1
|
Sun CL, Xu C, Itani O, Christensen EL, Vijay H, Ho J, Correa-Medina A, Klingler CB, Mathew ND, Flibotte S, Humphreys IR, Rubalcaba DD, Ritter AE, Desbois M, Grill B, Crowder CM. Biased regulation of protein synthesis and hypoxic death by a conditional raptor mutation. Curr Biol 2025:S0960-9822(25)00504-4. [PMID: 40339571 DOI: 10.1016/j.cub.2025.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/24/2025] [Accepted: 04/15/2025] [Indexed: 05/10/2025]
Abstract
Mechanistic target of rapamycin (mTOR) functions in mTOR complex 1 (mTORC1) with raptor to match metazoan metabolism to available nutrients to regulate multiple cellular, physiological, and pathological processes. Hypoxic cellular injury is influenced by the mTORC1 pathway, but whether its activity promotes or prevents injury is unclear, and which mTORC1-regulated mechanisms control hypoxic injury are obscure. Here, we report the discovery of a hypoxia-resistant, temperature-sensitive raptor mutant in an unbiased forward mutagenesis screen in C. elegans. This raptor mutant is both hypoxia resistant and long lived at intermediate temperatures, while unable to develop at higher temperatures. Temperature-shift experiments show that the conditional hypoxia resistance can be induced in the raptor mutant immediately prior to the hypoxic insult. At these intermediate temperatures, the raptor mutation selectively reduces protein synthesis without affecting autophagy, and epistasis experiments implicate mTOR-targeted translation regulators as components of the hypoxia resistance mechanism. Using the conditional developmental arrest phenotype in a selection for suppressors of raptor loss of function, we isolated multiple second-site raptor missense mutants, whose mutated residue is predicted to interact with RagA, a raptor-binding protein. These suppressor mutations restore normal protein synthesis, hypoxic sensitivity, and lifespan and thereby implicate raptor-RagA interactions as critical to these biological processes.
Collapse
Affiliation(s)
- Chun-Ling Sun
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Cong Xu
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Omar Itani
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Elyse L Christensen
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Harshitha Vijay
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Jessica Ho
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Abraham Correa-Medina
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Christian B Klingler
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Neal D Mathew
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Stephane Flibotte
- Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ian R Humphreys
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Box 357350, Seattle, WA 98105, USA; Institute for Protein Design, University of Washington, 3946 W Stevens Way NE, Box 351655, Seattle, WA 98105, USA
| | - Diego Delgadillo Rubalcaba
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Alison E Ritter
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Muriel Desbois
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA; Departments of Pediatrics and Pharmacology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - C Michael Crowder
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Box 355065, 3720 15th Avenue NE, Seattle, WA 98105, USA.
| |
Collapse
|
2
|
Jinesh S, Özüpek B, Aditi P. Premature aging and metabolic diseases: the impact of telomere attrition. FRONTIERS IN AGING 2025; 6:1541127. [PMID: 40231186 PMCID: PMC11995884 DOI: 10.3389/fragi.2025.1541127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/03/2025] [Indexed: 04/16/2025]
Abstract
Driven by genetic and environmental factors, aging is a physiological process responsible for age-related degenerative changes in the body, cognitive decline, and impaired overall wellbeing. Notably, premature aging as well as the emergence of progeroid syndromes have posed concerns regarding chronic health conditions and comorbidities in the aging population. Accelerated telomere attrition is also implicated in metabolic dysfunction and the development of metabolic disorders. Impaired metabolic homeostasis arises secondary to age-related increases in the synthesis of free radicals, decreased oxidative capacity, impaired antioxidant defense, and disrupted energy metabolism. In particular, several cellular and molecular mechanisms of aging have been identified to decipher the influence of premature aging on metabolic diseases. These include defective DNA repair, telomere attrition, epigenetic alterations, and dysregulation of nutrient-sensing pathways. The role of telomere attrition premature aging in the pathogenesis of metabolic diseases has been largely attributed to pro-inflammatory states that promote telomere shortening, genetic mutations in the telomerase reverse transcriptase, epigenetic alteration, oxidative stress, and mitochondrial dysfunctions. Nonetheless, the therapeutic interventions focus on restoring the length of telomeres and may include treatment approaches to restore telomerase enzyme activity, promote alternative lengthening of telomeres, counter oxidative stress, and decrease the concentration of pro-inflammatory cytokines. Given the significance and robust potential of delaying telomere attrition in age-related metabolic diseases, this review aimed to explore the molecular and cellular mechanisms of aging underlying premature telomere attrition and metabolic diseases, assimilating evidence from both human and animal studies.
Collapse
Affiliation(s)
| | | | - Prerana Aditi
- Department of Medical Biochemistry, Faculty of Allied Health Sciences, Mahayogi Gorakhnath University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
3
|
Fountoulakis N, Miyamoto Y, Pavkov ME, Karalliedde J, Maltese G. Pathophysiology of vascular ageing and the effect of novel cardio-renal protective medications in preventing progression of chronic kidney disease in people living with diabetes. Diabet Med 2025; 42:e15464. [PMID: 39497615 PMCID: PMC11733662 DOI: 10.1111/dme.15464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 01/16/2025]
Abstract
AIM Among people with diabetes those with chronic kidney disease (CKD) have a reduced life expectancy with increased risk of cardiovascular disease (CVD) a major contributor to morbidity and mortality. CKD related to diabetes is growing worldwide and is one of the leading causes of kidney failure globally. Diabetes is associated with accelerated vascular ageing and the related mechanisms and mediators that drive the progression of CKD and CVD disease in people with diabetes may help provide insights into the pathophysiology of cardio-renal complications and guide treatment interventions in people with diabetes. METHODS We conducted a narrative review of the literature using PubMed for English language articles that contained keywords that related to diabetes, chronic or diabetic kidney disease, ageing, cellular senescence, arterial stiffness, Klotho and sirtuins, sodium-glucose co-transporter-2 (SGLT-2) inhibitors, renin angiotensin aldosterone system (RAAS) and glucagon-like peptide-1 (GLP-1) receptor agonists. RESULTS Progressive kidney disease in diabetes is associated with accelerated ageing driven in part by multiple processes such as cellular senescence, inflammation, oxidative stress and circulating uremic toxins. This accelerated ageing phenotype contributes to increased arterial stiffness, endothelial dysfunction, cognitive decline and muscle wasting, thereby elevating morbidity and mortality in individuals with diabetes and CKD. Deficiency of the kidney-derived anti-ageing hormone Klotho and reduced sirtuin levels play pivotal roles in these ageing pathways. Dietary, lifestyle and pharmacological interventions targeting vascular ageing may help reduce the progression of CKD and associated CVD in people with diabetes. The current standard of care and pillars of treatment for kidney disease such as RAAS inhibitors, SGLT-2 inhibitors and GLP-1 receptor agonists all influence pathways involved in vascular ageing. CONCLUSIONS A multifactorial intervention to prevent the development of CKD by targeting traditional risk factors as well as treatment with novel agents with cardio-renal beneficial effects can prevent accelerated ageing and extend lifespan in people with diabetes.
Collapse
Affiliation(s)
- Nikolaos Fountoulakis
- School of Cardiovascular, Metabolic Medicine and SciencesKing's College LondonLondonUK
| | | | - Meda E. Pavkov
- Centers for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Janaka Karalliedde
- School of Cardiovascular, Metabolic Medicine and SciencesKing's College LondonLondonUK
| | - Giuseppe Maltese
- School of Cardiovascular, Metabolic Medicine and SciencesKing's College LondonLondonUK
| |
Collapse
|
4
|
Jiang X, Liu C, Zhang Q, Lv Y, Lu C, Su W, Zhou J, Zhang H, Gong H, Liu Y, Yuan S, Chen Y, Qu D. Strategic delivery of rapamycin and ranibizumab with intravitreal hydrogel depot disrupts multipathway-driven angiogenesis loop for boosted wAMD therapy. J Control Release 2025; 377:239-255. [PMID: 39528095 DOI: 10.1016/j.jconrel.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Autophagic dysfunction-induced deterioration of the retinal microenvironment drives the progression of wet age-related macular degeneration (wAMD). The efficacy of single-target anti-VEGF antibodies in treating wAMD has long been suboptimal due to the intricate interplay between autophagy dysfunction, oxidative stress, and angiogenesis. Here, we introduce an intravitreal hydrogel depot, named Rab&Rapa-M@G, consisting of rapamycin-loaded microemulsion (Rapa-M, an mTOR inhibitor), ranibizumab (anti-VEGF antibody), and a thermosensitive hydrogel matrix. A single intravitreal injection of Rab&Rapa-M@G can sustainably deliver Rapa-M and ranibizumab to the retinal pigment epithelium for at least 14 days. This formulation significantly improves retinal autophagic flux homeostasis and reduces oxidative stress injury in wAMD mice by modulating the AMPK/mTOR/HIF-1α/VEGF and AMPK/ROS/HO-1/VEGF pathways. Consequently, it synergistically disrupts the "autophagic dysfunction-oxidative stress-angiogenesis" loop, leading to a remarkable reduction in choroidal neovascularization area and retinal damage compared to ranibizumab alone. Notably, the sequential administration of ranibizumab and Rab&Rapa-M@G further enhances the overall anti-wAMD efficacy, achieved through sequential delivery of Rab and Rapa, allowing for a more precise grasp of the treatment window. In conclusion, this hydrogel depot design, with its sequential and sustained delivery of mTOR inhibitors and anti-VEGF antibodies, offers a promising strategy for multi-target synergistic therapy in wAMD.
Collapse
Affiliation(s)
- Xi Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Qun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yanli Lv
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Chen Lu
- The first affiliated hospital of Nanjing medical university, Nanjing 210000, China
| | - Wenting Su
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Jing Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Huangqin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Huiling Gong
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Songtao Yuan
- The first affiliated hospital of Nanjing medical university, Nanjing 210000, China.
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
5
|
Landis GN, Baybutt B, Das S, Fan Y, Olsen K, Yan K, Tower J. Mifepristone and rapamycin have non-additive benefits for life span in mated female Drosophila. Fly (Austin) 2024; 18:2419151. [PMID: 39440794 PMCID: PMC11514543 DOI: 10.1080/19336934.2024.2419151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
The drugs mifepristone and rapamycin were compared for their relative ability to increase the life span of mated female Drosophila melanogaster. Titration of rapamycin indicated an optimal concentration of approximately 50 μM, which increased median life span here by average +81%. Meta-analysis of previous mifepristone titrations indicated an optimal concentration of approximately 466 μM, which increased median life span here by average +114%. Combining mifepristone with various concentrations of rapamycin did not produce further increases in life span, and instead reduced life span relative to either drug alone. Assay of maximum midgut diameter indicated that rapamycin was equally efficacious as mifepristone in reducing mating-induced midgut hypertrophy. The mito-QC mitophagy reporter is a previously described green fluorescent protein (GFP)-mCherry fusion protein targeted to the outer mitochondrial membrane. Inhibition of GFP fluorescence by the acidic environment of the autophagolysosome yields an increased red/green fluorescence ratio indicative of increased mitophagy. Creation of a multi-copy mito-QC reporter strain facilitated assay in live adult flies, as well as in dissected midgut tissue. Mifepristone was equally efficacious as rapamycin in activating the mito-QC mitophagy reporter in the adult female fat-body and midgut. The data suggest that mifepristone and rapamycin act through a common pathway to increase mated female Drosophila life span, and implicate increased mitophagy and decreased midgut hypertrophy in that pathway.
Collapse
Affiliation(s)
- Gary N. Landis
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Britta Baybutt
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Shoham Das
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yijie Fan
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kate Olsen
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Karissa Yan
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
6
|
Nisar A, Khan S, Li W, Hu L, Samarawickrama PN, Gold NM, Zi M, Mehmood SA, Miao J, He Y. Hypoxia and aging: molecular mechanisms, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e786. [PMID: 39415849 PMCID: PMC11480526 DOI: 10.1002/mco2.786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Aging is a complex biological process characterized by the gradual decline of cellular functions, increased susceptibility to diseases, and impaired stress responses. Hypoxia, defined as reduced oxygen availability, is a critical factor that influences aging through molecular pathways involving hypoxia-inducible factors (HIFs), oxidative stress, inflammation, and epigenetic modifications. This review explores the interconnected roles of hypoxia in aging, highlighting how hypoxic conditions exacerbate cellular damage, promote senescence, and contribute to age-related pathologies, including cardiovascular diseases, neurodegenerative disorders, cancer, metabolic dysfunctions, and pulmonary conditions. By examining the molecular mechanisms linking hypoxia to aging, we identify key pathways that serve as potential therapeutic targets. Emerging interventions such as HIF modulators, antioxidants, senolytics, and lifestyle modifications hold promise in mitigating the adverse effects of hypoxia on aging tissues. However, challenges such as the heterogeneity of aging, lack of reliable biomarkers, and safety concerns regarding hypoxia-targeted therapies remain. This review emphasizes the need for personalized approaches and advanced technologies to develop effective antiaging interventions. By integrating current knowledge, this review provides a comprehensive framework that underscores the importance of targeting hypoxia-induced pathways to enhance healthy aging and reduce the burden of age-related diseases.
Collapse
Affiliation(s)
- Ayesha Nisar
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Sawar Khan
- Department of Cell Biology, School of Life SciencesCentral South UniversityChangshaHunanChina
- Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan
| | - Wen Li
- Department of EndocrinologyThe Second Affiliated Hospital of Dali University (the Third People's Hospital of Yunnan Province)KunmingYunnanChina
| | - Li Hu
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Priyadarshani Nadeeshika Samarawickrama
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Naheemat Modupeola Gold
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Meiting Zi
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | | | - Jiarong Miao
- Department of GastroenterologyThe First Affiliated Hospital of Kunming Medical UniversityKunmingYunnanChina
| | - Yonghan He
- Key Laboratory of Genetic Evolution & Animal Models, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingChina
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| |
Collapse
|
7
|
Miceli G, Basso MG, Pennacchio AR, Cocciola E, Pintus C, Cuffaro M, Profita M, Rizzo G, Sferruzza M, Tuttolomondo A. The Potential Impact of SGLT2-I in Diabetic Foot Prevention: Promising Pathophysiologic Implications, State of the Art, and Future Perspectives-A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1796. [PMID: 39596981 PMCID: PMC11596194 DOI: 10.3390/medicina60111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
The impact of diabetic foot (DF) on the healthcare system represents a major public health problem, leading to a considerable clinical and economic burden. The factors contributing to DF's development and progression are strongly interconnected, including metabolic causes, neuropathy, arteriopathy, and inflammatory changes. Sodium-glucose cotransporter 2 inhibitors (SGLT2-i), novel oral hypoglycemic drugs used as an adjunct to standard treatment, have recently changed the pharmacological management of diabetes. Nevertheless, data about the risk of limb amputation, discordant and limited to canagliflozin, which is currently avoided in the case of peripheral artery disease, have potentially discouraged the design of specific studies targeting DF. There is good evidence for the single immunomodulatory, neuroprotective, and beneficial vascular effects of SGLT2-i. Still, there is no clinical evidence about the early use of SGLT2-i in diabetic foot due to the lack of longitudinal and prospective studies proving the effect of these drugs without confounders. This narrative review aims to discuss the main evidence about the impact of SGLT2-i on the three complications of diabetes implicated in the development of DF, the state of the art, and the potential future implications.
Collapse
Affiliation(s)
- Giuseppe Miceli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Maria Grazia Basso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Andrea Roberta Pennacchio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Elena Cocciola
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Chiara Pintus
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Mariagiovanna Cuffaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Martina Profita
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Giuliana Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Mariachiara Sferruzza
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (ProMISE), Università degli Studi di Palermo, Piazza delle Cliniche 2, 90127 Palermo, Italy; (M.G.B.); (A.R.P.); (E.C.); (C.P.); (M.C.); (M.P.); (G.R.); (M.S.); (A.T.)
- Internal Medicine and Stroke Care Ward, University Hospital, Policlinico “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
8
|
Jeayeng S, Thongsroy J, Chuaijit S. Caenorhabditis elegans as a Model to Study Aging and Photoaging. Biomolecules 2024; 14:1235. [PMID: 39456168 PMCID: PMC11505728 DOI: 10.3390/biom14101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Caenorhabditis elegans (C. elegans) has emerged as an outstanding model organism for investigating the aging process due to its shortened lifespan, well-defined genome, and accessibility of potent genetic tools. This review presents the current findings on chronological aging and photoaging in C. elegans, exploring the elaborate molecular pathways that control these processes. The progression of chronological aging is characterized by a gradual deterioration of physiological functions and is influenced by an interaction of genetic and environmental factors, including the insulin/insulin-like signaling (IIS) pathway. In contrast, photoaging is characterized by increased oxidative stress, DNA damage, and activation of stress response pathways induced by UV exposure. Although the genetic mechanisms of chronological aging in C. elegans have been characterized by extensive research, the pathways regulating photoaging are comparatively less well-studied. Here, we provide an overview of the current understanding of aging research, including the crucial genes and genetic pathways involved in the aging and photoaging processes of C. elegans. Understanding the complex interactions between these factors will provide invaluable insights into the molecular mechanisms underlying chronological aging and photoaging and may lead to novel therapeutic approaches and further studies for promoting healthy aging in humans.
Collapse
Affiliation(s)
- Saowanee Jeayeng
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; (S.J.); (J.T.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Jirapan Thongsroy
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; (S.J.); (J.T.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| | - Sirithip Chuaijit
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat 80161, Thailand; (S.J.); (J.T.)
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat 80161, Thailand
| |
Collapse
|
9
|
Boix M, Garcia-Rodriguez A, Castillo L, Miró B, Hamilton F, Tolak S, Pérez A, Monte-Bello C, Caldana C, Henriques R. 40S Ribosomal protein S6 kinase integrates daylength perception and growth regulation in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 195:3039-3052. [PMID: 38701056 PMCID: PMC11288760 DOI: 10.1093/plphys/kiae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024]
Abstract
Plant growth occurs via the interconnection of cell growth and proliferation in each organ following specific developmental and environmental cues. Therefore, different photoperiods result in distinct growth patterns due to the integration of light and circadian perception with specific Carbon (C) partitioning strategies. In addition, the TARGET OF RAPAMYCIN (TOR) kinase pathway is an ancestral signaling pathway that integrates nutrient information with translational control and growth regulation. Recent findings in Arabidopsis (Arabidopsis thaliana) have shown a mutual connection between the TOR pathway and the circadian clock. However, the mechanistical network underlying this interaction is mostly unknown. Here, we show that the conserved TOR target, the 40S ribosomal protein S6 kinase (S6K) is under circadian and photoperiod regulation both at the transcriptional and post-translational level. Total S6K (S6K1 and S6K2) and TOR-dependent phosphorylated-S6K protein levels were higher during the light period and decreased at dusk especially under short day conditions. Using chemical and genetic approaches, we found that the diel pattern of S6K accumulation results from 26S proteasome-dependent degradation and is altered in mutants lacking the circadian F-box protein ZEITLUPE (ZTL), further strengthening our hypothesis that S6K could incorporate metabolic signals via TOR, which are also under circadian regulation. Moreover, under short days when C/energy levels are limiting, changes in S6K1 protein levels affected starch, sucrose and glucose accumulation and consequently impacted root and rosette growth responses. In summary, we propose that S6K1 constitutes a missing molecular link where day-length perception, nutrient availability and TOR pathway activity converge to coordinate growth responses with environmental conditions.
Collapse
Affiliation(s)
- Marc Boix
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Alba Garcia-Rodriguez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Bernat Miró
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | - Ferga Hamilton
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Sanata Tolak
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| | - Adrián Pérez
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
| | | | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Rossana Henriques
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, 08193 Barcelona, Spain
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork T23 N73K, Ireland
- Environmental Research Institute, University College Cork, Cork T23 XE10, Ireland
| |
Collapse
|
10
|
Menezes A, Peixoto M, Silva M, Costa-Bartuli E, Oliveira CL, Walter-Nuno AB, Kistenmacker NDC, Pereira J, Ramos I, Paiva-Silva GO, Atella GC, Zancan P, Sola-Penna M, Gomes FM. Western diet consumption by host vertebrate promotes altered gene expression on Aedes aegypti reducing its lifespan and increasing fertility following blood feeding. Parasit Vectors 2024; 17:12. [PMID: 38184590 PMCID: PMC10770904 DOI: 10.1186/s13071-023-06095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND The high prevalence of metabolic syndrome in low- and middle-income countries is linked to an increase in Western diet consumption, characterized by a high intake of processed foods, which impacts the levels of blood sugar and lipids, hormones, and cytokines. Hematophagous insect vectors, such as the yellow fever mosquito Aedes aegypti, rely on blood meals for reproduction and development and are therefore exposed to the components of blood plasma. However, the impact of the alteration of blood composition due to malnutrition and metabolic conditions on mosquito biology remains understudied. METHODS In this study, we investigated the impact of whole-blood alterations resulting from a Western-type diet on the biology of Ae. aegypti. We kept C57Bl6/J mice on a high-fat, high-sucrose (HFHS) diet for 20 weeks and followed biological parameters, including plasma insulin and lipid levels, insulin tolerance, and weight gain, to validate the development of metabolic syndrome. We further allowed Ae. aegypti mosquitoes to feed on mice and tracked how altered host blood composition modulated parameters of vector capacity. RESULTS Our findings identified that HFHS-fed mice resulted in reduced mosquito longevity and increased fecundity upon mosquito feeding, which correlated with alteration in the gene expression profile of nutrient sensing and physiological and metabolic markers as studied up to several days after blood ingestion. CONCLUSIONS Our study provides new insights into the overall effect of alterations of blood components on mosquito biology and its implications for the transmission of infectious diseases in conditions where the frequency of Western diet-induced metabolic syndromes is becoming more frequent. These findings highlight the importance of addressing metabolic health to further understand the spread of mosquito-borne illnesses in endemic areas.
Collapse
Affiliation(s)
- Alexandre Menezes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marilia Peixoto
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Melissa Silva
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emylle Costa-Bartuli
- The Metabolizsm' Group, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cinara Lima Oliveira
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Beatriz Walter-Nuno
- Laboratório de Bioquímica e Biologia Molecular de Artrópodes Hematófagos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Nathan da Cruz Kistenmacker
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jessica Pereira
- Laboratorio de Ovogênese Molecular de Insetos Vetores, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isabela Ramos
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
- Laboratorio de Ovogênese Molecular de Insetos Vetores, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Laboratório de Bioquímica e Biologia Molecular de Artrópodes Hematófagos, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratorio de Ovogênese Molecular de Insetos Vetores, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geórgia C Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratorio de Ovogênese Molecular de Insetos Vetores, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Zancan
- The Metabolizsm' Group, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro Sola-Penna
- The Metabolizsm' Group, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio M Gomes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
- Laboratorio de Ovogênese Molecular de Insetos Vetores, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Cornwell A, Zhang Y, Thondamal M, Johnson DW, Thakar J, Samuelson AV. The C. elegans Myc-family of transcription factors coordinate a dynamic adaptive response to dietary restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568222. [PMID: 38045350 PMCID: PMC10690244 DOI: 10.1101/2023.11.22.568222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to forkhead box transcription factor A) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress -such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have different roles in promotion of benefits in response to different pro-longevity stimuli.
Collapse
Affiliation(s)
- Adam Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Yun Zhang
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Biological Sciences, GITAM University, Andhra Pradesh, India
| | - David W Johnson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Math and Science, Genesee Community College, One College Rd Batavia, NY 14020, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Andrew V Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
12
|
Jové M, Mota-Martorell N, Fernàndez-Bernal A, Portero-Otin M, Barja G, Pamplona R. Phenotypic molecular features of long-lived animal species. Free Radic Biol Med 2023; 208:728-747. [PMID: 37748717 DOI: 10.1016/j.freeradbiomed.2023.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
One of the challenges facing science/biology today is uncovering the molecular bases that support and determine animal and human longevity. Nature, in offering a diversity of animal species that differ in longevity by more than 5 orders of magnitude, is the best 'experimental laboratory' to achieve this aim. Mammals, in particular, can differ by more than 200-fold in longevity. For this reason, most of the available evidence on this topic derives from comparative physiology studies. But why can human beings, for instance, reach 120 years whereas rats only last at best 4 years? How does nature change the longevity of species? Longevity is a species-specific feature resulting from an evolutionary process. Long-lived animal species, including humans, show adaptations at all levels of biological organization, from metabolites to genome, supported by signaling and regulatory networks. The structural and functional features that define a long-lived species may suggest that longevity is a programmed biological property.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Anna Fernàndez-Bernal
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain
| | - Gustavo Barja
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid (UCM), E28040, Madrid, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), E25198, Lleida, Spain.
| |
Collapse
|
13
|
Erkosar B, Dupuis C, Cavigliasso F, Savary L, Kremmer L, Gallart-Ayala H, Ivanisevic J, Kawecki TJ. Evolutionary adaptation to juvenile malnutrition impacts adult metabolism and impairs adult fitness in Drosophila. eLife 2023; 12:e92465. [PMID: 37847744 PMCID: PMC10637773 DOI: 10.7554/elife.92465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
Juvenile undernutrition has lasting effects on adult metabolism of the affected individuals, but it is unclear how adult physiology is shaped over evolutionary time by natural selection driven by juvenile undernutrition. We combined RNAseq, targeted metabolomics, and genomics to study the consequences of evolution under juvenile undernutrition for metabolism of reproductively active adult females of Drosophila melanogaster. Compared to Control populations maintained on standard diet, Selected populations maintained for over 230 generations on a nutrient-poor larval diet evolved major changes in adult gene expression and metabolite abundance, in particular affecting amino acid and purine metabolism. The evolved differences in adult gene expression and metabolite abundance between Selected and Control populations were positively correlated with the corresponding differences previously reported for Selected versus Control larvae. This implies that genetic variants affect both stages similarly. Even when well fed, the metabolic profile of Selected flies resembled that of flies subject to starvation. Finally, Selected flies had lower reproductive output than Controls even when both were raised under the conditions under which the Selected populations evolved. These results imply that evolutionary adaptation to juvenile undernutrition has large pleiotropic consequences for adult metabolism, and that they are costly rather than adaptive for adult fitness. Thus, juvenile and adult metabolism do not appear to evolve independently from each other even in a holometabolous species where the two life stages are separated by a complete metamorphosis.
Collapse
Affiliation(s)
- Berra Erkosar
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Cindy Dupuis
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Fanny Cavigliasso
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Loriane Savary
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Laurent Kremmer
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of LausanneLausanneSwitzerland
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of LausanneLausanneSwitzerland
| |
Collapse
|
14
|
Sharma R, Diwan B. Lipids and the hallmarks of ageing: From pathology to interventions. Mech Ageing Dev 2023; 215:111858. [PMID: 37652278 DOI: 10.1016/j.mad.2023.111858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Lipids are critical structural and functional architects of cellular homeostasis. Change in systemic lipid profile is a clinical indicator of underlying metabolic pathologies, and emerging evidence is now defining novel roles of lipids in modulating organismal ageing. Characteristic alterations in lipid metabolism correlate with age, and impaired systemic lipid profile can also accelerate the development of ageing phenotype. The present work provides a comprehensive review of the extent of lipids as regulators of the modern hallmarks of ageing viz., cellular senescence, chronic inflammation, gut dysbiosis, telomere attrition, genome instability, proteostasis and autophagy, epigenetic alterations, and stem cells dysfunctions. Current evidence on the modulation of each of these hallmarks has been discussed with emphasis on inherent age-dependent deficiencies in lipid metabolism as well as exogenous lipid changes. There appears to be sufficient evidence to consider impaired lipid metabolism as key driver of the ageing process although much of knowledge is yet fragmented. Considering dietary lipids, the type and quantity of lipids in the diet is a significant, but often overlooked determinant that governs the effects of lipids on ageing. Further research using integrative approaches amidst the known aging hallmarks is highly desirable for understanding the therapeutics of lipids associated with ageing.
Collapse
Affiliation(s)
- Rohit Sharma
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India.
| | - Bhawna Diwan
- Nutrigerontology Laboratory, Faculty of Applied Sciences & Biotechnology, Shoolini University, Solan 173229, India
| |
Collapse
|
15
|
Jeremic D, Jiménez-Díaz L, Navarro-López JD. Targeting epigenetics: A novel promise for Alzheimer's disease treatment. Ageing Res Rev 2023; 90:102003. [PMID: 37422087 DOI: 10.1016/j.arr.2023.102003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
So far, the search for a cure for Alzheimer Disease (AD) has been unsuccessful. The only approved drugs attenuate some symptoms, but do not halt the progress of this disease, which affects 50 million people worldwide and will increase its incidence in the coming decades. Such scenario demands new therapeutic approaches to fight against this devastating dementia. In recent years, multi-omics research and the analysis of differential epigenetic marks in AD subjects have contributed to our understanding of AD; however, the impact of epigenetic research is yet to be seen. This review integrates the most recent data on pathological processes and epigenetic changes relevant for aging and AD, as well as current therapies targeting epigenetic machinery in clinical trials. Evidence shows that epigenetic modifications play a key role in gene expression, which could provide multi-target preventative and therapeutic approaches in AD. Both novel and repurposed drugs are employed in AD clinical trials due to their epigenetic effects, as well as increasing number of natural compounds. Given the reversible nature of epigenetic modifications and the complexity of gene-environment interactions, the combination of epigenetic-based therapies with environmental strategies and drugs with multiple targets might be needed to properly help AD patients.
Collapse
Affiliation(s)
- Danko Jeremic
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain
| | - Lydia Jiménez-Díaz
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain.
| | - Juan D Navarro-López
- University of Castilla-La Mancha, NeuroPhysiology & Behavior Lab, Biomedical Research Center (CRIB), School of Medicine of Ciudad Real, Spain.
| |
Collapse
|
16
|
Schönberger E, Mihaljević V, Steiner K, Šarić S, Kurevija T, Majnarić LT, Bilić Ćurčić I, Canecki-Varžić S. Immunomodulatory Effects of SGLT2 Inhibitors-Targeting Inflammation and Oxidative Stress in Aging. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6671. [PMID: 37681811 PMCID: PMC10487537 DOI: 10.3390/ijerph20176671] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Given that the increase in the aging population has grown into one of the largest public health issues, inflammation and oxidative stress, which are closely associated with the aging process, became a focus of recent research. Sodium-glucose co-transporter 2 (SGLT2) inhibitors, a group of drugs initially developed as oral antidiabetics, have shown many beneficial effects over time, including improvement in renal function and cardioprotective effects. It has been shown that SGLT2 inhibitors, as a drug class, have an immunomodulatory and antioxidative effect, affecting endothelial function as well as metabolic parameters. Therefore, it is not surprising that various studies have investigated the potential mechanisms of action of SGLT2 inhibitors in age-related diseases. The proposed mechanisms by which SGLT2 inhibitors can achieve their anti-inflammatory effects include influence on AMPK/SIRT1/PGC-1α signaling, various cytokines, and the NLRP3 inflammasome. The antioxidative effect is related to their action on mitochondria and their influence on the signaling pathways of transforming growth factor β and nuclear erythroid 2-related factor 2/antioxidant response element. Also, SGLT2 inhibitors achieve their anti-inflammatory and antioxidative effects by affecting metabolic parameters, such as uric acid reduction, stimulation of ketogenesis, reduction of body weight, lipolysis, and epicardial fat tissue. Finally, SGLT2 inhibitors display anti-atherosclerotic effects that modulate inflammatory reactions, potentially resulting in improvement in endothelial function. This narrative review offers a complete and comprehensive overview of the possible pathophysiologic mechanisms of the SGLT2 inhibitors involved in the aging process and development of age-related disease. However, in order to use SGLT2 inhibitor drugs as an anti-aging therapy, further basic and clinical research is needed to elucidate the potential effects and complex mechanisms they have on inflammation processes.
Collapse
Affiliation(s)
- Ema Schönberger
- Department of Endocrinology, University Hospital Osijek, 31000 Osijek, Croatia; (E.S.); (K.S.); (S.C.-V.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Vjera Mihaljević
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia;
| | - Kristina Steiner
- Department of Endocrinology, University Hospital Osijek, 31000 Osijek, Croatia; (E.S.); (K.S.); (S.C.-V.)
| | - Sandra Šarić
- Department for Cardiovascular Disease, University Hospital Osijek, 31000 Osijek, Croatia;
- Department of Internal Medicine and History of Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Tomislav Kurevija
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (T.K.); (L.T.M.)
- Health Center Osjecko-Baranjska County, 31000 Osijek, Croatia
| | - Ljiljana Trtica Majnarić
- Department of Family Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia; (T.K.); (L.T.M.)
| | - Ines Bilić Ćurčić
- Department of Endocrinology, University Hospital Osijek, 31000 Osijek, Croatia; (E.S.); (K.S.); (S.C.-V.)
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Silvija Canecki-Varžić
- Department of Endocrinology, University Hospital Osijek, 31000 Osijek, Croatia; (E.S.); (K.S.); (S.C.-V.)
- Department of Pathophysiology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| |
Collapse
|
17
|
Cavigliasso F, Savary L, Spangenberg JE, Gallart-Ayala H, Ivanisevic J, Kawecki TJ. Experimental evolution of metabolism under nutrient restriction: enhanced amino acid catabolism and a key role of branched-chain amino acids. Evol Lett 2023; 7:273-284. [PMID: 37475747 PMCID: PMC10355184 DOI: 10.1093/evlett/qrad018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 07/22/2023] Open
Abstract
Periodic food shortage is a common ecological stressor for animals, likely to drive physiological and metabolic adaptations to alleviate its consequences, particularly for juveniles that have no option but to continue to grow and develop despite undernutrition. Here we study changes in metabolism associated with adaptation to nutrient shortage, evolved by replicate Drosophila melanogaster populations maintained on a nutrient-poor larval diet for over 240 generations. In a factorial metabolomics experiment we showed that both phenotypic plasticity and genetically-based adaptation to the poor diet involved wide-ranging changes in metabolite abundance; however, the plastic response did not predict the evolutionary change. Compared to nonadapted larvae exposed to the poor diet for the first time, the adapted larvae showed lower levels of multiple free amino acids in their tissues-and yet they grew faster. By quantifying accumulation of the nitrogen stable isotope 15N we show that adaptation to the poor diet led to an increased use of amino acids for energy generation. This apparent "waste" of scarce amino acids likely results from the trade-off between acquisition of dietary amino acids and carbohydrates observed in these populations. The three branched-chain amino acids (leucine, isoleucine, and valine) showed a unique pattern of depletion in adapted larvae raised on the poor diet. A diet supplementation experiment demonstrated that these amino acids are limiting for growth on the poor diet, suggesting that their low levels resulted from their expeditious use for protein synthesis. These results demonstrate that selection driven by nutrient shortage not only promotes improved acquisition of limiting nutrients, but also has wide-ranging effects on how the nutrients are used. They also show that the abundance of free amino acids in the tissues does not, in general, reflect the nutritional condition and growth potential of an animal.
Collapse
Affiliation(s)
- Fanny Cavigliasso
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Loriane Savary
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jorge E Spangenberg
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
18
|
Riordan R, Rong W, Yu Z, Ross G, Valerio J, Dimas-Muñoz J, Heredia V, Magnusson K, Galvan V, Perez VI. Effect of Nrf2 loss on senescence and cognition of tau-based P301S mice. GeroScience 2023; 45:1451-1469. [PMID: 36976489 PMCID: PMC10400516 DOI: 10.1007/s11357-023-00760-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Cellular senescence may contribute to chronic inflammation involved in the progression of age-related diseases such as Alzheimer's disease (AD), and its removal prevents cognitive impairment in a model of tauopathy. Nrf2, the major transcription factor for damage response pathways and regulators of inflammation, declines with age. Our previous work showed that silencing Nrf2 gives rise to premature senescence in cells and mice. Others have shown that Nrf2 ablation can exacerbate cognitive phenotypes of some AD models. In this study, we aimed to understand the relationship between Nrf2 elimination, senescence, and cognitive impairment in AD, by generating a mouse model expressing a mutant human tau transgene in an Nrf2 knockout (Nrf2KO) background. We assessed senescent cell burden and cognitive decline of P301S mice in the presence and absence of Nrf2. Lastly, we administered 4.5-month-long treatments with two senotherapeutic drugs to analyze their potential to prevent senescent cell burden and cognitive decline: the senolytic drugs dasatinib and quercetin (DQ) and the senomorphic drug rapamycin. Nrf2 loss accelerated the onset of hind-limb paralysis in P301S mice. At 8.5 months of age, P301S mice did not exhibit memory deficits, while P301S mice without Nrf2 were significantly impaired. However, markers of senescence were not elevated by Nrf2 ablation in any of tissues that we examined. Neither drug treatment improved cognitive performance, nor did it reduce expression of senescence markers in brains of P301S mice. Contrarily, rapamycin treatment at the doses used delayed spatial learning and led to a modest decrease in spatial memory. Taken together, our data suggests that the emergence of senescence may be causally associated with onset of cognitive decline in the P301S model, indicate that Nrf2 protects brain function in a model of AD through mechanisms that may include, but do not require the inhibition of senescence, and suggest possible limitations for DQ and rapamycin as therapies for AD.
Collapse
Affiliation(s)
- Ruben Riordan
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, 351 Linus Pauling Science Center, Corvallis, OR, 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Wang Rong
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, 351 Linus Pauling Science Center, Corvallis, OR, 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Zhen Yu
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, 351 Linus Pauling Science Center, Corvallis, OR, 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Grace Ross
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, 351 Linus Pauling Science Center, Corvallis, OR, 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Juno Valerio
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, 351 Linus Pauling Science Center, Corvallis, OR, 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Jovita Dimas-Muñoz
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, 351 Linus Pauling Science Center, Corvallis, OR, 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Valeria Heredia
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, 351 Linus Pauling Science Center, Corvallis, OR, 97331, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Kathy Magnusson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Veronica Galvan
- Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, 740 Stanton L. Young Bvd BMSB 821, Oklahoma City, OK, 73104, USA.
- Oklahoma City VA Medical Center, US Department of Veterans Affairs, Oklahoma City, OK, USA.
| | - Viviana I Perez
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, 351 Linus Pauling Science Center, Corvallis, OR, 97331, USA.
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
19
|
Zhang G, Liu H, Xue T, Kong X, Tian D, Luo L, Yang Y, Xu K, Wei Y, Zhuang Z. Ribavirin extends the lifespan of Caenorhabditis elegans through AMPK-TOR Signaling. Eur J Pharmacol 2023; 946:175548. [PMID: 36706801 DOI: 10.1016/j.ejphar.2023.175548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Aging is a process accompanied by widespread degenerative changes which are a major cause of human disease and disability. One goal of aging research is to develop interventions or drugs that can extend organism lifespan and treat age-related diseases. Here, we report the identification of a broad spectrum anti-viral agent, ribavirin, as a potential pharmacological aging intervention. Ribavirin extended the lifespan and healthspan of Caenorhabditis elegans by inhibiting Target of Rapamycin (TOR) signaling and activating AMP-activated protein kinase (AMPK). Moreover, our data indicate that ribavirin activated AMPK by reducing the levels of adenosine triphosphate (ATP) and lysosomal v-ATPase-Ragulator-AXIN Complex. Thus, our studies successfully identify ribavirin as a potential anti-aging drug, and indicate that its anti-aging effect is mediated via AMPK-TOR signaling.
Collapse
Affiliation(s)
- Ganlan Zhang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, China
| | - Hui Liu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, China
| | - Ting Xue
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, China
| | - Xiangming Kong
- Changzhou Railway Higher Vocational and Technical School, Changzhou, 213011, China
| | - Dongmei Tian
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, China
| | - Libo Luo
- Changzhou Traditional Chinese Medicine Hospital, Changzhou, 213004, China
| | - Yanhua Yang
- Changzhou No.7 People's Hospital, Changzhou, 213011, China
| | - Keqing Xu
- Changzhou No.7 People's Hospital, Changzhou, 213011, China
| | - Youheng Wei
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Ziheng Zhuang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou, 213164, China; Changzhou Traditional Chinese Medicine Hospital, Changzhou, 213004, China.
| |
Collapse
|
20
|
López-Otín C, Pietrocola F, Roiz-Valle D, Galluzzi L, Kroemer G. Meta-hallmarks of aging and cancer. Cell Metab 2023; 35:12-35. [PMID: 36599298 DOI: 10.1016/j.cmet.2022.11.001] [Citation(s) in RCA: 230] [Impact Index Per Article: 115.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 01/05/2023]
Abstract
Both aging and cancer are characterized by a series of partially overlapping "hallmarks" that we subject here to a meta-analysis. Several hallmarks of aging (i.e., genomic instability, epigenetic alterations, chronic inflammation, and dysbiosis) are very similar to specific cancer hallmarks and hence constitute common "meta-hallmarks," while other features of aging (i.e., telomere attrition and stem cell exhaustion) act likely to suppress oncogenesis and hence can be viewed as preponderantly "antagonistic hallmarks." Disabled macroautophagy and cellular senescence are two hallmarks of aging that exert context-dependent oncosuppressive and pro-tumorigenic effects. Similarly, the equivalence or antagonism between aging-associated deregulated nutrient-sensing and cancer-relevant alterations of cellular metabolism is complex. The agonistic and antagonistic relationship between the processes that drive aging and cancer has bearings for the age-related increase and oldest age-related decrease of cancer morbidity and mortality, as well as for the therapeutic management of malignant disease in the elderly.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
21
|
mTOR contributes to endothelium-dependent vasorelaxation by promoting eNOS expression and preventing eNOS uncoupling. Commun Biol 2022; 5:726. [PMID: 35869262 PMCID: PMC9307829 DOI: 10.1038/s42003-022-03653-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
Clinically used inhibitors of mammalian target of rapamycin (mTOR) negatively impacts endothelial-dependent vasodilatation (EDD) through unidentified mechanisms. Here we show that either the endothelium-specific deletion of Mtor to inhibit both mTOR complexes, or depletion of Raptor or Rictor to disrupt mTORC1 or mTORC2, causes impaired EDD, accompanied by reduced NO in the serum of mice. Consistently, inhibition of mTOR decreases NO production by human and mouse EC. Specifically, inhibition of mTORC1 suppresses eNOS gene expression, due to impairment in p70S6K-mediated posttranscriptional regulation of the transcription factor KLF2 expression. In contrast to mTORC1 inhibition, a positive-feedback between MAPK (p38 and JNK) activation and Nox2 upregulation contributes to the excessive generation of reactive oxygen species (ROS), which causes eNOS uncoupling and decreased NO bioavailability in mTORC2-inhibited EC. Adeno-associated virus-mediated EC-specific overexpression of KLF2 or suppression of Nox2 restores EDD function in endothelial mTORC1- or mTORC2-inhibited mice. The endothelium-specific inhibition of either of mammalian target of rapamycin (mTOR) complexes impairs endothelial-dependent vasodilatation (EDD), accompanied by decreased nitric oxide bioavailability in both human and mice endothelial cells.
Collapse
|
22
|
Repurposing SGLT-2 Inhibitors to Target Aging: Available Evidence and Molecular Mechanisms. Int J Mol Sci 2022; 23:ijms232012325. [PMID: 36293181 PMCID: PMC9604287 DOI: 10.3390/ijms232012325] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Caloric restriction promotes longevity in multiple animal models. Compounds modulating nutrient-sensing pathways have been suggested to reproduce part of the beneficial effect of caloric restriction on aging. However, none of the commonly studied caloric restriction mimetics actually produce a decrease in calories. Sodium-glucose cotransporter 2 inhibitors (SGLT2-i) are a class of drugs which lower glucose by promoting its elimination through urine, thus inducing a net loss of calories. This effect promotes a metabolic shift at the systemic level, fostering ketones and fatty acids utilization as glucose-alternative substrates, and is accompanied by a modulation of major nutrient-sensing pathways held to drive aging, e.g., mTOR and the inflammasome, overall resembling major features of caloric restriction. In addition, preliminary experimental data suggest that SGLT-2i might also have intrinsic activities independent of their systemic effects, such as the inhibition of cellular senescence. Consistently, evidence from both preclinical and clinical studies have also suggested a marked ability of SGLT-2i to ameliorate low-grade inflammation in humans, a relevant driver of aging commonly referred to as inflammaging. Considering also the amount of data from clinical trials, observational studies, and meta-analyses suggesting a tangible effect on age-related outcomes, such as cardiovascular diseases, heart failure, kidney disease, and all-cause mortality also in patients without diabetes, here we propose a framework where at least part of the benefit provided by SGLT-2i is mediated by their ability to blunt the drivers of aging. To support this postulate, we synthesize available data relative to the effect of this class on: 1- animal models of healthspan and lifespan; 2- selected molecular pillars of aging in preclinical models; 3- biomarkers of aging and especially inflammaging in humans; and 4- COVID-19-related outcomes. The burden of evidence might prompt the design of studies testing the potential employment of this class as anti-aging drugs.
Collapse
|
23
|
Ekwudo MN, Malek MC, Anderson CE, Yampolsky LY. The interplay between prior selection, mild intermittent exposure, and acute severe exposure in phenotypic and transcriptional response to hypoxia. Ecol Evol 2022; 12:e9319. [PMID: 36248677 PMCID: PMC9548574 DOI: 10.1002/ece3.9319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia has profound and diverse effects on aerobic organisms, disrupting oxidative phosphorylation and activating several protective pathways. Predictions have been made that exposure to mild intermittent hypoxia may be protective against more severe exposure and may extend lifespan. Here we report the lifespan effects of chronic, mild, intermittent hypoxia, and short-term survival in acute severe hypoxia in four clones of Daphnia magna originating from either permanent or intermittent habitats. We test the hypothesis that acclimation to chronic mild intermittent hypoxia can extend lifespan through activation of antioxidant and stress-tolerance pathways and increase survival in acute severe hypoxia through activation of oxygen transport and storage proteins and adjustment to carbohydrate metabolism. Unexpectedly, we show that chronic hypoxia extended the lifespan in the two clones originating from intermittent habitats but had the opposite effect in the two clones from permanent habitats, which also showed lower tolerance to acute hypoxia. Exposure to chronic hypoxia did not protect against acute hypoxia; to the contrary, Daphnia from the chronic hypoxia treatment had lower acute hypoxia tolerance than normoxic controls. Few transcripts changed their abundance in response to the chronic hypoxia treatment in any of the clones. After 12 h of acute hypoxia treatment, the transcriptional response was more pronounced, with numerous protein-coding genes with functionality in oxygen transport, mitochondrial and respiratory metabolism, and gluconeogenesis, showing upregulation. While clones from intermittent habitats showed somewhat stronger differential expression in response to acute hypoxia than those from permanent habitats, contrary to predictions, there were no significant hypoxia-by-habitat of origin or chronic-by-acute treatment interactions. GO enrichment analysis revealed a possible hypoxia tolerance role by accelerating the molting cycle and regulating neuron survival through upregulation of cuticular proteins and neurotrophins, respectively.
Collapse
Affiliation(s)
- Millicent N. Ekwudo
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Morad C. Malek
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Cora E. Anderson
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Lev Y. Yampolsky
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
| |
Collapse
|
24
|
Ogienko AA, Omelina ES, Bylino OV, Batin MA, Georgiev PG, Pindyurin AV. Drosophila as a Model Organism to Study Basic Mechanisms of Longevity. Int J Mol Sci 2022; 23:11244. [PMID: 36232546 PMCID: PMC9569508 DOI: 10.3390/ijms231911244] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The spatio-temporal regulation of gene expression determines the fate and function of various cells and tissues and, as a consequence, the correct development and functioning of complex organisms. Certain mechanisms of gene activity regulation provide adequate cell responses to changes in environmental factors. Aside from gene expression disorders that lead to various pathologies, alterations of expression of particular genes were shown to significantly decrease or increase the lifespan in a wide range of organisms from yeast to human. Drosophila fruit fly is an ideal model system to explore mechanisms of longevity and aging due to low cost, easy handling and maintenance, large number of progeny per adult, short life cycle and lifespan, relatively low number of paralogous genes, high evolutionary conservation of epigenetic mechanisms and signalling pathways, and availability of a wide range of tools to modulate gene expression in vivo. Here, we focus on the organization of the evolutionarily conserved signaling pathways whose components significantly influence the aging process and on the interconnections of these pathways with gene expression regulation.
Collapse
Affiliation(s)
- Anna A. Ogienko
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| | - Evgeniya S. Omelina
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
- Laboratory of Biotechnology, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
| | - Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Mikhail A. Batin
- Open Longevity, 15260 Ventura Blvd., Sherman Oaks, Los Angeles, CA 91403, USA
| | - Pavel G. Georgiev
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology RAS, 119334 Moscow, Russia
| | - Alexey V. Pindyurin
- Department of Regulation of Genetic Processes, Institute of Molecular and Cellular Biology SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
25
|
Nutrient sensing pathways regulating adult reproductive diapause in C. elegans. PLoS One 2022; 17:e0274076. [PMID: 36112613 PMCID: PMC9480990 DOI: 10.1371/journal.pone.0274076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Genetic and environmental manipulations, such as dietary restriction, can improve both health span and lifespan in a wide range of organisms, including humans. Changes in nutrient intake trigger often overlapping metabolic pathways that can generate distinct or even opposite outputs depending on several factors, such as when dietary restriction occurs in the lifecycle of the organism or the nature of the changes in nutrients. Due to the complexity of metabolic pathways and the diversity in outputs, the underlying mechanisms regulating diet-associated pro-longevity are not yet well understood. Adult reproductive diapause (ARD) in the model organism Caenorhabditis elegans is a dietary restriction model that is associated with lengthened lifespan and reproductive potential. To explore the metabolic pathways regulating ARD in greater depth, we performed a candidate-based genetic screen analyzing select nutrient-sensing pathways to determine their contribution to the regulation of ARD. Focusing on the three phases of ARD (initiation, maintenance, and recovery), we found that ARD initiation is regulated by fatty acid metabolism, sirtuins, AMPK, and the O-linked N-acetyl glucosamine (O-GlcNAc) pathway. Although ARD maintenance was not significantly influenced by the nutrient sensors in our screen, we found that ARD recovery was modulated by energy sensing, stress response, insulin-like signaling, and the TOR pathway. Further investigation of downstream targets of NHR-49 suggest the transcription factor influences ARD initiation through the fatty acid β-oxidation pathway. Consistent with these findings, our analysis revealed a change in levels of neutral lipids associated with ARD entry defects. Our findings identify conserved genetic pathways required for ARD entry and recovery and uncover genetic interactions that provide insight into the role of OGT and OGA.
Collapse
|
26
|
Mołoń M, Stępień K, Kielar P, Vasileva B, Lozanska B, Staneva D, Ivanov P, Kula-Maximenko M, Molestak E, Tchórzewski M, Miloshev G, Georgieva M. Actin-Related Protein 4 and Linker Histone Sustain Yeast Replicative Ageing. Cells 2022; 11:cells11172754. [PMID: 36078161 PMCID: PMC9454676 DOI: 10.3390/cells11172754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Ageing is accompanied by dramatic changes in chromatin structure organization and genome function. Two essential components of chromatin, the linker histone Hho1p and actin-related protein 4 (Arp4p), have been shown to physically interact in Saccharomyces cerevisiae cells, thus maintaining chromatin dynamics and function, as well as genome stability and cellular morphology. Disrupting this interaction has been proven to influence the stability of the yeast genome and the way cells respond to stress during chronological ageing. It has also been proven that the abrogated interaction between these two chromatin proteins elicited premature ageing phenotypes. Alterations in chromatin compaction have also been associated with replicative ageing, though the main players are not well recognized. Based on this knowledge, here, we examine how the interaction between Hho1p and Arp4p impacts the ageing of mitotically active yeast cells. For this purpose, two sets of strains were used—haploids (WT(n), arp4, hho1Δ and arp4 hho1Δ) and their heterozygous diploid counterparts (WT(2n), ARP4/arp4, HHO1/hho1Δ and ARP4 HHO1/arp4 hho1Δ)—for the performance of extensive morphological and physiological analyses during replicative ageing. These analyses included a comparative examination of the yeast cells’ chromatin structure, proliferative and reproductive potential, and resilience to stress, as well as polysome profiles and chemical composition. The results demonstrated that the haploid chromatin mutants arp4 and arp4 hho1Δ demonstrated a significant reduction in replicative and total lifespan. These findings lead to the conclusion that the importance of a healthy interaction between Arp4p and Hho1p in replicative ageing is significant. This is proof of the concomitant importance of Hho1p and Arp4p in chronological and replicative ageing.
Collapse
Affiliation(s)
- Mateusz Mołoń
- Department of Biochemistry and Cell Biology, Institute of Biology and Biotechnology, University of Rzeszow, 35-601 Rzeszow, Poland
- Correspondence: (M.M.); (M.G.)
| | - Karolina Stępień
- Department of Biochemistry and Cell Biology, Institute of Biology and Biotechnology, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Patrycja Kielar
- Department of Biochemistry and Cell Biology, Institute of Biology and Biotechnology, University of Rzeszow, 35-601 Rzeszow, Poland
| | - Bela Vasileva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Bonka Lozanska
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Dessislava Staneva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Penyo Ivanov
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Monika Kula-Maximenko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, 30-239 Kraków, Poland
| | - Eliza Molestak
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Marek Tchórzewski
- Department of Molecular Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - George Miloshev
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
| | - Milena Georgieva
- Laboratory of Yeast Molecular Genetics, Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, 1123 Sofia, Bulgaria
- Correspondence: (M.M.); (M.G.)
| |
Collapse
|
27
|
Tahanzadeh N, Knop M, Seidler Y, Dirndorfer S, Lürsen K, Bruchhaus I, Lang R, Rimbach G, Roeder T. An aqueous extract of the brown alga Eisenia bicyclis extends lifespan in a sex-specific manner by interfering with the Tor-FoxO axis. Aging (Albany NY) 2022; 14:6427-6448. [PMID: 35980274 PMCID: PMC9467403 DOI: 10.18632/aging.204218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/21/2022] [Indexed: 01/24/2023]
Abstract
Food has a decisive influence on our health, to the extent where even lifespan can be directly affected by it. In the present work, we have examined the effects of an aqueous extract of the marine brown alga Eisenia bicyclis in terms of its potential to extend lifespan. For this purpose, we used the fruit fly Drosophila melanogaster as a model. The experiments showed that small amounts of Eisenia extract can extend lifespan by up to 40%. This effect is not only related to the median but also to the maximum lifespan. Interestingly, this life-extending effect is sex-specific, i.e. it occurs exclusively in females. Even under stressful nutritional conditions such as a high sugar diet, this effect is detectable. Mechanistic studies showed that this life-prolonging effect depends on a functional Tor and a functional FoxO signaling pathway. It can be concluded that components of the Eisenia extract prolong lifespan by interacting with the Tor-FoxO axis. This study may serve to stimulate further investigations, which on the one hand show such a life-prolonging effect also in other organisms and on the other hand identify the substances responsible for this effect. Finally, it may also encourage the increased use of arame as a health-promoting food supplement.
Collapse
Affiliation(s)
- Navid Tahanzadeh
- Kiel University, Department Molecular Physiology, Zoology, Kiel, Germany
| | - Mirjam Knop
- Kiel University, Department Molecular Physiology, Zoology, Kiel, Germany
| | - Yvonne Seidler
- Kiel University, Institute of Human Nutrition and Food Science, Kiel, Germany
| | | | - Kai Lürsen
- Kiel University, Institute of Human Nutrition and Food Science, Kiel, Germany
| | - Iris Bruchhaus
- Bernhard-Nocht-Institute for Tropical Medicine, Department Parasitology, Hamburg, Germany
| | - Roman Lang
- Leibniz Institute for Food Systems Biology, TU Munich, Munich, Germany
| | - Gerald Rimbach
- Kiel University, Institute of Human Nutrition and Food Science, Kiel, Germany
| | - Thomas Roeder
- Kiel University, Department Molecular Physiology, Zoology, Kiel, Germany
- DZL, German Center for Lung Research, ARCN, Airway Research Center North, Kiel, Germany
| |
Collapse
|
28
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
29
|
Tessema B, Sack U, König B, Serebrovska Z, Egorov E. Effects of Intermittent Hypoxia in Training Regimes and in Obstructive Sleep Apnea on Aging Biomarkers and Age-Related Diseases: A Systematic Review. Front Aging Neurosci 2022; 14:878278. [PMID: 35677200 PMCID: PMC9168371 DOI: 10.3389/fnagi.2022.878278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Several studies have assessed the effects of intermittent hypoxia-normoxia training (IHNT), intermittent hypoxia-hyperoxia training (IHHT), and obstructive sleep apnea (OSA) on aging and age-related diseases in humans; however, the results remain contradictory. Therefore, this review aims to systematically summarize the available studies on the effects of IHNT, IHHT, and OSA on aging and age-related diseases. Relevant studies were searched from PubMed, Google Scholar, Cochrane Library databases, and through manual searching from reference lists of eligible studies. A total of 38 eligible studies were included in this systematic review. IHHT and IHNT provide positive effects on several age-related parameters including quality of life, cognitive and physical functions, plasma level of glucose and cholesterol/LDL, systolic blood pressure, red blood cells, and inflammation. Moreover, moderate intermittent hypoxia induces telomerase reverse transcriptase (TERT) activity and telomere stabilization, delays induction of senescence-associated markers expression and senescence-associated β-galactosidase, upregulates pluripotent marker (Oct4), activates a metabolic shift, and raises resistance to pro-apoptotic stimuli. On the contrary, intermittent hypoxia in OSA causes hypertension, metabolic syndrome, vascular function impairment, quality of life and cognitive scores reduction, advanced brain aging, increase in insulin resistance, plasma hydrogen peroxide, GSH, IL-6, hsCRP, leptin, and leukocyte telomere shortening. Thus, it can be speculated that the main factor that determines the direction of the intermittent hypoxia action is the intensity and duration of exposure. There is no direct study to prove that IHNT/IHHT actually increases life expectancy in humans. Therefore, further study is needed to investigate the actual effect of IHNT/IHHT on aging in humans.Systematic Review Registrationwww.crd.york.ac.uk/prospero, identifier CRD42022298499.
Collapse
Affiliation(s)
- Belay Tessema
- Institute of Clinical Immunology, Faculty of Medicine, Leipzig University, Leipzig, Germany
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Faculty of Medicine, Leipzig University, Leipzig, Germany
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- *Correspondence: Belay Tessema, ,
| | - Ulrich Sack
- Institute of Clinical Immunology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Brigitte König
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Zoya Serebrovska
- Department of General and Molecular Pathophysiology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Egor Egorov
- IPAM Institute for Preventive and Anti-Aging Medicine, Berlin, Germany
| |
Collapse
|
30
|
Intravenous route to choroidal neovascularization by macrophage-disguised nanocarriers for mTOR modulation. Acta Pharm Sin B 2022; 12:2506-2521. [PMID: 35646523 PMCID: PMC9136612 DOI: 10.1016/j.apsb.2021.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/20/2021] [Accepted: 10/15/2021] [Indexed: 11/22/2022] Open
Abstract
Retinal pigment epithelial (RPE) is primarily impaired in age-related macular degeneration (AMD), leading to progressive loss of photoreceptors and sometimes choroidal neovascularization (CNV). mTOR has been proposed as a promising therapeutic target, while the usage of its specific inhibitor, rapamycin, was greatly limited. To mediate the mTOR pathway in the retina by a noninvasive approach, we developed novel biomimetic nanocomplexes where rapamycin-loaded nanoparticles were coated with cell membrane derived from macrophages (termed as MRaNPs). Taking advantage of the macrophage-inherited property, intravenous injection of MRaNPs exhibited significantly enhanced accumulation in the CNV lesions, thereby increasing the local concentration of rapamycin. Consequently, MRaNPs effectively downregulated the mTOR pathway and attenuate angiogenesis in the eye. Particularly, MRaNPs also efficiently activated autophagy in the RPE, which was acknowledged to rescue RPE in response to deleterious stimuli. Overall, we design and prepare macrophage-disguised rapamycin nanocarriers and demonstrate the therapeutic advantages of employing biomimetic cell membrane materials for treatment of AMD.
Collapse
|
31
|
Känel P, Noll GA, Schroedter K, Naffin E, Kronenberg J, Busswinkel F, Twyman RM, Klämbt C, Prüfer D. The tobacco phosphatidylethanolamine-binding protein NtFT4 increases the lifespan of Drosophila melanogaster by interacting with the proteostasis network. Aging (Albany NY) 2022; 14:2989-3029. [PMID: 35396341 PMCID: PMC9037272 DOI: 10.18632/aging.204005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022]
Abstract
Proteostasis reflects the well-balanced synthesis, trafficking and degradation of cellular proteins. This is a fundamental aspect of the dynamic cellular proteome, which integrates multiple signaling pathways, but it becomes increasingly error-prone during aging. Phosphatidylethanolamine-binding proteins (PEBPs) are highly conserved regulators of signaling networks and could therefore affect aging-related processes. To test this hypothesis, we expressed PEPBs in a heterologous context to determine their ectopic activity. We found that heterologous expression of the tobacco (Nicotiana tabacum) PEBP NtFT4 in Drosophila melanogaster significantly increased the lifespan of adult flies and reduced age-related locomotor decline. Similarly, overexpression of the Drosophila ortholog CG7054 increased longevity, whereas its suppression by RNA interference had the opposite effect. In tobacco, NtFT4 acts as a floral regulator by integrating environmental and intrinsic stimuli to promote the transition to reproductive growth. In Drosophila, NtFT4 engaged distinct targets related to proteostasis, such as HSP26. In older flies, it also prolonged Hsp26 gene expression, which promotes longevity by maintaining protein integrity. In NtFT4-transgenic flies, we identified deregulated genes encoding proteases that may contribute to proteome stability at equilibrium. Our results demonstrate that the expression of NtFT4 influences multiple aspects of the proteome maintenance system via both physical interactions and transcriptional regulation, potentially explaining the aging-related phenotypes we observed.
Collapse
Affiliation(s)
- Philip Känel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Gundula A. Noll
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Katrin Schroedter
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Elke Naffin
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Julia Kronenberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Franziska Busswinkel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | | | - Christian Klämbt
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
32
|
Gáliková M, Klepsatel P. Endocrine control of glycogen and triacylglycerol breakdown in the fly model. Semin Cell Dev Biol 2022; 138:104-116. [PMID: 35393234 DOI: 10.1016/j.semcdb.2022.03.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022]
Abstract
Over the last decade, the combination of genetics, transcriptomic and proteomic approaches yielded substantial insights into the mechanisms behind the synthesis and breakdown of energy stores in the model organisms. The fruit fly Drosophila melanogaster has been particularly useful to unravel genetic regulations of energy metabolism. Despite the considerable evolutionary distance between humans and flies, the energy storage organs, main metabolic pathways, and even their genetic regulations remained relatively conserved. Glycogen and fat are universal energy reserves used in all animal phyla and several of their endocrine regulators, such as the insulin pathway, are highly evolutionarily conserved. Nevertheless, some of the factors inducing catabolism of energy stores have diverged significantly during evolution. Moreover, even within a single insect species, D. melanogaster, there are substantial developmental and context-dependent variances in the regulation of energy stores. These differences include, among others, the endocrine pathways that govern the catabolic events or the predominant fuel which is utilized for the given process. For example, many catabolic regulators that control energy reserves in adulthood seem to be largely dispensable for energy mobilization during development. In this review, we focus on a selection of the most important catabolic regulators from the group of peptide hormones (Adipokinetic hormone, Corazonin), catecholamines (octopamine), steroid hormones (20-hydroxyecdysone), and other factors (extracellular adenosine, regulators of lipase Brummer). We discuss their roles in the mobilization of energy reserves for processes such as development through non-feeding stages, flight or starvation survival. Finally, we conclude with future perspectives on the energy balance research in the fly model.
Collapse
Affiliation(s)
- Martina Gáliková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia.
| | - Peter Klepsatel
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia; Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| |
Collapse
|
33
|
Wang Y, Punzo C, Ash JD, Lobanova ES. Tsc2 knockout counteracts ubiquitin-proteasome system insufficiency and delays photoreceptor loss in retinitis pigmentosa. Proc Natl Acad Sci U S A 2022; 119:e2118479119. [PMID: 35275792 PMCID: PMC8931319 DOI: 10.1073/pnas.2118479119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/12/2022] [Indexed: 01/18/2023] Open
Abstract
SignificanceStudies in multiple experimental systems have demonstrated that an increase in proteolytic capacity of post-mitotic cells improves cellular resistance to a variety of stressors, delays cellular aging and senescence. Therefore, approaches to increase the ability of cells to degrade misfolded proteins could potentially be applied to the treatment of a broad spectrum of human disorders. An example would be retinal degenerations, which cause irreversible loss of vision and are linked to impaired protein degradation. This study suggests that chronic activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway in degenerating photoreceptor neurons could stimulate the degradation of ubiquitinated proteins and enhance proteasomal activity through phosphorylation.
Collapse
Affiliation(s)
- Yixiao Wang
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610
| | - Claudio Punzo
- Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA 01655
| | - John D. Ash
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610
| | - Ekaterina S. Lobanova
- Department of Ophthalmology, University of Florida, Gainesville, FL 32610
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610
| |
Collapse
|
34
|
Ambili Unni P, Pillai GG, Sajitha Lulu S. Developing a molecular roadmap to Narasimha Rasayana: A system Polypharmacology approach. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Whole Blood Transcriptional Fingerprints of High-Grade Glioma and Longitudinal Tumor Evolution under Carbon Ion Radiotherapy. Cancers (Basel) 2022; 14:cancers14030684. [PMID: 35158950 PMCID: PMC8833402 DOI: 10.3390/cancers14030684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Particle therapy with carbon ions is a promising novel option for the treatment of recurrent high-grade glioma (rHGG). Lack of initial and sequential biopsies limits the investigation of rHGG evolution under therapy. We hypothesized that peripheral blood transcriptome derived from liquid biopsies (lbx) as a minimal invasive method may provide a useful decision support for identification of glioma grade and provide novel means for longitudinal molecular monitoring of tumor evolution under carbon ion irradiation (CIR). We demonstrate feasibility and report patient, tumor and treatment fingerprints in whole blood transcriptomes of rHGG patients with pre-CIR and three post-CIR time points. Abstract Purpose: To assess the value of whole blood transcriptome data from liquid biopsy (lbx) in recurrent high-grade glioma (rHGG) patients for longitudinal molecular monitoring of tumor evolution under carbon ion irradiation (CIR). Methods: Whole blood transcriptome (WBT) analysis (Illumina HumanHT-12 Expression BeadChips) was performed in 14 patients with rHGG pre re-irradiation (reRT) with CIR and 3, 6 and 9 weeks post-CIR (reRT grade III:5, 36%, IV:9, 64%). Patients were irradiated with 30, 33, 36 GyRBE (n = 5, 6, 3) in 3GyRBE per fraction. Results: WTB analysis showed stable correlation with treatment characteristics and patients tumor grade, indicating a preserved tumor origin specific as well as dynamic transcriptional fingerprints of peripheral blood cells. Initial histopathologic tumor grade was indirectly associated with TMEM173 (STING), DNA-repair (ATM, POLD4) and hypoxia related genes. DNA-repair, chromatin remodeling (LIG1, SMARCD1) and immune response (FLT3LG) pathways were affected post-CIR. Longitudinal WTB fingerprints identified two distinct trajectories of rHGG evolution, characterized by differential and prognostic CRISPLD2 expression pre-CIR. Conclusions: Lbx based WTB analysis holds the potential for molecular stratification of rHGG patients and therapy monitoring. We demonstrate the feasibility of the peripheral blood transcriptome as a sentinel organ for identification of patient, tumor characteristics and CIR specific fingerprints in rHGG.
Collapse
|
36
|
Tuning up an aged clock: Circadian clock regulation in metabolism and aging. TRANSLATIONAL MEDICINE OF AGING 2022. [DOI: 10.1016/j.tma.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
37
|
Pradas I, Jové M, Huynh K, Ingles M, Borras C, Mota-Martorell N, Galo-Licona JD, Puig J, Viña J, Meikle PJ, Pamplona R. Long-lived humans have a unique plasma sphingolipidome. J Gerontol A Biol Sci Med Sci 2021; 77:728-735. [PMID: 34871393 PMCID: PMC8974335 DOI: 10.1093/gerona/glab360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Indexed: 11/12/2022] Open
Abstract
A species-specific lipidome profile is an inherent feature linked to longevity in the animal kingdom. However, there is a lack of lipidomic studies on human longevity. Here, we use mass spectrometry-based lipidomics to detect and quantify 151 sphingolipid molecular species and use these to define a phenotype of healthy humans with exceptional life span. Our results demonstrate that this profile specifically comprises a higher content of complex glycosphingolipids (hexosylceramides and gangliosides), and lower levels of ceramide species from the de novo pathway, sphingomyelin and sulfatide; while for ceramide-derived signaling compounds, their content remains unchanged. Our findings suggest that structural glycosphingolipids may be more relevant to achieve the centenarian condition than signaling sphingolipids.
Collapse
Affiliation(s)
- Irene Pradas
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida 25198, Catalonia, Spain
| | - Mariona Jové
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida 25198, Catalonia, Spain
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia
| | - Marta Ingles
- Department of Physiology, University of Valencia, Valencia 46004, Spain
| | - Consuelo Borras
- Department of Physiology, University of Valencia, Valencia 46004, Spain
| | - Natalia Mota-Martorell
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida 25198, Catalonia, Spain
| | - Jose Daniel Galo-Licona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida 25198, Catalonia, Spain
| | - Josep Puig
- Girona Biomedical Research Institute (IDIBGI), Hospital Universitari Dr Josep Trueta, Girona 17007, Catalonia, Spain
| | - Jose Viña
- Department of Physiology, University of Valencia, Valencia 46004, Spain
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Lleida Biomedical Research Institute (UdL-IRBLleida), Lleida 25198, Catalonia, Spain
| |
Collapse
|
38
|
Investigation of the hepatic mTOR/S6K1/SREBP1 signalling pathway in rats at different ages: from neonates to adults. Mol Biol Rep 2021; 48:7415-7422. [PMID: 34655015 DOI: 10.1007/s11033-021-06757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Dysfunctions in the lipogenic process controlled by the hepatic mTOR/S6K1/SREBP-1c signaling pathway may contribute to the pathogenesis of various chronic diseases. In the present study, we aimed to determine age-related changes in the mTOR/S6K1/SREBP1 pathway in rat liver tissues. METHODS AND RESULTS We performed Western Blot analysis to determine age-related changes in the mTOR/S6K1/SREBP1 pathway in Sprague Dawley male rats liver tissues of six different age groups representing neonatal, infant, weaning, puberty, young adult, adult life periods, and Oil Red O staining to evaluate age-related lipid accumulation. We observed an increase in Akt and p-Akt levels with age in compared to the 0-day-old group. Total mTOR and SREBP1 expression increased from the 0-day-old to the 28-day-old group but decreased in the following age groups. p-mTOR and p-S6K1 levels in the 0-day-old group were higher than the other groups. S6K1 expression was lowest in the 0-day-old group and showed changes among the age groups. Lipid accumulation was seen in liver sections taken from the 12-month-old group. mTOR/S6K1/SREBP1 pathway expression showed changes with age during the neonatal-adult life cycle stages in rat liver tissues. CONCLUSION We suggest that understanding the molecular mechanisms age-related changes of lipogenesis function is necessary to contribute to the development of therapeutic approaches.
Collapse
|
39
|
Schoberleitner I, Bauer I, Huang A, Andreyeva EN, Sebald J, Pascher K, Rieder D, Brunner M, Podhraski V, Oemer G, Cázarez-García D, Rieder L, Keller MA, Winkler R, Fyodorov DV, Lusser A. CHD1 controls H3.3 incorporation in adult brain chromatin to maintain metabolic homeostasis and normal lifespan. Cell Rep 2021; 37:109769. [PMID: 34610319 PMCID: PMC8607513 DOI: 10.1016/j.celrep.2021.109769] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 01/31/2023] Open
Abstract
The ATP-dependent chromatin remodeling factor CHD1 is essential for the assembly of variant histone H3.3 into paternal chromatin during sperm chromatin remodeling in fertilized eggs. It remains unclear, however, if CHD1 has a similar role in normal diploid cells. Using a specifically tailored quantitative mass spectrometry approach, we show that Chd1 disruption results in reduced H3.3 levels in heads of Chd1 mutant flies. Chd1 deletion perturbs brain chromatin structure in a similar way as H3.3 deletion and leads to global de-repression of transcription. The physiological consequences are reduced food intake, metabolic alterations, and shortened lifespan. Notably, brain-specific CHD1 expression rescues these phenotypes. We further demonstrate a strong genetic interaction between Chd1 and H3.3 chaperone Hira. Thus, our findings establish CHD1 as a factor required for the assembly of H3.3-containing chromatin in adult cells and suggest a crucial role for CHD1 in the brain as a regulator of organismal health and longevity.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Anming Huang
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Evgeniya N Andreyeva
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Johanna Sebald
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Katharina Pascher
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Dietmar Rieder
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Melanie Brunner
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Valerie Podhraski
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Gregor Oemer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Daniel Cázarez-García
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato 36824, Mexico
| | - Leila Rieder
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Robert Winkler
- Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato 36824, Mexico
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Alexandra Lusser
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria.
| |
Collapse
|
40
|
Devilliers M, Garrido D, Poidevin M, Rubin T, Le Rouzic A, Montagne J. Differential metabolic sensitivity of insulin-like-response- and TORC1-dependent overgrowth in Drosophila fat cells. Genetics 2021; 217:1-12. [PMID: 33683355 DOI: 10.1093/genetics/iyaa010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Glycolysis and fatty acid (FA) synthesis directs the production of energy-carrying molecules and building blocks necessary to support cell growth, although the absolute requirement of these metabolic pathways must be deeply investigated. Here, we used Drosophila genetics and focus on the TOR (Target of Rapamycin) signaling network that controls cell growth and homeostasis. In mammals, mTOR (mechanistic-TOR) is present in two distinct complexes, mTORC1 and mTORC2; the former directly responds to amino acids and energy levels, whereas the latter sustains insulin-like-peptide (Ilp) response. The TORC1 and Ilp signaling branches can be independently modulated in most Drosophila tissues. We show that TORC1 and Ilp-dependent overgrowth can operate independently in fat cells and that ubiquitous over-activation of TORC1 or Ilp signaling affects basal metabolism, supporting the use of Drosophila as a powerful model to study the link between growth and metabolism. We show that cell-autonomous restriction of glycolysis or FA synthesis in fat cells retrains overgrowth dependent on Ilp signaling but not TORC1 signaling. Additionally, the mutation of FASN (Fatty acid synthase) results in a drop in TORC1 but not Ilp signaling, whereas, at the cell-autonomous level, this mutation affects none of these signals in fat cells. These findings thus reveal differential metabolic sensitivity of TORC1- and Ilp-dependent growth and suggest that cell-autonomous metabolic defects might elicit local compensatory pathways. Conversely, enzyme knockdown in the whole organism results in animal death. Importantly, our study weakens the use of single inhibitors to fight mTOR-related diseases and strengthens the use of drug combination and selective tissue-targeting.
Collapse
Affiliation(s)
- Maelle Devilliers
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| | - Damien Garrido
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| | - Mickael Poidevin
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| | - Thomas Rubin
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| | - Arnaud Le Rouzic
- Laboratoire Evolution, Génomes, Comportement et Ecologie, CNRS, Université Paris-Saclay, UMR 9191, F-91190 Gif-sur-Yvette, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| |
Collapse
|
41
|
Hoong CWS, Chua MWJ. SGLT2 Inhibitors as Calorie Restriction Mimetics: Insights on Longevity Pathways and Age-Related Diseases. Endocrinology 2021; 162:6226811. [PMID: 33857309 DOI: 10.1210/endocr/bqab079] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors induce glycosuria, reduce insulin levels, and promote fatty acid oxidation and ketogenesis. By promoting a nutrient deprivation state, SGLT2 inhibitors upregulate the energy deprivation sensors AMPK and SIRT1, inhibit the nutrient sensors mTOR and insulin/IGF1, and modulate the closely linked hypoxia-inducible factor (HIF)-2α/HIF-1α pathways. Phosphorylation of AMPK and upregulation of adiponectin and PPAR-α favor a reversal of the metabolic syndrome which have been linked to suppression of chronic inflammation. Downregulation of insulin/IGF1 pathways and mTOR signaling from a reduction in glucose and circulating amino acids promote cellular repair mechanisms, including autophagy and proteostasis which confer cellular stress resistance and attenuate cellular senescence. SIRT1, another energy sensor activated by NAD+ in nutrient-deficient states, is reciprocally activated by AMPK, and can deacetylate and activate transcription factors, such as PCG-1α, mitochondrial transcription factor A (TFAM), and nuclear factor E2-related factor (NRF)-2, that regulate mitochondrial biogenesis. FOXO3 transcription factor which target genes in stress resistance, is also activated by AMPK and SIRT1. Modulation of these pathways by SGLT2 inhibitors have been shown to alleviate metabolic diseases, attenuate vascular inflammation and arterial stiffness, improve mitochondrial function and reduce oxidative stress-induced tissue damage. Compared with other calorie restriction mimetics such as metformin, rapamycin, resveratrol, and NAD+ precursors, SGLT2 inhibitors appear to be the most promising in the treatment of aging-related diseases, due to their regulation of multiple longevity pathways that closely resembles that achieved by calorie restriction and their established efficacy in reducing cardiovascular events and all-cause mortality. Evidence is compelling for the role of SGLT2 inhibitors as a calorie restriction mimetic in anti-aging therapeutics.
Collapse
Affiliation(s)
- Caroline W S Hoong
- Division of Endocrinology, Department of General Medicine, Woodlands Health Campus, National Healthcare Group Singapore, Woodlands Health Campus Singapore, 768024, Singapore
| | - Marvin W J Chua
- Endocrinology Service, Department of General Medicine, Sengkang General Hospital, SingHealth Group Singapore, Sengkang General Hospital Singapore, 544886, Singapore
| |
Collapse
|
42
|
Lee SJ, Kim SJ, Jo DH, Park KS, Kim JH. Blockade of mTORC1-NOX signaling pathway inhibits TGF-β1-mediated senescence-like structural alterations of the retinal pigment epithelium. FASEB J 2021; 35:e21403. [PMID: 33559185 DOI: 10.1096/fj.202001939rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 11/11/2022]
Abstract
The retinal pigment epithelium (RPE) undergoes characteristic structural changes and epithelial-mesenchymal transition (EMT) during normal aging, which are exacerbated in age-related macular degeneration (AMD). Although the pathogenic mechanisms of aging and AMD remain unclear, transforming growth factor-β1 (TGF-β1) is known to induce oxidative stress, morphometric changes, and EMT as a senescence-promoting factor. In this study, we examined whether intravitreal injection of TGF-β1 into the mouse eye elicits senescence-like morphological alterations in the RPE and if this can be prevented by suppressing mammalian target of rapamycin complex 1 (mTORC1) or NADPH oxidase (NOX) signaling. We verified that intravitreal TGF-β1-induced stress fiber formation and EMT in RPE cells, along with age-associated morphometric changes, including increased variation in cell size and reduced cell density. In RPE cells, exogenous TGF-β1 increased endogenous expression of TGF-β1 and upregulated Smad3-ERK1/2-mTORC1 signaling, increasing reactive oxygen species (ROS) production and EMT. We demonstrated that inhibition of the mTORC1-NOX4 pathway by pretreatment with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an activator of AMP-dependent protein kinase, or GKT137831, a NOX1/4 inhibitor, decreased ROS generation, prevented stress fiber formation, attenuated EMT, and improved the regularity of the RPE structure in vitro and in vivo. These results suggest that intravitreal TGF-β1 injection could be used as a screening model to investigate the aging-related structural and functional changes to the RPE. Furthermore, the regulation of TGF-β-mTORC1-NOX signaling could be a potential therapeutic target for reducing pathogenic alterations in aged RPE and AMD.
Collapse
Affiliation(s)
- Seok Jae Lee
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo-Jin Kim
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea.,Advanced Biomedical Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
43
|
Huot JR, Thompson B, McMullen C, Marino JS, Arthur ST. GSI Treatment Preserves Protein Synthesis in C2C12 Myotubes. Cells 2021; 10:cells10071786. [PMID: 34359954 PMCID: PMC8307118 DOI: 10.3390/cells10071786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
It has been demonstrated that inhibiting Notch signaling through γ-secretase inhibitor (GSI) treatment increases myogenesis, AKT/mTOR signaling, and muscle protein synthesis (MPS) in C2C12 myotubes. The purpose of this study was to determine if GSI-mediated effects on myogenesis and MPS are dependent on AKT/mTOR signaling. C2C12 cells were assessed for indices of myotube formation, anabolic signaling, and MPS following GSI treatment in combination with rapamycin and API-1, inhibitors of mTOR and AKT, respectively. GSI treatment increased several indices of myotube fusion and MPS in C2C12 myotubes. GSI-mediated effects on myotube formation and fusion were completely negated by treatment with rapamycin and API-1. Meanwhile, GSI treatment was able to rescue MPS in C2C12 myotubes exposed to rapamycin or rapamycin combined with API-1. Examination of protein expression revealed that GSI treatment was able to rescue pGSK3β Ser9 despite AKT inhibition by API-1. These findings demonstrate that GSI treatment is able to rescue MPS independent of AKT/mTOR signaling, possibly via GSK3β modulation.
Collapse
Affiliation(s)
- Joshua R. Huot
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (B.T.); (C.M.); (J.S.M.)
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brian Thompson
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (B.T.); (C.M.); (J.S.M.)
| | - Charlotte McMullen
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (B.T.); (C.M.); (J.S.M.)
| | - Joseph S. Marino
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (B.T.); (C.M.); (J.S.M.)
| | - Susan T. Arthur
- Laboratory of Systems Physiology, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (J.R.H.); (B.T.); (C.M.); (J.S.M.)
- Correspondence: ; Tel.: +1-(704)-687-0856
| |
Collapse
|
44
|
Monroy Kuhn JM, Meusemann K, Korb J. Disentangling the aging gene expression network of termite queens. BMC Genomics 2021; 22:339. [PMID: 33975542 PMCID: PMC8114706 DOI: 10.1186/s12864-021-07649-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Background Most insects are relatively short-lived, with a maximum lifespan of a few weeks, like the aging model organism, the fruit-fly Drosophila melanogaster. By contrast, the queens of many social insects (termites, ants and some bees) can live from a few years to decades. This makes social insects promising models in aging research providing insights into how a long reproductive life can be achieved. Yet, aging studies on social insect reproductives are hampered by a lack of quantitative data on age-dependent survival and time series analyses that cover the whole lifespan of such long-lived individuals. We studied aging in queens of the drywood termite Cryptotermes secundus by determining survival probabilities over a period of 15 years and performed transcriptome analyses for queens of known age that covered their whole lifespan. Results The maximum lifespan of C. secundus queens was 13 years, with a median maximum longevity of 11.0 years. Time course and co-expression network analyses of gene expression patterns over time indicated a non-gradual aging pattern. It was characterized by networks of genes that became differentially expressed only late in life, namely after ten years, which associates well with the median maximum lifespan for queens. These old-age gene networks reflect processes of physiological upheaval. We detected strong signs of stress, decline, defense and repair at the transcriptional level of epigenetic control as well as at the post-transcriptional level with changes in transposable element activity and the proteostasis network. The latter depicts an upregulation of protein degradation, together with protein synthesis and protein folding, processes which are often down-regulated in old animals. The simultaneous upregulation of protein synthesis and autophagy is indicative of a stress-response mediated by the transcription factor cnc, a homolog of human nrf genes. Conclusions Our results show non-linear senescence with a rather sudden physiological upheaval at old-age. Most importantly, they point to a re-wiring in the proteostasis network and stress as part of the aging process of social insect queens, shortly before queens die. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07649-4.
Collapse
Affiliation(s)
- José Manuel Monroy Kuhn
- Department of Evolutionary Biology & Ecology, Institute of Biology I, Albert Ludwig University of Freiburg, Hauptstr. 1, D-79104, Freiburg (i. Brsg.), Germany. .,Computational Discovery Research, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, D-85764, Neuherberg, Germany.
| | - Karen Meusemann
- Department of Evolutionary Biology & Ecology, Institute of Biology I, Albert Ludwig University of Freiburg, Hauptstr. 1, D-79104, Freiburg (i. Brsg.), Germany.,Australian National Insect Collection, CSIRO National Research Collections Australia, Clunies Ross Street, Acton, ACT 2601, Canberra, Australia
| | - Judith Korb
- Department of Evolutionary Biology & Ecology, Institute of Biology I, Albert Ludwig University of Freiburg, Hauptstr. 1, D-79104, Freiburg (i. Brsg.), Germany.
| |
Collapse
|
45
|
Xiong S, Yu K, Yao H, Wang F, Fang Q, Song Q, Ye G. Effects of sugar sources on adult longevity, survival and related gene expression in an endoparasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae). PEST MANAGEMENT SCIENCE 2021; 77:1282-1291. [PMID: 33063928 DOI: 10.1002/ps.6141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/21/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Adult parasitic wasps take sugars to meet their energy needs and display different lifespans and fertility in response to different sugar sources. Pteromalus puparum is an endoparasitoid with a wide range of hosts, including many lepidopteran pests. As a potential natural enemy resource, the availability of sugar sources has profound effects for wasp applications and host populations dynamics. RESULTS We assessed the effect of feeding sucrose and honey on the lifespan of P. puparum in the range 0-40% (w/v). The results indicated a statistically significant positive effect of sucrose and honey solutions on the lifespan of P. puparum female adults. Correlation analyses confirmed a strong positive correlation between high concentrations of sugar and extended lifespan. The optimum concentration of sucrose solution for wasps was 20%, while 10% for honey. Then, we examined the expression patterns of 15 lifespan-related genes. The results showed that the relative expression levels of 14 genes were significantly correlated with the mean lifespan of sucrose-fed wasps, and six genes correlated with the mean lifespan of honey-fed wasps. In addition, the models for lifespan prediction were constructed. CONCLUSION We elaborated the quantitative effects of two sugar sources (sucrose and honey) on P. puparum lifespan, investigated the expression patterns of lifespan-related genes when fed different sugar sources, and developed round lifespan prediction models accordingly. This study provides a novel tool for studying the longevity regulating mechanisms of parasitic wasps, and may be instructive for mass-production of parasitoids as biological control agents. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shijiao Xiong
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Kaili Yu
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Suvorov A, Salemme V, McGaunn J, Poluyanoff A, Teffera M, Amir S. Unbiased approach for the identification of molecular mechanisms sensitive to chemical exposures. CHEMOSPHERE 2021; 262:128362. [PMID: 33182146 DOI: 10.1016/j.chemosphere.2020.128362] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Targeted methods that dominated toxicological research until recently did not allow for screening of all molecular changes involved in toxic response. Therefore, it is difficult to infer if all major mechanisms of toxicity have already been discovered, or if some of them are still overlooked. We used data on 591,084 unique chemical-gene interactions to identify genes and molecular pathways most sensitive to chemical exposures. The list of identified pathways did not change significantly when analyses were done on different subsets of data with non-overlapping lists of chemical compounds indicative that our dataset is saturated enough to provide unbiased results. One of the most important findings of this study is that almost every known molecular mechanism may be affected by chemical exposures. Predictably, xenobiotic metabolism pathways, and mechanisms of cellular response to stress and damage were among the most sensitive. Additionally, we identified highly sensitive molecular pathways, which are not widely recognized as major targets of toxicants, including lipid metabolism pathways, longevity regulation cascade, and cytokine-mediated signaling. These mechanisms are relevant to significant public health problems, such as aging, cancer, metabolic and autoimmune disease. Thus, public health field will benefit from future focus of toxicological research on identified sensitive mechanisms.
Collapse
Affiliation(s)
- Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA.
| | - Victoria Salemme
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Joseph McGaunn
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Anthony Poluyanoff
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Menna Teffera
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA
| | - Saira Amir
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts, 686 North Pleasant Street, Amherst, MA, 01003, USA; Current Affiliation: Department of Biosciences, COMSATS University Islamabad, Pakistan
| |
Collapse
|
47
|
Yashin AI, Wu D, Arbeev K, Yashkin AP, Akushevich I, Bagley O, Duan M, Ukraintseva S. Roles of interacting stress-related genes in lifespan regulation: insights for translating experimental findings to humans. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:357-379. [PMID: 34825130 PMCID: PMC8612394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AIM Experimental studies provided numerous evidence that caloric/dietary restriction may improve health and increase the lifespan of laboratory animals, and that the interplay among molecules that sense cellular stress signals and those regulating cell survival can play a crucial role in cell response to nutritional stressors. However, it is unclear whether the interplay among corresponding genes also plays a role in human health and lifespan. METHODS Literature about roles of cellular stressors have been reviewed, such as amino acid deprivation, and the integrated stress response (ISR) pathway in health and aging. Single nucleotide polymorphisms (SNPs) in two candidate genes (GCN2/EIF2AK4 and CHOP/DDIT3) that are closely involved in the cellular stress response to amino acid starvation, have been selected using information from experimental studies. Associations of these SNPs and their interactions with human survival in the Health and Retirement Study data have been estimated. The impact of collective associations of multiple interacting SNP pairs on survival has been evaluated, using a recently developed composite index: the SNP-specific Interaction Polygenic Risk Score (SIPRS). RESULTS Significant interactions have been found between SNPs from GCN2/EIF2AK4 and CHOP/DDI3T genes that were associated with survival 85+ compared to survival between ages 75 and 85 in the total sample (males and females combined) and in females only. This may reflect sex differences in genetic regulation of the human lifespan. Highly statistically significant associations of SIPRS [constructed for the rs16970024 (GCN2/EIF2AK4) and rs697221 (CHOP/DDIT3)] with survival in both sexes also been found in this study. CONCLUSION Identifying associations of the genetic interactions with human survival is an important step in translating the knowledge from experimental to human aging research. Significant associations of multiple SNPxSNP interactions in ISR genes with survival to the oldest old age that have been found in this study, can help uncover mechanisms of multifactorial regulation of human lifespan and its heterogeneity.
Collapse
|
48
|
Zhang B, Gladyshev VN. How can aging be reversed? Exploring rejuvenation from a damage-based perspective. ADVANCED GENETICS (HOBOKEN, N.J.) 2020; 1:e10025. [PMID: 36619246 PMCID: PMC9744548 DOI: 10.1002/ggn2.10025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 01/11/2023]
Abstract
Advanced age is associated with accumulation of damage and other deleterious changes and a consequential systemic decline of function. This decline affects all organs and systems in an organism, leading to their inadaptability to the environment, and therefore is thought to be inevitable for humans and most animal species. However, in vitro and in vivo application of reprogramming strategies, which convert somatic cells to induced pluripotent stem cells, has demonstrated that the aged cells can be rejuvenated. Moreover, the data and theoretical considerations suggest that reversing the biological age of somatic cells (from old to young) and de-differentiating somatic cells into stem cells represent two distinct processes that take place during rejuvenation, and thus they may be differently targeted. We advance a stemness-function model to explain these data and discuss a possibility of rejuvenation from the perspective of damage accumulation. In turn, this suggests approaches to achieve rejuvenation of cells in vitro and in vivo.
Collapse
Affiliation(s)
- Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
49
|
Tian JL, Gomeshtapeh FI. Potential Roles of O-GlcNAcylation in Primary Cilia- Mediated Energy Metabolism. Biomolecules 2020; 10:biom10111504. [PMID: 33139642 PMCID: PMC7693894 DOI: 10.3390/biom10111504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
The primary cilium, an antenna-like structure on most eukaryotic cells, functions in transducing extracellular signals into intracellular responses via the receptors and ion channels distributed along it membrane. Dysfunction of this organelle causes an array of human diseases, known as ciliopathies, that often feature obesity and diabetes; this indicates the primary cilia's active role in energy metabolism, which it controls mainly through hypothalamic neurons, preadipocytes, and pancreatic β-cells. The nutrient sensor, O-GlcNAc, is widely involved in the regulation of energy homeostasis. Not only does O-GlcNAc regulate ciliary length, but it also modifies many components of cilia-mediated metabolic signaling pathways. Therefore, it is likely that O-GlcNAcylation (OGN) plays an important role in regulating energy homeostasis in primary cilia. Abnormal OGN, as seen in cases of obesity and diabetes, may play an important role in primary cilia dysfunction mediated by these pathologies.
Collapse
Affiliation(s)
- Jie L. Tian
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-583-5551
| | | |
Collapse
|
50
|
Ghosh AC, Tattikota SG, Liu Y, Comjean A, Hu Y, Barrera V, Ho Sui SJ, Perrimon N. Drosophila PDGF/VEGF signaling from muscles to hepatocyte-like cells protects against obesity. eLife 2020; 9:56969. [PMID: 33107824 PMCID: PMC7752135 DOI: 10.7554/elife.56969] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
PDGF/VEGF ligands regulate a plethora of biological processes in multicellular organisms via autocrine, paracrine, and endocrine mechanisms. We investigated organ-specific metabolic roles of Drosophila PDGF/VEGF-like factors (Pvfs). We combine genetic approaches and single-nuclei sequencing to demonstrate that muscle-derived Pvf1 signals to the Drosophila hepatocyte-like cells/oenocytes to suppress lipid synthesis by activating the Pi3K/Akt1/TOR signaling cascade in the oenocytes. Functionally, this signaling axis regulates expansion of adipose tissue lipid stores in newly eclosed flies. Flies emerge after pupation with limited adipose tissue lipid stores and lipid level is progressively accumulated via lipid synthesis. We find that adult muscle-specific expression of pvf1 increases rapidly during this stage and that muscle-to-oenocyte Pvf1 signaling inhibits expansion of adipose tissue lipid stores as the process reaches completion. Our findings provide the first evidence in a metazoan of a PDGF/VEGF ligand acting as a myokine that regulates systemic lipid homeostasis by activating TOR in hepatocyte-like cells.
Collapse
Affiliation(s)
- Arpan C Ghosh
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Sudhir Gopal Tattikota
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Yifang Liu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States
| | - Victor Barrera
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Shannan J Ho Sui
- Harvard Chan Bioinformatics Core, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Boston, United States
| |
Collapse
|