1
|
Hylton-McComas HM, Cordes A, Floros KV, Faber AC, Drapkin BJ, Miles WO. Myc family proteins: Molecular drivers of tumorigenesis and resistance in neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2025; 1880:189332. [PMID: 40280500 DOI: 10.1016/j.bbcan.2025.189332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Neuroendocrine cancers are a diverse and poorly understood collection of malignancies derived from neuroendocrine cells throughout the body. These cancers uniquely exhibit properties of both the nervous and endocrine systems. Only a limited number of genetic driver mutations have been identified in neuroendocrine cancers, however the mechanisms of how these genetic aberrations alter tumor biology remain elusive. Recent studies have implicated the MYC family of transcription factors as important oncogenic factors in neuroendocrine tumors. We take a systematic approach to understand the roles of the MYC family (c-MYC, n-MYC, l-MYC) in the tumorigenesis of neuroendocrine cancers of the lung, GI tract, pancreas, kidney, prostate, pediatric neuroblastoma, and adrenal glands. Reflecting the complexity of neuroendocrine cancers, we highlight the roles of the MYC family in deregulating the cell cycle and transcriptional networks, invoking cellular plasticity, affecting proliferation capacity, aiding in chromatin remodeling, angiogenesis, metabolic changes, and resistance mechanisms. Depicting the diversity of neuroendocrine cancers, we suggest new approaches in understanding the underlying tumorigenic processes of neuroendocrine cancers from the perspective of MYC.
Collapse
Affiliation(s)
- Hannah M Hylton-McComas
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA
| | - Alyssa Cordes
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Konstantinos V Floros
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond, VA 23298, USA; Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Anthony C Faber
- VCU Philips Institute, Virginia Commonwealth University School of Dentistry and Massey Comprehensive Cancer Center, Richmond, VA 23298, USA; Department of Pediatrics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Benjamin J Drapkin
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wayne O Miles
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Chen Z, Wang S, Wang J, Wang Y, Qi X, An B, Sun L, Lin L. SNAP25-induced MYC upregulation promotes high-grade neuroendocrine lung carcinoma progression. Front Immunol 2024; 15:1411114. [PMID: 39430761 PMCID: PMC11486671 DOI: 10.3389/fimmu.2024.1411114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
Background This study investigated the expression and role of Synaptosome associated protein 25 (SNAP25) in high-grade neuroendocrine carcinoma (HGNEC). Methods We used differentially expressed analysis and weighted gene co-expression network analysis (WGCNA) to identify key genes and modules in HGNEC. KEGG and GO analyses helped understand these genes' roles, and ROC curves assessed their diagnostic value. We also studied SNAP25's relation to immune infiltration and confirmed findings with in vitro and vivo experiments and datasets. Results WGCNA identified 595 key genes related to pathways like MAPK signaling, GABAergic synapse, and cancer-related transcriptional misregulation. Top genes included SNAP25, MYC, NRXN1, GAD2, and SYT1. SNAP25 was notably associated with M2 macrophage infiltration. Dataset GSE40275 confirmed SNAP25's high expression and poor prognosis in HGNEC. qRT-PCR and WB analyses showed increased SNAP25 and c-MYC levels in HGNEC, promoting MEK/ERK pathway activity. Reducing SNAP25 decreased H1299 cell proliferation, migration, invasion, and levels of c-MYC, MEK, and ERK. Finally, in vivo experiments further confirmed that SNAP25 knockout can inhibit tumor growth. Conclusion SNAP25 regulates c-MYC activation by stimulating the MEK/ERK pathway, ultimately influencing the development of HGNEC.
Collapse
Affiliation(s)
- Zhiqiang Chen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shujing Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingrui Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiangjun Qi
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo An
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| | - Lingling Sun
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhu Lin
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Clinical Research Academy of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Lang C, Megyesfalvi Z, Lantos A, Oberndorfer F, Hoda MA, Solta A, Ferencz B, Fillinger J, Solyom-Tisza A, Querner AS, Egger F, Boettiger K, Klikovits T, Timelthaler G, Renyi-Vamos F, Aigner C, Hoetzenecker K, Laszlo V, Schelch K, Dome B. C-Myc protein expression indicates unfavorable clinical outcome in surgically resected small cell lung cancer. World J Surg Oncol 2024; 22:57. [PMID: 38369463 PMCID: PMC10875875 DOI: 10.1186/s12957-024-03315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/14/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND By being highly involved in the tumor evolution and disease progression of small cell lung cancer (SCLC), Myc family members (C-Myc, L-Myc, and N-Myc) might represent promising targetable molecules. Our aim was to investigate the expression pattern and prognostic relevance of these oncogenic proteins in an international cohort of surgically resected SCLC tumors. METHODS Clinicopathological data and surgically resected tissue specimens from 104 SCLC patients were collected from two collaborating European institutes. Tissue sections were stained by immunohistochemistry (IHC) for all three Myc family members and the recently introduced SCLC molecular subtype-markers (ASCL1, NEUROD1, POU2F3, and YAP1). RESULTS IHC analysis showed C-Myc, L-Myc, and N-Myc positivity in 48%, 63%, and 9% of the specimens, respectively. N-Myc positivity significantly correlated with the POU2F3-defined molecular subtype (r = 0.6913, p = 0.0056). SCLC patients with C-Myc positive tumors exhibited significantly worse overall survival (OS) (20 vs. 44 months compared to those with C-Myc negative tumors, p = 0.0176). Ultimately, in a multivariate risk model adjusted for clinicopathological and treatment confounders, positive C-Myc expression was confirmed as an independent prognosticator of impaired OS (HR 1.811, CI 95% 1.054-3.113, p = 0.032). CONCLUSIONS Our study provides insights into the clinical aspects of Myc family members in surgically resected SCLC tumors. Notably, besides showing that positivity of Myc family members varies across the patients, we also reveal that C-Myc protein expression independently correlates with worse survival outcomes. Further studies are warranted to investigate the role of Myc family members as potential prognostic and predictive markers in this hard-to-treat disease.
Collapse
Affiliation(s)
- Christian Lang
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
- Department of Medicine II, Division of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria.
- National Korányi Institute of Pulmonology, Budapest, Hungary.
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Ráth György u. 7-9, Budapest, 1122, Hungary.
| | - Andras Lantos
- National Korányi Institute of Pulmonology, Budapest, Hungary
| | | | - Mir Alireza Hoda
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Anna Solta
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Bence Ferencz
- National Korányi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Ráth György u. 7-9, Budapest, 1122, Hungary
| | - Janos Fillinger
- National Korányi Institute of Pulmonology, Budapest, Hungary
| | | | - Alessandro Saeed Querner
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Felix Egger
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Thomas Klikovits
- Department of Thoracic Surgery, Clinic Floridsdorf, Vienna, Austria
| | - Gerald Timelthaler
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Ferenc Renyi-Vamos
- National Korányi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Ráth György u. 7-9, Budapest, 1122, Hungary
- National Institute of Oncology and National Tumor Biology Laboratory, Budapest, Hungary
| | - Clemens Aigner
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Viktoria Laszlo
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
- National Korányi Institute of Pulmonology, Budapest, Hungary
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Ráth György u. 7-9, Budapest, 1122, Hungary
| | - Karin Schelch
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Balazs Dome
- Department of Thoracic Surgery; Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria.
- National Korányi Institute of Pulmonology, Budapest, Hungary.
- Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Ráth György u. 7-9, Budapest, 1122, Hungary.
- Department of Translational Medicine, Lund University, Lund, Sweden.
| |
Collapse
|