1
|
Barzilai DA. Mikhail 'Misha' Blagosklonny's enduring legacy in geroscience: the hyperfunction theory and the therapeutic potential of rapamycin. Aging (Albany NY) 2025; 17:1-15. [PMID: 39808121 PMCID: PMC11810056 DOI: 10.18632/aging.206189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The untimely passing of Dr. Mikhail "Misha" Blagosklonny has left a lasting void in geroscience and oncology. This review examines his profound contributions, focusing on his pioneering the Hyperfunction Theory and his advocacy for rapamycin, an mTOR inhibitor, as a therapeutic agent for lifespan extension. Contrary to traditional damage-centric models, the Hyperfunction Theory rejects damage accumulation as the primary driver of aging. Instead, it redefines aging as a quasi-programmed process driven by the persistent, excessive activity of growth-promoting pathways beyond their developmental roles, leading to age-related pathologies. We explore how Blagosklonny's insights predict rapamycin's ability to decelerate aging by modulating excessive mTOR signaling, supported by empirical evidence across multiple physiological systems, including immune, cardiovascular, cognitive, and oncologic health. His forward-thinking approach, advocating for the cautious clinical use of rapamycin and suggesting personalized, preventive, and combination therapy strategies, has catalyzed interest in translational geroscience. This review synthesizes Blagosklonny's legacy, presenting rapamycin as a foundational pharmacological intervention with potential in managing age-related decline and extending healthspan, and underlines his impact in shifting aging research from theoretical frameworks to actionable interventions. Blagosklonny's work remains an enduring inspiration, paving the way toward treating aging as a modifiable condition.
Collapse
Affiliation(s)
- David A. Barzilai
- Geneva College of Longevity Science, Geneva 1204, Switzerland
- Healthspan Coaching LLC, Barzilai Longevity Consulting, Boston, MA 02111, USA
| |
Collapse
|
2
|
Yang K, Hou R, Zhao J, Wang X, Wei J, Pan X, Zhu X. Lifestyle effects on aging and CVD: A spotlight on the nutrient-sensing network. Ageing Res Rev 2023; 92:102121. [PMID: 37944707 DOI: 10.1016/j.arr.2023.102121] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/12/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Aging is widespread worldwide and a significant risk factor for cardiovascular disease (CVD). Mechanisms underlying aging have attracted considerable attention in recent years. Remarkably, aging and CVD overlap in numerous ways, with deregulated nutrient sensing as a common mechanism and lifestyle as a communal modifier. Interestingly, lifestyle triggers or suppresses multiple nutrient-related signaling pathways. In this review, we first present the composition of the nutrient-sensing network (NSN) and its metabolic impact on aging and CVD. Secondly, we review how risk factors closely associated with CVD, including adverse life states such as sedentary behavior, sleep disorders, high-fat diet, and psychosocial stress, contribute to aging and CVD, with a focus on the bridging role of the NSN. Finally, we focus on the positive effects of beneficial dietary interventions, specifically dietary restriction and the Mediterranean diet, on the regulation of nutrient metabolism and the delayed effects of aging and CVD that depend on the balance of the NSN. In summary, we expound on the interaction between lifestyle, NSN, aging, and CVD.
Collapse
Affiliation(s)
- Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Rongyao Hou
- Department of Neurology, The Affiliated Hiser Hospital of Qingdao University, Qingdao 266000, China
| | - Jie Zhao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
3
|
Konopka AR, Lamming DW. Blazing a trail for the clinical use of rapamycin as a geroprotecTOR. GeroScience 2023; 45:2769-2783. [PMID: 37801202 PMCID: PMC10643772 DOI: 10.1007/s11357-023-00935-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
Treatment with rapamycin, an inhibitor of the mechanistic Target Of Rapamycin Complex One (mTORC1) protein kinase, has been repeatedly demonstrated to extend lifespan and prevent or delay age-related diseases in diverse model systems. Concerns over the risk of potentially serious side effects in humans, including immunosuppression and metabolic disruptions, have cautiously limited the translation of rapamycin and its analogs as a treatment for aging associated conditions. During the last decade, we and others have developed a working model that suggests that while inhibition of mTORC1 promotes healthy aging, many of the negative side effects of rapamycin are associated with "off-target" inhibition of a second mTOR complex, mTORC2. Differences in the kinetics and molecular mechanisms by which rapamycin inhibits mTORC1 and mTORC2 suggest that a therapeutic window for rapamycin could be exploited using intermittent dosing schedules or alternative rapalogs that may enable more selective inhibition of mTORC1. However, the optimal dosing schedules and the long-term efficacy of such interventions in humans are unknown. Here, we highlight ongoing or upcoming clinical trials that will address outstanding questions regarding the safety, pharmacokinetics, pharmacodynamics, and efficacy of rapamycin and rapalogs on several clinically oriented outcomes. Results from these early phase studies will help guide the design of phase 3 clinical trials to determine whether rapamycin can be used safely to inhibit mTORC1 for the treatment and prevention of age-related diseases in humans.
Collapse
Affiliation(s)
- Adam R Konopka
- Division of Geriatrics, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA.
- Division of Geriatrics and Gerontology, Department of Medicine, Geriatric Research Education and Clinical Center (GRECC), William S. Middleton Memorial Veterans Hospital, University of Wisconsin-Madison, 2500 Overlook Terrace, Madison, WI, 53705, USA.
| | - Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Division of Endocrinology, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
4
|
Blagosklonny MV. Towards disease-oriented dosing of rapamycin for longevity: does aging exist or only age-related diseases? Aging (Albany NY) 2023; 15:6632-6640. [PMID: 37477535 PMCID: PMC10415559 DOI: 10.18632/aging.204920] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Both individuals taking rapamycin, an anti-aging drug, and those not taking it will ultimately succumb to age-related diseases. However, the former, if administered disease-oriented dosages for a long time, may experience a delayed onset of such diseases and live longer. The goal is to delay a particular disease that is expected to be life-limiting in a particular person. Age-related diseases, quasi-programmed during development, progress at varying rates in different individuals. Rapamycin is a prophylactic anti-aging drug that decelerates early development of age-related diseases. I further discuss hyperfunction theory of quasi-programmed diseases, which challenges the need for the traditional concept of aging itself.
Collapse
|
5
|
Mannick JB, Lamming DW. Targeting the biology of aging with mTOR inhibitors. NATURE AGING 2023; 3:642-660. [PMID: 37142830 PMCID: PMC10330278 DOI: 10.1038/s43587-023-00416-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/07/2023] [Indexed: 05/06/2023]
Abstract
Inhibition of the protein kinase mechanistic target of rapamycin (mTOR) with the Food and Drug Administration (FDA)-approved therapeutic rapamycin promotes health and longevity in diverse model organisms. More recently, specific inhibition of mTORC1 to treat aging-related conditions has become the goal of basic and translational scientists, clinicians and biotechnology companies. Here, we review the effects of rapamycin on the longevity and survival of both wild-type mice and mouse models of human diseases. We discuss recent clinical trials that have explored whether existing mTOR inhibitors can safely prevent, delay or treat multiple diseases of aging. Finally, we discuss how new molecules may provide routes to the safer and more selective inhibition of mTOR complex 1 (mTORC1) in the decade ahead. We conclude by discussing what work remains to be done and the questions that will need to be addressed to make mTOR inhibitors part of the standard of care for diseases of aging.
Collapse
Affiliation(s)
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Szőke K, Bódi B, Hendrik Z, Czompa A, Gyöngyösi A, Haines DD, Papp Z, Tósaki Á, Lekli I. Rapamycin treatment increases survival, autophagy biomarkers and expression of the anti-aging klotho protein in elderly mice. Pharmacol Res Perspect 2023; 11:e01091. [PMID: 37190667 DOI: 10.1002/prp2.1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 05/17/2023] Open
Abstract
Previous investigations have demonstrated that treatment of animals with rapamycin increases levels of autophagy, which is a process by which cells degrade intracellular detritus, thus suppressing the emergence of senescent cells, whose pro-inflammatory properties, are primary drivers of age-associated physical decline. A hypothesis is tested here that rapamycin treatment of mice approaching the end of their normal lifespan exhibits increased survival, enhanced expression of autophagic proteins; and klotho protein-a biomarker of aging that affects whole organism senescence, and systemic suppression of inflammatory mediator production. Test groups of 24-month-old C57BL mice were injected intraperitoneally with either 1.5 mg/kg/week rapamycin or vehicle. All mice administered rapamycin survived the 12-week course, whereas 43% of the controls died. Relative to controls, rapamycin-treated mice experienced minor but significant weight loss; moreover, nonsignificant trends toward decreased levels of leptin, IL-6, IL-1β, TNF-α, IL-1α, and IGF-1, along with slight elevations in VEGF, MCP-1 were observed in the blood serum of rapamycin-treated mice. Rapamycin-treated mice exhibited significantly enhanced autophagy and elevated expression of klotho protein, particularly in the kidney. Rapamycin treatment also increased cardiomyocyte Ca2+ -sensitivity and enhanced the rate constant of force re-development, which may also contribute to the enhanced survival rate in elderly mice.
Collapse
Affiliation(s)
- Kitti Szőke
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Beáta Bódi
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Hendrik
- Institute of Forensic Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Czompa
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Alexandra Gyöngyösi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Debrecen, Hungary
| | | | - Zoltán Papp
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Árpád Tósaki
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- ELKH-DE Pharmamodul Research Team, University of Debrecen, Debrecen, Hungary
| | - István Lekli
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Shaw BI, Lee HJ, Ettenger R, Grimm P, Reed EF, Sarwal M, Stempora L, Warshaw B, Zhao C, Martinez OM, MacIver NJ, Kirk AD, Chambers ET. Malnutrition and immune cell subsets in children undergoing kidney transplantation. Pediatr Transplant 2022; 26:e14371. [PMID: 35938682 PMCID: PMC9669171 DOI: 10.1111/petr.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Malnutrition, including obesity and undernutrition, among children is increasing in prevalence and is common among children on renal replacement therapy. The effect of malnutrition on the pre-transplant immune system and how the pediatric immune system responds to the insult of both immunosuppression and allotransplantation is unknown. We examined the relationship of nutritional status with post-transplant outcomes and characterized the peripheral immune cell phenotypes of children from the Immune Development of Pediatric Transplant (IMPACT) study. METHODS Ninety-eight patients from the IMPACT study were classified as having obesity, undernutrition, or normal nutrition-based pre-transplant measurements. Incidence of infectious and alloimmune outcomes at 1-year post-transplantation was compared between nutritional groups using Gray's test and Fine-Gray subdistribution hazards model. Event-free survival was estimated by Kaplan-Meier method and compared between groups. Differences in immune cell subsets between nutritional groups over time were determined using generalized estimating equations accounting for the correlation between repeated measurements. RESULTS We did not observe that nutritional status was associated with infectious or alloimmune events or event-free survival post-transplant. We demonstrated that children with obesity had distinct T-and B-cell signatures relative to those with undernutrition and normal nutrition, even when controlling for immunosuppression. Children with obesity had a lower frequency of CD8 Tnaive cells 9-month post-transplant (p < .001), a higher frequency of CD4 CD57 + PD1- T cells, and lower frequencies of CD57-PD1+ CD8 and CD57-PD1- CD8 T cells at 12-month transplant (p < .05 for all). CONCLUSIONS Children with obesity have distinct immunophenotypes that may influence the tailoring of immunosuppression.
Collapse
Affiliation(s)
- Brian I Shaw
- Department of Surgery, Duke University, Durham, NC, United States
| | - Hui-Jie Lee
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC United States
| | - Robert Ettenger
- Department of Pediatrics, University of California Los Angeles, CA, United States
| | - Paul Grimm
- Department of Pediatrics, Stanford University, CA, United States
| | - Elaine F Reed
- Department of Pathology, University of California, Los Angeles, CA, United States
| | - Minnie Sarwal
- Department of Surgery, University of California, San Francisco, CA, United States
| | - Linda Stempora
- Department of Surgery, Duke University, Durham, NC, United States
| | - Barry Warshaw
- Department of Pediatrics, Children’s Healthcare Atlanta, Atlanta, GA, United States
| | - Congwen Zhao
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC United States
| | - Olivia M Martinez
- Department of Surgery, Stanford University School of Medicine, CA, United States
| | - Nancie J MacIver
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
| | - Allan D Kirk
- Department of Surgery, Duke University, Durham, NC, United States
- Department of Pediatrics, Duke University, CA, United States
| | | |
Collapse
|
8
|
Blagosklonny MV. Rapamycin treatment early in life reprograms aging: hyperfunction theory and clinical practice. Aging (Albany NY) 2022; 14:8140-8149. [PMID: 36332147 PMCID: PMC9648808 DOI: 10.18632/aging.204354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022]
Abstract
Making provocative headlines, three outstanding publications demonstrated that early-life treatment with rapamycin, including treatments during developmental growth, extends lifespan in animals, confirming predictions of hyperfunction theory, which views aging as a quasi-program (an unintended continuation of developmental growth) driven in part by mTOR. Despite their high theoretical importance, clinical applications of two of these studies in mice, Drosophila and Daphnia cannot be implemented in humans because that would require growth retardation started at birth. A third study demonstrated that a transient (around 20% of total lifespan in Drosophila) treatment with rapamycin early in Drosophila adult life is as effective as lifelong treatment, whereas a late-life treatment is not effective. However, previous studies in mice demonstrated that a transient late-life treatment is highly effective. Based on hyperfunction theory, this article attempts to reconcile conflicting results and suggests the optimal treatment strategy to extend human lifespan.
Collapse
|
9
|
Therapeutic Antiaging Strategies. Biomedicines 2022; 10:biomedicines10102515. [PMID: 36289777 PMCID: PMC9599338 DOI: 10.3390/biomedicines10102515] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022] Open
Abstract
Aging constitutes progressive physiological changes in an organism. These changes alter the normal biological functions, such as the ability to manage metabolic stress, and eventually lead to cellular senescence. The process itself is characterized by nine hallmarks: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. These hallmarks are risk factors for pathologies, such as cardiovascular diseases, neurodegenerative diseases, and cancer. Emerging evidence has been focused on examining the genetic pathways and biological processes in organisms surrounding these nine hallmarks. From here, the therapeutic approaches can be addressed in hopes of slowing the progression of aging. In this review, data have been collected on the hallmarks and their relative contributions to aging and supplemented with in vitro and in vivo antiaging research experiments. It is the intention of this article to highlight the most important antiaging strategies that researchers have proposed, including preventive measures, systemic therapeutic agents, and invasive procedures, that will promote healthy aging and increase human life expectancy with decreased side effects.
Collapse
|
10
|
Fasting and Fasting Mimicking Diets in Obesity and Cardiometabolic Disease Prevention and Treatment. Phys Med Rehabil Clin N Am 2022; 33:699-717. [DOI: 10.1016/j.pmr.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Blagosklonny MV. As predicted by hyperfunction theory, rapamycin treatment during development extends lifespan. Aging (Albany NY) 2022; 14:2020-2024. [PMID: 35306486 PMCID: PMC8954961 DOI: 10.18632/aging.203937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 11/25/2022]
|
12
|
Mishra A, Mirzaei H, Guidi N, Vinciguerra M, Mouton A, Linardic M, Rappa F, Barone R, Navarrete G, Wei M, Brandhorst S, Di Biase S, Morgan TE, Ram Kumar S, Conti PS, Pellegrini M, Bernier M, de Cabo R, Longo VD. Fasting-mimicking diet prevents high-fat diet effect on cardiometabolic risk and lifespan. Nat Metab 2021; 3:1342-1356. [PMID: 34650272 DOI: 10.1038/s42255-021-00469-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Diet-induced obesity is a major risk factor for metabolic syndrome, diabetes and cardiovascular disease. Here, we show that a 5-d fasting-mimicking diet (FMD), administered every 4 weeks for a period of 2 years, ameliorates the detrimental changes caused by consumption of a high-fat, high-calorie diet (HFCD) in female mice. We demonstrate that monthly FMD cycles inhibit HFCD-mediated obesity by reducing the accumulation of visceral and subcutaneous fat without causing loss of lean body mass. FMD cycles increase cardiac vascularity and function and resistance to cardiotoxins, prevent HFCD-dependent hyperglycaemia, hypercholesterolaemia and hyperleptinaemia and ameliorate impaired glucose and insulin tolerance. The effect of monthly FMD cycles on gene expression associated with mitochondrial metabolism and biogenesis in adipocytes and the sustained ketogenesis in HFCD-fed mice indicate a role for fat cell reprogramming in obesity prevention. These effects of an FMD on adiposity and cardiac ageing could explain the protection from HFCD-dependent early mortality.
Collapse
Affiliation(s)
- Amrendra Mishra
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Hamed Mirzaei
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Novella Guidi
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Manlio Vinciguerra
- International Clinical Research Center, St Anne's University Hospital, Brno, Czech Republic
| | - Alice Mouton
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Marina Linardic
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Francesca Rappa
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Rosario Barone
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | - Gerardo Navarrete
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Min Wei
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Sebastian Brandhorst
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Stefano Di Biase
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Todd E Morgan
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - S Ram Kumar
- Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peter S Conti
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Michel Bernier
- Translational Gerontology Branch, Intramural Research Program of the National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, Intramural Research Program of the National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Valter D Longo
- Longevity Institute and Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
- IFOM, FIRC Institute of Molecular Oncology, Milano, Italy.
| |
Collapse
|
13
|
Bastien J, Menon S, Messa M, Nyfeler B. Molecular targets and approaches to restore autophagy and lysosomal capacity in neurodegenerative disorders. Mol Aspects Med 2021; 82:101018. [PMID: 34489092 DOI: 10.1016/j.mam.2021.101018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 01/18/2023]
Abstract
Autophagy is a catabolic process that promotes cellular fitness by clearing aggregated protein species, pathogens and damaged organelles through lysosomal degradation. The autophagic process is particularly important in the nervous system where post-mitotic neurons rely heavily on protein and organelle quality control in order to maintain cellular health throughout the lifetime of the organism. Alterations of autophagy and lysosomal function are hallmarks of various neurodegenerative disorders. In this review, we conceptualize some of the mechanistic and genetic evidence pointing towards autophagy and lysosomal dysfunction as a causal driver of neurodegeneration. Furthermore, we discuss rate-limiting pathway nodes and potential approaches to restore pathway activity, from autophagy initiation, cargo sequestration to lysosomal capacity.
Collapse
Affiliation(s)
- Julie Bastien
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Suchithra Menon
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Mirko Messa
- Novartis Institutes for BioMedical Research, Cambridge, MA, USA
| | - Beat Nyfeler
- Novartis Institutes for BioMedical Research, Basel, Switzerland.
| |
Collapse
|
14
|
Zhang Y, Zhang J, Wang S. The Role of Rapamycin in Healthspan Extension via the Delay of Organ Aging. Ageing Res Rev 2021; 70:101376. [PMID: 34089901 DOI: 10.1016/j.arr.2021.101376] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/07/2021] [Accepted: 05/30/2021] [Indexed: 12/17/2022]
Abstract
Aging can not only shorten a healthy lifespan, but can also lead to multi-organ dysfunction and failure. Anti-aging is a complex and worldwide conundrum for eliminating the various pathologies of senility. The past decade has seen great progress in the understanding of the aging-associated signaling pathways and their application for developing anti-aging approaches. Currently, some drugs can improve quality of life. The activation of mammalian target of rapamycin (mTOR) signaling is one of the core and detrimental mechanisms related to aging; rapamycin can reduce the rate of aging, improve age-related diseases by inhibiting the mTOR pathway, and prolong lifespan and healthspan effectively. However, the current evidence for rapamycin in lifespan extension and organ aging is fragmented and scattered. In this review, we summarize the efficacy and safety of rapamycin in prolonging a healthy lifespan by systematically alleviating aging in multiple organ systems, i.e., the nervous, urinary, digestive, circulatory, motor, respiratory, endocrine, reproductive, integumentary and immune systems, to provide a theoretical basis for the future clinical application of rapamycin in anti-aging.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; National Clinical Research Center for Obstetrical and Gynecological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China; Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
15
|
Anti-aging: senolytics or gerostatics (unconventional view). Oncotarget 2021; 12:1821-1835. [PMID: 34504654 PMCID: PMC8416555 DOI: 10.18632/oncotarget.28049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Senolytics are basically anti-cancer drugs, repurposed to kill senescent cells selectively. It is even more difficult to selectively kill senescent cells than to kill cancer cells. Based on lessons of cancer therapy, here I suggest how to exploit oncogene-addiction and to combine drugs to achieve selectivity. However, even if selective senolytic combinations will be developed, there is little evidence that a few senescent cells are responsible for organismal aging. I also discuss gerostatics, such as rapamycin and other rapalogs, pan-mTOR inhibitors, dual PI3K/mTOR inhibitors, which inhibit growth- and aging-promoting pathways. Unlike senolytics, gerostatics do not kill cells but slow down cellular geroconversion to senescence. Numerous studies demonstrated that inhibition of the mTOR pathways by any means (genetic, pharmacological and dietary) extends lifespan. Currently, only two studies demonstrated that senolytics (fisetin and a combination Dasatinib plus Quercetin) extend lifespan in mice. These senolytics slightly inhibit the mTOR pathway. Thus, life extension by these senolytics can be explained by their slight rapamycin-like (gerostatic) effects.
Collapse
|
16
|
Abstract
Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves cross talk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin, and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge of their cellular, tissue, as well as systemic functions in metabolism. Nevertheless, our knowledge of the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging, and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review discusses the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders, and aging.
Collapse
Affiliation(s)
- Angelia Szwed
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Eugene Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
17
|
Blagosklonny MV. DNA- and telomere-damage does not limit lifespan: evidence from rapamycin. Aging (Albany NY) 2021; 13:3167-3175. [PMID: 33578394 PMCID: PMC7906135 DOI: 10.18632/aging.202674] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
Failure of rapamycin to extend lifespan in DNA repair mutant and telomerase-knockout mice, while extending lifespan in normal mice, indicates that neither DNA damage nor telomere shortening limits normal lifespan or causes normal aging.
Collapse
|
18
|
Blagosklonny MV. The goal of geroscience is life extension. Oncotarget 2021; 12:131-144. [PMID: 33613842 PMCID: PMC7869575 DOI: 10.18632/oncotarget.27882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Although numerous drugs seemingly extend healthspan in mice, only a few extend lifespan in mice and only one does it consistently. Some of them, alone or in combination, can be used in humans, without further clinical trials.
Collapse
|
19
|
A multitarget angiogenesis inhibitor, CTT peptide-endostatin mimic-kringle 5, prevents diet-induced obesity. J Mol Med (Berl) 2020; 98:1753-1765. [PMID: 33141247 DOI: 10.1007/s00109-020-01993-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Adipose tissue vasculature has been considered an attractive target for prevention and treatment of obesity. AARP (CTT peptide-endostatin mimic-kringle 5) is a novel multitarget fusion protein against tumor angiogenesis. This study aimed to examine the effects of AARP on diet-induced obesity and its possible molecular mechanism. Treatment with AARP markedly prevented weight gains, improved metabolic disturbances, and decreased adipose tissue angiogenesis in diet-induced obese mice without noticeable toxicities. In addition to its potent antiangiogenic and MMP-2/9 inhibitory activities, AARP administration also significantly increased energy expenditure, influenced the metabolic and angiogenic gene expression profiles, and attenuated obesity-induced inflammation, demonstrating its systemic beneficial effects. Importantly, AARP exhibited no effect on mice fed with standard normal mouse diet. Furthermore, the AARP-treated HFD-fed mice experienced a significant increase in lifespan during the posttreatment observation period, compared with untreated HFD-fed mice. Our results suggest that AARP might be pharmacologically useful for treatment of obesity or obesity-related metabolic disorders in humans. KEY MESSAGES: What is already known • More effective and safe therapies for obesity are in urgent need. • AARP is a novel multitarget fusion protein against tumor angiogenesis. What this study adds • AARP prevents obesity, improves metabolic disorders in mice fed high-fat diet. • AARP increases energy expenditure, decreases adipose tissue angiogenesis, and increases lifespan. • AARP is well tolerated and exhibits no observable toxicity. Clinical significance • AARP may be a promising therapeutic agent against obesity or obesity-related metabolic disturbances.
Collapse
|
20
|
Does proteostasis get lost in translation? Implications for protein aggregation across the lifespan. Ageing Res Rev 2020; 62:101119. [PMID: 32603841 DOI: 10.1016/j.arr.2020.101119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Protein aggregation is a phenomenon of major relevance in neurodegenerative and neuromuscular disorders, cataracts, diabetes and many other diseases. Research has unveiled that proteins also aggregate in multiple tissues during healthy aging yet, the biological and biomedical relevance of this apparently asymptomatic phenomenon remains to be understood. It is known that proteome homeostasis (proteostasis) is maintained by a balanced protein synthesis rate, high protein synthesis accuracy, efficient protein folding and continual tagging of damaged proteins for degradation, suggesting that protein aggregation during healthy aging may be associated with alterations in both protein synthesis and the proteostasis network (PN) pathways. In particular, dysregulation of protein synthesis and alterations in translation fidelity are hypothesized to lead to the production of misfolded proteins which could explain the occurrence of age-related protein aggregation. Nevertheless, some data on this topic is controversial and the biological mechanisms that lead to widespread protein aggregation remain to be elucidated. We review the recent literature about the age-related decline of proteostasis, highlighting the need to build an integrated view of protein synthesis rate, fidelity and quality control pathways in order to better understand the proteome alterations that occur during aging and in age-related diseases.
Collapse
|
21
|
Lamming DW, Salmon AB. TORwards a Victory Over Aging. J Gerontol A Biol Sci Med Sci 2020; 75:1-3. [PMID: 31544928 DOI: 10.1093/gerona/glz212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 01/12/2023] Open
Affiliation(s)
- Dudley W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin.,Department of Medicine, University of Wisconsin-Madison, San Antonio
| | - Adam B Salmon
- Geriatric Research, Education and Clinical Center, South Texas Veterans Healthcare System, San Antonio.,The Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Molecular Medicine, UT Health San Antonio, Texas
| |
Collapse
|
22
|
Lee JY, Kennedy BK, Liao CY. Mechanistic target of rapamycin signaling in mouse models of accelerated aging. J Gerontol A Biol Sci Med Sci 2020; 75:64-72. [PMID: 30900725 DOI: 10.1093/gerona/glz059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/23/2019] [Indexed: 01/06/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) is an essential nutrient-sensing kinase that integrates and regulates a number of fundamental cellular processes required for cell growth, cell motility, translation, metabolism, and autophagy. mTOR signaling has been implicated in the progression of many human diseases, and its dysregulation has been reported in several pathological processes, especially in age-related human diseases and mouse models of accelerated aging. In addition, many studies have demonstrated that the regulation of mTOR activity has a beneficial effect on longevity in several mouse models of aging. However, not all mouse models of accelerated aging show positive effects on aging-associated phenotypes in response to targeting mTOR signaling. Here, we review the effects of interventions that modulate mTOR signaling on aging-related phenotypes in different mouse models of accelerated aging and discuss their implications with respect to aging and aging-related disorders.
Collapse
Affiliation(s)
- Jin Young Lee
- Buck Institute for Research on Aging, Novato, California
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, California
- Department of Biochemistry and Physiology, National University of Singapore, Singapore
- Centre for Healthy Ageing, National University Health System, Singapore
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Chen-Yu Liao
- Buck Institute for Research on Aging, Novato, California
| |
Collapse
|
23
|
Yurova MN. The Use of Geroprotective Agents (mTOR Inhibitors) in the Treatment of Cancer Patients. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s2079057020030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Blagosklonny MV. Disease or not, aging is easily treatable. Aging (Albany NY) 2019; 10:3067-3078. [PMID: 30448823 PMCID: PMC6286826 DOI: 10.18632/aging.101647] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022]
Abstract
Is aging a disease? It does not matter because aging is already treated using a combination of several clinically-available drugs, including rapamycin. Whether aging is a disease depends on arbitrary definitions of both disease and aging. For treatment purposes, aging is a deadly disease (or more generally, pre-disease), despite being a normal continuation of normal organismal growth. It must and, importantly, can be successfully treated, thereby delaying classic age-related diseases such as cancer, cardiovascular and metabolic diseases, and neurodegeneration.
Collapse
|
25
|
Dorvash M, Farahmandnia M, Mosaddeghi P, Farahmandnejad M, Saber H, Khorraminejad-Shirazi M, Azadi A, Tavassoly I. Dynamic modeling of signal transduction by mTOR complexes in cancer. J Theor Biol 2019; 483:109992. [PMID: 31493485 DOI: 10.1016/j.jtbi.2019.109992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/05/2019] [Accepted: 09/02/2019] [Indexed: 02/07/2023]
Abstract
Signal integration has a crucial role in the cell fate decision and dysregulation of the cellular signaling pathways is a primary characteristic of cancer. As a signal integrator, mTOR shows a complex dynamical behavior which determines the cell fate at different cellular processes levels, including cell cycle progression, cell survival, cell death, metabolic reprogramming, and aging. The dynamics of the complex responses to rapamycin in cancer cells have been attributed to its differential time-dependent inhibitory effects on mTORC1 and mTORC2, the two main complexes of mTOR. Two explanations were previously provided for this phenomenon: 1-Rapamycin does not inhibit mTORC2 directly, whereas it prevents mTORC2 formation by sequestering free mTOR protein (Le Chatelier's principle). 2-Components like Phosphatidic Acid (PA) further stabilize mTORC2 compared with mTORC1. To understand the mechanism by which rapamycin differentially inhibits the mTOR complexes in the cancer cells, we present a mathematical model of rapamycin mode of action based on the first explanation, i.e., Le Chatelier's principle. Translating the interactions among components of mTORC1 and mTORC2 into a mathematical model revealed the dynamics of rapamycin action in different doses and time-intervals of rapamycin treatment. This model shows that rapamycin has stronger effects on mTORC1 compared with mTORC2, simply due to its direct interaction with free mTOR and mTORC1, but not mTORC2, without the need to consider other components that might further stabilize mTORC2. Based on our results, even when mTORC2 is less stable compared with mTORC1, it can be less inhibited by rapamycin.
Collapse
Affiliation(s)
- Mohammadreza Dorvash
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Cell and Molecular Medicine Student Research Group, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Farahmandnia
- Cell and Molecular Medicine Student Research Group, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pouria Mosaddeghi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Cell and Molecular Medicine Student Research Group, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mitra Farahmandnejad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Cell and Molecular Medicine Student Research Group, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hosein Saber
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadhossein Khorraminejad-Shirazi
- Cell and Molecular Medicine Student Research Group, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Tavassoly
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY 10029, USA.
| |
Collapse
|
26
|
Yang IP, Miao ZF, Huang CW, Tsai HL, Yeh YS, Su WC, Chang TK, Chang SF, Wang JY. High blood sugar levels but not diabetes mellitus significantly enhance oxaliplatin chemoresistance in patients with stage III colorectal cancer receiving adjuvant FOLFOX6 chemotherapy. Ther Adv Med Oncol 2019; 11:1758835919866964. [PMID: 31467597 PMCID: PMC6704420 DOI: 10.1177/1758835919866964] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The high prevalence of type 2 diabetes mellitus (DM) among patients with colorectal cancer (CRC) is becoming a serious public health concern worldwide. FOLFOX4 chemotherapy is one of the most widely used adjuvant therapies in patients with stage III colon cancer after surgical resection. However, chemotherapy resistance is associated with a poor prognosis. The prognostic impact of high blood sugar levels on oxaliplatin resistance in CRC patients is an unexplored topic. METHODS In total, 157 patients with stage III CRC were classified according to their fasting blood sugar level (⩾126 or <126 mg/dl). Clinicopathological features and oxaliplatin chemoresistance/survival outcome of the two groups were compared. In vitro cell proliferation assay was performed through d-(+)-glucose administration. RESULTS Multivariate analysis results revealed that high blood sugar level was a significantly independent prognostic factor of disease-free survival and overall survival (both p < 0.05), but not DM history. After metformin administration, enhanced proliferation of CRC cells (HT-29, HCT-116, SW480, and SW620) with d-(+)-glucose administration could be reversed and oxaliplatin chemosensitivity considerably increased (p < 0.05). Furthermore, phosphorylation of two glycolysis-related target proteins, SMAD3 and MYC, notably increased under high glucose concentration. CONCLUSIONS Hyperglycemia can affect clinical outcomes in stage III CRC patients receiving adjuvant chemotherapy, and the mechanism underlying oxaliplatin resistance is possibly associated with increased phosphorylation of SMAD3 and MYC and upregulation of EHMT2 expression.
Collapse
Affiliation(s)
- I-Ping Yang
- Department of Nursing, Shu-Zen College of
Medicine and Management, Kaohsiung, Taiwan
| | - Zhi-Feng Miao
- Division of Colorectal Surgery, Department of
Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical
University, Kaohsiung, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of
Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical
University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine,
College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung
Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of
Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of
Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical
University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine,
College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung
Medical University, Kaohsiung, Taiwan
| | - Yung-Sung Yeh
- Division of Colorectal Surgery, Department of
Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical
University, Kaohsiung, Taiwan
- Division of Trauma and Surgical Critical Care,
Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung
Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine,
College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chih Su
- Division of Colorectal Surgery, Department of
Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical
University, Kaohsiung, Taiwan
| | - Tsung-Kun Chang
- Division of Colorectal Surgery, Department of
Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical
University, Kaohsiung, Taiwan
| | - Se-fen Chang
- Department of Nursing, Kaohsiung Medical
University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of
Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical
University, No. 100 Tzyou 1st Road, Kaohsiung City 807, Taiwan
- Department of Surgery, Faculty of Medicine,
College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung
Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of
Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine,
College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical
University, Kaohsiung, Taiwan
| |
Collapse
|
27
|
Fasting and rapamycin: diabetes versus benevolent glucose intolerance. Cell Death Dis 2019; 10:607. [PMID: 31406105 PMCID: PMC6690951 DOI: 10.1038/s41419-019-1822-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023]
Abstract
Rapamycin (Sirolimus) slows aging, extends life span, and prevents age-related diseases, including diabetic complications such as retinopathy. Puzzlingly, rapamycin can induce insulin sensitivity, but may also induce insulin resistance or glucose intolerance without insulin resistance. This mirrors the effect of fasting and very low calorie diets, which improve insulin sensitivity and reverse type 2 diabetes, but also can cause a form of glucose intolerance known as benevolent pseudo-diabetes. There is no indication that starvation (benevolent) pseudo-diabetes is detrimental. By contrast, it is associated with better health and life extension. In transplant patients, a weak association between rapamycin/everolimus use and hyperglycemia is mostly due to a drug interaction with calcineurin inhibitors. When it occurs in cancer patients, the hyperglycemia is mild and reversible. No hyperglycemic effects of rapamycin/everolimus have been detected in healthy people. For antiaging purposes, rapamycin/everolimus can be administrated intermittently (e.g., once a week) in combination with intermittent carbohydrate restriction, physical exercise, and metformin.
Collapse
|
28
|
Weiss R, Fernandez E, Liu Y, Strong R, Salmon AB. Metformin reduces glucose intolerance caused by rapamycin treatment in genetically heterogeneous female mice. Aging (Albany NY) 2019; 10:386-401. [PMID: 29579736 PMCID: PMC5892694 DOI: 10.18632/aging.101401] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/16/2018] [Indexed: 12/25/2022]
Abstract
The use of rapamycin to extend lifespan and delay age-related disease in mice is well-established despite its potential to impair glucose metabolism which is driven partially due to increased hepatic gluconeogenesis. We tested whether a combination therapeutic approach using rapamycin and metformin could diminish some of the known metabolic defects caused by rapamycin treatment in mice. In genetically heterogeneous HET3 mice, we found that chronic administration of encapsulated rapamycin by diet caused a measurable defect in glucose metabolism in both male and female mice as early as 1 month after treatment. In female mice, this defect was alleviated over time by simultaneous treatment with metformin, also by diet, such that females treated with both drugs where indistinguishable from control mice during glucose tolerance tests. While rapamycin-mediated glucose intolerance was unaffected by metformin in males, we found metformin prevented rapamycin-mediated reduction in insulin and leptin concentrations following 9 months of co-treatment. Recently, the Interventions Testing Program showed that mice treated with metformin and rapamycin live at least as long as those treated with rapamycin alone. Together, our data provide compelling evidence that the pro-longevity effects of rapamycin can be uncoupled from its detrimental effects on metabolism through combined therapeutic approaches.
Collapse
Affiliation(s)
- Roxanne Weiss
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78294, USA.,The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Elizabeth Fernandez
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78294, USA.,The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yuhong Liu
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Randy Strong
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78294, USA.,The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Adam B Salmon
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX 78294, USA.,The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.,Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
29
|
Yoo YM, Jung EM, Jeung EB. Rapamycin-induced autophagy decreases Myf5 and MyoD proteins in C2C12 myoblast cells. Toxicol In Vitro 2019; 58:132-141. [PMID: 30905858 DOI: 10.1016/j.tiv.2019.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/20/2019] [Accepted: 03/20/2019] [Indexed: 12/19/2022]
Abstract
Rapamycin is an immunosuppressant that inhibits the mammalian or mechanistic target of rapamycin (mTOR) protein kinase and extends lifespan in organisms including mice. Myf5 and MyoD act as muscle-specific transcriptional factors for skeletal muscle differentiation. In this study, we determined whether rapamycin-induced autophagy causes the decrease of Myf5 and MyoD protein in C2C12 myoblast cells. Rapamycin induced a significant increase in the expression of the microtubule-associated protein 1 light chain 3 (LC3) II protein in a dose-dependent manner for 12 h. Rapamycin treatment also significantly increased p-ERK, p-Akt, and catalase expressions, and decreased Mn-SOD expression in a dose-dependent manner. Bax expression was significantly high compared to Bcl-2 expression in a dose-dependent manner of rapamycin for 12 h. For further study of rapamycin-induced autophagy in C2C12 myoblast cells, we investigated rapamycin treatment for 24, 36, and 48 h. Cell viability did not change with rapamycin treatment for 24, 36, and 48 h. Rapamycin-induced LC3-II, Beclin-1, Bax, and Bcl-2 proteins were significantly increased compared to without rapamycin. p-ERK expression increased with rapamycin treatment for 24 and 36 h compared to that without rapamycin, but decreased for 48 h. p-Akt expression decreased with rapamycin treatment for 36 and 48 h compared to that without rapamycin. In the same conditions, rapamycin-induced autophagy significantly reduced the Myf5 and MyoD proteins. Together, these results suggest that rapamycin-induced autophagy results in the decrease of Myf5 and MyoD proteins in C2C12 myoblast cells.
Collapse
Affiliation(s)
- Yeong-Min Yoo
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
30
|
Kaeberlein M, Galvan V. Rapamycin and Alzheimer's disease: Time for a clinical trial? Sci Transl Med 2019; 11:eaar4289. [PMID: 30674654 PMCID: PMC6762017 DOI: 10.1126/scitranslmed.aar4289] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/08/2018] [Indexed: 12/16/2022]
Abstract
The drug rapamycin has beneficial effects in a number of animal models of neurodegeneration and aging including mouse models of Alzheimer's disease. Despite its compelling preclinical record, no clinical trials have tested rapamycin or other mTOR inhibitors in patients with Alzheimer's disease. We argue that such clinical trials should be undertaken.
Collapse
Affiliation(s)
- Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98045, USA.
| | - Veronica Galvan
- Department of Cellular and Integrative Physiology, Barshop Institute for Longevity and Aging Studies and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX 78229, USA.
- Department of Veterans Affairs, South Texas Veterans Health Care System and Geriatric Research Education and Clinical Center, San Antonio, TX 78229, USA
| |
Collapse
|
31
|
Abstract
Rapamycin inhibits cell proliferation, yet preserves (re)-proliferative potential (RPP). RPP is a potential of quiescent cells that is lost in senescent cells. mTOR drives conversion from quiescence to senescence (geroconversion). By suppressing geroconversion, rapamycin preserves RPP. Geroconversion is characterized by proliferation-like levels of phospho-S6K/S6/4E-BP1 in nonproliferating cells arrested by p16 and/or p21. mTOR-driven geroconversion is associated with cellular hyperfunction, which in turn leads to organismal aging manifested by age-related diseases.
Collapse
|
32
|
Ballak DB, Li S, Cavalli G, Stahl JL, Tengesdal IW, van Diepen JA, Klück V, Swartzwelter B, Azam T, Tack CJ, Stienstra R, Mandrup-Poulsen T, Seals DR, Dinarello CA. Interleukin-37 treatment of mice with metabolic syndrome improves insulin sensitivity and reduces pro-inflammatory cytokine production in adipose tissue. J Biol Chem 2018; 293:14224-14236. [PMID: 30006351 PMCID: PMC6139546 DOI: 10.1074/jbc.ra118.003698] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/06/2018] [Indexed: 12/22/2022] Open
Abstract
Obesity and the metabolic syndrome are characterized by chronic, low-grade inflammation mainly originating from expanding adipose tissue and resulting in inhibition of insulin signaling and disruption of glycemic control. Transgenic mice expressing human interleukin 37 (IL-37), an anti-inflammatory cytokine of the IL-1 family, are protected against metabolic syndrome when fed a high-fat diet (HFD) containing 45% fat. Here, we examined whether treatment with recombinant IL-37 ameliorates established insulin resistance and obesity-induced inflammation. WT mice were fed a HFD for 22 weeks and then treated daily with IL-37 (1 μg/mouse) during the last 2 weeks. Compared with vehicle only-treated mice, IL-37-treated mice exhibited reduced insulin in the plasma and had significant improvements in glucose tolerance and in insulin content of the islets. The IL-37 treatment also increased the levels of circulating IL-1 receptor antagonist. Cultured adipose tissues revealed that IL-37 treatment significantly decreases spontaneous secretions of IL-1β, tumor necrosis factor α (TNFα), and CXC motif chemokine ligand 1 (CXCL-1). We also fed mice a 60% fat diet with concomitant daily IL-37 for 2 weeks and observed decreased secretion of IL-1β, TNFα, and IL-6 and reduced intracellular levels of IL-1α in the liver and adipose tissue, along with improved plasma glucose clearance. Compared with vehicle treatment, these IL-37-treated mice had no apparent weight gain. In human adipose tissue cultures, the presence of 50 pm IL-37 reduced spontaneous release of TNFα and 50% of lipopolysaccharide-induced TNFα. These findings indicate that IL-37's anti-inflammatory effects can ameliorate established metabolic disturbances during obesity.
Collapse
Affiliation(s)
- Dov B. Ballak
- From the Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045, ,the Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Suzhao Li
- From the Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | - Giulio Cavalli
- From the Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | - Jonathan L. Stahl
- the Department of Biomedical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Isak W. Tengesdal
- From the Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | - Janna A. van Diepen
- the Department of Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands, and
| | - Viola Klück
- From the Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | - Benjamin Swartzwelter
- From the Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | - Tania Azam
- From the Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | - Cees J. Tack
- the Department of Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands, and
| | - Rinke Stienstra
- the Department of Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands, and ,the Division of Human Nutrition, Wageningen University, 6525 Wageningen, The Netherlands
| | - Thomas Mandrup-Poulsen
- the Department of Biomedical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Douglas R. Seals
- the Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Charles A. Dinarello
- From the Department of Medicine, University of Colorado Denver, Aurora, Colorado 80045, ,the Department of Medicine, Radboud University Medical Center, 6525 Nijmegen, The Netherlands, and , To whom correspondence should be addressed:
Dept. of Medicine, University of Colorado Denver, Aurora, Colorado 80045. Tel.:
303-724-6174; Fax:
303-724-6178; E-mail:
| |
Collapse
|
33
|
den Hartigh LJ, Goodspeed L, Wang SA, Kenerson HL, Omer M, O'Brien KD, Ladiges W, Yeung R, Subramanian S. Chronic oral rapamycin decreases adiposity, hepatic triglycerides and insulin resistance in male mice fed a diet high in sucrose and saturated fat. Exp Physiol 2018; 103:1469-1480. [PMID: 30117227 DOI: 10.1113/ep087207] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/09/2018] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Whether chronic oral rapamycin promotes beneficial effects on glucose/lipid metabolism and energy balance when administered to mice with an obesogenic diet rich in saturated fat and sucrose has not been explored. What is the main finding and its importance? Chronic oral rapamycin reduces body weight and fat gain, improves insulin sensitivity and reduces hepatic steatosis when administered to mice with a high-fat, high-sucrose diet. In addition, we make the new observation that there appear to be tissue-specific effects of rapamycin. Although rapamycin appears to impart its effects mainly on visceral adipose tissue, its effects on insulin sensitivity are mediated by subcutaneous adipose tissue. ABSTRACT Excess adiposity is commonly associated with insulin resistance, which can increase the risk of cardiovascular disease. However, the exact molecular mechanisms by which obesity results in insulin resistance are yet to be understood clearly. The intracellular nutrient-sensing protein, mechanistic target of rapamycin (mTOR), is a crucial signalling component in the development of obesity-associated insulin resistance. Given that increased tissue activation of mTOR complex-1 (mTORC1) occurs in obesity, diabetes and ageing, we hypothesized that pharmacological inhibition of mTORC1 would improve metabolic dysregulation in diet-induced obesity. We administered continuous rapamycin, a specific mTORC1 inhibitor, orally to C57BL/6J mice concurrently with a high-fat, high-sucrose (HFHS) diet for 20 weeks. The control group received placebo microcapsules. Rapamycin-treated mice showed significantly reduced weight gain and adiposity (33.6 ± 4.9 versus 40.4 ± 3.0% body fat, P < 0.001, n = 8 mice per group), despite increased or equivalent food intake compared with the placebo group. The rapamycin-fed mice also demonstrated reduced plasma glucose (252 ± 57 versus 297 ± 67 mg dl-1 , P < 0.001) and improved insulin sensitivity during insulin and glucose tolerance testing. Rapamycin-treated mice also had lower plasma triglycerides (48 ± 13 versus 67 ± 11 mg/dL, P < 0.01) and hepatic triglyceride content (89 ± 15 versus 110 ± 19 mg/g liver, P < 0.05) compared with the placebo group. A moderately low dose of rapamycin decreased adiposity and improved the metabolic profile in a model of diet-induced obesity. These data suggest that low-grade chronic mTORC1 inhibition might be a potential strategy for anti-obesity therapies.
Collapse
Affiliation(s)
- Laura J den Hartigh
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98019, USA.,Diabetes Institute, University of Washington, Seattle, WA, 98019, USA
| | - Leela Goodspeed
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98019, USA.,Diabetes Institute, University of Washington, Seattle, WA, 98019, USA
| | - Shari A Wang
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98019, USA.,Diabetes Institute, University of Washington, Seattle, WA, 98019, USA
| | - Heidi L Kenerson
- Department of Surgery, University of Washington, Seattle, WA, 98019, USA
| | - Mohamed Omer
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98019, USA.,Diabetes Institute, University of Washington, Seattle, WA, 98019, USA
| | - Kevin D O'Brien
- Diabetes Institute, University of Washington, Seattle, WA, 98019, USA.,Division of Cardiology, University of Washington, Seattle, WA, 98019, USA
| | - Warren Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, WA, 98019, USA
| | - Raymond Yeung
- Department of Surgery, University of Washington, Seattle, WA, 98019, USA
| | - Savitha Subramanian
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, 98019, USA.,Diabetes Institute, University of Washington, Seattle, WA, 98019, USA
| |
Collapse
|
34
|
Decker B, Pumiglia K. mTORc1 activity is necessary and sufficient for phosphorylation of eNOS S1177. Physiol Rep 2018; 6:e13733. [PMID: 29932504 PMCID: PMC6014452 DOI: 10.14814/phy2.13733] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 12/31/2022] Open
Abstract
Nitric oxide, produced by eNOS, plays critical roles in the regulation of vascular function and maintenance. Chronic PI3K signaling has recently been associated with vascular malformations. A well described substrate downstream of PI3K signaling is eNOS. Another critical downstream target of PI3K is the metabolic regulator, mTORc1. The relationship between mTORc1 and eNOS regulation, has not been determined. We generated cells with manipulated PI3K signaling by expressing the activating mutation, PIK3CAH1047R , or knocking down PTEN expression. We investigated eNOSS1177 phosphorylation, a major activating regulatory site, following mTORC1 inhibition. We also tested the sufficiency of mTORc1 activation to stimulate eNOSS1177 phosphorylation. Our data indicate mTORc1 activity is required for the phosphorylation of eNOSS1177 , even in the presence of robust AKT activation. Moreover, we found that expression of RHEB, which functions in the absence of AKT activation to activate mTORc1, is sufficient to phosphorylate this site. Our data indicate that mTORc1, rather than AKT, may be the critical determinant of eNOSS1177 phosphorylation. As mTORc1 is a central regulator of cellular metabolism, the finding that this regulatory complex can directly participate in the regulation of eNOS provides new insights into metabolic uncoupling and vascular disease that often accompanies diabetes, high fat diets, and aging.
Collapse
Affiliation(s)
- Brandee Decker
- Department of Regenerative and Cancer Cell BiologyAlbany Medical CollegeAlbanyNew York
| | - Kevin Pumiglia
- Department of Regenerative and Cancer Cell BiologyAlbany Medical CollegeAlbanyNew York
| |
Collapse
|
35
|
Abstract
Inhibitors of mTOR, including clinically available rapalogs such as rapamycin (Sirolimus) and Everolimus, are gerosuppressants, which suppress cellular senescence. Rapamycin slows aging and extends life span in a variety of species from worm to mammals. Rapalogs can prevent age-related diseases, including cancer, atherosclerosis, obesity, neurodegeneration and retinopathy and potentially rejuvenate stem cells, immunity and metabolism. Here, I further suggest how rapamycin can be combined with metformin, inhibitors of angiotensin II signaling (Losartan, Lisinopril), statins (simvastatin, atorvastatin), propranolol, aspirin and a PDE5 inhibitor. Rational combinations of these drugs with physical exercise and an anti-aging diet (Koschei formula) can maximize their anti-aging effects and decrease side effects.
Collapse
|
36
|
Rodriguez-Perez AI, Borrajo A, Diaz-Ruiz C, Garrido-Gil P, Labandeira-Garcia JL. Crosstalk between insulin-like growth factor-1 and angiotensin-II in dopaminergic neurons and glial cells: role in neuroinflammation and aging. Oncotarget 2017; 7:30049-67. [PMID: 27167199 PMCID: PMC5058663 DOI: 10.18632/oncotarget.9174] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/19/2016] [Indexed: 01/06/2023] Open
Abstract
The local renin-angiotensin system (RAS) and insulin-like growth factor 1 (IGF-1) have been involved in longevity, neurodegeneration and aging-related dopaminergic degeneration. However, it is not known whether IGF-1 and angiotensin-II (AII) activate each other. In the present study, AII, via type 1 (AT1) receptors, exacerbated neuroinflammation and dopaminergic cell death. AII, via AT1 receptors, also increased the levels of IGF-1 and IGF-1 receptors in microglial cells. IGF-1 inhibited RAS activity in dopaminergic neurons and glial cells, and also inhibited the AII-induced increase in markers of the M1 microglial phenotype. Consistent with this, IGF-1 decreased dopaminergic neuron death induced by the neurotoxin MPP+ both in the presence and in the absence of glia. Intraventricular administration of AII to young rats induced a significant increase in IGF-1 expression in the nigral region. However, aged rats showed decreased levels of IGF-1 relative to young controls, even though RAS activity is known to be enhanced in aged animals. The study findings show that IGF-1 and the local RAS interact to inhibit or activate neuroinflammation (i.e. transition from the M1 to the M2 phenotype), oxidative stress and dopaminergic degeneration. The findings also show that this mechanism is impaired in aged animals.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana Borrajo
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carmen Diaz-Ruiz
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
37
|
Metformin blocks progression of obesity-activated thyroid cancer in a mouse model. Oncotarget 2017; 7:34832-44. [PMID: 27145454 PMCID: PMC5085193 DOI: 10.18632/oncotarget.8989] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/16/2016] [Indexed: 12/22/2022] Open
Abstract
Compelling epidemiologic evidence indicates that obesity is associated with a high risk of human malignancies, including thyroid cancer. We previously demonstrated that a high fat diet (HFD) effectively induces the obese phenotype in a mouse model of aggressive follicular thyroid cancer (ThrbPV/PVPten+/−mice). We showed that HFD promotes cancer progression through aberrant activation of the leptin-JAK2-STAT3 signaling pathway. HFD-promoted thyroid cancer progression allowed us to test other molecular targets for therapeutic opportunity for obesity-induced thyroid cancer. Metformin is a widely used drug to treat patients with type II diabetes. It has been shown to reduce incidences of neoplastic diseases and cancer mortality in type II diabetes patients. The present study aimed to test whether metformin could be a therapeutic for obesity-activated thyroid cancer. ThrbPV/PVPten+/−mice were fed HFD together with metformin or vehicle-only, as controls, for 20 weeks. While HFD-ThrbPV/PVPten+/−mice had shorter survival than LFD-treated mice, metformin had no effects on the survival of HFD-ThrbPV/PVPten+/−mice. Remarkably, metformin markedly decreased occurrence of capsular invasion and completely blocked vascular invasion and anaplasia in HFD-ThrbPV/PVPten+/−mice without affecting thyroid tumor growth. The impeded cancer progression was due to the inhibitory effect of metformin on STAT3-ERK-vimentin and fibronectin-integrin signaling to decrease tumor cell invasion and de-differentiation. The present studies provide additional molecular evidence to support the link between obesity and thyroid cancer risk. Importantly, our findings suggest that metformin could be used as an adjuvant in combination with antiproliferative modalities to improve the outcome of patients with obesity-activated thyroid cancer.
Collapse
|
38
|
Abstract
Rapamycin slows organismal aging and delays age-related diseases, extending lifespan in numerous species. In cells, rapamycin and other rapalogs such as everolimus suppress geroconversion from quiescence to senescence. Rapamycin inhibits some, but not all, activities of mTOR. Recently we and others demonstrated that pan-mTOR inhibitors, known also as dual mTORC1/C2 inhibitors, suppress senescent phenotype. As a continuation of these studies, here we investigated in detail a panel of pan-mTOR inhibitors, to determine their optimal gerosuppressive concentrations. During geroconversion, cells become hypertrophic and flat, accumulate lysosomes (SA-beta-Gal staining) and lipids (Oil Red staining) and lose their re-proliferative potential (RPP). We determined optimal gerosuppressive concentrations: Torin1 (30 nM), Torin 2 (30 nM), AZD8055 (100 nM), PP242 (300 nM), both KU-006379 and GSK1059615 (1000 nM). These agents decreased senescence-associated hypertrophy with IC50s: 20, 18, 15, 200 and 400 nM, respectively. Preservation of RPP by pan-mTOR inhibitors was associated with inhibition of the pS6K/pS6 axis. Inhibition of rapamycin-insensitive functions of mTOR further contributed to anti-hypertrophic and cytostatic effects. Torin 1 and PP242 were more "rapamycin-like" than Torin 2 and AZD8055. Pan-mTOR inhibitors were superior to rapamycin in suppressing hypertrophy, senescent morphology, Oil Red O staining and in increasing so-called "chronological life span (CLS)". We suggest that, at doses lower than anti-cancer concentrations, pan-mTOR inhibitors can be developed as anti-aging drugs.
Collapse
|
39
|
Rapamycin treatment benefits glucose metabolism in mouse models of type 2 diabetes. Aging (Albany NY) 2017; 8:3120-3130. [PMID: 27922820 PMCID: PMC5191889 DOI: 10.18632/aging.101117] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/16/2016] [Indexed: 12/15/2022]
Abstract
Numerous studies suggest that rapamycin treatment promotes insulin resistance, implying that rapamycin could have negative effects on patients with, or at risk for, type 2 diabetes (T2D). New evidence, however, indicates that rapamycin treatment produces some benefits to energy metabolism, even in the context of T2D. Here, we survey 5 mouse models of T2D (KK, KK-Ay, NONcNZO10, BKS-db/db, TALLYHO) to quantify effects of rapamycin on well-recognized markers of glucose homeostasis within a wide range of T2D environments. Interestingly, dietary rapamycin treatment did not exacerbate impaired glucose or insulin tolerance, or elevate circulating lipids as T2D progressed. In fact, rapamycin increased insulin sensitivity and reduced weight gain in 3 models, and decreased hyperinsulinemia in 2 models. A key covariate of this genetically-based, differential response was pancreatic insulin content (PIC): Models with low PIC exhibited more beneficial effects than models with high PIC. However, a minimal PIC threshold may exist, below which hypoinsulinemic hyperglycemia develops, as it did in TALLYHO. Our results, along with other studies, indicate that beneficial or detrimental metabolic effects of rapamycin treatment, in a diabetic or pre-diabetic context, are driven by the interaction of rapamycin with the individual model's pancreatic physiology.
Collapse
|
40
|
Xue QL, Yang H, Li HF, Abadir PM, Burks TN, Koch LG, Britton SL, Carlson J, Chen L, Walston JD, Leng SX. Rapamycin increases grip strength and attenuates age-related decline in maximal running distance in old low capacity runner rats. Aging (Albany NY) 2017; 8:769-76. [PMID: 26997106 PMCID: PMC4925827 DOI: 10.18632/aging.100929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023]
Abstract
Rapamycin is known to extend lifespan. We conducted a randomized placebo-controlled study of enteric rapamycin-treatment to evaluate its effect on physical function in old low capacity runner (LCR) rats, a rat model selected from diverse genetic background for low intrinsic aerobic exercise capacity without genomic manipulation and characterized by increased complex disease risks and aging phenotypes. The study was performed in 12 male and 16 female LCR rats aged 16-22 months at baseline. The treatment group was fed with rapamycin-containing diet pellets at approximately 2.24mg/kg body weight per day and the placebo group with the same diet without rapamycin for six months. Observation was extended for additional 2 months. Physical function measurements include grip strength measured as maximum tensile force using a rat grip strength meter and maximum running distance (MRD) using rat physical treadmill test. The results showed that rapamycin improved grip strength by 13% (p=.036) and 60% (p<.001) from its baseline in female and male rats, respectively. Rapamycin attenuated MRD decline by 66% (p<.001) and 46% (p=.319) in females and males, respectively. These findings provide initial evidence for beneficial effect of rapamycin on physical functioning in an aging rat model of high disease risks with significant implication in humans.
Collapse
Affiliation(s)
- Qian-Li Xue
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA.,Center on Aging and Health, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Huanle Yang
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hui-Fen Li
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Peter M Abadir
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Tyesha N Burks
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joshua Carlson
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Laura Chen
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeremy D Walston
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA.,Center on Aging and Health, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Sean X Leng
- Department of Medicine Division of Geriatric Medicine and Gerontology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
41
|
Zhao P, Sui BD, Liu N, Lv YJ, Zheng CX, Lu YB, Huang WT, Zhou CH, Chen J, Pang DL, Fei DD, Xuan K, Hu CH, Jin Y. Anti-aging pharmacology in cutaneous wound healing: effects of metformin, resveratrol, and rapamycin by local application. Aging Cell 2017; 16:1083-1093. [PMID: 28677234 PMCID: PMC5595695 DOI: 10.1111/acel.12635] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2017] [Indexed: 12/17/2022] Open
Abstract
Cutaneous wounds are among the most common soft tissue injuries and are particularly hard to heal in aging. Caloric restriction (CR) is well documented to extend longevity; pharmacologically, profound rejuvenative effects of CR mimetics have been uncovered, especially metformin (MET), resveratrol (RSV), and rapamycin (RAPA). However, locally applied impacts and functional differences of these agents on wound healing remain to be established. Here, we discovered that chronic topical administration of MET and RSV, but not RAPA, accelerated wound healing with improved epidermis, hair follicles, and collagen deposition in young rodents, and MET exerted more profound effects. Furthermore, locally applied MET and RSV improved vascularization of the wound beds, which were attributed to stimulation of adenosine monophosphate-activated protein kinase (AMPK) pathway, the key mediator of wound healing. Notably, in aged skin, AMPK pathway was inhibited, correlated with impaired vasculature and reduced healing ability. As therapeutic approaches, local treatments of MET and RSV prevented age-related AMPK suppression and angiogenic inhibition in wound beds. Moreover, in aged rats, rejuvenative effects of topically applied MET and RSV on cell viability of wound beds were confirmed, of which MET showed more prominent anti-aging effects. We further verified that only MET promoted wound healing and cutaneous integrity in aged skin. These findings clarified differential effects of CR-based anti-aging pharmacology in wound healing, identified critical angiogenic and rejuvenative mechanisms through AMPK pathway in both young and aged skin, and unraveled chronic local application of MET as the optimal and promising regenerative agent in treating cutaneous wound defects.
Collapse
Affiliation(s)
- Pan Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine; Xi'an Shaanxi 710032 China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Nu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Department of Periodontology; Stomatological Hospital; Zunyi Medical College; Zunyi Guizhou 563003 China
| | - Ya-Jie Lv
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Department of Dermatology; Tangdu Hospital; Fourth Military Medical University; Xi'an Shaanxi 710069 China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Yong-Bo Lu
- Xi'an Institute of Tissue Engineering and Regenerative Medicine; Xi'an Shaanxi 710032 China
| | - Wen-Tao Huang
- Xi'an Institute of Tissue Engineering and Regenerative Medicine; Xi'an Shaanxi 710032 China
| | - Cui-Hong Zhou
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine; Xi'an Shaanxi 710032 China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Dan-Lin Pang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Dong-Dong Fei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Xi'an Institute of Tissue Engineering and Regenerative Medicine; Xi'an Shaanxi 710032 China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases; Center for Tissue Engineering; School of Stomatology; Fourth Military Medical University; Xi'an Shaanxi 710032 China
- Research and Development Center for Tissue Engineering; Fourth Military Medical University; Xi'an Shaanxi 710032 China
| |
Collapse
|
42
|
Swindell WR. Meta-Analysis of 29 Experiments Evaluating the Effects of Rapamycin on Life Span in the Laboratory Mouse. J Gerontol A Biol Sci Med Sci 2017; 72:1024-1032. [PMID: 27519886 DOI: 10.1093/gerona/glw153] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/12/2016] [Indexed: 12/16/2022] Open
Abstract
Rapamycin has favorable effects on aging in mice and may eventually be applied to encourage "healthy aging" in humans. This study analyzed raw data from 29 survival studies of rapamycin- and control-treated mice, with the goals of estimating summary statistics and identifying factors associated with effect size heterogeneity. Meta-analysis demonstrated significant heterogeneity across studies, with hazard ratio (HR) estimates ranging from 0.22 (95% confidence interval [CI]: 0.06-0.82) to 0.92 (95% CI: 0.65-1.28). Sex was the major factor accounting for effect size variation, and mortality was decreased more in females (HR = 0.41; 95% CI: 0.35-0.48) as compared with males (HR = 0.63; 95% CI: 0.55-0.71). Rapamycin effects were also genotype dependent, however, with stronger survivorship increases in hybrid mice (14.4%; 95% CI: 12.5-16.3%) relative to pure inbred strains (8.8%; 95% CI: 6.2-11.6%). Number needed to treat was applied as an effect size metric, which consistently identified early senescence as the age of peak treatment benefit. These results provide synthesis of existing data to support the potential translation of findings from mouse to primate species. Because rapamycin's effect on survival depends on sex and genotype, further work is justified to understand how these factors shape treatment response.
Collapse
|
43
|
Love S, Mudasir MA, Bhardwaj SC, Singh G, Tasduq SA. Long-term administration of tacrolimus and everolimus prevents high cholesterol-high fructose-induced steatosis in C57BL/6J mice by inhibiting de-novo lipogenesis. Oncotarget 2017; 8:113403-113417. [PMID: 29371918 PMCID: PMC5768335 DOI: 10.18632/oncotarget.15194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022] Open
Abstract
Aim To investigate the effects of tacrolimus (TC) and everolimus (EV) on non-alcoholic steatohepatitis (NASH) induced by high fat, high cholesterol and fructose (fast food) diet in C57BL/6J mice. Materials and Methods C57BL/6J mice were divided into four groups (n=8). 1) Standard Chow (SC); 2) Fast food (FF) diet; 3) FF + Tacrolimus (TC, 1mg/kg) and; 4) FF + Everolimus (EV, 1mg/kg) and treated for 16 weeks. Serum and tissue samples were analyzed for evidence of inflammation, fibrosis, lipogenesis, and apoptosis. Results TC and EV treatments significantly reduced the hepatic lipid accumulation, improved liver-body weight ratio, blood biochemistry, and insulin resistance in mice fed with FF diet. However, inflammation, enlarged portal tracts, and fibrosis were pronounced in EV treated group. The lipogenic parameters, Peroxisome proliferator-activated receptor gamma (PPAR-γ), Sterol regulatory element-binding protein 1(SREBP-1), mammalian target of rapamycin (m-TOR), Stearoyl-CoA desaturase-1 (SCD-1) and fatty acid translocase (CD36) were significantly down-regulated in livers of TC and EV treated groups as compared to FF group. TC improved Bcl2/Bax ratio, decreased apoptosis, CYP2E1 protein expression and liver fibrosis levels, however, EV offered no such protection. Further, in an In-vitro model of lipotoxicity using the mouse hepatocyte (AML-12) cell line, treatment with TC and EV significantly reduced lipid accumulation and lipogenic and apoptotic markers induced with palmitic acid. Conclusion In FF diet induced model of NASH, both TC and EV inhibited hepatic lipid accumulation and improved metabolic parameters such as insulin resistance and dyslipidemia. However, mice administered with EV exhibited inflammatory and fibrotic responses despite reduced hepatic steatosis.
Collapse
Affiliation(s)
- Sharma Love
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Malik A Mudasir
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, Jammu and Kashmir, India
| | - Subhash C Bhardwaj
- Department of Pathology, Government Medical College, Jammu, Jammu and Kashmir, India
| | - Gurdarshan Singh
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| | - Sheikh A Tasduq
- PK-PD and Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu Tawi, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), Chennai, India
| |
Collapse
|
44
|
Ross C, Salmon A, Strong R, Fernandez E, Javors M, Richardson A, Tardif S. Metabolic consequences of long-term rapamycin exposure on common marmoset monkeys (Callithrix jacchus). Aging (Albany NY) 2016; 7:964-73. [PMID: 26568298 PMCID: PMC4694066 DOI: 10.18632/aging.100843] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rapamycin has been shown to extend lifespan in rodent models, but the effects on metabolic health and function have been widely debated in both clinical and translational trials. Prior to rapamycin being used as a treatment to extend both lifespan and healthspan in the human population, it is vital to assess the side effects of the treatment on metabolic pathways in animal model systems, including a closely related non-human primate model. In this study, we found that long-term treatment of marmoset monkeys with orally-administered encapsulated rapamycin resulted in no overall effects on body weight and only a small decrease in fat mass over the first few months of treatment. Rapamycin treated subjects showed no overall changes in daily activity counts, blood lipids, or significant changes in glucose metabolism including oral glucose tolerance. Adipose tissue displayed no differences in gene expression of metabolic markers following treatment, while liver tissue exhibited suppressed G6Pase activity with increased PCK and GPI activity. Overall, the marmosets revealed only minor metabolic consequences of chronic treatment with rapamycin and this adds to the growing body of literature that suggests that chronic and/or intermittent rapamycin treatment results in improved health span and metabolic functioning. The marmosets offer an interesting alternative animal model for future intervention testing and translational modeling.
Collapse
Affiliation(s)
- Corinna Ross
- Department of Arts & Sciences, Texas A&M University San Antonio, San Antonio, TX 78224, USA.,Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA
| | - Adam Salmon
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA.,Geriatric Research, Education & Clinical Center, South Texas Veteran's Health Care System, San Antonio, TX 78224, USA
| | - Randy Strong
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA
| | - Elizabeth Fernandez
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA.,Geriatric Research, Education & Clinical Center, South Texas Veteran's Health Care System, San Antonio, TX 78224, USA
| | - Marty Javors
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA.,Geriatric Research, Education & Clinical Center, South Texas Veteran's Health Care System, San Antonio, TX 78224, USA
| | - Arlan Richardson
- University of Oklahoma Health Sciences Center and the Oklahoma City VA Medical Center, Oklahoma City, OK 73104, USA
| | - Suzette Tardif
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78224, USA
| |
Collapse
|
45
|
Chan WH, Mohamad MS, Deris S, Zaki N, Kasim S, Omatu S, Corchado JM, Al Ashwal H. Identification of informative genes and pathways using an improved penalized support vector machine with a weighting scheme. Comput Biol Med 2016; 77:102-15. [PMID: 27522238 DOI: 10.1016/j.compbiomed.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 01/03/2023]
Abstract
Incorporation of pathway knowledge into microarray analysis has brought better biological interpretation of the analysis outcome. However, most pathway data are manually curated without specific biological context. Non-informative genes could be included when the pathway data is used for analysis of context specific data like cancer microarray data. Therefore, efficient identification of informative genes is inevitable. Embedded methods like penalized classifiers have been used for microarray analysis due to their embedded gene selection. This paper proposes an improved penalized support vector machine with absolute t-test weighting scheme to identify informative genes and pathways. Experiments are done on four microarray data sets. The results are compared with previous methods using 10-fold cross validation in terms of accuracy, sensitivity, specificity and F-score. Our method shows consistent improvement over the previous methods and biological validation has been done to elucidate the relation of the selected genes and pathway with the phenotype under study.
Collapse
Affiliation(s)
- Weng Howe Chan
- Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohd Saberi Mohamad
- Artificial Intelligence and Bioinformatics Research Group, Faculty of Computing, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| | - Safaai Deris
- Faculty of Creative Technology & Heritage, Universiti Malaysia Kelantan, Locked Bag 01, Bachok, 16300 Kota Bharu, Kelantan, Malaysia
| | - Nazar Zaki
- College of Information Technology, United Arab Emirate University, Al Ain 15551, United Arab Emirates
| | - Shahreen Kasim
- Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Malaysia
| | - Sigeru Omatu
- Department of Electronics, Information and Communication Engineering, Osaka Institute of Technology, Osaka 535-8585, Japan
| | - Juan Manuel Corchado
- Biomedical Research Institute of Salamanca/BISITE Research Group, University of Salamanca, Salamanca, Spain
| | - Hany Al Ashwal
- College of Information Technology, United Arab Emirate University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
46
|
Scialò F, Sriram A, Naudí A, Ayala V, Jové M, Pamplona R, Sanz A. Target of rapamycin activation predicts lifespan in fruit flies. Cell Cycle 2016; 14:2949-58. [PMID: 26259964 PMCID: PMC4630862 DOI: 10.1080/15384101.2015.1071745] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Aging and age-related diseases are one of the most important health issues that the world will confront during the 21st century. Only by understanding the proximal causes will we be able to find treatments to reduce or delay the onset of degenerative diseases associated with aging. Currently, the prevalent paradigm in the field is the accumulation of damage. However, a new theory that proposes an alternative explanation is gaining momentum. The hyperfunction theory proposes that aging is not a consequence of a wear and tear process, but a result of the continuation of developmental programs during adulthood. Here we use Drosophila melanogaster, where evidence supporting both paradigms has been reported, to identify which parameters that have been previously related with lifespan best predict the rate of aging in wild type flies cultured at different temperatures. We find that mitochondrial function and mitochondrial reactive oxygen species (mtROS) generation correlates with metabolic rate, but not with the rate of aging. Importantly, we find that activation of nutrient sensing pathways (i.e. insulin-PI3K/Target of rapamycin (Tor) pathway) correlates with lifespan, but not with metabolic rate. Our results, dissociate metabolic rate and lifespan in wild type flies and instead link nutrient sensing signaling with longevity as predicted by the hyperfunction theory.
Collapse
Affiliation(s)
- Filippo Scialò
- a Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle University ; Newcastle-Upon-Tyne , UK
| | - Ashwin Sriram
- a Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle University ; Newcastle-Upon-Tyne , UK
| | - Alba Naudí
- b Department of Experimental Medicine ; University of Lleida-IRB ; Lleida , Spain
| | - Victoria Ayala
- b Department of Experimental Medicine ; University of Lleida-IRB ; Lleida , Spain
| | - Mariona Jové
- b Department of Experimental Medicine ; University of Lleida-IRB ; Lleida , Spain
| | - Reinald Pamplona
- b Department of Experimental Medicine ; University of Lleida-IRB ; Lleida , Spain
| | - Alberto Sanz
- a Institute for Cell and Molecular Biosciences; Newcastle University Institute for Ageing; Newcastle University ; Newcastle-Upon-Tyne , UK
| |
Collapse
|
47
|
Leontieva OV, Demidenko ZN, Blagosklonny MV. Dual mTORC1/C2 inhibitors suppress cellular geroconversion (a senescence program). Oncotarget 2016; 6:23238-48. [PMID: 26177051 PMCID: PMC4695114 DOI: 10.18632/oncotarget.4836] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/24/2015] [Indexed: 11/30/2022] Open
Abstract
In proliferating cells, mTOR is active and promotes cell growth. When the cell cycle is arrested, then mTOR converts reversible arrest to senescence (geroconversion). Rapamycin and other rapalogs suppress geroconversion, maintaining quiescence instead. Here we showed that ATP-competitive kinase inhibitors (Torin1 and PP242), which inhibit both mTORC1 and TORC2, also suppressed geroconversion. Despite inhibition of proliferation (in proliferating cells), mTOR inhibitors preserved re-proliferative potential (RP) in arrested cells. In p21-arrested cells, Torin 1 and PP242 detectably suppressed geroconversion at concentrations as low as 1-3 nM and 10-30 nM, reaching maximal gerosuppression at 30 nM and 300 nM, respectively. Near-maximal gerosuppression coincided with inhibition of p-S6K(T389) and p-S6(S235/236). Dual mTOR inhibitors prevented senescent morphology and hypertrophy. Our study warrants investigation into whether low doses of dual mTOR inhibitors will prolong animal life span and delay age-related diseases. A new class of potential anti-aging drugs can be envisioned.
Collapse
Affiliation(s)
- Olga V Leontieva
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Zoya N Demidenko
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | |
Collapse
|
48
|
Arriola Apelo SI, Pumper CP, Baar EL, Cummings NE, Lamming DW. Intermittent Administration of Rapamycin Extends the Life Span of Female C57BL/6J Mice. J Gerontol A Biol Sci Med Sci 2016; 71:876-81. [PMID: 27091134 PMCID: PMC4906329 DOI: 10.1093/gerona/glw064] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/22/2016] [Indexed: 01/10/2023] Open
Abstract
Inhibition of the mTOR (mechanistic target of rapamycin) signaling pathway by the FDA-approved drug rapamycin promotes life span in numerous model organisms and delays age-related disease in mice. However, the utilization of rapamycin as a therapy for age-related diseases will likely prove challenging due to the serious metabolic and immunological side effects of rapamycin in humans. We recently identified an intermittent rapamycin treatment regimen-2mg/kg administered every 5 days-with a reduced impact on glucose homeostasis and the immune system as compared with chronic treatment; however, the ability of this regimen to extend life span has not been determined. Here, we report for the first time that an intermittent rapamycin treatment regimen starting as late as 20 months of age can extend the life span of female C57BL/6J mice. Our work demonstrates that the anti-aging potential of rapamycin is separable from many of its negative side effects and suggests that carefully designed dosing regimens may permit the safer use of rapamycin and its analogs for the treatment of age-related diseases in humans.
Collapse
Affiliation(s)
- Sebastian I Arriola Apelo
- Department of Medicine, University of Wisconsin-Madison. William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Cassidy P Pumper
- Department of Medicine, University of Wisconsin-Madison. William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Emma L Baar
- Department of Medicine, University of Wisconsin-Madison. William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - Nicole E Cummings
- Department of Medicine, University of Wisconsin-Madison. William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin. Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison. William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin. Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison.
| |
Collapse
|
49
|
Rejuvenating immunity: "anti-aging drug today" eight years later. Oncotarget 2016; 6:19405-12. [PMID: 25844603 PMCID: PMC4637294 DOI: 10.18632/oncotarget.3740] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/28/2015] [Indexed: 01/02/2023] Open
Abstract
The 2014 year ended with celebration: Everolimus, a rapamycin analog, was shown to improve immunity in old humans, heralding ‘a turning point’ in research and new era in human quest for immortality. Yet, this turning point was predicted a decade ago. But what will cause human death, when aging will be abolished?
Collapse
|
50
|
The Mechanistic Target of Rapamycin: The Grand ConducTOR of Metabolism and Aging. Cell Metab 2016; 23:990-1003. [PMID: 27304501 PMCID: PMC4910876 DOI: 10.1016/j.cmet.2016.05.009] [Citation(s) in RCA: 385] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
Since the discovery that rapamycin, a small molecule inhibitor of the protein kinase mTOR (mechanistic target of rapamycin), can extend the lifespan of model organisms including mice, interest in understanding the physiological role and molecular targets of this pathway has surged. While mTOR was already well known as a regulator of growth and protein translation, it is now clear that mTOR functions as a central coordinator of organismal metabolism in response to both environmental and hormonal signals. This review discusses recent developments in our understanding of how mTOR signaling is regulated by nutrients and the role of the mTOR signaling pathway in key metabolic tissues. Finally, we discuss the molecular basis for the negative metabolic side effects associated with rapamycin treatment, which may serve as barriers to the adoption of rapamycin or similar compounds for the treatment of diseases of aging and metabolism.
Collapse
|