M, Hu Z, Jia L, Liu H, Li P, Song H. Application of nanopore adaptive sequencing in pathogen detection of a patient with Chlamydia psittaci infection. Front Cell Infect Microbiol 2023; 13:1064317. [PMID: 36756615 PMCID: PMC9900021 DOI: 10.3389/fcimb.2023.1064317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction Nanopore sequencing has been widely used in clinical metagenomic sequencing for pathogen detection with high portability and real-time sequencing. Oxford Nanopore Technologies has recently launched an adaptive sequencing function, which can enrich on-target reads through real-time alignment and eject uninteresting reads by reversing the voltage across the nanopore. Here we evaluated the utility of adaptive sequencing in clinical pathogen detection. Methods Nanopore adaptive sequencing and standard sequencing was performed on a same flow cell with a bronchoalveolar lavage fluid sample from a patient with Chlamydia psittacosis infection, and was compared with the previous mNGS results. Results Nanopore adaptive sequencing identified 648 on-target stop receiving reads with the longest median read length(688bp), which account for 72.4% of all Chlamydia psittaci reads and 0.03% of total reads in enriched group. The read proportion matched to C. psittaci in the stop receiving group was 99.85%, which was much higher than that of the unblock (<0.01%) and fail to adapt (0.02%) groups. Nanopore adaptive sequencing generated similar data yield of C. psittaci compared with standard nanopore sequencing. The proportion of C. psittaci reads in adaptive sequencing is close to that of standard nanopore sequencing and mNGS, but generated lower genome coverage than mNGS. Discussion Nanopore adaptive sequencing can effectively identify target C. psittaci reads in real-time, but how to increase the targeted data of pathogens still needs to be further evaluated.
Collapse
Affiliation(s)
- Yanfeng Lin
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China,Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Yan Dai
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Shuang Zhang
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China,Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Hao Guo
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd., Nanjing, China
| | - Lang Yang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jinhui Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Kaiying Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Ming Ni
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China,Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Zongqian Hu
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China,Beijing Institute of Radiation Medicine, Beijing, China
| | - Leili Jia
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Huiying Liu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China,*Correspondence: Huiying Liu, ; Peng Li, ; Hongbin Song,
| | - Peng Li
- Chinese PLA Center for Disease Control and Prevention, Beijing, China,*Correspondence: Huiying Liu, ; Peng Li, ; Hongbin Song,
| | - Hongbin Song
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, China,Chinese PLA Center for Disease Control and Prevention, Beijing, China,*Correspondence: Huiying Liu, ; Peng Li, ; Hongbin Song,
| |
Collapse
|
20
|
Patin NV, Goodwin KD. Capturing marine microbiomes and environmental DNA: A field sampling guide. Front Microbiol 2023; 13:1026596. [PMID: 36713215 PMCID: PMC9877356 DOI: 10.3389/fmicb.2022.1026596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/22/2022] [Indexed: 01/15/2023] Open
Abstract
The expanding interest in marine microbiome and eDNA sequence data has led to a demand for sample collection and preservation standard practices to enable comparative assessments of results across studies and facilitate meta-analyses. We support this effort by providing guidelines based on a review of published methods and field sampling experiences. The major components considered here are environmental and resource considerations, sample processing strategies, sample storage options, and eDNA extraction protocols. It is impossible to provide universal recommendations considering the wide range of eDNA applications; rather, we provide information to design fit-for-purpose protocols. To manage scope, the focus here is on sampling collection and preservation of prokaryotic and microeukaryotic eDNA. Even with a focused view, the practical utility of any approach depends on multiple factors, including habitat type, available resources, and experimental goals. We broadly recommend enacting rigorous decontamination protocols, pilot studies to guide the filtration volume needed to characterize the target(s) of interest and minimize PCR inhibitor collection, and prioritizing sample freezing over (only) the addition of preservation buffer. An annotated list of studies that test these parameters is included for more detailed investigation on specific steps. To illustrate an approach that demonstrates fit-for-purpose methodologies, we provide a protocol for eDNA sampling aboard an oceanographic vessel. These guidelines can aid the decision-making process for scientists interested in sampling and sequencing marine microbiomes and/or eDNA.
Collapse
Affiliation(s)
- Nastassia Virginia Patin
- Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, National Oceanic and Atmospheric Administration, Miami, FL, United States,Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States,Stationed at Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, United States,*Correspondence: Nastassia Virginia Patin,
| | - Kelly D. Goodwin
- Atlantic Oceanographic and Meteorological Laboratory, Ocean Chemistry and Ecosystems Division, National Oceanic and Atmospheric Administration, Miami, FL, United States,Stationed at Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, United States
| |
Collapse
|
21
|
Okazaki Y, Nguyen TT, Nishihara A, Endo H, Ogata H, Nakano SI, Tamaki H. A Fast and Easy Method to Co-extract DNA and RNA from an Environmental Microbial Sample. Microbes Environ 2023; 38. [PMID: 36928278 PMCID: PMC10037101 DOI: 10.1264/jsme2.me22102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
We herein propose a fast and easy DNA and RNA co-extraction method for environmental microbial samples. It combines bead beating and phenol-chloroform phase separation followed by the separation and purification of DNA and RNA using the Qiagen AllPrep DNA/RNA mini kit. With a handling time of ~3 h, our method simultaneously extracted high-quality DNA (peak size >10-15 kb) and RNA (RNA integrity number >6) from lake bacterioplankton filtered samples. The method is also applicable to low-biomass samples (expected DNA or RNA yield <50 ng) and eukaryotic microbial samples, providing an easy option for more versatile eco-genomic applications.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Institute for Chemical Research, Kyoto University
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology
| | | | - Arisa Nishihara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology
| | - Hisashi Endo
- Institute for Chemical Research, Kyoto University
| | | | | | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
22
|
Vuong P, Wise MJ, Whiteley AS, Kaur P. Ten simple rules for investigating (meta)genomic data from environmental ecosystems. PLoS Comput Biol 2022; 18:e1010675. [PMID: 36480496 PMCID: PMC9731419 DOI: 10.1371/journal.pcbi.1010675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Paton Vuong
- UWA School of Agriculture & Environment, University of Western Australia, Perth, Australia
| | - Michael J. Wise
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia
- The Marshall Centre of Infectious Diseases, School of Biological Sciences, The University of Western Australia, Perth, Australia
| | - Andrew S. Whiteley
- Centre for Environment & Life Sciences, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Floreat, Australia
| | - Parwinder Kaur
- UWA School of Agriculture & Environment, University of Western Australia, Perth, Australia
- * E-mail:
| |
Collapse
|
23
|
Slizovskiy IB, Oliva M, Settle JK, Zyskina LV, Prosperi M, Boucher C, Noyes NR. Target-enriched long-read sequencing (TELSeq) contextualizes antimicrobial resistance genes in metagenomes. MICROBIOME 2022; 10:185. [PMID: 36324140 PMCID: PMC9628182 DOI: 10.1186/s40168-022-01368-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Metagenomic data can be used to profile high-importance genes within microbiomes. However, current metagenomic workflows produce data that suffer from low sensitivity and an inability to accurately reconstruct partial or full genomes, particularly those in low abundance. These limitations preclude colocalization analysis, i.e., characterizing the genomic context of genes and functions within a metagenomic sample. Genomic context is especially crucial for functions associated with horizontal gene transfer (HGT) via mobile genetic elements (MGEs), for example antimicrobial resistance (AMR). To overcome this current limitation of metagenomics, we present a method for comprehensive and accurate reconstruction of antimicrobial resistance genes (ARGs) and MGEs from metagenomic DNA, termed target-enriched long-read sequencing (TELSeq). RESULTS Using technical replicates of diverse sample types, we compared TELSeq performance to that of non-enriched PacBio and short-read Illumina sequencing. TELSeq achieved much higher ARG recovery (>1,000-fold) and sensitivity than the other methods across diverse metagenomes, revealing an extensive resistome profile comprising many low-abundance ARGs, including some with public health importance. Using the long reads generated by TELSeq, we identified numerous MGEs and cargo genes flanking the low-abundance ARGs, indicating that these ARGs could be transferred across bacterial taxa via HGT. CONCLUSIONS TELSeq can provide a nuanced view of the genomic context of microbial resistomes and thus has wide-ranging applications in public, animal, and human health, as well as environmental surveillance and monitoring of AMR. Thus, this technique represents a fundamental advancement for microbiome research and application. Video abstract.
Collapse
Affiliation(s)
- Ilya B Slizovskiy
- Food-Centric Corridor, Infectious Disease Laboratory, Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA
| | - Marco Oliva
- Department of Computer and Information Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Jonathen K Settle
- Department of Computer and Information Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Lidiya V Zyskina
- Program in Human-Computer Interaction, College of Information Studies, University of Maryland, College Park, MD, USA
| | - Mattia Prosperi
- Data Intelligence Systems Lab, Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christina Boucher
- Department of Computer and Information Science and Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, USA
| | - Noelle R Noyes
- Food-Centric Corridor, Infectious Disease Laboratory, Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
24
|
Identification of a CCG-Enriched Expanded Allele in Patients with Myotonic Dystrophy Type 1 Using Amplification-Free Long-Read Sequencing. J Mol Diagn 2022; 24:1143-1154. [PMID: 36084803 DOI: 10.1016/j.jmoldx.2022.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) exhibits highly heterogeneous clinical manifestations caused by an unstable CTG repeat expansion reaching up to 4000 CTG. The clinical variability depends on CTG repeat number, CNG repeat interruptions, and somatic mosaicism. Currently, none of these factors are simultaneously and accurately determined due to the limitations of gold standard methods used in clinical and research laboratories. An amplicon method for targeting the DMPK locus using single-molecule real-time sequencing was recently developed to accurately analyze expanded alleles. However, amplicon-based sequencing still depends on PCR, and the inherent bias toward preferential amplification of smaller repeats can be problematic in DM1. Thus, an amplification-free long-read sequencing method was developed by using CRISPR/Cas9 technology in DM1. This method was used to sequence the DMPK locus in patients with CTG repeat expansion ranging from 130 to >1000 CTG. We showed that elimination of PCR amplification improves the accuracy of measurement of inherited repeat number and somatic repeat variations, two key factors in DM1 severity and age at onset. For the first time, an expansion composed of >85% CCG repeats was identified by using this innovative method in a DM1 family with an atypical clinical profile. No-amplification targeted sequencing represents a promising method that can overcome research and diagnosis shortcomings, with translational implications for clinical and genetic counseling in DM1.
Collapse
|
25
|
Okazaki Y, Nakano SI, Toyoda A, Tamaki H. Long-Read-Resolved, Ecosystem-Wide Exploration of Nucleotide and Structural Microdiversity of Lake Bacterioplankton Genomes. mSystems 2022; 7:e0043322. [PMID: 35938717 PMCID: PMC9426551 DOI: 10.1128/msystems.00433-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
Reconstruction of metagenome-assembled genomes (MAGs) has become a fundamental approach in microbial ecology. However, a MAG is hardly complete and overlooks genomic microdiversity because metagenomic assembly fails to resolve microvariants among closely related genotypes. Aiming at understanding the universal factors that drive or constrain prokaryotic genome diversification, we performed an ecosystem-wide high-resolution metagenomic exploration of microdiversity by combining spatiotemporal (2 depths × 12 months) sampling from a pelagic freshwater system, high-quality MAG reconstruction using long- and short-read metagenomic sequences, and profiling of single nucleotide variants (SNVs) and structural variants (SVs) through mapping of short and long reads to the MAGs, respectively. We reconstructed 575 MAGs, including 29 circular assemblies, providing high-quality reference genomes of freshwater bacterioplankton. Read mapping against these MAGs identified 100 to 101,781 SNVs/Mb and 0 to 305 insertions, 0 to 467 deletions, 0 to 41 duplications, and 0 to 6 inversions for each MAG. Nonsynonymous SNVs were accumulated in genes potentially involved in cell surface structural modification to evade phage recognition. Most (80.2%) deletions overlapped with a gene coding region, and genes of prokaryotic defense systems were most frequently (>8% of the genes) overlapped with a deletion. Some such deletions exhibited a monthly shift in their allele frequency, suggesting a rapid turnover of genotypes in response to phage predation. MAGs with extremely low microdiversity were either rare or opportunistic bloomers, suggesting that population persistency is key to their genomic diversification. The results concluded that prokaryotic genomic diversification is driven primarily by viral load and constrained by a population bottleneck. IMPORTANCE Identifying intraspecies genomic diversity (microdiversity) is crucial to understanding microbial ecology and evolution. However, microdiversity among environmental assemblages is not well investigated, because most microbes are difficult to culture. In this study, we performed cultivation-independent exploration of bacterial genomic microdiversity in a lake ecosystem using a combination of short- and long-read metagenomic analyses. The results revealed the broad spectrum of genomic microdiversity among the diverse bacterial species in the ecosystem, which has been overlooked by conventional approaches. Our ecosystem-wide exploration further allowed comparative analysis among the genomes and genes and revealed factors behind microbial genomic diversification, namely, that diversification is driven primarily by resistance against viral infection and constrained by the population size.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Shin-ichi Nakano
- Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan
| | - Atsushi Toyoda
- Advanced Genomics Center, National Institute of Genetics, Mishima City, Shizuoka, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
26
|
Escudeiro P, Henry CS, Dias RP. Functional characterization of prokaryotic dark matter: the road so far and what lies ahead. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100159. [PMID: 36561390 PMCID: PMC9764257 DOI: 10.1016/j.crmicr.2022.100159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 12/25/2022] Open
Abstract
Eight-hundred thousand to one trillion prokaryotic species may inhabit our planet. Yet, fewer than two-hundred thousand prokaryotic species have been described. This uncharted fraction of microbial diversity, and its undisclosed coding potential, is known as the "microbial dark matter" (MDM). Next-generation sequencing has allowed to collect a massive amount of genome sequence data, leading to unprecedented advances in the field of genomics. Still, harnessing new functional information from the genomes of uncultured prokaryotes is often limited by standard classification methods. These methods often rely on sequence similarity searches against reference genomes from cultured species. This hinders the discovery of unique genetic elements that are missing from the cultivated realm. It also contributes to the accumulation of prokaryotic gene products of unknown function among public sequence data repositories, highlighting the need for new approaches for sequencing data analysis and classification. Increasing evidence indicates that these proteins of unknown function might be a treasure trove of biotechnological potential. Here, we outline the challenges, opportunities, and the potential hidden within the functional dark matter (FDM) of prokaryotes. We also discuss the pitfalls surrounding molecular and computational approaches currently used to probe these uncharted waters, and discuss future opportunities for research and applications.
Collapse
Affiliation(s)
- Pedro Escudeiro
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| | - Christopher S. Henry
- Argonne National Laboratory, Lemont, Illinois, USA
- University of Chicago, Chicago, Illinois, USA
| | - Ricardo P.M. Dias
- BioISI - Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
- iXLab - Innovation for National Biological Resilience, Faculdade de Ciências, Universidade de Lisboa, Lisboa 1749-016, Portugal
| |
Collapse
|
27
|
Edwards A, Soares A, Debbonaire A, Edwards Rassner SM. Before you go: a packing list for portable DNA sequencing of microbiomes and metagenomes. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35802409 DOI: 10.1099/mic.0.001220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Arwyn Edwards
- Institute of Biology, Environmental and Rural Sciences (IBERS), Aberystwyth University, Wales, UK.,Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
| | - André Soares
- Institute of Biology, Environmental and Rural Sciences (IBERS), Aberystwyth University, Wales, UK.,Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK.,Department of Geography and Earth Sciences (DGES), Aberystwyth University, Wales, UK.,Present address: Group for Aquatic Microbial Ecology (GAME), University of Duisburg-Essen, Campus Essen - Environmental Microbiology and Biotechnology, Universitätsstr. 5, 45141 Essen, Germany
| | - Aliyah Debbonaire
- Institute of Biology, Environmental and Rural Sciences (IBERS), Aberystwyth University, Wales, UK.,Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
| | - Sara Maria Edwards Rassner
- Institute of Biology, Environmental and Rural Sciences (IBERS), Aberystwyth University, Wales, UK.,Interdisciplinary Centre for Environmental Microbiology (iCEM), Aberystwyth University, Wales, UK
| |
Collapse
|