1
|
Hemagirri M, Chen Y, Gopinath SCB, Adnan M, Patel M, Sasidharan S. RNA-sequencing exploration on SIR2 and SOD genes in Polyalthia longifolia leaf methanolic extracts (PLME) mediated anti-aging effects in Saccharomyces cerevisiae BY611 yeast cells. Biogerontology 2024; 25:705-737. [PMID: 38619670 DOI: 10.1007/s10522-024-10104-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024]
Abstract
Polyalthia longifolia is well-known for its abundance of polyphenol content and traditional medicinal uses. Previous research has demonstrated that the methanolic extract of P. longifolia leaves (PLME, 1 mg/mL) possesses anti-aging properties in Saccharomyces cerevisiae BY611 yeast cells. Building on these findings, this study delves deeper into the potential antiaging mechanism of PLME, by analyzing the transcriptional responses of BY611 cells treated with PLME using RNA-sequencing (RNA-seq) technology. The RNA-seq analysis results identified 1691 significantly (padj < 0.05) differentially expressed genes, with 947 upregulated and 744 downregulated genes. Notably, the expression of three important aging-related genes, SIR2, SOD1, and SOD2, showed a significant difference following PLME treatment. The subsequent integration of these targeted genes with GO and KEGG pathway analysis revealed the multifaceted nature of PLME's anti-aging effects in BY611 yeast cells. Enriched GO and KEGG analysis showed that PLME treatment promotes the upregulation of SIR2, SOD1, and SOD2 genes, leading to a boosted cellular antioxidant defense system, reduced oxidative stress, regulated cell metabolism, and maintain genome stability. These collectively increased longevities in PLME-treated BY611 yeast cells and indicate the potential anti-aging action of PLME through the modulation of SIR2 and SOD genes. The present study provided novel insights into the roles of SIR2, SOD1, and SOD2 genes in the anti-aging effects of PLME treatment, offering promising interventions for promoting healthy aging.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000, Kangar, Perlis, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, 02600, Arau, Perlis, Malaysia
- Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia USM, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
2
|
Zbieralski K, Staszewski J, Konczak J, Lazarewicz N, Nowicka-Kazmierczak M, Wawrzycka D, Maciaszczyk-Dziubinska E. Multilevel Regulation of Membrane Proteins in Response to Metal and Metalloid Stress: A Lesson from Yeast. Int J Mol Sci 2024; 25:4450. [PMID: 38674035 PMCID: PMC11050377 DOI: 10.3390/ijms25084450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland; (K.Z.); (J.S.); (J.K.); (N.L.); (M.N.-K.); (D.W.)
| |
Collapse
|
3
|
Transcriptome Analysis of the Cf-13-Mediated Hypersensitive Response of Tomato to Cladosporium fulvum Infection. Int J Mol Sci 2022; 23:ijms23094844. [PMID: 35563232 PMCID: PMC9102077 DOI: 10.3390/ijms23094844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Tomato leaf mold disease caused by Cladosporium fulvum (C. fulvum) is one of the most common diseases affecting greenhouse tomato production. Cf proteins can recognize corresponding AVR proteins produced by C. fulvum, and Cf genes are associated with leaf mold resistance. Given that there are many physiological races of C. fulvum and that these races rapidly mutate, resistance to common Cf genes (such as Cf-2, Cf-4, Cf-5, and Cf-9) has decreased. In the field, Ont7813 plants (carrying the Cf-13 gene) show effective resistance to C. fulvum; thus, these plants could be used as new, disease-resistant materials. To explore the mechanism of the Cf-13-mediated resistance response, transcriptome sequencing was performed on three replicates each of Ont7813 (Cf-13) and Moneymaker (MM; carrying the Cf-0 gene) at 0, 9, and 15 days after inoculation (dai) for a total of 18 samples. In total, 943 genes were differentially expressed, specifically in the Ont7813 response process as compared to the Moneymaker response process. Gene ontology (GO) classification of these 943 differentially expressed genes (DEGs) showed that GO terms, including "hydrogen peroxide metabolic process (GO_Process)", "secondary active transmembrane transporter activity (GO_Function)", and "mismatch repair complex (GO_Component)", which were the same as 11 other GO terms, were significantly enriched. An analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that many key regulatory genes of the Cf-13-mediated resistance response processes were involved in the "plant hormone signal transduction" pathway, the "plant-pathogen interaction" pathway, and the "MAPK signaling pathway-plant" pathway. Moreover, during C. fulvum infection, jasmonic acid (JA) and salicylic acid (SA) contents significantly increased in Ont7813 at the early stage. These results lay a vital foundation for further understanding the molecular mechanism of the Cf-13 gene in response to C. fulvum infection.
Collapse
|
4
|
Ozturk M, Metin M, Altay V, De Filippis L, Ünal BT, Khursheed A, Gul A, Hasanuzzaman M, Nahar K, Kawano T, Caparrós PG. Molecular Biology of Cadmium Toxicity in Saccharomyces cerevisiae. Biol Trace Elem Res 2021; 199:4832-4846. [PMID: 33462792 DOI: 10.1007/s12011-021-02584-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 02/08/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal mainly originating from industrial activities and causes environmental pollution. To better understand its toxicity and pollution remediation, we must understand the effects of Cd on living beings. Saccharomyces cerevisiae (budding yeast) is an eukaryotic unicellular model organism. It has provided much scientific knowledge about cellular and molecular biology in addition to its economic benefits. Effects associated with copper and zinc, sulfur and selenium metabolism, calcium (Ca2+) balance/signaling, and structure of phospholipids as a result of exposure to cadmium have been evaluated. In yeast as a result of cadmium stress, "mitogen-activated protein kinase," "high osmolarity glycerol," and "cell wall integrity" pathways have been reported to activate different signaling pathways. In addition, abnormalities and changes in protein structure, ribosomes, cell cycle disruption, and reactive oxygen species (ROS) following cadmium cytotoxicity have also been detailed. Moreover, the key OLE1 gene that encodes for delta-9 FA desaturase in relation to cadmium toxicity has been discussed in more detail. Keeping all these studies in mind, an attempt has been made to evaluate published cellular and molecular toxicity data related to Cd stress, and specifically published on S. cerevisiae.
Collapse
Affiliation(s)
- Munir Ozturk
- Department of Botany and Centre for Environmental Studies, Ege University, Izmir, Turkey.
| | - Mert Metin
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Hatay Mustafa Kemal University, Antakya, Hatay, Turkey
| | - Luigi De Filippis
- School of Life Sciences, University of Technology Sydney, Sydney, 123, Australia
| | - Bengu Turkyilmaz Ünal
- Faculty of Science and Arts, Department of Biotechnology, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Anum Khursheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Kamuran Nahar
- Department of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Tomonori Kawano
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Pedro García Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Ctra. Sacramento s/n, La Cañadade San Urbano, 04120, Almería, Spain
| |
Collapse
|
5
|
Mediator dynamics during heat shock in budding yeast. Genome Res 2021; 32:111-123. [PMID: 34785526 PMCID: PMC8744673 DOI: 10.1101/gr.275750.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022]
Abstract
The Mediator complex is central to transcription by RNA polymerase II (Pol II) in eukaryotes. In budding yeast (Saccharomyces cerevisiae), Mediator is recruited by activators and associates with core promoter regions, where it facilitates preinitiation complex (PIC) assembly, only transiently before Pol II escape. Interruption of the transcription cycle by inactivation or depletion of Kin28 inhibits Pol II escape and stabilizes this association. However, Mediator occupancy and dynamics have not been examined on a genome-wide scale in yeast grown in nonstandard conditions. Here we investigate Mediator occupancy following heat shock or CdCl2 exposure, with and without depletion of Kin28. We find that Pol II occupancy shows similar dependence on Mediator under normal and heat shock conditions. However, although Mediator association increases at many genes upon Kin28 depletion under standard growth conditions, little or no increase is observed at most genes upon heat shock, indicating a more stable association of Mediator after heat shock. Unexpectedly, Mediator remains associated upstream of the core promoter at genes repressed by heat shock or CdCl2 exposure whether or not Kin28 is depleted, suggesting that Mediator is recruited by activators but is unable to engage PIC components at these repressed targets. This persistent association is strongest at promoters that bind the HMGB family member Hmo1, and is reduced but not eliminated in hmo1Δ yeast. Finally, we show a reduced dependence on PIC components for Mediator occupancy at promoters after heat shock, further supporting altered dynamics or stronger engagement with activators under these conditions.
Collapse
|
6
|
Chen Y, Liang J, Chen Z, Wang B, Si T. Genome-Scale Screening and Combinatorial Optimization of Gene Overexpression Targets to Improve Cadmium Tolerance in Saccharomyces cerevisiae. Front Microbiol 2021; 12:662512. [PMID: 34335494 PMCID: PMC8318699 DOI: 10.3389/fmicb.2021.662512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Heavy metal contamination is an environmental issue on a global scale. Particularly, cadmium poses substantial threats to crop and human health. Saccharomyces cerevisiae is one of the model organisms to study cadmium toxicity and was recently engineered as a cadmium hyperaccumulator. Therefore, it is desirable to overcome the cadmium sensitivity of S. cerevisiae via genetic engineering for bioremediation applications. Here we performed genome-scale overexpression screening for gene targets conferring cadmium resistance in CEN.PK2-1c, an industrial S. cerevisiae strain. Seven targets were identified, including CAD1 and CUP1 that are known to improve cadmium tolerance, as well as CRS5, NRG1, PPH21, BMH1, and QCR6 that are less studied. In the wild-type strain, cadmium exposure activated gene transcription of CAD1, CRS5, CUP1, and NRG1 and repressed PPH21, as revealed by real-time quantitative PCR analyses. Furthermore, yeast strains that contained two overexpression mutations out of the seven gene targets were constructed. Synergistic improvement in cadmium tolerance was observed with episomal co-expression of CRS5 and CUP1. In the presence of 200 μM cadmium, the most resistant strain overexpressing both CAD1 and NRG1 exhibited a 3.6-fold improvement in biomass accumulation relative to wild type. This work provided a new approach to discover and optimize genetic engineering targets for increasing cadmium resistance in yeast.
Collapse
Affiliation(s)
- Yongcan Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen, China
| | - Jun Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhicong Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen, China
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Shenzhen, China
| |
Collapse
|
7
|
Li X, Ye H, Xu CQ, Shen XL, Zhang XL, Huang C, Cheng B, Tan YL, Xiao ZT, Pei YP, Zou K. Transcriptomic analysis reveals MAPK signaling pathways affect the autolysis in baker's yeast. FEMS Yeast Res 2020; 20:5859490. [PMID: 32556321 DOI: 10.1093/femsyr/foaa036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/12/2020] [Indexed: 12/26/2022] Open
Abstract
Yeast autolysis refers to the process in which cells degrade and release intracellular contents under specific conditions by endogenous enzymes such as proteases, nucleases and lipid enzymes. Protein-rich baker's yeast is widely used to produce yeast extract in food industry, however, the molecular mechanism related to baker's yeast autolysis is still unclear. In this study, RNA-seq technology and biochemical analysis were performed to analyze the autolysis processes in baker's yeast. The differentially expressed genes (DEGs), 27 autolysis-related euKaryotic Ortholog Groups (KOG) and three types of autolysis-induced Gene Ontology (GO) were identified and analyzed in detail. A total of 143 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways under autolysis were also assigned. Interestingly, the DEGs were significantly enriched in the mitogen-activated protein kinase (MAPK) signaling pathways and metabolic pathways, and key genes MID2, MTL1, SLT2, PTP2, HKR1 and GPD1 may play important roles in autolysis. Further quantitative PCR was performed to verify the expression pattern in baker's yeast autolysis. Together, all these results indicated that MAPK pathways might play an essential role during autolysis process through inhibiting the metabolism and disrupting cell wall in baker's yeast. This result may provide important clues for the in-depth interpretation of the yeast autolysis mechanism.
Collapse
Affiliation(s)
- Xiao Li
- China Light Industry Key Laboratory of Yeast Function, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China.,Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Company Limited, Yichang, Hubei 443003, China
| | - Han Ye
- China Light Industry Key Laboratory of Yeast Function, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Chao-Qun Xu
- China Light Industry Key Laboratory of Yeast Function, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiang-Ling Shen
- China Light Industry Key Laboratory of Yeast Function, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Xiao-Long Zhang
- China Light Industry Key Laboratory of Yeast Function, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Cong Huang
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Company Limited, Yichang, Hubei 443003, China
| | - Ben Cheng
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Company Limited, Yichang, Hubei 443003, China
| | - Ya-Li Tan
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Company Limited, Yichang, Hubei 443003, China
| | - Ze-Tao Xiao
- China Light Industry Key Laboratory of Yeast Function, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yu-Peng Pei
- China Light Industry Key Laboratory of Yeast Function, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Kun Zou
- China Light Industry Key Laboratory of Yeast Function, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
8
|
Horstmann C, Kim DS, Campbell C, Kim K. Transcriptome Profile Alteration with Cadmium Selenide/Zinc Sulfide Quantum Dots in Saccharomyces cerevisiae. Biomolecules 2019; 9:biom9110653. [PMID: 31731522 PMCID: PMC6920935 DOI: 10.3390/biom9110653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023] Open
Abstract
Quantum Dots (QDs) are becoming more prevalent in products used in our daily lives, such as TVs and laptops, due to their unique and tunable optical properties. The possibility of using QDs as fluorescent probes in applications, such as medical imaging, has been a topic of interest for some time, but their potential toxicity and long-term effects on the environment are not well understood. In the present study, we investigated the effects of yellow CdSe/ZnS-QDs on Saccharomyces cerevisiae. We utilized growth assays, RNA-seq, reactive oxygen species (ROS) detection assays, and cell wall stability experiments to investigate the potential toxic effects of CdSe/ZnS-QDs. We found CdSe/ZnS-QDs had no negative effects on cell viability; however, cell wall-compromised cells showed more sensitivity in the presence of 10 µg/mL CdSe/ZnS-QDs compared to non-treated cells. In CdSe/ZnS-treated and non-treated cells, no significant change in superoxide was detected, but according to our transcriptomic analysis, thousands of genes in CdSe/ZnS-treated cells became differentially expressed. Four significantly differentiated genes found, including FAF1, SDA1, DAN1, and TIR1, were validated by consistent results with RT-qPCR assays. Our transcriptome analysis led us to conclude that exposure of CdSe/ZnS-QDs on yeast significantly affected genes implicated in multiple cellular processes.
Collapse
Affiliation(s)
- Cullen Horstmann
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA; (C.H.); (C.C.)
| | - Daniel S Kim
- Kickapoo High School, 3710 South Jefferson Ave, Springfield, MO 65807, USA;
| | - Chelsea Campbell
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA; (C.H.); (C.C.)
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA; (C.H.); (C.C.)
- Correspondence: ; Tel.: +1-417-836-5440; Fax: +1-417-836-5126
| |
Collapse
|
9
|
Chang N, Yao S, Chen D, Zhang L, Huang J, Zhang L. The Hog1 positive regulated YCT1 gene expression under cadmium tolerance of budding yeast. FEMS Microbiol Lett 2019; 365:5049003. [PMID: 29982432 DOI: 10.1093/femsle/fny170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/30/2018] [Indexed: 12/24/2022] Open
Abstract
Cadmium (Cd) is a heavy metal that is the cause of irreversible hazards to living organisms. Cadmium ions can induce the phosphorylation of MAPKs pathway molecules such as Hog1 and Slt2, but downstream effectors and potential activation pathways are still unclear. In this study, the RNA-seq data analysis in Cd-stressed yeast was performed to predict and screen the signal transduction pathway and the potential effect molecules regulated by MAPKs. Based on differentially expressed genes and Venn diagrams, 31 genes regulated by Hog1p and two genes induced by Slt2p, which related to carbohydrate metabolism, oxidative damage, DNA replication stress and detoxification, were characterized under Cd exposure to yeast. A cysteine-specific transporter (Yct1) modulated by Hog1 was confirmed via RNA-seq results. Meanwhile, we tested the Cd-sensitivity, intracellular Cd concentrations and β-galactosidase assay, and results indicated that the hypersensitivity of the hog1 mutant to Cd was partly abrogated in YCT1 gene deletion, induction of YCT1 was dependent on Hog1 and its transcription factors, and Yct1p would be epistatic to the Hog1p in Cd-tolerance. The investigation of the transcriptome of MAPKs under Cd stress provided valuable information for future molecular studies of Cd-tolerance.
Collapse
Affiliation(s)
- Na Chang
- School of Life Sciences, Tianjin University, Tianjin, China, 300072
| | - Shunyu Yao
- School of Life Sciences, Tianjin University, Tianjin, China, 300072
| | - Deguang Chen
- School of Life Sciences, Tianjin University, Tianjin, China, 300072
| | - Lei Zhang
- School of Life Sciences, Tianjin University, Tianjin, China, 300072
| | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin, China, 300072
| | - Lilin Zhang
- School of Life Sciences, Tianjin University, Tianjin, China, 300072
| |
Collapse
|
10
|
Ruas FAD, Barboza NR, Castro-Borges W, Guerra-Sá R. Manganese alters expression of proteins involved in the oxidative stress of Meyerozyma guilliermondii. J Proteomics 2019; 196:173-188. [DOI: 10.1016/j.jprot.2018.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 01/12/2023]
|
11
|
Liu G, Liu J, Zhang C, You X, Zhao T, Jiang J, Chen X, Zhang H, Yang H, Zhang D, Du C, Li J, Xu X. Physiological and RNA-seq analyses provide insights into the response mechanism of the Cf-10-mediated resistance to Cladosporium fulvum infection in tomato. PLANT MOLECULAR BIOLOGY 2018; 96:403-416. [PMID: 29383477 DOI: 10.1007/s11103-018-0706-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/20/2018] [Indexed: 05/22/2023]
Abstract
Based on the physiological and RNA-seq analysis, some progress has been made in elucidating the Cf-10-mediated resistance responses to C. fulvum infection in tomato. GO and KEGG enrichment analysis revealed that the DEGs were significantly associated with defense-signaling pathways like oxidation-reduction processes, oxidoreductase activity and plant hormone signal transduction. Leaf mold, caused by the fungus Cladosporium fulvum, is one of the most common diseases affecting tomatoes worldwide. Cf series genes including Cf-2, Cf-4, Cf-5, Cf-9 and Cf-10 play very important roles in resisting tomato leaf mold. Understanding the molecular mechanism of Cf gene-mediated resistance is thus the key to facilitating genetic engineering of resistance to C. fulvum infection. Progress has been made in elucidating two Cf genes, Cf -19 and Cf -12, and how they mediate resistance responses to C. fulvum infection in tomato. However, the mechanism of the Cf-10- mediated resistance response is still unclear. In the present study, RNA-seq was used to analyze changes in the transcriptome at different stages of C. fulvum infection. A total of 2,242 differentially expressed genes (DEGs) responsive to C. fulvum between 0 and 16 days post infection (dpi) were identified, including 1,501 upregulated and 741 downregulated genes. The majority of DEGs were associated with defense-signaling pathways including oxidation-reduction processes, oxidoreductase activity and plant hormone signal transduction. Four DEGs associated with plant-pathogen interaction were uniquely activated in Cf-10 tomato and validated by qRT-PCR. In addition, physiological indicators including reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were measured at 0-21 dpi, and hormone expression [Jasmonic acid (JA) and salicylic acid (SA)] was estimated at 0 and 16 dpi to elucidate the mechanism of the Cf-10-mediated resistance response. C. fulvum infection induced the activities of POD, CAT and SOD, and decreased ROS levels. JA was determined to participate in the resistance response to C. fulvum during the initial infection period. The results of this study provide accountable evidence for the physiological and transcriptional regulation of the Cf-10-mediated resistance response to C. fulvum infection, facilitating further understanding of the molecular mechanism of Cf-10-mediated resistance to C. fulvum infection.
Collapse
Affiliation(s)
- Guan Liu
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Junfang Liu
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Chunli Zhang
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoqing You
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Tingting Zhao
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - He Zhang
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Huanhuan Yang
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Dongye Zhang
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Chong Du
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Jingfu Li
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecuture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
12
|
Halder A, Mazumdar S, Das A, Karmakar P, Ghoshal D. A Schiff Base Macrocycle Ligand and Its Mg(II) and Cd(II) Complexes: Spectral Properties with Theoretical Understanding and Biological Activity. ChemistrySelect 2017. [DOI: 10.1002/slct.201702187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arijit Halder
- Department of Chemistry; Jadavpur University; Jadavpur, Kolkata 700 032 India
| | - Swagata Mazumdar
- Department of Life Science and Biotechnology; Jadavpur University; Jadavpur, Kolkata 700 032 India
| | - Anamika Das
- Department of Chemistry; Jadavpur University; Jadavpur, Kolkata 700 032 India
| | - Parimal Karmakar
- Department of Life Science and Biotechnology; Jadavpur University; Jadavpur, Kolkata 700 032 India
| | - Debajyoti Ghoshal
- Department of Chemistry; Jadavpur University; Jadavpur, Kolkata 700 032 India
| |
Collapse
|