1
|
Phillips R. Diet, Mitochondrial Dysfunction, Vascular Endothelial Damage, and the Microbiome: Drivers of Ocular Degenerative and Inflammatory Diseases. Ophthalmol Ther 2025; 14:1429-1452. [PMID: 40434533 PMCID: PMC12167425 DOI: 10.1007/s40123-025-01160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
There is abundant evidence in medical literature that Western diet and lifestyle drive the cellular and metabolic processes which underlie chronic non-communicable diseases. However, non-pharmaceutical interventions, which focus on nutrition, the microbiome and lifestyle, to prevent non-communicable diseases are not part of mainstream treatment, for a variety of reasons. Lack of progress in stemming the rise in chronic non-communicable diseases can be attributed to the current 'downstream' medical paradigm which is focused on treating disease and symptoms, rather than preventing disease via an 'upstream' approach, which looks at cause and process. Metabolic abnormalities and obesity have previously been noted as correlated with common chronic ophthalmic conditions such as age related macular degeneration (AMD), glaucoma, ocular inflammation, diabetic retinopathy and retinal vascular occlusive disease. These are ocular manifestations of an underlying common cause. The aim of this paper, using an ophthalmic context, is to provide an overview of the cellular pathophysiological mechanisms that underlie chronic non-communicable diseases, including ophthalmic diseases, and to draw the links between diet and lifestyle, the microbiome and chronic non-communicable diseases.
Collapse
Affiliation(s)
- Russell Phillips
- Flinders Medical Centre, Adelaide, Australia.
- Queen Elizabeth Hospital, Adelaide, Australia.
- Eyemedics, Adelaide, Australia.
- Flinders University, Adelaide, Australia.
- University of Adelaide, Adelaide, Australia.
- Vista Day Surgery, Adelaide, Australia.
| |
Collapse
|
2
|
Gimblet CJ, Donato AJ, Jalal DI, Pierce GL. Sex differences in endothelial glycocalyx thickness and the response to glycocalyx-targeted therapy among older adults. Physiol Rep 2025; 13:e70428. [PMID: 40526020 DOI: 10.14814/phy2.70428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/29/2025] [Accepted: 06/05/2025] [Indexed: 06/19/2025] Open
Abstract
Endothelial glycocalyx thickness declines with age, potentially increasing cardiovascular disease risk. However, sex differences in glycocalyx thickness and responses to glycocalyx-targeted therapies remain unclear. This post hoc analysis examined sex differences in glycocalyx thickness and the effects of Endocalyx Pro supplementation in older adults. We analyzed data from 22 participants in a prior clinical trial (NCT06071728) that assessed 12-week Endocalyx Pro (3712 mg/day) supplementation on vascular function. Glycocalyx thickness was estimated as the perfused boundary region (PBR) using the GlycoCheck, with higher PBR indicating smaller glycocalyx thickness. Postmenopausal females had higher PBR 4-25 than older males (2.11 ± 0.14 vs. 1.97 ± 0.13 μm; p = 0.02), particularly in microvessels 9-17 μm in diameter. Male sex (B [95% CI], -0.14 [-0.26, -0.02]; p = 0.02) and body mass index (BMI) (B [95% CI], -0.02 [-0.04, -0.01]; p = 0.01) were associated with lower PBR 4-25 in univariate analyses; however, when included in a multivariate model, the association with sex was attenuated (p = 0.15), while BMI remained significant (p = 0.04). After 12 weeks of Endocalyx Pro, PBR 4-25 increased in older males (+0.087 ± 0.148 μm) but decreased in postmenopausal females (-0.178 ± 0.148 μm; p = 0.009). In conclusion, we observed that postmenopausal females had smaller glycocalyx thickness, partially explained by BMI, and demonstrated a greater improvement with Endocalyx Pro, suggesting sex-specific therapy effects.
Collapse
Affiliation(s)
- Colin J Gimblet
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, USA
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Diana I Jalal
- Iowa City VA Medical Center, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Ohmura K, Tomita H, Okada H, Nakayama N, Ohe N, Izumo T, Hara A. Visualizing the endothelial glycocalyx in human glioma vasculature. Brain Tumor Pathol 2025; 42:33-42. [PMID: 40035915 PMCID: PMC11993481 DOI: 10.1007/s10014-025-00498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 03/06/2025]
Abstract
Gliomas are the most common primary brain tumors in adults. However, glioblastoma is especially difficult to treat despite advancements in treatment. Therefore, new and more effective treatments are needed. The endothelial glycocalyx covers the luminal surface of the endothelium and plays an important role in vascular homeostasis. Tumor blood vessels normally have increased permeability, but some of them mimic normal cerebral blood vessels constituting the blood-brain barrier and retain drug-barrier function. Therefore, brain tumor vessels are considered to constitute the blood-tumor barrier. There are few reports on the endothelial glycocalyx in human brain tumor vessels. We aimed to visualize the endothelial glycocalyx in human brain tumor vessels and evaluate its microstructural differences in glioma vessels and normal capillaries. Surgical specimens from patients with glioma who underwent tumor resection at our institution were evaluated. We visualized the microstructures of the brain tumor vessels in human glioma specimens using electron microscopy with lanthanum nitrate. The endothelial glycocalyx was identified in the human glioma vasculature and its microstructure varied between the tumor margin and core. These variations may influence tumor angiogenesis and vascular remodeling, contributing to advancements in targeted therapies and diagnostics for human gliomas.
Collapse
Affiliation(s)
- Kazufumi Ohmura
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
| | - Hideshi Okada
- Center for One Medicine Innovative Translational Research, Gifu University Institute for Advanced Study, Gifu, Japan.
- Department of Emergency and Disaster Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Noriyuki Nakayama
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Naoyuki Ohe
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| |
Collapse
|
4
|
Gantzel Nielsen C, Olsen MT, Lommer Kristensen P, Schønemann-Lund M, Johansson PI, Pedersen-Bjergaard U, Heiberg Bestle M. The Association Between Dysglycemia and Endotheliopathy in ICU Patients With and Without Diabetes: A Cohort Study. Crit Care Explor 2025; 7:e1229. [PMID: 40126923 PMCID: PMC11936623 DOI: 10.1097/cce.0000000000001229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025] Open
Abstract
IMPORTANCE Dysglycemia in critically ill patients is associated with endotheliopathy. This relationship may be altered in patients with diabetes. OBJECTIVES Dysglycemia is common in critically ill patients and associated with increased mortality. Endotheliopathy is thought to play a role in this relationship; however, evidence is scarce. The aim of this study was to investigate the associations between dysglycemia and endotheliopathy to inform future glycemic management. DESIGN, SETTING, AND PARTICIPANTS This prospective observational study included 577 acutely admitted adult ICU patients at Copenhagen University Hospital-North Zealand, Denmark. MAIN OUTCOMES AND MEASURES Up to twenty-four hours of patient glycemia was paired with same-day levels of endothelial biomarkers measured after each 24-hour period for three consecutive days. Endotheliopathy was assessed by measurement of Syndecan-1, Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1), and soluble thrombomodulin (sTM). RESULTS Of the included patients, a total 57.5% were males, median age was 71 yr (interquartile range [IQR], 63-79), and 24.6% had diabetes prior to admission. Median admission time was 5 d (IQR, 3-10). Time above range (TAR) greater than 13.9 mmol/L, but not TAR 10.0-13.9 mmol/L, was associated with increase in sTM (0.01 ng/mL per %-point increase in TAR, p = 0.049) and PECAM-1 (0.01 ng/mL per %-point increase, p = 0.007). Glycemic variability was associated with increases in sTM (0.24 ng/mL per mmol/L increase in sd, p = 0.001 and 0.03 ng/mL per %-point increase in coefficient of variation, p < 0.001). Hypoglycemia 3.0-3.9 mmol/L was associated with increases in sTM (3.0 ng/mL, p < 0.001) and PECAM-1 (1.54 ng/mL, p < 0.001). CONCLUSIONS AND RELEVANCE In acutely admitted adult ICU patients, hypoglycemia was associated with endotheliopathy regardless of preadmission diabetes status. Hyperglycemia and high glycemic variability were associated with endotheliopathy in patients without diabetes. This suggests different responses to acute dysglycemia in patients with and without diabetes and warrants further investigation in clinical trials.
Collapse
Affiliation(s)
- Christian Gantzel Nielsen
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital – North Zealand, Hilleroed, Denmark
| | - Mikkel Thor Olsen
- Department of Endocrinology and Nephrology, Copenhagen University Hospital – North Zealand, Hilleroed, Denmark
| | - Peter Lommer Kristensen
- Department of Endocrinology and Nephrology, Copenhagen University Hospital – North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Martin Schønemann-Lund
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital – North Zealand, Hilleroed, Denmark
| | - Pär Ingemar Johansson
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Pedersen-Bjergaard
- Department of Endocrinology and Nephrology, Copenhagen University Hospital – North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Morten Heiberg Bestle
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital – North Zealand, Hilleroed, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Muendlein A, Leiherer A, Drexel H. Evaluation of circulating glypican 4 as a novel biomarker in disease - A comprehensive review. J Mol Med (Berl) 2025; 103:355-364. [PMID: 39961831 DOI: 10.1007/s00109-025-02520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/18/2024] [Accepted: 01/18/2025] [Indexed: 04/17/2025]
Abstract
Glypican 4 (GPC4), a member of the cell surface heparan sulfate proteoglycan family, plays a crucial role in regulating various cell signaling and developmental processes. Its ability to be released from the cell surface into the bloodstream through shedding makes it a promising blood-based biomarker in health and disease. In this context, circulating GPC4 has been initially proposed as an insulin-sensitizing adipokine being linked with various conditions of insulin resistance. In addition, serum levels of GPC4 can indicate glycocalyx shedding and associated pathophysiological states, such as systemic inflammation. Particularly in a morbid and elderly population, increased GPC4 concentrations may reflect general organ dysfunction and an advanced state of multimorbidity, showing a strong association with the prognosis of severe conditions such as heart failure or advanced cancer. This comprehensive review is the first to summarize the existing scientific knowledge on the role of circulating GPC4 as a novel diagnostic and prognostic biomarker across different pathologic conditions. We also discuss in detail the putative underlying pathophysiological mechanisms behind these findings.
Collapse
Affiliation(s)
- A Muendlein
- Vorarlberg Institute for Vascular Investigation & Treatment, (VIVIT), Feldkirch, Austria.
| | - A Leiherer
- Vorarlberg Institute for Vascular Investigation & Treatment, (VIVIT), Feldkirch, Austria
- Medical Central Laboratories, Feldkirch, Austria
- Private University in the Principality of Liechtenstein (UFL), Triesen, Principality of Liechtenstein
| | - H Drexel
- Vorarlberg Institute for Vascular Investigation & Treatment, (VIVIT), Feldkirch, Austria
- Private University in the Principality of Liechtenstein (UFL), Triesen, Principality of Liechtenstein
- Academic Teaching Hospital Feldkirch, Feldkirch, Austria
- Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
6
|
Seldén D, Tardif N, Wernerman J, Rooyackers O, Norberg Å. Net albumin leakage in patients in the ICU with suspected sepsis. A prospective analysis using mass balance calculations. Crit Care 2025; 29:106. [PMID: 40057738 PMCID: PMC11890723 DOI: 10.1186/s13054-025-05323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/16/2025] [Indexed: 05/13/2025] Open
Abstract
INTRODUCTION Albumin kinetics in septic shock have been extensively studied, but clinical recommendations remain weak. An increased transcapillary escape rate (TER) of albumin has been demonstrated, though TER does not account for lymphatic return. Mass balance calculations, considering lymphatic return, have been used to assess net albumin leakage (NAL) in major surgery but not in sepsis. OBJECTIVES This study aimed to evaluate NAL in ten ICU patients with suspected sepsis, hypothesizing a net positive leakage. Secondary aims included investigating associations between NAL and fluid overload, glycocalyx shedding products, and cytokines, as well as identifying factors associated with it. METHODS This prospective, observational study included ten patients within twelve hours of ICU admission for suspected sepsis at Karolinska University Hospital Huddinge. Albumin, hematocrit, and hemoglobin levels were sampled at 0, 1, 2, 4, 8, and 24 h. NAL was estimated using mass balance calculations, comparing proportional changes in albumin and hemoglobin concentrations over time, adjusted for albumin and hemoglobin infusions and losses. A proportionally greater decrease or smaller increase in albumin compared to hemoglobin indicated NAL, representing the net leakage from the circulation to the interstitium minus lymphatic return. RESULTS Over 24 h, patients exhibited a net positive albumin leakage to the interstitium of 8 ± 10 g (p = 0.029). NAL showed no correlation with glycocalyx shedding products or fluid overload but had a weak correlation with interleukin-6 and interleukin-8 in the first 4 h. Albumin infusions appeared to increase net leakage. CONCLUSION This study demonstrated a net positive albumin leakage of 8 ± 10 g over 24 h in ICU patients with suspected sepsis, with a weak early correlation to pro-inflammatory cytokines but no significant link to fluid balance or glycocalyx shedding. Notably, albumin infusions were associated with increased net leakage.
Collapse
Affiliation(s)
- Dag Seldén
- Perioperative Medicine and Intensive Care, B31, Karolinska University Hospital, Huddinge, Sweden.
| | - Nicolas Tardif
- Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, Hälsovägen, 141 86, Stockholm, Sweden
| | - Jan Wernerman
- Perioperative Medicine and Intensive Care, B31, Karolinska University Hospital, Huddinge, Sweden
- Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, Hälsovägen, 141 86, Stockholm, Sweden
| | - Olav Rooyackers
- Perioperative Medicine and Intensive Care, B31, Karolinska University Hospital, Huddinge, Sweden
- Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, Hälsovägen, 141 86, Stockholm, Sweden
| | - Åke Norberg
- Perioperative Medicine and Intensive Care, B31, Karolinska University Hospital, Huddinge, Sweden
- Department of Clinical Science Intervention and Technology (CLINTEC), Karolinska Institutet, Hälsovägen, 141 86, Stockholm, Sweden
| |
Collapse
|
7
|
Shi MQ, Chen J, Ji FH, Zhou H, Peng K, Wang J, Fan CL, Wang X, Wang Y. Prognostic impact of hypernatremia for septic shock patients in the intensive care unit. World J Clin Cases 2025; 13:95430. [PMID: 40051797 PMCID: PMC11612684 DOI: 10.12998/wjcc.v13.i7.95430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/04/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Hypernatremia represents a significant electrolyte imbalance associated with numerous adverse outcomes, particularly in cases of intensive care unit (ICU)-acquired hypernatremia (IAH). Nevertheless, its relevance in patients with septic shock remains uncertain. AIM To identify independent risk factors and their predictive efficacy for IAH to improve outcomes in patients with septic shock. METHODS In the present retrospective single-center study, a cohort of 157 septic shock patients with concurrent hypernatremia in the ICU at The First Affiliated Hospital of Soochow University, between August 1, 2018, and May 31, 2023, were analyzed. Patients were categorized based on the timing of hypernatremia occurrence into the IAH group (n = 62), the non-IAH group (n = 41), and the normonatremia group (n = 54). RESULTS In the present study, there was a significant association between the high serum sodium concentrations, excessive persistent inflammation, immunosuppression and catabolism syndrome and chronic critical illness, while rapid recovery had an apparent association with normonatremia. Moreover, multivariable analyses revealed the following independent risk factors for IAH: Total urinary output over the preceding three days [odds ratio (OR) = 1.09; 95%CI: 1.02-1.17; P = 0.014], enteral nutrition (EN) sodium content of 500 mg (OR = 2.93; 95%CI: 1.13-7.60; P = 0.027), and EN sodium content of 670 mg (OR = 6.19; 95%CI: 1.75-21.98; P = 0.005) were positively correlated with the development of IAH. Notably, the area under the curve for total urinary output over the preceding three days was 0.800 (95%CI: 0.678-0.922, P = 0.001). Furthermore, maximum serum sodium levels, the duration of hypernatremia, and varying sodium correction rates were significantly associated with 28-day in-hospital mortality in septic shock patients (P < 0.05). CONCLUSION The present findings illustrate that elevated serum sodium level was significantly associated with a poor prognosis in septic shock patients in the ICU. It is highly recommended that hypernatremia be considered a potentially important prognostic indicator for the outcome of septic shock.
Collapse
Affiliation(s)
- Mai-Qing Shi
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Jun Chen
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Fu-Hai Ji
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Hao Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Ke Peng
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Jun Wang
- Intensive Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Chun-Lei Fan
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Xu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Yang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
8
|
Zhan JH, Wei J, Liu YJ, Wang PX, Zhu XY. Sepsis-associated endothelial glycocalyx damage: a review of animal models, clinical evidence, and molecular mechanisms. Int J Biol Macromol 2025; 295:139548. [PMID: 39788232 DOI: 10.1016/j.ijbiomac.2025.139548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/21/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
In the mammalian cardiovascular system, endothelial glycocalyx is a gel-like layer that covers the luminal surface of endothelial cells (ECs) and plays crucial roles in vascular homeostasis, permeability and leukocyte adhesion. Degradation of this structure occurs early in sepsis and becomes accordingly dysfunctional. In severe cases, it is not self-regulated by the organism. However, the relationship between the glycocalyx and the occurrence and development of sepsis remains poorly understood. One possibility is that thinned glycocalyx promotes leukocyte recognition and adhesion, thereby facilitating the elimination of pathogens from infected areas. This may represent a protective mechanism developed by the organism during through evolutionary processes. However, if the damage persists and disrupts the dynamic balance of the microcirculation, interstitial edema or organ failure can occur. Thus, we asked the questions, what is the precise composition and structure of the glycocalyx? How is it degraded? What animal models are available to study the relationship between the glycocalyx and sepsis? What glycocalyx biomarkers are found in the blood of patients with sepsis? To determine whether sepsis can be treated by interfering with the glycocalyx, this study provides a systematic summary and discussion of the latest progress in addressing these questions.
Collapse
Affiliation(s)
- Jun-Hui Zhan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Department of Physiology, Naval Medical University, Shanghai 200433, China
| | - Juan Wei
- School of Sports and Health, Nanjing Sport Institute, Nanjing 210014, China
| | - Yu-Jian Liu
- School of Kinesiology, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Peng-Xiang Wang
- Department of Physiology, Naval Medical University, Shanghai 200433, China.
| | - Xiao-Yan Zhu
- Department of Physiology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
9
|
Navratil P, Sahi S, Hruba P, Ticha A, Timkova K, Viklicky O, Cerny V, Astapenko D. Syndecan-1 in the Serum of Deceased Kidney Donors as a Potential Biomarker of Kidney Function. Transplant Proc 2025; 57:187-193. [PMID: 39809657 DOI: 10.1016/j.transproceed.2024.12.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND The process of kidney transplantation remains the optimal treatment for end-stage renal disease, offering improved quality of life and increased survival rates compared to long-term dialysis. However, despite advances in surgical techniques, immunosuppression regimens, and post-operative care, there are still significant challenges in predicting the organ's status and long-term outcomes of transplantation. Among the many factors that influence graft survival, the quality of the donated organ plays a fundamental role. There is an ongoing need for accurate and reliable biomarkers. Syndecan-1 is found in the endothelial glycocalyx and shed at a higher rate into the blood during systemic pathological conditions. The aim of this study is to evaluate the potential of serum syndecan-1 levels as a biomarker for assessing donor kidney quality and to investigate its correlation with donor characteristics and short-term outcomes in kidney recipients. MATERIAL AND METHODS We investigated serum syndecan-1 levels in 80 deceased donors and correlated them with donor characteristics and short-term outcomes (defined as delayed graft function - defined as the need for dialysis within the first week post-transplantation and renal function at 3 months post-transplantation - assessed using serum creatinine levels) in 104 corresponding kidney recipients. This single-center retrospective observational cohort study was conducted from April to December 2021. RESULTS The donor pool consisted of 65% males with a median age of 53 years. Of these, 45 donors (56%) were classified as extended criteria donors. Higher syndecan-1 levels correlated with the last creatinine levels before organ procurement (R = 0.32, p = 0.01) and were marginally higher in donors with acute kidney injury (p = 0.07). However, syndecan-1 levels were not associated with short-term outcomes in kidney recipients (renal function at 3 months). CONCLUSIONS The data suggests syndecan-1 could be a potential biomarker for assessing donor kidney quality, although its implications on recipient outcomes require further study. This pilot investigation underscores the importance of syndecan-1 in evaluating organ quality but highlights the necessity for more extensive research to validate these findings and explore their implications in transplant success.
Collapse
Affiliation(s)
- Pavel Navratil
- Department of Urology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Sukhdeep Sahi
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Petra Hruba
- Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alena Ticha
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Katarina Timkova
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ondrej Viklicky
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vladimir Cerny
- Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic; Department of Anesthesia, Pain Management and Perioperative Medicine, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Anaesthesiology and Intensive Care, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Astapenko
- Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic; Department of Anaesthesiology and Intensive Care, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic; Faculty of Health Studies, Technical University in Liberec, Liberec, Czech Republic
| |
Collapse
|
10
|
Rhind SG, Shiu MY, Tenn C, Nakashima A, Jetly R, Sajja VSSS, Long JB, Vartanian O. Repetitive Low-Level Blast Exposure Alters Circulating Myeloperoxidase, Matrix Metalloproteinases, and Neurovascular Endothelial Molecules in Experienced Military Breachers. Int J Mol Sci 2025; 26:1808. [PMID: 40076437 PMCID: PMC11898641 DOI: 10.3390/ijms26051808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Repeated exposure to low-level blast overpressure, frequently experienced during explosive breaching and heavy weapons use in training and operations, is increasingly recognised as a serious risk to the neurological health of military personnel. Although research on the underlying pathobiological mechanisms in humans remains limited, this study investigated the effects of such exposure on circulating molecular biomarkers associated with inflammation, neurovascular damage, and endothelial injury. Blood samples from military breachers were analysed for myeloperoxidase (MPO), matrix metalloproteinases (MMPs), and junctional proteins indicative of blood-brain barrier (BBB) disruption and endothelial damage, including occludin (OCLN), zonula occludens-1 (ZO-1), aquaporin-4 (AQP4), and syndecan-1 (SD-1). The results revealed significantly elevated levels of MPO, MMP-3, MMP-9, and MMP-10 in breachers compared to unexposed controls, suggesting heightened inflammation, oxidative stress, and vascular injury. Increased levels of OCLN and SD-1 further indicated BBB disruption and endothelial glycocalyx degradation in breachers. These findings highlight the potential for chronic neurovascular unit damage/dysfunction from repeated blast exposure and underscore the importance of early targeted interventions-such as reducing oxidative stress, reinforcing BBB integrity, and managing inflammation-that could be essential in mitigating the risk of long-term neurological impairment associated with blast exposure.
Collapse
Affiliation(s)
- Shawn G. Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada
| | - Maria Y. Shiu
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
| | - Catherine Tenn
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, AB T1A 8K6, Canada;
| | - Ann Nakashima
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
| | - Rakesh Jetly
- The Institute of Mental Health Research, University of Ottawa, Royal Ottawa Hospital, Ottawa, ON K1Z 7K4, Canada;
| | | | - Joseph B. Long
- Blast-Induced NeuroTrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA (J.B.L.)
| | - Oshin Vartanian
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON M3K 2C9, USA; (M.Y.S.); (O.V.)
- Department of Psychology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
11
|
Harris D, Groß M, Staebler S, Ebert R, Seibel J, Boßerhoff AK. Modifying the Glycocalyx of Melanoma Cells via Metabolic Glycoengineering Using N-Acetyl-d-glucosamine Analogues. Cells 2024; 13:1831. [PMID: 39594580 PMCID: PMC11592549 DOI: 10.3390/cells13221831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Tumor cells are decorated with aberrant glycan structures on cell surfaces. It is well known that the glycocalyx serves as a main cellular regulator, although its role in cancer is still not completely understood. Over recent decades, several non-natural monosaccharides carrying clickable groups have been introduced in melanoma cells. This technique, called Metabolic Glycoengineering (MGE), opens up the possibility of altering the cell's glycocalyx via click chemistry using a two-step approach. This study expands the field of MGE by showing the successful metabolic incorporation of novel alternative artificial glucosamine derivatives. The latter were either deoxygenated or blocked by methyl ether in position 4 to generate deficient glycosylation patterns, while being extended by an alkyne to enable click chemistry as a one-step approach. As a result, we observed a reduced proliferation rate of melanoma cells. Furthermore, using a lectin array, the decrease in high mannose epitopes was observed. In summary, the successful use of alternative artificial glucosamine derivatives enabled a significant alteration in the glycocalyx, consequently influencing cell behavior.
Collapse
Affiliation(s)
- David Harris
- Institute of Biochemistry, Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany; (D.H.); (S.S.)
| | - Marcel Groß
- Institute of Organic Chemistry, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Sebastian Staebler
- Institute of Biochemistry, Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany; (D.H.); (S.S.)
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, Orthopedic Clinic König-Ludwig Haus, Julius-Maximilians-University of Würzburg, Friedrich-Bergius-Ring 15, 97076 Würzburg, Germany;
| | - Jürgen Seibel
- Institute of Organic Chemistry, Julius-Maximilians-University of Würzburg, Am Hubland, 97074 Würzburg, Germany;
| | - Anja Katrin Boßerhoff
- Institute of Biochemistry, Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse 17, 91054 Erlangen, Germany; (D.H.); (S.S.)
| |
Collapse
|
12
|
Ćurko-Cofek B, Jenko M, Taleska Stupica G, Batičić L, Krsek A, Batinac T, Ljubačev A, Zdravković M, Knežević D, Šoštarič M, Sotošek V. The Crucial Triad: Endothelial Glycocalyx, Oxidative Stress, and Inflammation in Cardiac Surgery-Exploring the Molecular Connections. Int J Mol Sci 2024; 25:10891. [PMID: 39456673 PMCID: PMC11508174 DOI: 10.3390/ijms252010891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Since its introduction, the number of heart surgeries has risen continuously. It is a high-risk procedure, usually involving cardiopulmonary bypass, which is associated with an inflammatory reaction that can lead to perioperative and postoperative organ dysfunction. The extent of complications following cardiac surgery has been the focus of interest for several years because of their impact on patient outcomes. Recently, numerous scientific efforts have been made to uncover the complex mechanisms of interaction between inflammation, oxidative stress, and endothelial dysfunction that occur after cardiac surgery. Numerous factors, such as surgical and anesthetic techniques, hypervolemia and hypovolemia, hypothermia, and various drugs used during cardiac surgery trigger the development of systemic inflammatory response and the release of oxidative species. They affect the endothelium, especially endothelial glycocalyx (EG), a thin surface endothelial layer responsible for vascular hemostasis, its permeability and the interaction between leukocytes and endothelium. This review highlights the current knowledge of the molecular mechanisms involved in endothelial dysfunction, particularly in the degradation of EG. In addition, the major inflammatory events and oxidative stress responses that occur in cardiac surgery, their interaction with EG, and the clinical implications of these events have been summarized and discussed in detail. A better understanding of the complex molecular mechanisms underlying cardiac surgery, leading to endothelial dysfunction, is needed to improve patient management during and after surgery and to develop effective strategies to prevent adverse outcomes that complicate recovery.
Collapse
Affiliation(s)
- Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Matej Jenko
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
- Medical Faculty, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Gordana Taleska Stupica
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Antea Krsek
- Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
| | - Aleksandra Ljubačev
- Department of Surgery, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Marko Zdravković
- Department of Anaesthesiology, Intensive Care and Pain Management, University Medical Centre Maribor, Ljubljanska Ulica 5, 2000 Maribor, Slovenia;
| | - Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Maja Šoštarič
- Clinical Department of Anaesthesiology and Surgical Intensive Care, University Medical Centre, Zaloska 7, 1000 Ljubljana, Slovenia; (M.J.); (G.T.S.); (M.Š.)
- Medical Faculty, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia;
| |
Collapse
|
13
|
Girardis M, David S, Ferrer R, Helms J, Juffermans NP, Martin-Loeches I, Povoa P, Russell L, Shankar-Hari M, Iba T, Coloretti I, Parchim N, Nielsen ND. Understanding, assessing and treating immune, endothelial and haemostasis dysfunctions in bacterial sepsis. Intensive Care Med 2024; 50:1580-1592. [PMID: 39222142 DOI: 10.1007/s00134-024-07586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The interplay between the immune system, coagulation, and endothelium is critical in regulating the host response to infection. However, in sepsis and other critical illnesses, a dysregulated immune response can lead to excessive alterations in these mechanisms, resulting in coagulopathy, endothelial dysfunction, and multi-organ dysfunction. This review aims to provide a comprehensive analysis of the pathophysiological mechanisms that govern the complex interplay between immune dysfunction, endothelial dysfunction, and coagulation in sepsis. It emphasises clinical significance, evaluation methods, and potential therapeutic interventions. Understanding these mechanisms is essential for developing effective treatments that can modulate the immune response, mitigate thrombosis, restore endothelial function, and ultimately improve patient survival.
Collapse
Affiliation(s)
- Massimo Girardis
- Anaesthesiology and Intensive Care Department, University Hospital of Modena, University of Modena, Reggio Emilia, Italy.
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Ricard Ferrer
- Intensive Care Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julie Helms
- Université de Strasbourg (UNISTRA), Faculté de Médecine, Hôpitaux Universitaires de Strasbourg, Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil, Strasbourg, France
| | - Nicole P Juffermans
- Department of Intensive Care and Translational Laboratory of Intensive Care, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James' Hospital, Dublin, D08 NHY1, Ireland
- Hospital Clinic, Universitat de Barcelona, IDIBAPS, CIBERES, 08180, Barcelona, Spain
| | - Pedro Povoa
- NOVA Medical School, NOVA University of Lisbon, Lisbon, Portugal
- Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark
- Department of Intensive Care, Hospital de São Francisco Xavier, CHLO, Lisbon, Portugal
| | - Lene Russell
- Copenhagen University Hospital Gentofte, Hellerup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Manu Shankar-Hari
- Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
- Royal Infirmary of Edinburgh, NHS Lothian, Edinburgh, UK
| | - Toshiaki Iba
- Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Irene Coloretti
- Anaesthesiology and Intensive Care Department, University Hospital of Modena, University of Modena, Reggio Emilia, Italy
| | - Nicholas Parchim
- Division of Pulmonary, Critical Care and Sleep Medicine & Section of Transfusion Medicine and Therapeutic Pathology, University of New Mexico School of Medicine, New Mexico, Mexico
| | - Nathan D Nielsen
- Division of Pulmonary, Critical Care and Sleep Medicine & Section of Transfusion Medicine and Therapeutic Pathology, University of New Mexico School of Medicine, New Mexico, Mexico
| |
Collapse
|
14
|
du Preez HN, Lin J, Maguire GEM, Aldous C, Kruger HG. COVID-19 vaccine adverse events: Evaluating the pathophysiology with an emphasis on sulfur metabolism and endotheliopathy. Eur J Clin Invest 2024; 54:e14296. [PMID: 39118373 DOI: 10.1111/eci.14296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
In this narrative review, we assess the pathophysiology of severe adverse events that presented after vaccination with DNA and mRNA vaccines against COVID-19. The focus is on the perspective of an undersulfated and degraded glycocalyx, considering its impact on immunomodulation, inflammatory responses, coagulation and oxidative stress. The paper explores various factors that lead to glutathione and inorganic sulfate depletion and their subsequent effect on glycocalyx sulfation and other metabolites, including hormones. Components of COVID-19 vaccines, such as DNA and mRNA material, spike protein antigen and lipid nanoparticles, are involved in possible cytotoxic effects. The common thread connecting these adverse events is endotheliopathy or glycocalyx degradation, caused by depleted glutathione and inorganic sulfate levels, shear stress from circulating nanoparticles, aggregation and formation of protein coronas; leading to imbalanced immune responses and chronic release of pro-inflammatory cytokines, ultimately resulting in oxidative stress and systemic inflammatory response syndrome. By understanding the underlying pathophysiology of severe adverse events, better treatment options can be explored.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
15
|
Renaldo AC, Soudan H, Gomez MK, Ganapathy AS, Cambronero GE, Patterson JW, Lane MR, Sanin GD, Patel N, Niebler JA, Jordan JE, Williams TK, Neff LP, Rahbar E. INVESTIGATING THE RELATIONSHIP BETWEEN BLEEDING, CLOTTING, AND COAGULOPATHY DURING AUTOMATED PARTIAL REBOA STRATEGIES IN A HIGHLY LETHAL PORCINE HEMORRHAGE MODEL. Shock 2024; 62:265-274. [PMID: 38888571 PMCID: PMC11313271 DOI: 10.1097/shk.0000000000002385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
ABSTRACT Background: Death due to hemorrhagic shock, particularly, noncompressible truncal hemorrhage, remains one of the leading causes of potentially preventable deaths. Automated partial and intermittent resuscitative endovascular balloon occlusion of the aorta (i.e., pREBOA and iREBOA, respectively) are lifesaving endovascular strategies aimed to achieve quick hemostatic control while mitigating distal ischemia. In iREBOA, the balloon is titrated from full occlusion to no occlusion intermittently, whereas in pREBOA, a partial occlusion is maintained. Therefore, these two interventions impose different hemodynamic conditions, which may impact coagulation and the endothelial glycocalyx layer. In this study, we aimed to characterize the clotting kinetics and coagulopathy associated with iREBOA and pREBOA, using thromboelastography (TEG). We hypothesized that iREBOA would be associated with a more hypercoagulopathic response compared with pREBOA due to more oscillatory flow. Methods: Yorkshire swine (n = 8/group) were subjected to an uncontrolled hemorrhage by liver transection, followed by 90 min of automated pREBOA, iREBOA, or no balloon support (control). Hemodynamic parameters were continuously recorded, and blood samples were serially collected during the experiment (i.e., eight key time points: baseline (BL), T0, T10, T30, T60, T90, T120, T210 min). Citrated kaolin heparinase assays were run on a TEG 5000 (Haemonetics, Niles, IL). General linear mixed models were employed to compare differences in TEG parameters between groups and over time using STATA (v17; College Station, TX), while adjusting for sex and weight. Results: As expected, iREBOA was associated with more oscillations in proximal pressure (and greater magnitudes of peak pressure) because of the intermittent periods of full aortic occlusion and complete balloon deflation, compared to pREBOA. Despite these differences in acute hemodynamics, there were no significant differences in any of the TEG parameters between the iREBOA and pREBOA groups. However, animals in both groups experienced a significant reduction in clotting times (R time: P < 0.001; K time: P < 0.001) and clot strength (MA: P = 0.01; G: P = 0.02) over the duration of the experiment. Conclusions: Despite observing acute differences in peak proximal pressures between the iREBOA and pREBOA groups, we did not observe any significant differences in TEG parameters between iREBOA and pREBOA. The changes in TEG profiles were significant over time, indicating that a severe hemorrhage followed by both pREBOA and iREBOA can result in faster clotting reaction times (i.e., R times). Nevertheless, when considering the significant reduction in transfusion requirements and more stable hemodynamic response in the pREBOA group, there may be some evidence favoring pREBOA usage over iREBOA.
Collapse
Affiliation(s)
- Antonio C. Renaldo
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston Salem, NC, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, USA
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hebah Soudan
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston Salem, NC, USA
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Micaela K. Gomez
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston Salem, NC, USA
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of General Surgery, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Aravindh S. Ganapathy
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Gabriel E. Cambronero
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - James W. Patterson
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Magan R. Lane
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Gloria D. Sanin
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nathan Patel
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Jacob A.P. Niebler
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - James E. Jordan
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Cardiothoracic Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Timothy K. Williams
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Vascular and Endovascular Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Lucas P. Neff
- Department of General Surgery, Section of Pediatric Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Elaheh Rahbar
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston Salem, NC, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Blacksburg, VA, USA
- Advanced Computational Cardiovascular Lab for Trauma, Hemorrhagic Shock & Critical Care, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120
| |
Collapse
|
16
|
Lau K, Kotzur R, Richter F. Blood-brain barrier alterations and their impact on Parkinson's disease pathogenesis and therapy. Transl Neurodegener 2024; 13:37. [PMID: 39075566 PMCID: PMC11285262 DOI: 10.1186/s40035-024-00430-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
There is increasing evidence for blood-brain barrier (BBB) alterations in Parkinson's disease (PD), the second most common neurodegenerative disorder with rapidly rising prevalence. Altered tight junction and transporter protein levels, accumulation of α-synuclein and increase in inflammatory processes lead to extravasation of blood molecules and vessel degeneration. This could result in a self-perpetuating pathophysiology of inflammation and BBB alteration, which contribute to neurodegeneration. Toxin exposure or α-synuclein over-expression in animal models has been shown to initiate similar pathologies, providing a platform to study underlying mechanisms and therapeutic interventions. Here we provide a comprehensive review of the current knowledge on BBB alterations in PD patients and how rodent models that replicate some of these changes can be used to study disease mechanisms. Specific challenges in assessing the BBB in patients and in healthy controls are discussed. Finally, a potential role of BBB alterations in disease pathogenesis and possible implications for therapy are explored. The interference of BBB alterations with current and novel therapeutic strategies requires more attention. Brain region-specific BBB alterations could also open up novel opportunities to target specifically vulnerable neuronal subpopulations.
Collapse
Affiliation(s)
- Kristina Lau
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Rebecca Kotzur
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Bünteweg 17, 30559, Hannover, Germany.
- Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
17
|
Harris S, Gerken K, Clark‐Price S, Hung E, Jukier T, Yanke A, Kuo K, McMichael M. Urinary syndecan-1 in dogs anesthetized with isoflurane or sevoflurane: A randomized, prospective study. J Vet Intern Med 2024; 38:2165-2170. [PMID: 38813802 PMCID: PMC11256145 DOI: 10.1111/jvim.17121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Syndecan-1 (SDC1) is an established marker of endothelial glycocalyx shedding. Most research on SDC1 has focused on plasma or serum concentrations, and little is known about urine concentrations. OBJECTIVES Measure urinary SDC1 concentrations in dogs undergoing anesthesia with either sevoflurane or isoflurane and assess the effects of anesthesia duration and IV crystalloids on urinary SDC1 concentrations. ANIMALS Thirty-one client-owned dogs undergoing anesthesia for magnetic resonance imaging (MRI) with or without surgery for suspected intervertebral disk disease (IVDD) were used. METHODS Dogs with suspected IVDD were randomized to undergo anesthesia with either sevoflurane or isoflurane. Urine was collected before and immediately after anesthesia for the analysis of SDC1. Urinary creatinine concentrations also were measured, and the ratio of urinary SDC1 to urinary creatinine (USCR) was used to account for dilution. RESULTS Median (range) USCR was significantly higher after anesthesia compared with baseline for all groups combined (P < .05). No significant difference was found between the groups for age, sex, weight, and type of anesthesia. Multiple regression analysis of the effect of the independent variables inhalant type, age, weight, sex, anesthesia time, surgery, and quantity of IV fluids on the dependent variable SDC1 found that only the quantity of IV fluids significantly predicted a change (P < .001). CONCLUSIONS AND CLINICAL IMPORTANCE The total volume of lactated Ringer's solution administered to anesthetized dogs may affect USCR. Further investigations are warranted to evaluate the relationship between IV fluids and SDC1.
Collapse
Affiliation(s)
- Stephanie Harris
- Department of Clinical SciencesAuburn University College of Veterinary MedicineAuburnAlabamaUSA
| | - Katherine Gerken
- Department of Clinical SciencesAuburn University College of Veterinary MedicineAuburnAlabamaUSA
| | - Stuart Clark‐Price
- Department of Clinical SciencesAuburn University College of Veterinary MedicineAuburnAlabamaUSA
| | - Ellan Hung
- Department of Clinical SciencesAuburn University College of Veterinary MedicineAuburnAlabamaUSA
| | - Tom Jukier
- Department of Clinical SciencesAuburn University College of Veterinary MedicineAuburnAlabamaUSA
| | - Amy Yanke
- Department of Clinical SciencesAuburn University College of Veterinary MedicineAuburnAlabamaUSA
| | - Kendon Kuo
- Department of Clinical SciencesAuburn University College of Veterinary MedicineAuburnAlabamaUSA
| | - Maureen McMichael
- Department of Clinical SciencesAuburn University College of Veterinary MedicineAuburnAlabamaUSA
| |
Collapse
|
18
|
Bender M, Abicht JM, Reichart B, Leuschen M, Wall F, Radan J, Neumann E, Mokelke M, Buttgereit I, Michel S, Ellgass R, Gieseke K, Steen S, Paskevicius A, Denner J, Godehardt AW, Tönjes RR, Hagl C, Ayares D, Wolf E, Schmoeckel M, Brenner P, Müller MB, Längin M. The Endothelial Glycocalyx in Pig-to-Baboon Cardiac Xenotransplantation-First Insights. Biomedicines 2024; 12:1336. [PMID: 38927543 PMCID: PMC11201800 DOI: 10.3390/biomedicines12061336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiac xenotransplantation has seen remarkable success in recent years and is emerging as the most promising alternative to human cardiac allotransplantation. Despite these achievements, acute vascular rejection still presents a challenge for long-term xenograft acceptance and new insights into innate and adaptive immune responses as well as detailed characterizations of signaling pathways are necessary. In allotransplantation, endothelial cells and their sugar-rich surface-the endothelial glycocalyx-are known to influence organ rejection. In xenotransplantation, however, only in vitro data exist on the role of the endothelial glycocalyx so far. Thus, in the current study, we analyzed the changes of the endothelial glycocalyx components hyaluronan, heparan sulfate and syndecan-1 after pig-to-baboon cardiac xenotransplantations in the perioperative (n = 4) and postoperative (n = 5) periods. These analyses provide first insights into changes of the endothelial glycocalyx after pig-to-baboon cardiac xenotransplantation and show that damage to the endothelial glycocalyx seems to be comparable or even less pronounced than in similar human settings when current strategies of cardiac xenotransplantation are applied. At the same time, data from the experiments where current strategies, like non-ischemic preservation, growth inhibition or porcine cytomegalovirus (a porcine roseolovirus (PCMV/PRV)) elimination could not be applied indicate that damage of the endothelial glycocalyx also plays an important role in cardiac xenotransplantation.
Collapse
Affiliation(s)
- Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maria Leuschen
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Felicia Wall
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Neumann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Ines Buttgereit
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Katja Gieseke
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Audrius Paskevicius
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Antonia W. Godehardt
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ralf R. Tönjes
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany
| | - Michael Schmoeckel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Martin B. Müller
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
19
|
Nava Y Hurtado F, Monzon Manzano E, Viana-Huete V, Triana Junco P, Alvarez-Roman MT, Arias-Salgado EG, Butta N, Lopez Gutierrez JC. Assessing coagulopathy and endothelial dysfunction in pediatric venous malformation: A thromboelastometry and syndecan-1 study. Pediatr Blood Cancer 2024; 71:e30915. [PMID: 38369689 DOI: 10.1002/pbc.30915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVE The occurrence of unpredictable pain crises are the principal determinant of the quality of life for patients with venous malformations (VM). A definite coagulation phenomenon, characterized by an increase in D-dimer levels and the presence of phleboliths within the malformation, has been previously reported. By applying Virchow's triad and evaluating intralesional samples, our objective is to delineate the coagulation profile and the extent of endothelial dysfunction within the malformation. METHODS With the authorization of the Ethics Committee, a research project was undertaken on intralesional and extralesional blood samples from 30 pediatric patients afflicted with spongiform VM. Thromboelastometry analyses were performed using ROTEM Sigma, and the concentration of syndecan-1 was determined by ELISA. RESULTS In the ROTEM analyses, the A5, A10, and maximum clot firmness (MCF) values were below the established reference ranges in the intralesional samples in both the EXTEM and INTEM assays, indicating that intralesional clots had significant instability. Furthermore, during the investigation of the delayed fibrinolysis phase using recombinant tissue plasminogen activator (rtPA) in EXTEM analysis, widespread hyperfibrinolysis was observed intralesional. Additionally, analysis of syndecan-1 showed significant differences between extralesional and intralesional levels (p < .026) and controls (p < .03), suggesting differences in the state of endothelium. CONCLUSIONS For the first time, we developed a comprehensive understanding of the coagulopathic profile of VM and the role of endothelial dysfunction in its pathogenesis. These findings will enable the implementation of targeted therapies based on the individual coagulation profiles.
Collapse
Affiliation(s)
| | - Elena Monzon Manzano
- Department of Haematology, Hospital Universitario La Paz, Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Vanesa Viana-Huete
- Department of Health Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Paloma Triana Junco
- Department of Paediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | | | - Elena G Arias-Salgado
- Department of Haematology, Hospital Universitario La Paz, Madrid, Spain
- IdiPAZ, Madrid, Spain
| | - Nora Butta
- Department of Haematology, Hospital Universitario La Paz, Madrid, Spain
- IdiPAZ, Madrid, Spain
| | | |
Collapse
|
20
|
Kršek A, Batičić L, Ćurko-Cofek B, Batinac T, Laškarin G, Miletić-Gršković S, Sotošek V. Insights into the Molecular Mechanism of Endothelial Glycocalyx Dysfunction during Heart Surgery. Curr Issues Mol Biol 2024; 46:3794-3809. [PMID: 38785504 PMCID: PMC11119104 DOI: 10.3390/cimb46050236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
The endothelial glycocalyx (EGC) is a layer of proteoglycans (associated with glycosaminoglycans) and glycoproteins, which adsorbs plasma proteins on the luminal surface of endothelial cells. Its main function is to participate in separating the circulating blood from the inner layers of the vessels and the surrounding tissues. Physiologically, the EGC stimulates mechanotransduction, the endothelial charge, thrombocyte adhesion, leukocyte tissue recruitment, and molecule extravasation. Hence, severe impairment of the EGC has been implicated in various pathological conditions, including sepsis, diabetes, chronic kidney disease, inflammatory disorders, hypernatremia, hypervolemia, atherosclerosis, and ischemia/reperfusion injury. Moreover, alterations in EGC have been associated with altered responses to therapeutic interventions in conditions such as cardiovascular diseases. Investigation into the function of the glycocalyx has expanded knowledge about vascular disorders and indicated the need to consider new approaches in the treatment of severe endothelial dysfunction. This review aims to present the current understanding of the molecular mechanisms underlying cardiovascular diseases and to elucidate the impact of heart surgery on EGC dysfunction.
Collapse
Affiliation(s)
- Antea Kršek
- Faculty of Rijeka, University of Medicine, Braće Branchetta 20, 51000 Rijeka, Croatia;
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (B.Ć.-C.); (G.L.)
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
| | - Gordana Laškarin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (B.Ć.-C.); (G.L.)
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism “Thalassotherapia-Opatija”, M. Tita 188, 51410 Opatija, Croatia;
| | - Silvija Miletić-Gršković
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism “Thalassotherapia-Opatija”, M. Tita 188, 51410 Opatija, Croatia;
| | - Vlatka Sotošek
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia; (T.B.); (V.S.)
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
21
|
Diebel LN, Liberati DM, Karadjoff A, Terasaki Y, Srour A, McPherson S. Detection of glycocalyx degradation in real time: A conceptual model of thromboelastography. Surgery 2024; 175:613-617. [PMID: 37863690 DOI: 10.1016/j.surg.2023.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND The endothelial glycocalyx is a critical component of the vascular barrier; its disruption after shock states may contribute to coagulopathy in a variety of conditions. Measurement of glycocalyx components in plasma have been used to index glycocalyx degradation but are not available as a point of care test. Heparanoids, such as heparan sulfate, may affect coagulation which may be detected by either thromboelastography or activated clotting time. METHODS Endothelial glycocalyx components syndecan-1 and heparan sulfate were added to blood samples at clinically relevant concentrations. Thromboelastography values included clot reaction time, clot amplification and fibrinogen values, and maximum clot strength (maximum amplitude, platelets). The heparinase thromboelastography cartridge was used to detect a heparin-like effect. The activated clotting time test was performed subsequently using the heparan sulfate blood samples to compare a standard coagulation test with thromboelastography clot reaction times. RESULTS Both thromboelastography clot reaction time (with comparison to heparinase) and activated clotting time were useful to detect effects of coagulation. Thromboelastography also detected platelet and fibrinogen abnormalities at higher heparan sulfate concentrations. Studies using thromboelastography or even activated clotting time may be useful to detect glycocalyx degradation after shock states and may guide clinical decision making. CONCLUSION Thromboelastography and or activated clotting time may be useful to detect glycocalyx degradation as a point of care test in patients in the acute setting. Additionally, these assays may detect previous undisclosed coagulopathy due to glycocalyx degradation.
Collapse
Affiliation(s)
- Lawrence N Diebel
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI.
| | - David M Liberati
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI
| | - Alison Karadjoff
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI
| | - Yusuke Terasaki
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI
| | - Ali Srour
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI
| | - Steve McPherson
- Michael and Marian Ilitch Department of Surgery, Wayne State University, Detroit, MI
| |
Collapse
|
22
|
Sukudom S, Smart L, Macdonald S. Association between intravenous fluid administration and endothelial glycocalyx shedding in humans: a systematic review. Intensive Care Med Exp 2024; 12:16. [PMID: 38403742 PMCID: PMC10894789 DOI: 10.1186/s40635-024-00602-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/25/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Several studies have demonstrated associations between greater rate/volume of intravenous (IV) fluid administration and poorer clinical outcomes. One postulated mechanism for harm from exogenous fluids is shedding of the endothelial glycocalyx (EG). METHODS A systematic review using relevant search terms was performed using Medline, EMBASE and Cochrane databases from inception to October 2023. Included studies involved humans where the exposure was rate or volume of IV fluid administration and the outcome was EG shedding. The protocol was prospectively registered on PROSPERO: CRD42021275133. RESULTS The search yielded 450 articles, with 20 articles encompassing 1960 participants included in the review. Eight studies were randomized controlled clinical trials. Half of studies examined patients with sepsis and critical illness; the remainder examined perioperative patients or healthy subjects. Almost all reported blood measurements of soluble EG components; one study used in vivo video-microscopy to estimate EG thickness. Four of 10 sepsis studies, and 9 of 11 non-sepsis studies, found a positive relationship between IV fluid rate/volume and measures of EG shedding. CONCLUSIONS A trend toward an association between IV fluid rate/volume and EG shedding was found in studies of stable patients, but was not consistently observed among studies of septic and critically ill patients.
Collapse
Affiliation(s)
- Sara Sukudom
- Emergency Department, Royal Perth Hospital, PO Box 2213, Perth, WA, 6000, Australia
| | - Lisa Smart
- Emergency and Critical Care, Small Animal Specialist Hospital, Tuggerah, NSW, Australia
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Stephen Macdonald
- Emergency Department, Royal Perth Hospital, PO Box 2213, Perth, WA, 6000, Australia.
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia.
- Medical School, University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
23
|
Miguez PA, Bash E, Musskopf ML, Tuin SA, Rivera-Concepcion A, Chapple ILC, Liu J. Control of tissue homeostasis by the extracellular matrix: Synthetic heparan sulfate as a promising therapeutic for periodontal health and bone regeneration. Periodontol 2000 2024; 94:510-531. [PMID: 37614159 PMCID: PMC10891305 DOI: 10.1111/prd.12515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/25/2023]
Abstract
Proteoglycans are core proteins associated with carbohydrate/sugar moieties that are highly variable in disaccharide composition, which dictates their function. These carbohydrates are named glycosaminoglycans, and they can be attached to proteoglycans or found free in tissues or on cell surfaces. Glycosaminoglycans such as hyaluronan, chondroitin sulfate, dermatan sulfate, keratan sulfate, and heparin/heparan sulfate have multiple functions including involvement in inflammation, immunity and connective tissue structure, and integrity. Heparan sulfate is a highly sulfated polysaccharide that is abundant in the periodontium including alveolar bone. Recent evidence supports the contention that heparan sulfate is an important player in modulating interactions between damage associated molecular patterns and inflammatory receptors expressed by various cell types. The structure of heparan sulfate is reported to dictate its function, thus, the utilization of a homogenous and structurally defined heparan sulfate polysaccharide for modulation of cell function offers therapeutic potential. Recently, a chemoenzymatic approach was developed to allow production of many structurally defined heparan sulfate carbohydrates. These oligosaccharides have been studied in various pathological inflammatory conditions to better understand their function and their potential application in promoting tissue homeostasis. We have observed that specific size and sulfation patterns can modulate inflammation and promote tissue maintenance including an anabolic effect in alveolar bone. Thus, new evidence provides a strong impetus to explore heparan sulfate as a potential novel therapeutic agent to treat periodontitis, support alveolar bone maintenance, and promote bone formation.
Collapse
Affiliation(s)
- PA Miguez
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - E Bash
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ML Musskopf
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - SA Tuin
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - A Rivera-Concepcion
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - ILC Chapple
- Periodontal Research Group, School of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, Birmingham’s NIHR BRC in Inflammation Research, University of Birmingham and Birmingham Community Health Foundation Trust, Birmingham UK Iain Chapple
| | - J Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
24
|
Nan Z, Soh S, Shim JK, Kim HB, Yang YS, Kwak YL, Song JW. Effect of 5% albumin on endothelial glycocalyx degradation during off-pump coronary artery bypass. Can J Anaesth 2024; 71:244-253. [PMID: 37989943 DOI: 10.1007/s12630-023-02652-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 11/23/2023] Open
Abstract
PURPOSE The integrity of the endothelial glycocalyx (EG), a critical player in vascular homeostasis, reportedly influences the outcomes of critically ill patients. We investigated the effect of 5% albumin, which preserved EG integrity in preclinical studies, vs balanced crystalloid solution on EG degradation in patients undergoing off-pump coronary surgery. METHODS Patients were randomized to receive either 5% albumin (N = 51) or balanced crystalloid solution (Plasma-Lyte [Baxter Incorporated, Seoul, Republic of Korea]; N = 53) for intravenous volume replacement during surgery (double-blinded). The primary outcome was plasma syndecan-1 concentration, a marker of EG degradation, measured after anesthetic induction (baseline), completion of grafting, and sternal closure. Secondary outcomes were atrial natriuretic peptide (ANP), tumour necrosis factor (TNF)-α, soluble thrombomodulin, and perioperative fluid balance. RESULTS The mean (standard deviation) fluid requirements were 833 (270) mL and 1,323 (492) mL in the albumin and Plasma-Lyte group, respectively (mean difference, -489 mL; 95% confidence interval [CI], -643 to -335; P < 0.001). Plasma syndecan-1 concentration increased after completion of grafting (median difference, 116 ng·mL-1; 95% CI, 67 to 184; P < 0.001) and sternal closure (median difference, 57 ng·mL-1; 95% CI, 36 to 80; P < 0.001) compared with those at baseline, without any intergroup differences. Atrial natriuretic peptide, TNF-α, and soluble thrombomodulin concentrations were similar between the two groups. The amount of chest tube drainage was greater in the albumin group than that in the Plasma-Lyte group (median difference, 190 mL; 95% CI, 18 to 276; P = 0.03). CONCLUSION Off-pump coronary surgery was associated with significant EG degradation. Yet, intraoperative fluid therapy with 5% albumin could not ameliorate EG degradation when compared with balanced crystalloid solution. TRIAL REGISTRATION ClinicalTrials.gov (NCT03699462); first posted 9 October 2018.
Collapse
Affiliation(s)
- Zhengyu Nan
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sarah Soh
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kwang Shim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Bin Kim
- Department of Anesthesiology and Pain Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yun Seok Yang
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Lan Kwak
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Wook Song
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei Cardiovascular Hospital, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
25
|
Gimblet CJ, Ernst JW, Bos KD, Stroud AK, Donato AJ, Jalal DI, Pierce GL. Effect of acute heparin administration on glycocalyx thickness and endothelial function in healthy younger adults. J Appl Physiol (1985) 2024; 136:330-336. [PMID: 38126088 PMCID: PMC11212829 DOI: 10.1152/japplphysiol.00767.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023] Open
Abstract
The endothelial glycocalyx is a dynamic, gel-like layer that is critical to normal vascular endothelial function. Heparin impairs the endothelial glycocalyx and reduces vascular endothelial function in a murine model; however, this has yet to be tested in healthy humans. We hypothesized that a single bolus dose of heparin would increase circulating glycocalyx components and decrease endothelial glycocalyx thickness resulting in blunted brachial artery vasodilation in healthy younger adults. Healthy adults (n = 19, aged 18-39 yr, 53% female) underwent measurements of the endothelial glycocalyx and vascular endothelial function at baseline and after a single bolus 5,000 U dose of heparin. The glycocalyx components syndecan-1 and heparan sulfate were measured from plasma samples using enzyme-linked immunosorbent assays. Glycocalyx thickness was determined as perfused boundary region (PBR) in sublingual microvessels using the GlycoCheck. Endothelial function was measured via ultrasonography and quantified as brachial artery flow-mediated dilation (FMD). Following acute heparin administration, there was no increase in syndecan-1 or heparan sulfate (P = 0.90 and P = 0.49, respectively). In addition, there was no change in PBR 4-7 µm (P = 0.55), PBR 10-25 µm (P = 0.63), or 4-25 µm (P = 0.49) after heparin treatment. Furthermore, we did not observe a change in FMDmm (P = 0.23), FMD% (P = 0.35), or plasma nitrite concentrations (P = 0.10) in response to heparin. Finally, time to peak dilation and peak FMD normalized to shear stress were unchanged following heparin (P = 0.59 and P = 0.21, respectively). Our pilot study suggests that a single bolus intravenous dose of heparin does not result in endothelial glycocalyx degradation or vascular endothelial dysfunction in healthy younger adults.NEW & NOTEWORTHY The endothelial glycocalyx's role in modulating vascular endothelial dysfunction with aging and disease is becoming increasingly recognized. This study presents novel findings that acute heparin administration is not a feasible method to experimentally degrade the endothelial glycocalyx and measure concurrent changes in vascular endothelial function in healthy humans. Alternative approaches will be needed to translate findings from preclinical studies and test the effects of acute endothelial glycocalyx degradation on vascular endothelial function in humans.
Collapse
Affiliation(s)
- Colin J Gimblet
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Jackson W Ernst
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Kyle D Bos
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Amy K Stroud
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Diana I Jalal
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
- Center for Access and Delivery Research and Evaluation, Iowa City VA Medical Center, Iowa City, Iowa, United States
| | - Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, United States
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
26
|
Kelly EJ, Oliver MA, Carney BC, Kolachana S, Moffatt LT, Shupp JW. Neutrophil Extracellular Traps Are Induced by Coronavirus 2019 Disease-Positive Patient Plasma and Persist Longitudinally: A Possible Link to Endothelial Dysfunction as Measured by Syndecan-1. Surg Infect (Larchmt) 2023; 24:887-896. [PMID: 38011327 DOI: 10.1089/sur.2023.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Background: Neutrophil extracellular trap (NET) formation is a mechanism that neutrophils possess to respond to host infection or inflammation. However, dysregulation of NETosis has been implicated in many disease processes. Although the exact mechanisms of their involvement remain largely unknown, this study aimed to elucidate NET formation over the time course of coronavirus disease 2019 (COVID-19) infection and their possible role in endothelial injury. Patients and Methods: Plasma samples from COVID-19-positive patients were obtained at six timepoints during hospitalization. Neutrophils were extracted from healthy donors and treated with COVID-19-positive patient plasma. Myeloperoxidase (MPO) assay was used to assess for NETosis. Syndecan-1 (SDC-1) enzyme-linked immunosorbent assay (ELISA) was run using the same samples. Immunocytochemistry allowed for further quantification of NETosis byproducts MPO and citrullinated histone 3 (CitH3). The receiver operating characteristic (ROC) curve discriminated between admission levels of SDC-1 and MPO in predicting 30-day mortality and need for ventilator support. Results: Sixty-three patients with COVID-19 were analyzed. Myeloperoxidase was upregulated at day 3, 7, and 14 (p = 0.0087, p = 0.0144, p = 0.0421). Syndecan-1 levels were elevated at day 7 and 14 (p = 0.0188, p = 0.0026). Neutrophils treated with day 3, 7, and 14 plasma expressed increased levels of MPO (p < 0.001). Immunocytochemistry showed neutrophils treated with day 3, 7, and 14 plasma expressed higher levels of MPO (p < 0.001) and higher levels of CitH3 when treated with day 7 and 14 plasma (p < 0.01 and p < 0.05). Admission SDC-1 and MPO levels were found to be independent predictors of 30-day mortality and need for ventilator support. Conclusions: Neutrophil dysregulation can be detrimental to the host. Our study shows that COVID-19 plasma induces substantial amounts of NET formation that persists over the course of the disease. Patients also exhibit increased SDC-1 levels that implicate endothelial injury in the pathogenesis of COVID-19 infection. Furthermore, MPO and SDC-1 plasma levels are predictive of poor outcomes.
Collapse
Affiliation(s)
- Edward J Kelly
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC, USA
| | - Mary A Oliver
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
| | - Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC, USA
| | - Sindhura Kolachana
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC, USA
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
27
|
Juusela A, Jung E, Gallo DM, Bosco M, Suksai M, Diaz-Primera R, Tarca AL, Than NG, Gotsch F, Romero R, Tinnakorn Chaiworapongsa. Maternal plasma syndecan-1: a biomarker for fetal growth restriction. J Matern Fetal Neonatal Med 2023; 36:2150074. [PMID: 36597808 PMCID: PMC10291740 DOI: 10.1080/14767058.2022.2150074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The identification of fetal growth disorders is an important clinical priority given that they increase the risk of perinatal morbidity and mortality as well as long-term diseases. A subset of small-for-gestational-age (SGA) infants are growth-restricted, and this condition is often attributed to placental insufficiency. Syndecan-1, a product of the degradation of the endothelial glycocalyx, has been proposed as a biomarker of endothelial damage in different pathologies. During pregnancy, a "specialized" form of the glycocalyx-the "syncytiotrophoblast glycocalyx"-covers the placental villi. The purpose of this study was to determine whether the concentration of maternal plasma syndecan-1 can be proposed as a biomarker for fetal growth restriction. STUDY DESIGN A cross-sectional study was designed to include women with normal pregnancy (n = 130) and pregnant women who delivered an SGA neonate (n = 50). Doppler velocimetry of the uterine and umbilical arteries was performed in women with an SGA fetus at the time of diagnosis. Venipuncture was performed within 48 h of Doppler velocimetry and plasma concentrations of syndecan-1 were determined by a specific and sensitive immunoassay. RESULTS (1) Plasma syndecan-1 concentration followed a nonlinear increase with gestational age in uncomplicated pregnancies (R2 = 0.27, p < .001); (2) women with a pregnancy complicated with an SGA fetus had a significantly lower mean plasma concentration of syndecan-1 than those with an appropriate-for-gestational-age fetus (p = .0001); (3) this difference can be attributed to fetal growth restriction, as the mean plasma syndecan-1 concentration was significantly lower only in the group of women with an SGA fetus who had abnormal umbilical and uterine artery Doppler velocimetry compared to controls (p = .00071; adjusted p = .0028). A trend toward lower syndecan-1 concentrations was also noted for SGA with abnormal uterine but normal umbilical artery Doppler velocimetry (p = .0505; adjusted p = .067); 4) among women with an SGA fetus, those with abnormal umbilical and uterine artery Doppler findings had a lower mean plasma syndecan-1 concentration than women with normal Doppler velocimetry (p = .02; adjusted p = .04); 5) an inverse relationship was found between the maternal plasma syndecan-1 concentration and the umbilical artery pulsatility index (r = -0.5; p = .003); and 6) a plasma syndecan-1 concentration ≤ 850 ng/mL had a positive likelihood ratio of 4.4 and a negative likelihood ratio of 0.24 for the identification of a mother with an SGA fetus who had abnormal umbilical artery Doppler velocimetry (area under the ROC curve 0.83; p < .001). CONCLUSION Low maternal plasma syndecan-1 may reflect placental diseases and this protein could be a biomarker for fetal growth restriction. However, as a sole biomarker for this condition, its accuracy is low.
Collapse
Affiliation(s)
- Alexander Juusela
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dahiana M. Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ramiro Diaz-Primera
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Maternity Private Clinic, Budapest, Hungary
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
28
|
Anand T, Reyes AA, Sjoquist MC, Magnotti L, Joseph B. Resuscitating the Endothelial Glycocalyx in Trauma and Hemorrhagic Shock. ANNALS OF SURGERY OPEN 2023; 4:e298. [PMID: 37746602 PMCID: PMC10513357 DOI: 10.1097/as9.0000000000000298] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/20/2023] [Indexed: 09/26/2023] Open
Abstract
The endothelium is lined by a protective mesh of proteins and carbohydrates called the endothelial glycocalyx (EG). This layer creates a negatively charged gel-like barrier between the vascular environment and the surface of the endothelial cell. When intact the EG serves multiple functions, including mechanotransduction, cell signaling, regulation of permeability and fluid exchange across the microvasculature, and management of cell-cell interactions. In trauma and/or hemorrhagic shock, the glycocalyx is broken down, resulting in the shedding of its individual components. The shedding of the EG is associated with increased systemic inflammation, microvascular permeability, and flow-induced vasodilation, leading to further physiologic derangements. Animal and human studies have shown that the greater the severity of the injury, the greater the degree of shedding, which is associated with poor patient outcomes. Additional studies have shown that prioritizing certain resuscitation fluids, such as plasma, cryoprecipitate, and whole blood over crystalloid shows improved outcomes in hemorrhaging patients, potentially through a decrease in EG shedding impacting downstream signaling. The purpose of the following paragraphs is to briefly describe the EG, review the impact of EG shedding and hemorrhagic shock, and begin entertaining the notion of directed resuscitation. Directed resuscitation emphasizes transitioning from macroscopic 1:1 resuscitation to efforts that focus on minimizing EG shedding and maximizing its reconstitution.
Collapse
Affiliation(s)
- Tanya Anand
- From the Department of Surgery, Division of Trauma, Critical Care, Burns, and Emergency Surgery, The University of Arizona, Tucson, AZ
| | | | - Michael C. Sjoquist
- Department of Surgery, University of Arizona College of Medicine, Tucson, AZ
| | - Louis Magnotti
- From the Department of Surgery, Division of Trauma, Critical Care, Burns, and Emergency Surgery, The University of Arizona, Tucson, AZ
| | - Bellal Joseph
- From the Department of Surgery, Division of Trauma, Critical Care, Burns, and Emergency Surgery, The University of Arizona, Tucson, AZ
| |
Collapse
|
29
|
Ndrepepa G, Kastrati A. Coronary No-Reflow after Primary Percutaneous Coronary Intervention-Current Knowledge on Pathophysiology, Diagnosis, Clinical Impact and Therapy. J Clin Med 2023; 12:5592. [PMID: 37685660 PMCID: PMC10488607 DOI: 10.3390/jcm12175592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Coronary no-reflow (CNR) is a frequent phenomenon that develops in patients with ST-segment elevation myocardial infarction (STEMI) following reperfusion therapy. CNR is highly dynamic, develops gradually (over hours) and persists for days to weeks after reperfusion. Microvascular obstruction (MVO) developing as a consequence of myocardial ischemia, distal embolization and reperfusion-related injury is the main pathophysiological mechanism of CNR. The frequency of CNR or MVO after primary PCI differs widely depending on the sensitivity of the tools used for diagnosis and timing of examination. Coronary angiography is readily available and most convenient to diagnose CNR but it is highly conservative and underestimates the true frequency of CNR. Cardiac magnetic resonance (CMR) imaging is the most sensitive method to diagnose MVO and CNR that provides information on the presence, localization and extent of MVO. CMR imaging detects intramyocardial hemorrhage and accurately estimates the infarct size. MVO and CNR markedly negate the benefits of reperfusion therapy and contribute to poor clinical outcomes including adverse remodeling of left ventricle, worsening or new congestive heart failure and reduced survival. Despite extensive research and the use of therapies that target almost all known pathophysiological mechanisms of CNR, no therapy has been found that prevents or reverses CNR and provides consistent clinical benefit in patients with STEMI undergoing reperfusion. Currently, the prevention or alleviation of MVO and CNR remain unmet goals in the therapy of STEMI that continue to be under intense research.
Collapse
Affiliation(s)
- Gjin Ndrepepa
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstrasse 36, 80636 Munich, Germany;
| | - Adnan Kastrati
- Deutsches Herzzentrum München, Technische Universität München, Lazarettstrasse 36, 80636 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
30
|
Zhao F, Tomita M, Dutta A. Operational Modal Analysis of Near-Infrared Spectroscopy Measure of 2-Month Exercise Intervention Effects in Sedentary Older Adults with Diabetes and Cognitive Impairment. Brain Sci 2023; 13:1099. [PMID: 37509027 PMCID: PMC10377417 DOI: 10.3390/brainsci13071099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The Global Burden of Disease Study (GBD 2019 Diseases and Injuries Collaborators) found that diabetes significantly increases the overall burden of disease, leading to a 24.4% increase in disability-adjusted life years. Persistently high glucose levels in diabetes can cause structural and functional changes in proteins throughout the body, and the accumulation of protein aggregates in the brain that can be associated with the progression of Alzheimer's Disease (AD). To address this burden in type 2 diabetes mellitus (T2DM), a combined aerobic and resistance exercise program was developed based on the recommendations of the American College of Sports Medicine. The prospectively registered clinical trials (NCT04626453, NCT04812288) involved two groups: an Intervention group of older sedentary adults with T2DM and a Control group of healthy older adults who could be either active or sedentary. The completion rate for the 2-month exercise program was high, with participants completing on an average of 89.14% of the exercise sessions. This indicated that the program was practical, feasible, and well tolerated, even during the COVID-19 pandemic. It was also safe, requiring minimal equipment and no supervision. Our paper presents portable near-infrared spectroscopy (NIRS) based measures that showed muscle oxygen saturation (SmO2), i.e., the balance between oxygen delivery and oxygen consumption in muscle, drop during bilateral heel rise task (BHR) and the 6 min walk task (6MWT) significantly (p < 0.05) changed at the post-intervention follow-up from the pre-intervention baseline in the T2DM Intervention group participants. Moreover, post-intervention changes from pre-intervention baseline for the prefrontal activation (both oxyhemoglobin and deoxyhemoglobin) showed statistically significant (p < 0.05, q < 0.05) effect at the right superior frontal gyrus, dorsolateral, during the Mini-Cog task. Here, operational modal analysis provided further insights into the 2-month exercise intervention effects on the very-low-frequency oscillations (<0.05 Hz) during the Mini-Cog task that improved post-intervention in the sedentary T2DM Intervention group from their pre-intervention baseline when compared to active healthy Control group. Then, the 6MWT distance significantly (p < 0.01) improved in the T2DM Intervention group at post-intervention follow-up from pre-intervention baseline that showed improved aerobic capacity and endurance. Our portable NIRS based measures have practical implications at the point of care for the therapists as they can monitor muscle and brain oxygenation changes during physical and cognitive tests to prescribe personalized physical exercise doses without triggering individual stress response, thereby, enhancing vascular health in T2DM.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Machiko Tomita
- Department of Rehabilitation Science, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214, USA
| | - Anirban Dutta
- School of Engineering, University of Lincoln, Lincoln LN67TS, UK
| |
Collapse
|
31
|
Matsumoto H, Annen S, Mukai N, Ohshita M, Murata S, Harima Y, Ogawa S, Okita M, Nakabayashi Y, Kikuchi S, Takeba J, Sato N. Circulating Syndecan-1 Levels Are Associated with Chronological Coagulofibrinolytic Responses and the Development of Disseminated Intravascular Coagulation (DIC) after Trauma: A Retrospective Observational Study. J Clin Med 2023; 12:4386. [PMID: 37445421 DOI: 10.3390/jcm12134386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND The purpose of this study was to evaluate the association between endotheliopathy represented by high levels of circulating syndecan-1 (SDC-1) and coagulofibrinolytic responses due to trauma, which can lead to disseminated intravascular coagulation (DIC). METHODS We retrospectively evaluated 48 eligible trauma patients immediately admitted to our hospital and assessed SDC-1 and coagulofibrinolytic parameters for 7 days after admission. We compared the longitudinal changes of coagulofibrinolytic parameters and SDC-1 levels between two groups (high and low SDC-1) according to median SDC-1 value on admission. RESULTS The median circulating SDC-1 level was 99.6 (61.1-214.3) ng/mL on admission, and levels remained high until 7 days after admission. Coagulofibrinolytic responses assessed by biomarkers immediately after trauma were correlated with SDC-1 elevation (thrombin-antithrombin complex, TAT: r = 0.352, p = 0.001; antithrombin, AT: r = -0.301, p < 0.001; plasmin-α2-plasmin inhibitor complex, PIC: r = 0.503, p = 0.035; tissue plasminogen activator, tPA: r = 0.630, p < 0.001). Sustained SDC-1 elevation was associated with intense and prolonged coagulation activation, impairment of anticoagulation, and fibrinolytic activation followed by inhibition of fibrinolysis, which are the primary responses associated with development of DIC in the acute phase of trauma. Elevation of circulating SDC-1 level was also associated with consumption coagulopathy and the need for transfusion, which revealed a significant association between high SDC-1 levels and the development of DIC after trauma (area under the curve, AUC = 0.845, cut-off value = 130.38 ng/mL, p = 0.001). CONCLUSIONS High circulating levels of syndecan-1 were associated with intense and prolonged coagulation activation, impairment of anticoagulation, fibrinolytic activation, and consumption coagulopathy after trauma. Endotheliopathy represented by SDC-1 elevation was associated with trauma induced coagulopathy, which can lead to the development of DIC.
Collapse
Affiliation(s)
- Hironori Matsumoto
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Suguru Annen
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Naoki Mukai
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Muneaki Ohshita
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Satoru Murata
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Yutaka Harima
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Shirou Ogawa
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Mitsuo Okita
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Yuki Nakabayashi
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Satoshi Kikuchi
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Jun Takeba
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| | - Norio Sato
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, Ehime University, Toon 791-0295, Ehime, Japan
| |
Collapse
|
32
|
Sembajwe LF, Ssekandi AM, Namaganda A, Muwonge H, Kasolo JN, Kalyesubula R, Nakimuli A, Naome M, Patel KP, Masenga SK, Kirabo A. Glycocalyx-Sodium Interaction in Vascular Endothelium. Nutrients 2023; 15:2873. [PMID: 37447199 PMCID: PMC10343370 DOI: 10.3390/nu15132873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The glycocalyx generally covers almost all cellular surfaces, where it participates in mediating cell-surface interactions with the extracellular matrix as well as with intracellular signaling molecules. The endothelial glycocalyx that covers the luminal surface mediates the interactions of endothelial cells with materials flowing in the circulating blood, including blood cells. Cardiovascular diseases (CVD) remain a major cause of morbidity and mortality around the world. The cardiovascular risk factors start by causing endothelial cell dysfunction associated with destruction or irregular maintenance of the glycocalyx, which may culminate into a full-blown cardiovascular disease. The endothelial glycocalyx plays a crucial role in shielding the cell from excessive exposure and absorption of excessive salt, which can potentially cause damage to the endothelial cells and underlying tissues of the blood vessels. So, in this mini review/commentary, we delineate and provide a concise summary of the various components of the glycocalyx, their interaction with salt, and subsequent involvement in the cardiovascular disease process. We also highlight the major components of the glycocalyx that could be used as disease biomarkers or as drug targets in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Lawrence Fred Sembajwe
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Abdul M. Ssekandi
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Agnes Namaganda
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Haruna Muwonge
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Josephine N. Kasolo
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Robert Kalyesubula
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Annettee Nakimuli
- Department of Obstetrics and Gynecology, School of Medicine, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda;
| | - Mwesigwa Naome
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Sepiso K. Masenga
- Department of Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Kabwe P.O. Box 80415, Zambia;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
33
|
Franceković P, Gliemann L. Endothelial Glycocalyx Preservation-Impact of Nutrition and Lifestyle. Nutrients 2023; 15:nu15112573. [PMID: 37299535 DOI: 10.3390/nu15112573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023] Open
Abstract
The endothelial glycocalyx (eGC) is a dynamic hair-like layer expressed on the apical surface of endothelial cells throughout the vascular system. This layer serves as an endothelial cell gatekeeper by controlling the permeability and adhesion properties of endothelial cells, as well as by controlling vascular resistance through the mediation of vasodilation. Pathogenic destruction of the eGC could be linked to impaired vascular function, as well as several acute and chronic cardiovascular conditions. Defining the precise functions and mechanisms of the eGC is perhaps the limiting factor of the missing link in finding novel treatments for lifestyle-related diseases such as atherosclerosis, type 2 diabetes, hypertension, and metabolic syndrome. However, the relationship between diet, lifestyle, and the preservation of the eGC is an unexplored territory. This article provides an overview of the eGC's importance for health and disease and describes perspectives of nutritional therapy for the prevention of the eGC's pathogenic destruction. It is concluded that vitamin D and omega-3 fatty acid supplementation, as well as healthy dietary patterns such as the Mediterranean diet and the time management of eating, might show promise for preserving eGC health and, thus, the health of the cardiovascular system.
Collapse
Affiliation(s)
- Paula Franceković
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen, Denmark
| |
Collapse
|
34
|
Knežević D, Ćurko-Cofek B, Batinac T, Laškarin G, Rakić M, Šoštarič M, Zdravković M, Šustić A, Sotošek V, Batičić L. Endothelial Dysfunction in Patients Undergoing Cardiac Surgery: A Narrative Review and Clinical Implications. J Cardiovasc Dev Dis 2023; 10:jcdd10050213. [PMID: 37233179 DOI: 10.3390/jcdd10050213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/27/2023] Open
Abstract
Cardiac surgery is one of the highest-risk procedures, usually involving cardiopulmonary bypass and commonly inducing endothelial injury that contributes to the development of perioperative and postoperative organ dysfunction. Substantial scientific efforts are being made to unravel the complex interaction of biomolecules involved in endothelial dysfunction to find new therapeutic targets and biomarkers and to develop therapeutic strategies to protect and restore the endothelium. This review highlights the current state-of-the-art knowledge on the structure and function of the endothelial glycocalyx and mechanisms of endothelial glycocalyx shedding in cardiac surgery. Particular emphasis is placed on potential strategies to protect and restore the endothelial glycocalyx in cardiac surgery. In addition, we have summarized and elaborated the latest evidence on conventional and potential biomarkers of endothelial dysfunction to provide a comprehensive synthesis of crucial mechanisms of endothelial dysfunction in patients undergoing cardiac surgery, and to highlight their clinical implications.
Collapse
Affiliation(s)
- Danijel Knežević
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Tanja Batinac
- Department of Clinical Medical Sciences I, Faculty of Health Studies, University of Rijeka, Viktora Cara Emina 2, 51000 Rijeka, Croatia
| | - Gordana Laškarin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", M. Tita 188, 51410 Opatija, Croatia
| | - Marijana Rakić
- Hospital for Medical Rehabilitation of Hearth and Lung Diseases and Rheumatism "Thalassotherapia-Opatija", M. Tita 188, 51410 Opatija, Croatia
| | - Maja Šoštarič
- Clinical Department of Anesthesiology and Perioperative Intensive Therapy, Division of Cardiac Anesthesiology and Intensive Therapy, University Clinical Center Ljubljana, Zaloska 7, 1000 Ljubljana, Slovenia
- Department of Anesthesiology and Reanimatology, Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, 1000 Ljubljana, Slovenia
| | - Marko Zdravković
- Department of Anaesthesiology, Intensive Care and Pain Management, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| | - Alan Šustić
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Vlatka Sotošek
- Department of Anesthesiology, Reanimatology, Emergency and Intensive Care Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| | - Lara Batičić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
| |
Collapse
|
35
|
Macdonald S, Bosio E, Keijzers G, Burrows S, Hibbs M, O'Donoghue H, Taylor D, Mukherjee A, Kinnear F, Smart L, Ascencio-Lane JC, Litton E, Fraser J, Shapiro NI, Arendts G, Fatovich D. Effect of intravenous fluid volume on biomarkers of endothelial glycocalyx shedding and inflammation during initial resuscitation of sepsis. Intensive Care Med Exp 2023; 11:21. [PMID: 37062769 PMCID: PMC10106534 DOI: 10.1186/s40635-023-00508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
PURPOSE To investigate the effect of IV fluid resuscitation on endothelial glycocalyx (EG) shedding and activation of the vascular endothelium and inflammation. MATERIALS AND METHODS A planned biomarker sub-study of the REFRESH trial in which emergency department (ED) patients) with suspected sepsis and hypotension were randomised to a restricted fluid/early vasopressor regimen or IV fluid resuscitation with later vasopressors if required (usual care). Blood samples were collected at randomisation (T0) and at 3 h (T3), 6 h (T6)- and 24 h (T24) for measurement of a range of biomarkers if EG shedding, endothelial cell activation and inflammation. RESULTS Blood samples were obtained in 95 of 99 enrolled patients (46 usual care, 49 restricted fluid). Differences in the change in biomarker over time between the groups were observed for Hyaluronan (2.2-fold from T3 to T24, p = 0.03), SYN-4 (1.5-fold from T3 to T24, P = 0.01) and IL-6 (2.5-fold from T0 to T3, p = 0.03). No difference over time was observed between groups for the other biomarkers. CONCLUSIONS A consistent signal across a range of biomarkers of EG shedding or of endothelial activation or inflammation was not demonstrated. This could be explained by pre-existing EG shedding or overlap between the fluid volumes administered in the two groups in this clinical trial. Trial registration Australia New Zealand Clinical Trials Registry ACTRN126160000006448 Registered 12 January 2016.
Collapse
Affiliation(s)
- Stephen Macdonald
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia.
- Medical School, University of Western Australia, Perth, WA, Australia.
- Emergency Department, Royal Perth Hospital, Perth, WA, Australia.
| | - Erika Bosio
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Gerben Keijzers
- Emergency Department, Gold Coast University Hospital, Gold Coast, QLD, Australia
- Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
- School of Medicine, Griffith University, Gold Coast, QLD, Australia
| | - Sally Burrows
- Medical School, University of Western Australia, Perth, WA, Australia
- Research Foundation, Royal Perth Hospital, Perth, WA, Australia
| | - Moira Hibbs
- Research Centre, Royal Perth Hospital, Perth, WA, Australia
| | | | - David Taylor
- Emergency Department, Austin Health, Melbourne, Australia
| | - Ashes Mukherjee
- Emergency Department, Armadale Health Service, Perth, WA, Australia
| | - Frances Kinnear
- Department of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Lisa Smart
- School of Science, Health Engineering and Education, Murdoch University, Perth, WA, Australia
| | | | - Edward Litton
- Intensive Care, Fiona Stanley Hospital, Perth, WA, Australia
| | - John Fraser
- Critical Care Research Group, The Prince Charles Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Nathan I Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Glenn Arendts
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
- Emergency Department, Fiona Stanley Hospital, Perth, WA, Australia
| | - Daniel Fatovich
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
- Emergency Department, Royal Perth Hospital, Perth, WA, Australia
| |
Collapse
|
36
|
Weinberg L, Yanase F, Tosif S, Riedel B, Bellomo R, Hahn RG. Trajectory of plasma syndecan-1 and heparan sulphate during major surgery: A retrospective observational study. Acta Anaesthesiol Scand 2023; 67:4-11. [PMID: 36112130 PMCID: PMC10087164 DOI: 10.1111/aas.14150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 09/01/2022] [Accepted: 09/10/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Surgical trauma-induced inflammation during major surgery may disrupt endothelial integrity and affect plasma concentrations of glycocalyx constituents, such as syndecan-1 and heparan sulphate. To date, no studies have focused on their perioperative temporal changes. METHODS As part of a trial, we obtained plasma and urine specimens sampled during the perioperative period in 72 patients undergoing major abdominal surgery. The plasma concentration of syndecan-1 and heparan sulphate was measured on five occasions, from baseline to the second postoperative day. Plasma and urinary creatinine and urinary syndecan-1 concentrations were measured before surgery and on the first postoperative morning. RESULTS We observed three different temporal patterns of plasma syndecan-1 concentration. Group 1 'low' (64% of patients) showed only minor changes from baseline despite a median heparan sulphate increase of 67% (p < .005). Group 2 'increase' (21% of patients) showed a marked increase in median plasma syndecan-1 from 27 μg/L to 118 μg/L during the first postoperative day (p < .001) with a substantial (+670%; p < .005) increase in median plasma heparan sulphate from 279 to 2196 μg/L. Group 3 'high' (14% of patients) showed a constant elevation of plasma syndecan-1 to >100 μg/L, but low heparan sulphate levels. The plasma C-reactive protein concentration did not differ across the three groups and 90% of colon surgeries occurred in Group 1. Treatment with dexamethasone was similar across the three groups. Surgical blood loss, duration of surgery and liver resection were greatest in Group 2. CONCLUSION Changes in syndecan-1 and heparan sulphate after surgery appear to show three different patterns, with the greatest increases in those patients with greater blood loss, more liver surgery and longer operations. These observations suggest that increases in syndecan-1 and heparan sulphate reflect the degree of surgical injury.
Collapse
Affiliation(s)
- Laurence Weinberg
- Department of Anaesthesia, Austin Hospital, Melbourne, Australia.,Department of Critical Care, The University of Melbourne, Melbourne, Australia
| | - Fumitaka Yanase
- Department of Intensive Care, Austin Hospital, Melbourne, Australia.,Australian and New Zealand Intensive Care Research Centre (ANZIC-RC), School of Public Health and Preventative Medicine, Monash University, Melbourne, Australia
| | - Shervin Tosif
- Department of Anaesthesia, Austin Hospital, Melbourne, Australia
| | - Bernhard Riedel
- Department of Critical Care, The University of Melbourne, Melbourne, Australia.,Department of Anaesthesia, Perioperative and Pain Medicine, Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Rinaldo Bellomo
- Department of Critical Care, The University of Melbourne, Melbourne, Australia.,Department of Intensive Care, Austin Hospital, Melbourne, Australia
| | - Robert G Hahn
- Karolinska Institute at Danderyd's Hospital (KIDS), Stockholm, Sweden.,Department of Research, Södertälje Hospital, Södertälje, Sweden
| |
Collapse
|
37
|
Roche J, Rasmussen P, Gatterer H, Roveri G, Turner R, van Hall G, Maillard M, Walzl A, Kob M, Strapazzon G, Goetze JP, Schäfer ST, Kammerer T, Nader E, Connes P, Robert M, Mueller T, Feraille E, Siebenmann C. Hypoxia briefly increases diuresis but reduces plasma volume by fluid redistribution in women. Am J Physiol Heart Circ Physiol 2022; 323:H1068-H1079. [PMID: 36269645 PMCID: PMC9678412 DOI: 10.1152/ajpheart.00394.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have recently reported that hypobaric hypoxia (HH) reduces plasma volume (PV) in men by decreasing total circulating plasma protein (TCPP). Here, we investigated whether this applies to women and whether an inflammatory response and/or endothelial glycocalyx shedding could facilitate the TCCP reduction. We further investigated whether acute HH induces a short-lived diuretic response that was overlooked in our recent study, where only 24-h urine volumes were evaluated. In a strictly controlled crossover protocol, 12 women underwent two 4-day sojourns in a hypobaric chamber: one in normoxia (NX) and one in HH equivalent to 3,500-m altitude. PV, urine output, TCPP, and markers for inflammation and glycocalyx shedding were repeatedly measured. Total body water (TBW) was determined pre- and postsojourns by deuterium dilution. PV was reduced after 12 h of HH and thereafter remained 230-330 mL lower than in NX (P < 0.0001). Urine flow was 45% higher in HH than in NX throughout the first 6 h (P = 0.01) but lower during the second half of the first day (P < 0.001). Twenty-four-hour urine volumes (P ≥ 0.37) and TBW (P ≥ 0.14) were not different between the sojourns. TCPP was lower in HH than in NX at the same time points as PV (P < 0.001), but inflammatory or glycocalyx shedding markers were not consistently increased. As in men, and despite initially increased diuresis, HH-induced PV contraction in women is driven by a loss of TCPP and ensuing fluid redistribution, rather than by fluid loss. The mechanism underlying the TCPP reduction remains unclear but does not seem to involve inflammation or glycocalyx shedding.NEW & NOTEWORTHY This study is the first to investigate the mechanisms underlying plasma volume (PV) contraction in response to hypoxia in women while strictly controlling for confounders. PV contraction in women has a similar time course and magnitude as in men and is driven by the same mechanism, namely, oncotically driven redistribution rather than loss of fluid. We further report that hypoxia facilitates an increase in diuresis, that is, however, short-lived and of little relevance for PV regulation.
Collapse
Affiliation(s)
- Johanna Roche
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | | | - Hannes Gatterer
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giulia Roveri
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Rachel Turner
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Gerrit van Hall
- 3Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark,4Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,5Clinical Metabolomics Core Facility, Rigshospitalet, University of Copenhagen, Denmark
| | - Marc Maillard
- 6Service of Nephrology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Anna Walzl
- 7Department of Anesthesiology, LMU Klinikum, Ludwig-Maximilians-University München, Munich, Germany
| | - Michael Kob
- 8Division of Clinical Nutrition, Bolzano Regional Hospital, Bolzano, Italy
| | - Giacomo Strapazzon
- 1Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Jens Peter Goetze
- 3Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Simon Thomas Schäfer
- 7Department of Anesthesiology, LMU Klinikum, Ludwig-Maximilians-University München, Munich, Germany
| | - Tobias Kammerer
- 7Department of Anesthesiology, LMU Klinikum, Ludwig-Maximilians-University München, Munich, Germany,9Department for Anesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Elie Nader
- 10Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Philippe Connes
- 10Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Mélanie Robert
- 10Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, Lyon, France
| | - Thomas Mueller
- 11Department of Clinical Pathology, Hospital of Bolzano, Bolzano, Italy,12Department of Laboratory Medicine, Hospital Voecklabruck, Voecklabruck, Austria
| | - Eric Feraille
- 13National Center of Competence in Research Kidney Control of Homeostasis (Kidney.CH), Zurich, Switzerland,14Department of Cellular Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
38
|
Macdonald S. Fluid Resuscitation in Patients Presenting with Sepsis: Current Insights. Open Access Emerg Med 2022; 14:633-638. [PMID: 36471825 PMCID: PMC9719278 DOI: 10.2147/oaem.s363520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/23/2022] [Indexed: 04/05/2024] Open
Abstract
Intravenous (IV) fluid resuscitation is a key component of the initial resuscitation of septic shock, with international consensus guidelines suggesting the administration of at least 30mL/kg of isotonic crystalloid fluid. The rationale is to restore circulating fluid volume and optimise stroke volume. It is acknowledged that there is a paucity of high-level evidence to support this strategy, with most studies being observational or retrospective in design. In the past decade, evidence has emerged that a large positive fluid balance is associated with worse outcomes among patients with septic shock in intensive care who have already received initial resuscitation. Randomised trials undertaken in low-income countries have found increased mortality among patients with sepsis and hypoperfusion administered a larger fluid volume as part of initial resuscitation, however, translating these findings to other settings is not possible. This uncertainty has led to variation in practice with some advocating a more conservative fluid strategy coupled with the earlier introduction of vasopressors for haemodynamic support. This question is the subject of several ongoing clinical trials. This article summarises the current state of the evidence for IV fluid resuscitation in septic shock and provides guidance for practitioners in the face of our evolving understanding of this important area.
Collapse
Affiliation(s)
- Stephen Macdonald
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- Emergency Department, Royal Perth Hospital, Perth, WA, Australia
- University of Western Australia, Perth, WA, Australia
| |
Collapse
|
39
|
Bol ME, Huckriede JB, van de Pas KGH, Delhaas T, Lorusso R, Nicolaes GAF, Sels JEM, van de Poll MCG. Multimodal measurement of glycocalyx degradation during coronary artery bypass grafting. Front Med (Lausanne) 2022; 9:1045728. [PMID: 36523784 PMCID: PMC9744810 DOI: 10.3389/fmed.2022.1045728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/02/2022] [Indexed: 11/04/2023] Open
Abstract
Background Glycocalyx shedding and subsequent endothelial dysfunction occur in many conditions, such as in sepsis, in critical illness, and during major surgery such as in coronary artery bypass grafting (CABG) where it has been shown to associate with organ dysfunction. Hitherto, there is no consensus about the golden standard in measuring glycocalyx properties in humans. The objective of this study was to compare different indices of glycocalyx shedding and dysfunction. To this end, we studied patients undergoing elective CABG surgery, which is a known cause of glycocalyx shedding. Materials and methods Sublingual glycocalyx thickness was measured in 23 patients by: 1) determining the perfused boundary region (PBR)-an inverse measure of glycocalyx thickness-by means of sidestream dark field imaging technique. This is stated double, 2) measuring plasma levels of the glycocalyx shedding products syndecan-1, hyaluronan, and heparan sulfate and 3) measuring plasma markers of impaired glycocalyx function and endothelial activation (Ang-2, Tie-2, E-selectin, and thrombomodulin). Measurements were performed directly after induction, directly after onset of cardiopulmonary bypass (CPB), and directly after cessation of CPB. We assessed changes over time as well as correlations between the various markers. Results The PBR increased from 1.81 ± 0.21 μm after induction of anesthesia to 2.27 ± 0.25 μm (p < 0.0001) directly after CPB was initiated and did not change further during CPB. A similar pattern was seen for syndecan-1, hyaluronan, heparan sulfate, Ang-2, Tie-2, and thrombomodulin. E-selectin levels also increased between induction and the start of CPB and increased further during CPB. The PBR correlated moderately with heparan sulfate, E-selectin, and thrombomodulin and weakly with Syndecan-1, hyaluronan, and Tie-2. Shedding markers syndecan-1 and hyaluronan correlated with all functional markers. Shedding marker heparan sulfate only correlated with Tie-2, thrombomodulin, and E-selectin. Thrombomodulin correlated with all shedding markers. Conclusion Our results show that glycocalyx thinning, illustrated by increased sublingual PBR and increased levels of shedding markers, is paralleled with impaired glycocalyx function and increased endothelial activation in CABG surgery with CPB. As correlations between different markers were limited, no single marker could be identified to represent the glycocalyx in its full complexity.
Collapse
Affiliation(s)
- Martine E. Bol
- Department of Intensive Care Medicine, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
| | - J. B. Huckriede
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - K. G. H. van de Pas
- Department of Intensive Care Medicine, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - T. Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - R. Lorusso
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of Cardio-Thoracic Surgery, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - G. A. F. Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
| | - J. E. M. Sels
- Department of Intensive Care Medicine, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands
- Department of Cardiology, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| | - M. C. G. van de Poll
- Department of Intensive Care Medicine, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, Netherlands
- Department of Surgery, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
| |
Collapse
|
40
|
Drinhaus H, Schroeder DC, Hunzelmann N, Herff H, Annecke T, Böttiger BW, Wetsch WA. Shedding of the Endothelial Glycocalyx Independent of Systemic Tryptase Release during Oncologic Oral Surgery: An Observational Study. J Clin Med 2022; 11:jcm11195797. [PMID: 36233665 PMCID: PMC9573529 DOI: 10.3390/jcm11195797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/06/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The endothelial glycocalyx and endothelial surface layer are crucial for several functions of the vasculature. Damage to the glycocalyx (“shedding”) occurs during diverse clinical conditions, including major surgery. Mast cell tryptase has been proposed as one possible “sheddase”. During oncologic oral surgery, glycocalyx shedding could be detrimental due to loss of vascular barrier function and consequent oedema in the musculocutaneous flap graft. Concentrations of the glycocalyx components heparan sulphate and syndecan-1, as well as of tryptase in blood serum before and after surgery, were measured in 16 patients undergoing oncologic oral surgery. Secondary measures were the concentrations of these substances on postoperative days 1 and 2. Heparan sulphate rose from 692 (median, interquartile range: 535–845) to 810 (638–963) ng/mL during surgery. Syndecan-1 increased from 35 (22–77) ng/mL to 138 (71–192) ng/mL. Tryptase remained virtually unchanged with 4.2 (3–5.6) before and 4.2 (2.5–5.5) ng/mL after surgery. Concentrations of heparan sulphate and syndecan-1 in serum increased during surgery, indicating glycocalyx shedding. Tryptase concentration remained equal, suggesting other sheddases than systemic tryptase release to be responsible for damage to the glycocalyx. Investigating strategies to protect the glycocalyx during oncologic oral surgery might hold potential to improve flap viability and patient outcome.
Collapse
Affiliation(s)
- Hendrik Drinhaus
- University of Cologne, Faculty of Medicine, and University Hospital of Cologne, Department of Anaesthesiology and Intensive Care Medicine, 50937 Cologne, Germany
- Correspondence: ; Tel.:+49-221-4780
| | - Daniel C. Schroeder
- University of Cologne, Faculty of Medicine, and University Hospital of Cologne, Department of Anaesthesiology and Intensive Care Medicine, 50937 Cologne, Germany
- German Armed Forces Central Hospital of Koblenz, Department of Anaesthesiology and Intensive Care, 56072 Koblenz, Germany
| | - Nicolas Hunzelmann
- University of Cologne, Faculty of Medicine, and University Hospital of Cologne, Department of Dermatology, 50937 Cologne, Germany
| | - Holger Herff
- University of Cologne, Faculty of Medicine, and University Hospital of Cologne, Department of Anaesthesiology and Intensive Care Medicine, 50937 Cologne, Germany
| | - Thorsten Annecke
- University of Cologne, Faculty of Medicine, and University Hospital of Cologne, Department of Anaesthesiology and Intensive Care Medicine, 50937 Cologne, Germany
- University of Witten/Herdecke, Kliniken der Stadt Köln gGmbH, Department of Anaesthesiology and Intensive Care Medicine, 51109 Cologne, Germany
| | - Bernd W. Böttiger
- University of Cologne, Faculty of Medicine, and University Hospital of Cologne, Department of Anaesthesiology and Intensive Care Medicine, 50937 Cologne, Germany
| | - Wolfgang A. Wetsch
- University of Cologne, Faculty of Medicine, and University Hospital of Cologne, Department of Anaesthesiology and Intensive Care Medicine, 50937 Cologne, Germany
| |
Collapse
|
41
|
Dull RO, Hahn RG. The glycocalyx as a permeability barrier: basic science and clinical evidence. Crit Care 2022; 26:273. [PMID: 36096866 PMCID: PMC9469578 DOI: 10.1186/s13054-022-04154-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/15/2022] [Indexed: 11/11/2022] Open
Abstract
Preclinical studies in animals and human clinical trials question whether the endothelial glycocalyx layer is a clinically important permeability barrier. Glycocalyx breakdown products in plasma mostly originate from 99.6–99.8% of the endothelial surface not involved in transendothelial passage of water and proteins. Fragment concentrations correlate poorly with in vivo imaging of glycocalyx thickness, and calculations of expected glycocalyx resistance are incompatible with measured hydraulic conductivity values. Increases in plasma breakdown products in rats did not correlate with vascular permeability. Clinically, three studies in humans show inverse correlations between glycocalyx degradation products and the capillary leakage of albumin and fluid.
Collapse
|
42
|
Dobson GP, Morris JL, Letson HL. Immune dysfunction following severe trauma: A systems failure from the central nervous system to mitochondria. Front Med (Lausanne) 2022; 9:968453. [PMID: 36111108 PMCID: PMC9468749 DOI: 10.3389/fmed.2022.968453] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 12/20/2022] Open
Abstract
When a traumatic injury exceeds the body's internal tolerances, the innate immune and inflammatory systems are rapidly activated, and if not contained early, increase morbidity and mortality. Early deaths after hospital admission are mostly from central nervous system (CNS) trauma, hemorrhage and circulatory collapse (30%), and later deaths from hyperinflammation, immunosuppression, infection, sepsis, acute respiratory distress, and multiple organ failure (20%). The molecular drivers of secondary injury include damage associated molecular patterns (DAMPs), pathogen associated molecular patterns (PAMPs) and other immune-modifying agents that activate the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic stress response. Despite a number of drugs targeting specific anti-inflammatory and immune pathways showing promise in animal models, the majority have failed to translate. Reasons for failure include difficulty to replicate the heterogeneity of humans, poorly designed trials, inappropriate use of specific pathogen-free (SPF) animals, ignoring sex-specific differences, and the flawed practice of single-nodal targeting. Systems interconnectedness is a major overlooked factor. We argue that if the CNS is protected early after major trauma and control of cardiovascular function is maintained, the endothelial-glycocalyx will be protected, sufficient oxygen will be delivered, mitochondrial energetics will be maintained, inflammation will be resolved and immune dysfunction will be minimized. The current challenge is to develop new systems-based drugs that target the CNS coupling of whole-body function.
Collapse
Affiliation(s)
- Geoffrey P. Dobson
- Heart and Trauma Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | | | | |
Collapse
|
43
|
Muendlein A, Heinzle C, Leiherer A, Geiger K, Brandtner EM, Gaenger S, Fraunberger P, Saely CH, Drexel H. Serum glypican-4 is associated with the 10-year clinical outcome of patients with peripheral artery disease. Int J Cardiol 2022; 369:54-59. [DOI: 10.1016/j.ijcard.2022.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 12/30/2022]
|
44
|
Tricarico G, Travagli V. Approach to the management of COVID-19 patients: When home care can represent the best practice. INTERNATIONAL JOURNAL OF RISK & SAFETY IN MEDICINE 2022; 33:249-259. [PMID: 35786662 DOI: 10.3233/jrs-210064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The pandemic that began around February 2020, caused by the viral pathogen SARS-CoV-2 (COVID-19), has still not completed its course at present in June 2022. OBJECTIVE The open research to date highlights just how varied and complex the outcome of the contagion can be. METHOD The clinical pictures observed following the contagion present variabilities that cannot be explained completely by the patient's age (which, with the new variants, is rapidly changing, increasingly affecting younger patients) nor by symptoms and concomitant pathologies (which are no longer proving to be decisive in recent cases) in relation to medium-to-long term sequelae. In particular, the functions of the vascular endothelium and vascular lesions at the pre-capillary level represent the source of tissue hypoxia and other damage, resulting in the clinical evolution of COVID-19. RESULTS Keeping the patient at home with targeted therapeutic support, aimed at not worsening vascular endothelium damage with early and appropriate stimulation of endothelial cells, ameliorates the glycocalyx function and improves the prognosis and, in some circumstances, could be the best practice suitable for certain patients. CONCLUSION Clinical information thus far collected may be of immense value in developing a better understanding of the present pandemic and future occurrences regarding patient safety, pharmaceutical care and therapy liability.
Collapse
Affiliation(s)
| | - Valter Travagli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy.,Dipartimento di Eccellenza Nazionale, Università degli Studi di Siena, Siena, Italy
| |
Collapse
|
45
|
Muendlein A, Brandtner EM, Leiherer A, Geiger K, Heinzle C, Gaenger S, Fraunberger P, Haider D, Saely CH, Drexel H. Evaluation of the association of serum glypican-4 with prevalent and future kidney function. Sci Rep 2022; 12:10168. [PMID: 35715556 PMCID: PMC9206029 DOI: 10.1038/s41598-022-14306-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Serum glypican-4 (GPC4) has been identified as an insulin-sensitizing adipokine serving as a marker for body mass index and insulin resistance in humans. The association of circulating GPC4 with kidney function is to date largely unexplored. Therefore, we aimed to evaluate the association between serum GPC4 and prevalent as well future kidney function in a prospective cohort study. The study included 456 Caucasian coronary angiography patients. After a median follow up period of 3.4 years, data on kidney function was reassessed in all patients. Chronic kidney disease (CKD) was defined by decreased estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2 or albuminuria. At baseline, serum GPC4 was significantly associated with decreased eGFR (adjusted odds ratio (OR) per standard deviation = 4.75 [2.66-8.48]; P < 0.001), albuminuria (OR = 1.49 [1.15-1.92]; P = 0.002), and, accordingly, with CKD (OR = 1.75 [1.35-2.26]; P < 0.001). GPC4 levels also significantly and independently predicted the incidence of newly diagnosed decreased eGFR (OR = 2.74 [1.82-4.14]; P < 0.001, albuminuria (OR = 1.58 [1.01-2.46]; P = 0.043, and CKD (OR = 2.16 [1.45-3.23]; P < 0.001). ROC analysis indicated an additional predictive value of GPC4 to a basic prediction model for newly diagnosed CKD and eGFR < 60 mL/min/1.73 m2. Our study, therefore, indicates that high serum GPC4 is associated with decreased prevalent and future kidney function.
Collapse
Affiliation(s)
- Axel Muendlein
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, 6800, Feldkirch, Austria.
| | - Eva Maria Brandtner
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, 6800, Feldkirch, Austria
| | - Andreas Leiherer
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, 6800, Feldkirch, Austria
- Medical Central Laboratories, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Kathrin Geiger
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, 6800, Feldkirch, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Christine Heinzle
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, 6800, Feldkirch, Austria
- Medical Central Laboratories, Feldkirch, Austria
| | - Stella Gaenger
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, 6800, Feldkirch, Austria
| | | | - Dominik Haider
- Department of Medicine, Academic Teaching Hospital Bregenz, Bregenz, Austria
| | - Christoph H Saely
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, 6800, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, 6800, Feldkirch, Austria
- Private University of the Principality of Liechtenstein, Triesen, Liechtenstein
- Department of Medicine, Academic Teaching Hospital Bregenz, Bregenz, Austria
- Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
46
|
Joannidis M, Wiedermann CJ, Ostermann M. Ten myths about Albumin: don’t forget the endothelium. Author’s reply. Intensive Care Med 2022; 48:1099-1100. [DOI: 10.1007/s00134-022-06775-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
|
47
|
No association between intravenous fluid volume and endothelial glycocalyx shedding in patients undergoing resuscitation for sepsis in the emergency department. Sci Rep 2022; 12:8733. [PMID: 35610344 PMCID: PMC9130214 DOI: 10.1038/s41598-022-12752-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
Endothelial glycocalyx (EG) shedding is associated with septic shock and described following intravenous (IV) fluid administration. To investigate the possible impact of IV fluids on the pathobiology of septic shock we investigated associations between biomarkers of EG shedding and endothelial cell activation, and relationships with IV fluid volume. Serum samples were obtained on admission (T0) and at 24 h (T24) in patients undergoing haemodynamic resuscitation for suspected septic shock in the emergency department. Biomarkers of EG shedding—Syndecan-1 (Syn-1), Syndecan-4 (Syn-4), Hyaluronan, endothelial activation—Endothelin-1 (ET-1), Angiopoeitin-2 (Ang-2), Vascular Endothelial Growth Factor Receptor-1(VEGF-1) and leucocyte activation/inflammation—Resistin, Neutrophil Gelatinase Associated Lipocalin (NGAL) and a marker of cardiac stretch—Pro-Atrial Natriuretic Peptide (Pro-ANP) were compared to the total IV fluid volume administered using Tobit regression. Data on 86 patients (52 male) with a mean age of 60 (SD 18) years were included. The mean fluid volume administered to T24 was 4038 ml (SD 2507 ml). No significant association between fluid volume and Pro-ANP or any of the biomarkers were observed. Syn-1 and Syn-4 were significantly correlated with each other (Spearman Rho 0.43, p < 0.001) but not with Hyaluronan. Syn-1 and Syn-4 both correlated with VEGFR-1 (Rho 0.56 and 0.57 respectively, p < 0.001) whereas Hyaluronan correlated with ET-1 (Rho 0.43, p < 0.001) and Ang-2 (Rho 0.43, p < 0.001). There was no correlation between Pro-ANP and any of the EG biomarkers. Distinct patterns of association between biomarkers of EG shedding and endothelial cell activation were observed among patients undergoing resuscitation for sepsis. No relationship between IV fluid volume and Pro-ANP or any of the other biomarkers was observed.
Collapse
|
48
|
Wang Z, Wang Q, Gong L, Liu T, Wang P, Yuan Z, Wang W. The NF-κB-regulated miR-221/222/syndecan-1 axis restores intestinal mucosal barrier function in radiation enteritis. Int J Radiat Oncol Biol Phys 2022; 113:166-176. [PMID: 35033585 DOI: 10.1016/j.ijrobp.2022.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Radiation enteritis (RE) is the most common complication of pelvic radiotherapy, but proven therapies are lacking. Barrier function defects are closely associated with numerous inflammatory disorders. In this study, we investigated whether barrier dysfunction contributes to RE and whether syndecan-1 (Sdc1) protects intestinal barrier function in RE. The mechanism was also elucidated. MATERIALS AND METHODS Blood, urine, and tissue samples were collected from 21 patients with cervical cancer who experienced RE during radiotherapy and used to detect inflammatory responses and barrier function. The role of Sdc1 in barrier function was examined in cultured fetal human colon (FHC) cells exposed to radiation and an induced mouse RE model. Barrier function was determined by zonula occludens (ZO)-1 and occludin expression, transepithelial electrical resistance (TEER), and FITC-dextran (FD4) flux. The role of the nuclear factor (NF)-κB-P65 pathway was detected by Western blotting and chromatin immunoprecipitation. The role of miR-221/222 was assessed by real-time PCR and luciferase reporter assays. RESULTS Patients with RE exhibited obvious pathological and ultra-microstructural inflammatory injury and barrier disruption in the intestinal mucosa, as well as higher serum lipopolysaccharide (LPS), LPS-binding protein, and cytokine levels and a higher urine lactulose/mannitol ratio. Sdc1 overexpression in irradiated FHC cells reversed TEER suppression, repressed FD4 flux, and upregulated ZO-1 and occludin expression. Exogenous low-molecular-weight heparin supplementation in RE mice ameliorated the activity of enteritis and barrier defects. Mechanistically, irradiation-activated P65 increased the transcription of miR-221/222 via direct binding to their promoter regions, and miR-221/222 then post-transcriptionally suppressed the Sdc1 gene by binding to its 3'-untranslated region. CONCLUSIONS Sdc1 protects barrier function and controls inflammation during RE under transcriptional regulation by the NF-κB pathway and miR-221/222. The network including NF-κB, miR-221/222, and Sdc1 is important in the pathogenesis of RE. Sdc1 might represent a therapeutic target for novel anti-RE strategies.
Collapse
Affiliation(s)
- Zhongqiu Wang
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huanhu Road, West River District, Tianjin 300060, China.
| | - Qingxin Wang
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huanhu Road, West River District, Tianjin 300060, China; School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Nankai District, Tianjin, 300073, China
| | - Linlin Gong
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huanhu Road, West River District, Tianjin 300060, China
| | - Tao Liu
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Peiguo Wang
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huanhu Road, West River District, Tianjin 300060, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huanhu Road, West River District, Tianjin 300060, China
| | - Wei Wang
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, West Huanhu Road, West River District, Tianjin 300060, China.
| |
Collapse
|
49
|
Abstract
ABSTRACT Fluid resuscitation is an essential intervention in critically ill patients, and its ultimate goal is to restore tissue perfusion. Critical illnesses are often accompanied by glycocalyx degradation caused by inflammatory reactions, hypoperfusion, shock, and so forth, leading to disturbed microcirculatory perfusion and organ dysfunction. Therefore, maintaining or even restoring the glycocalyx integrity may be of high priority in the therapeutic strategy. Like drugs, however, different resuscitation fluids may have beneficial or harmful effects on the integrity of the glycocalyx. The purpose of this article is to review the effects of different resuscitation fluids on the glycocalyx. Many animal studies have shown that normal saline might be associated with glycocalyx degradation, but clinical studies have not confirmed this finding. Hydroxyethyl starch (HES), rather than other synthetic colloids, may restore the glycocalyx. However, the use of HES also leads to serious adverse events such as acute kidney injury and bleeding tendencies. Some studies have suggested that albumin may restore the glycocalyx, whereas others have suggested that balanced crystalloids might aggravate glycocalyx degradation. Notably, most studies did not correct the effects of the infusion rate or fluid volume; therefore, the results of using balanced crystalloids remain unclear. Moreover, mainly animal studies have suggested that plasma may protect and restore glycocalyx integrity, and this still requires confirmation by high-quality clinical studies.
Collapse
|
50
|
Ballermann BJ, Nyström J, Haraldsson B. The Glomerular Endothelium Restricts Albumin Filtration. Front Med (Lausanne) 2021; 8:766689. [PMID: 34912827 PMCID: PMC8667033 DOI: 10.3389/fmed.2021.766689] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022] Open
Abstract
Inflammatory activation and/or dysfunction of the glomerular endothelium triggers proteinuria in many systemic and localized vascular disorders. Among them are the thrombotic microangiopathies, many forms of glomerulonephritis, and acute inflammatory episodes like sepsis and COVID-19 illness. Another example is the chronic endothelial dysfunction that develops in cardiovascular disease and in metabolic disorders like diabetes. While the glomerular endothelium is a porous sieve that filters prodigious amounts of water and small solutes, it also bars the bulk of albumin and large plasma proteins from passing into the glomerular filtrate. This endothelial barrier function is ascribed predominantly to the endothelial glycocalyx with its endothelial surface layer, that together form a relatively thick, mucinous coat composed of glycosaminoglycans, proteoglycans, glycolipids, sialomucins and other glycoproteins, as well as secreted and circulating proteins. The glycocalyx/endothelial surface layer not only covers the glomerular endothelium; it extends into the endothelial fenestrae. Some glycocalyx components span or are attached to the apical endothelial cell plasma membrane and form the formal glycocalyx. Other components, including small proteoglycans and circulating proteins like albumin and orosomucoid, form the endothelial surface layer and are bound to the glycocalyx due to weak intermolecular interactions. Indeed, bound plasma albumin is a major constituent of the endothelial surface layer and contributes to its barrier function. A role for glomerular endothelial cells in the barrier of the glomerular capillary wall to protein filtration has been demonstrated by many elegant studies. However, it can only be fully understood in the context of other components, including the glomerular basement membrane, the podocytes and reabsorption of proteins by tubule epithelial cells. Discovery of the precise mechanisms that lead to glycocalyx/endothelial surface layer disruption within glomerular capillaries will hopefully lead to pharmacological interventions that specifically target this important structure.
Collapse
Affiliation(s)
| | - Jenny Nyström
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Börje Haraldsson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|