1
|
Xu Y, Li Y, Zhang J, Cai P. Hua Yu Xiao Zheng decoction induces ectopic endometrial stromal cell senescence via inhibiting the PI3K/AKT signaling. Tissue Cell 2025; 93:102763. [PMID: 39914108 DOI: 10.1016/j.tice.2025.102763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/17/2025] [Accepted: 01/25/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Our purpose is to explore the influence of Hua Yu Xiao Zheng (HYXZ) decoction on the senescence of ectopic endometrial stromal cells (ESCs) in endometriosis as well as its relevant mechanisms. METHODS The proliferation, apoptosis, migration, and invasion of primary ectopic ESCs was assessed utilizing EdU assay, flow cytometry, and transwell assays. Moreover, the effects of HYXZ decoction on oxidative stress were evaluated using DCFH-DA probe and via measuring MDA, GSH, SOD and GPx levels. The function of HYXZ decoction on cell senescence were explored through utilizing SA-β-gal staining and measuring the cumulative population doubling level and the average telomere length. The protein expression was measured using western blotting analysis. Endometriosis in rats was surgically induced, and the efficacy and mechanism of HYXZ decoction were determined in vivo. RESULTS HYXZ decoction inhibited the growth, migration, and invasion of ectopic ESCs, but induced oxidative stress and senescence. HYXZ decoction inhibited PI3K/AKT signaling in ectopic ESCs. PI3K-AKT signaling pathway activator (740Y-P) significantly reversed the inhibitory effects of HYXZ decoction on ectopic ESCs. In rats with endometriosis, oral administration of HYXZ decoction inhibited lesion volume alone with the increased oxidative stress and cell senescence, as well as the decreased PI3K/AKT activity. CONCLUSION HYXZ decoction might repress the growth and migration of ectopic ESCs, and induce oxidative stress and senescence through suppressing PI3K/AKT signaling. This finding indicates that HYXZ decoction may be a potential therapeutic drug against endometriosis.
Collapse
Affiliation(s)
- Yuan Xu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, PR China; Traditional Chinese Medicine Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Yuhui Li
- Medical Equipment Department, Shandong Cancer Hospital, Jinan, Shandong 250117, PR China
| | - Jingyong Zhang
- Vascular Surgery Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China
| | - Pingping Cai
- Traditional Chinese Medicine Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, PR China.
| |
Collapse
|
2
|
Wang R, Liu Y, Fan L, Ma N, Yan Q, Chen C, Wang W, Ren Z, Ning X, Ku T, Sang N. Ultrafine Particulate Matter Exacerbates the Risk of Delayed Neural Differentiation: Modulation Role of METTL3-Mediated m 6A Modification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2974-2986. [PMID: 39903687 DOI: 10.1021/acs.est.4c09310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Air pollution, especially from ultrafine particles (PM0.1, ≤0.1 μm), is increasingly recognized for its detrimental effects on health. The influence of PM0.1 on neurodevelopmental disorders and its underlying mechanisms remain incompletely understood but are of significant concern. Through an investigation using mouse embryonic stem cells (mESCs), our study has uncovered disruptions in cell cycle dynamics, reduced neural precursor formation, and impaired neurogenesis during mESC neural differentiation as a result of PM0.1-induced neurodevelopmental toxicity. By employing N6-methyladenosine (m6A) methylated RNA immunoprecipitation sequencing and bioinformatics, we identified Zic1 as a key target of PM0.1-induced developmental disturbances. Our mechanistic findings indicate that PM0.1 enhances m6A methylation of Zic1 by upregulating Mettl3, leading to decreased mRNA stability and expression of this gene. Furthermore, the efficacy of the METTL3 inhibitor in alleviating nerve differentiation impairments emphasizes the significance of this pathway. In addition, source analysis, molecular docking, and toxicity analyses show that PAHs with higher ring structures in PM0.1 from combustion sources competitively bind to METTL3, potentially exacerbating neurodevelopmental toxicity. This study not only underscores the severe impact of PM0.1 on neurodevelopment but also reveals the pivotal role of m6A modification in mediating these effects, providing valuable insights and potential therapeutic targets for mitigating PM0.1-related health risks.
Collapse
Affiliation(s)
- Rui Wang
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yutong Liu
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lifan Fan
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Nanxin Ma
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qiqi Yan
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chen Chen
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Wenhao Wang
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhihua Ren
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xia Ning
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Tingting Ku
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Nan Sang
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
3
|
Principe G, Lezcano V, Tiburzi S, Miravalles AB, García BN, Gumilar F, González-Pardo V. In vitro and in vivo evidence of the antineoplastic activity of quercetin against endothelial cells transformed by Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. Biochimie 2025; 229:30-41. [PMID: 39369938 DOI: 10.1016/j.biochi.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Quercetin (QUE) is a natural flavonoid with well-known anticancer capabilities, although its effect on viral-induced cancers is less studied. Kaposi's sarcoma (KS) is a viral cancer caused by the human herpesvirus-8, which, during its lytic phase, expresses a constitutively activated viral G protein-coupled receptor (vGPCR) able to induce oncogenic modifications that lead to tumor development. The aim of this work was to investigate the potential effect of QUE on in vitro and in vivo models of Kaposi's sarcoma, developed by transforming endothelial cells with the vGPCR of Kaposi's sarcoma-associated herpesvirus. Initially, the antiproliferative effect of QUE was determined in endothelial cells stably expressing the vGPCR (vGPCR cells), with an IC50 of 30 μM. Additionally, QUE provoked a decrease in vGPCR cell viability, interfered with the cell cycle progression, and induced apoptosis, as revealed by annexin V/PI analysis and caspase-3 activity. The presence of apoptotic bodies and disorganized actin filaments was observed by SEM and phalloidin staining. Furthermore, tumors from vGPCR cells were induced in nude mice, which were treated with QUE (50 or 100 mg/kg/d) resulting in retarded tumor progression and reduced tumor weight. Notably, neither kidney nor liver damage was observed, as indicated by biochemical parameters in serum. In conclusion, this study suggests for the first time that QUE exhibits antineoplastic activity in both in vitro and in vivo models of KS, marking a starting point for further investigations and protocols for therapeutic purpose.
Collapse
Affiliation(s)
- Gabriel Principe
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Virginia Lezcano
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina.
| | - Silvina Tiburzi
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Alicia B Miravalles
- Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Betina N García
- Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina; Bioquímica Austral, Laboratorio de Análisis Clínicos y Gestión, 25 de Mayo 1007, 8000, Bahía Blanca, Argentina
| | - Fernanda Gumilar
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina
| | - Verónica González-Pardo
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Universidad Nacional del Sur (UNS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, UNS, San Juan 670, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
4
|
Motlagh RA, Pipella J, Thompson PJ. Exploring senescence as a modifier of β cell extracellular vesicles in type 1 diabetes. Front Endocrinol (Lausanne) 2024; 15:1422279. [PMID: 39239092 PMCID: PMC11374605 DOI: 10.3389/fendo.2024.1422279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Type 1 Diabetes (T1D) is a chronic metabolic disease resulting from insulin deficiency due to autoimmune loss of pancreatic β cells. In addition to β cell destruction, it is now accepted that β cell stress and dysfunction, such as senescence, plays a crucial role in the development of the disease. Accumulation of senescent β cells occurs during development of T1D in humans and contributes to the progression of T1D in the nonobese diabetic (NOD) mouse model. Senescent β cells are thought to exacerbate the inflammatory response within the islets by production and secretion of senescence-associated secretory phenotype (SASP). Extracellular vesicles (EVs) from β cells have been shown to carry protein and microRNAs (miRNAs), influencing cellular signaling and may contribute to the development of T1D but it remains to be addressed how senescence impacts β cell EV cargo. In this minireview, we discuss emerging evidence that EV cargo proteins and miRNAs associated with senescence could contribute to the development of T1D and could suggest potential biomarkers and therapeutic targets for the regulation of SASP and elimination of senescent β cells in T1D. Future investigation exploring the intricate relationship between β cell senescence, EVs and miRNAs could pave the way for the development of novel diagnostic techniques and therapeutic interventions.
Collapse
Affiliation(s)
- Roozbeh Akbari Motlagh
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Jasmine Pipella
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Peter J Thompson
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Ding Z, Ma G, Zhou B, Cheng S, Tang W, Han Y, Chen L, Pang W, Chen Y, Yang D, Cao H. Targeting miR-29 mitigates skeletal senescence and bolsters therapeutic potential of mesenchymal stromal cells. Cell Rep Med 2024; 5:101665. [PMID: 39168101 PMCID: PMC11384963 DOI: 10.1016/j.xcrm.2024.101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/07/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024]
Abstract
Mesenchymal stromal cell (MSC) senescence is a key factor in skeletal aging, affecting the potential of MSC applications. Identifying targets to prevent MSC and skeletal senescence is crucial. Here, we report increased miR-29 expression in bone tissues of aged mice, osteoporotic patients, and senescent MSCs. Genetic overexpression of miR-29 in Prx1-positive MSCs significantly accelerates skeletal senescence, reducing cortical bone thickness and trabecular bone mass, while increasing femur cross-sectional area, bone marrow adiposity, p53, and senescence-associated secretory phenotype (SASP) levels. Mechanistically, miR-29 promotes senescence by upregulating p53 via targeting Kindlin-2 mRNA. miR-29 knockdown in BMSCs impedes skeletal senescence, enhances bone mass, and accelerates calvarial defect regeneration, also reducing lipopolysaccharide (LPS)-induced organ injuries and mortality. Thus, our findings underscore miR-29 as a promising therapeutic target for senescence-related skeletal diseases and acute inflammation-induced organ damage.
Collapse
Affiliation(s)
- Zhen Ding
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guixing Ma
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Bo Zhou
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siyuan Cheng
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wanze Tang
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingying Han
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Litong Chen
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Pang
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yangshan Chen
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dazhi Yang
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
6
|
Yang S, Li A, Lv L, Zheng Z, Liu P, Min J, Wei J. Exosomal miRNA-146a-5p Derived from Senescent Hepatocellular Carcinoma Cells Promotes Aging and Inhibits Aerobic Glycolysis in Liver Cells via Targeting IRF7. J Cancer 2024; 15:4448-4466. [PMID: 39006088 PMCID: PMC11242348 DOI: 10.7150/jca.96500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global health challenge. Chemotherapy can cause HCC cells to become senescent. Senescent HCC cells play an important role in inhibiting or promoting cancer by producing extracellular vesicles with a senescence-associated secretory phenotype (EV-SASP). miRNA can be strongly upregulated in EV-SASP during the aging process and can substantially alter the phenotypic characteristics of cells. MiRNA microarray analysis revealed that miRNA-146a-5p was highly expressed in oxaliplatin- and H2O2-induced senescent Huh7 cells, and RT‒PCR confirmed its significant upregulation in exosomes. The transcriptome sequencing results of Huh7 cells overexpressing miRNA-146a-5p suggested that miRNA-146a-5p could regulate HCC cell glycolysis. Subsequently, a dual luciferase assay was used to verify whether miRNA-146a-5p can interact with IRF7 to promote aging. The key functions of miRNA-146a-5p and IRF7 in aerobic glycolysis in liver cancer cells were determined through experiments analyzing glucose uptake, lactate production, the oxygen consumption rate (OCR) and the proton efflux rate (PER). Subsequently, the regulatory effect of IRF7 on the key glycolytic gene PFKL was confirmed through luciferase reporter assays. The western blot experiment results showed that miR-146a-5p can activate CHK2 and p53 phosphorylated proteins by targeting IRF7, and upregulate p21 protein. Overexpression of miRNA-146a-5p effectively inhibited the aerobic glycolytic function of HCC cells. Moreover, silencing IRF7 effectively inhibited aerobic glycolysis. MiR-146a-5p. MiR-146a-5p can activate the phosphorylation of CHK2 phosphorylation protein and its downstream protein p53 by targeting IRF7, and the activated p53 upregulates the expression of p21. Our study revealed that exosomal miRNA-146a-5p produced by aging HCC cells, can inhibit HCC cell proliferation through inhibiting aerobic glycolysis and promote HCC cell aging by activating CHK2/p53/p21 signaling way by targeting IRF7.
Collapse
Affiliation(s)
- Sijia Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, Guangdong, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, Guangdong, China
| | - Ang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, Guangdong, China
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, Guangdong, China
| | - Lihong Lv
- Clinical Trial Institution of Pharmaceuticals, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, Guangdong, China
| | - Zhihua Zheng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Peiqing Liu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratoty for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jun Min
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, Guangdong, China
| | - Jinxing Wei
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120 Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Ren Z, Zhang S, Shi L, Zhou A, Lin X, Zhang J, Zhu X, Huang L, Li K. Integrated ATAC-seq and RNA-seq Analysis of In Vitro Cultured Skeletal Muscle Satellite Cells to Understand Changes in Cell Proliferation. Cells 2024; 13:1031. [PMID: 38920660 PMCID: PMC11201436 DOI: 10.3390/cells13121031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Skeletal muscle satellite cells, the resident stem cells in pig skeletal muscle, undergo proliferation and differentiation to enable muscle tissue repair. The proliferative and differentiative abilities of these cells gradually decrease during in vitro cultivation as the cell passage number increases. Despite extensive research, the precise molecular mechanisms that regulate this process are not fully understood. To bridge this knowledge gap, we conducted transcriptomic analysis of skeletal muscle satellite cells during in vitro cultivation to quantify passage number-dependent changes in the expression of genes associated with proliferation. Additionally, we explored the relationships between gene transcriptional activity and chromatin accessibility using transposase-accessible chromatin sequencing. This revealed the closure of numerous open chromatin regions, which were primarily located in intergenic regions, as the cell passage number increased. Integrated analysis of the transcriptomic and epigenomic data demonstrated a weak correlation between gene transcriptional activity and chromatin openness in expressed genic regions; although some genes (e.g., GNB4 and FGD5) showed consistent relationships between gene expression and chromatin openness, a substantial number of differentially expressed genes had no clear association with chromatin openness in expressed genic regions. The p53-p21-RB signaling pathway may play a critical regulatory role in cell proliferation processes. The combined transcriptomic and epigenomic approach taken here provided key insights into changes in gene expression and chromatin openness during in vitro cultivation of skeletal muscle satellite cells. These findings enhance our understanding of the intricate mechanisms underlying the decline in cellular proliferation capacity in cultured cells.
Collapse
Affiliation(s)
- Zeyu Ren
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China; (Z.R.); (S.Z.); (L.S.); (A.Z.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
| | - Siyi Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China; (Z.R.); (S.Z.); (L.S.); (A.Z.)
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
| | - Liangyu Shi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China; (Z.R.); (S.Z.); (L.S.); (A.Z.)
| | - Ao Zhou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China; (Z.R.); (S.Z.); (L.S.); (A.Z.)
| | - Xin Lin
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China;
| | - Jing Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China; (Z.R.); (S.Z.); (L.S.); (A.Z.)
| | - Xiusheng Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
| | - Lei Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
| | - Kui Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China;
| |
Collapse
|
8
|
Dhar P, Moodithaya S, Patil P, Adithi K. A hypothesis: MiRNA-124 mediated regulation of sirtuin 1 and vitamin D receptor gene expression accelerates aging. Aging Med (Milton) 2024; 7:320-327. [PMID: 38975301 PMCID: PMC11222741 DOI: 10.1002/agm2.12330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/28/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Objectives Specific miRNAs are evident to be overexpressed with age, lifestyle, and environmental changes. Previous studies reported miR-124 overexpression in different scenarios in aged skin, age-related cognitive impairment, ischemic heart disease, muscle atrophy, and fractures. Thus miR-124 was considered to be a reliable miRNA target to establish a hypothesis on aging epigenome. Parallelly the hypothesis focuses on the expression of SIRT1 and VDR genes as a target for this specific miRNA expression as these genes were believed to be related to aging. This study aims to derive facts and evidence from past studies on aging. The objective was to establish a hypothetical linkage between miR-124 with age-related genes like SIRT1 and VDR. Methods An in silico search was performed in the TargetScan and miRbase databases to analyze the aging-associated miRNAs and their gene targets, the Python seaborn library was used, and the results were represented in terms of a bar plot. Results Based on an in silico analysis and studies available in the literature, we identified that miR-124-3p.1 and miR-124-3p.2 targets 3' UTR of VDR and SIRT1 genes, and hence thereby indicates that the miR-124 can regulate the expression of these genes. Further, few in vitro research studies have observed that miR-124 overexpression leads to the downregulation of VDR and SIRT1 gene expression. These results indicate that the suppression of these target genes accelerates early aging and age-related disorders. Conclusions Overall, this study hypothesizes that the overexpression of miR-124 diminishes the expression of VDR and SIRT1 genes, and thereby advances the process of aging, resulting in the development of age-associated complications.
Collapse
Affiliation(s)
- Poulami Dhar
- Department of PhysiologyK. S. Hegde Medical Academy, Nitte (Deemed to be University)MangaloreKarnatakaIndia
| | - Shailaja Moodithaya
- Department of PhysiologyK. S. Hegde Medical Academy, Nitte (Deemed to be University)MangaloreKarnatakaIndia
| | - Prakash Patil
- Central Research LaboratoryK. S. Hegde Medical Academy, Nitte (Deemed to be University)MangaloreKarnatakaIndia
| | - Kellarai Adithi
- Department of General MedicineJustice K. S. Hegde Charitable Hospital, Nitte (Deemed to be University)MangaloreKarnatakaIndia
| |
Collapse
|
9
|
Gao Y, Xu L, Li Y, Qi D, Wang C, Luan C, Zheng S, Du Q, Liu W, Lu G, Gong W, Ma X. Calcium transferring from ER to mitochondria via miR-129/ITPR2 axis controls cellular senescence in vitro and in vivo. Mech Ageing Dev 2024; 218:111902. [PMID: 38218462 DOI: 10.1016/j.mad.2024.111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Senescent cells are known to be accumulated in aged organisms. Although the two main characteristics, cell cycle arrest (for dividing cells) and secretion of senescence-associated secretory phenotype (SASP) factors, have been well described, the lack of sufficient senescent markers and incomplete understanding of mechanisms have limited the progress of the anti-senescence field. Calcium transferred from the endoplasmic reticulum (ER) via inositol 1, 4, 5-trisphosphate receptor type 2 (ITPR2) to mitochondria has emerged as a key player during cellular senescence and aging. However, the internal regulatory mechanisms, particularly those of endogenous molecules, remain only partially understood. Here we identified miRNA-129 (miR-129) as a direct repressor of ITPR2. Interestingly, miR-129 controlled a cascade of intracellular calcium signaling, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), DNA damage, and consequently cellular senescence through ITPR2 and mitochondrial calcium uniporter (MCU). In addition, miR-129 was repressed in different senescence models and delayed bleomycin-induced cellular senescence. Importantly, intraperitoneal injection of miR-129 partly postponed bleomycin-accelerated lung aging and natural aging markers as well as reduced immunosenescence markers in mice. Altogether, these findings demonstrated that miR-129 regulated cellular senescence and aging markers via intracellular calcium signaling by directly targeting ITPR2.
Collapse
Affiliation(s)
- Yue Gao
- Department of The Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Department of Pathology, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Lei Xu
- Department of The Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yaru Li
- Department of The Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Dandan Qi
- Department of The Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Chaofan Wang
- Department of The Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Changjiao Luan
- Department of The Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Department of Lung, The Third People's Hospital of Yangzhou, Yangzhou, China
| | - Shihui Zheng
- Department of Molecular Biology, Inter faculty Institute of Cell Biology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Qiu Du
- Department of The Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weili Liu
- Department of The Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Guotao Lu
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weijuan Gong
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| | - Xingjie Ma
- Department of The Central Laboratory, Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| |
Collapse
|
10
|
Zhu H, Guo X, Zhang Y, Khan A, Pang Y, Song H, Zhao H, Liu Z, Qiao H, Xie J. The Combined Anti-Aging Effect of Hydrolyzed Collagen Oligopeptides and Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells on Human Skin Fibroblasts. Molecules 2024; 29:1468. [PMID: 38611748 PMCID: PMC11013016 DOI: 10.3390/molecules29071468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Stem cell-derived exosomes (SC-Exos) are used as a source of regenerative medicine, but certain limitations hinder their uses. The effect of hydrolyzed collagen oligopeptides (HCOPs), a functional ingredient of SC-Exos is not widely known to the general public. We herein evaluated the combined anti-aging effects of HCOPs and exosomes derived from human umbilical cord mesenchymal stem cells (HucMSC-Exos) using a senescence model established on human skin fibroblasts (HSFs). This study discovered that cells treated with HucMSC-Exos + HCOPs enhanced their proliferative and migratory capabilities; reduced both reactive oxygen species production and senescence-associated β-galactosidase activity; augmented type I and type III collagen expression; attenuated the expression of matrix-degrading metalloproteinases (MMP-1, MMP-3, and MMP-9), interleukin 1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α); and decreased the expression of p16, p21, and p53 as compared with the cells treated with HucMSC-Exos or HCOPs alone. These results suggest a possible strategy for enhancing the skin anti-aging ability of HucMSC-Exos with HCOPs.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China; (H.Z.); (X.G.); (Y.Z.); (Y.P.); (H.S.); (H.Z.); (Z.L.)
| | - Xin Guo
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China; (H.Z.); (X.G.); (Y.Z.); (Y.P.); (H.S.); (H.Z.); (Z.L.)
| | - Yongqing Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China; (H.Z.); (X.G.); (Y.Z.); (Y.P.); (H.S.); (H.Z.); (Z.L.)
| | - Ajab Khan
- Department of Veterinary Pathology, Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan 29050, Pakistan;
| | - Yinuo Pang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China; (H.Z.); (X.G.); (Y.Z.); (Y.P.); (H.S.); (H.Z.); (Z.L.)
| | - Huifang Song
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China; (H.Z.); (X.G.); (Y.Z.); (Y.P.); (H.S.); (H.Z.); (Z.L.)
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China; (H.Z.); (X.G.); (Y.Z.); (Y.P.); (H.S.); (H.Z.); (Z.L.)
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China; (H.Z.); (X.G.); (Y.Z.); (Y.P.); (H.S.); (H.Z.); (Z.L.)
| | - Hua Qiao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China; (H.Z.); (X.G.); (Y.Z.); (Y.P.); (H.S.); (H.Z.); (Z.L.)
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China; (H.Z.); (X.G.); (Y.Z.); (Y.P.); (H.S.); (H.Z.); (Z.L.)
| |
Collapse
|
11
|
Wang Y, He Z, Luo B, Wong H, Wu L, Zhou H. Human Mesenchymal Stem Cell-Derived Exosomes Promote the Proliferation and Melanogenesis of Primary Melanocytes by Attenuating the H 2O 2-Related Cytotoxicity in vitro. Clin Cosmet Investig Dermatol 2024; 17:683-695. [PMID: 38524392 PMCID: PMC10959324 DOI: 10.2147/ccid.s446676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/13/2024] [Indexed: 03/26/2024]
Abstract
Background Mesenchymal stem cell-derived exosomes (MSC-Exo) have therapeutic potential. However, the impact of MSC-Exo on the survival and melanogenesis of human primary melanocytes following H2O2-induced damage has not been clarified. We therefore investigated the effects of MSC-Exo on the H2O2-affected survival of human primary melanocytes and their proliferation, apoptosis, senescence, and melanogenesis in vitro. Methods MSC-Exo were prepared from human MSCs by sequential centrifugations and characterized by Transmission Electron Microscopy, Western blot and Nanoparticle Tracking Analysis. Human primary melanocytes were isolated and treated with different concentrations of MSC-Exo, followed by exposing to H2O2. Furthermore, the impact of pretreatment with MSC-Exo on the proliferation, apoptosis, senescence and melanogenesis of melanocytes were tested by CCK-8, flow cytometry, Western blot, L-Dopa staining, tyrosinase activity and RT-qPCR. Results Pretreatment with lower doses of MSC-Exo protected human primary melanocytes from the H2O2-triggered apoptosis, while pretreatment with higher doses of MSC-Exo enhanced the H2O2-induced melanocyte apoptosis. Compared with the untreated control, pretreatment with a lower dose (1 µg/mL) of MSC-Exo enhanced the proliferation of melanocytes, abrogated the H2O2-increased p53, p21, IL-1β, IL-6 and IL-8 expression and partially rescued the H2O2-decreased L-dopa staining reaction, tyrosinase activity, MITF and TRP1 expression in melanocytes. Conclusion Our findings indicate that treatment with a low dose of MSC-Exo promotes the proliferation and melanogenesis of human primary melanocytes by ameliorating the H2O2-induced apoptosis and senescence of melanocytes. MSC-Exo may be a promising therapeutic strategy of vitiligo.
Collapse
Affiliation(s)
- Yexiao Wang
- Department of Dermatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zibin He
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Bingqin Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hioteng Wong
- Department of Dermatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Liangcai Wu
- Department of Dermatology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Hui Zhou
- Department of Dermatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
12
|
Chen Z, Li C, Huang H, Shi YL, Wang X. Research Progress of Aging-related MicroRNAs. Curr Stem Cell Res Ther 2024; 19:334-350. [PMID: 36892029 DOI: 10.2174/1574888x18666230308111043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 03/10/2023]
Abstract
Senescence refers to the irreversible state in which cells enter cell cycle arrest due to internal or external stimuli. The accumulation of senescent cells can lead to many age-related diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancers. MicroRNAs are short non-coding RNAs that bind to target mRNA to regulate gene expression after transcription and play an important regulatory role in the aging process. From nematodes to humans, a variety of miRNAs have been confirmed to alter and affect the aging process. Studying the regulatory mechanisms of miRNAs in aging can further deepen our understanding of cell and body aging and provide a new perspective for the diagnosis and treatment of aging-related diseases. In this review, we illustrate the current research status of miRNAs in aging and discuss the possible prospects for clinical applications of targeting miRNAs in senile diseases.
Collapse
Affiliation(s)
- Zhongyu Chen
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Chenxu Li
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Haitao Huang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Yi-Ling Shi
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
| | - Xiaobo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan, 671000, China
- Key Laboratory of University Cell Biology, Dali, Yunnan, 671000, China
| |
Collapse
|
13
|
Lin X, Lin T, Wang X, He J, Gao X, Lyu S, Wang Q, Chen J. Sesamol serves as a p53 stabilizer to relieve rheumatoid arthritis progression and inhibits the growth of synovial organoids. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155109. [PMID: 37778247 DOI: 10.1016/j.phymed.2023.155109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune disease known as a leading cause of disability with considerable mortality. Developing alternative drugs and targets for RA treatment is an urgent issue. Sesamol is a phenolic compound isolated from natural food sesame (Sesamum indicum L.) with various biological activities. PURPOSE The current research intended to illuminate the bioactivity and mechanisms of sesamol in RA fibroblast-like synoviocytes (FLS), and aimed to estimate the potential clinical application value of sesamol in RA treatment. METHODS CCK-8, EdU, and flow cytometry assays, as well as transwell tests were applied to observe the effects of sesamol on the abnormal functions of RA-FLS. Moreover, synovial organoids and a collagen-induced arthritis (CIA) mouse model were constructed to further explore the therapeutic capacity of sesamol on RA. Furthermore, RNA sequencing combined with quantitative real-time PCR assay, Western blot as well as co-immunoprecipitation were employed to clarify the mechanism of sesamol in regulating RA progression. RESULTS Sesamol suppressed the proliferation through inhibiting DNA replication, triggering cell cycle arrest and apoptosis of RA-FLS. Besides, sesamol impaired RA-FLS migration and invasion. Interestingly, sesamol inhibited the growth of constructed synovial organoids and alleviated RA symptoms in CIA mice. Moreover, RNA sequencing further implicated p53 signaling as a downstream pathway of sesamol. Furthermore, sesamol was shown to decrease p53 ubiquitination and degradation, thereby activating p53 signaling. Finally, bioinformatics analyses also highlighted the importance of sesamol-regulated networks in the progression of RA. CONCLUSIONS Our investigation demonstrated that sesamol served as a novel p53 stabilizer to attenuate the abnormal functions of RA-FLS via facilitating the activation of p53 signaling. Moreover, our study highlighted that sesamol might be an effective lead compound or candidate drug and p53 could be a promising target for the therapy of RA.
Collapse
Affiliation(s)
- Xian Lin
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Tengyu Lin
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Xiaocheng Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Jiaxin He
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Xu Gao
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Shuyan Lyu
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China.
| | - Jian Chen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen 518036, China; Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen 518036, China.
| |
Collapse
|
14
|
Rubin de Celis MF, Bonner-Weir S. Reversing and modulating cellular senescence in beta cells, a new field of opportunities to treat diabetes. Front Endocrinol (Lausanne) 2023; 14:1217729. [PMID: 37822597 PMCID: PMC10562723 DOI: 10.3389/fendo.2023.1217729] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Diabetes constitutes a world-wide pandemic that requires searching for new treatments to halt its progression. Cellular senescence of pancreatic beta cells has been described as a major contributor to development and worsening of diabetes. The concept of reversibility of cellular senescence is critical as is the timing to take actions against this "dormant" senescent state. The reversal of cellular senescence can be considered as rejuvenation of the specific cell if it returns to the original "healthy state" and doesn't behave aberrantly as seen in some cancer cells. In rodents, treatment with senolytics and senomorphics blunted or prevented disease progression, however their use carry drawbacks. Modulators of cellular senescence is a new area of research that seeks to reverse the senescence. More research in each of these modalities should lead to new treatments to stop diabetes development and progression.
Collapse
Affiliation(s)
- Maria F. Rubin de Celis
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Susan Bonner-Weir
- Joslin Diabetes Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Kuhn MK, Fleeman RM, Beidler LM, Snyder AM, Chan DC, Proctor EA. Amyloid-β Pathology-Specific Cytokine Secretion Suppresses Neuronal Mitochondrial Metabolism. Cell Mol Bioeng 2023; 16:405-421. [PMID: 37811007 PMCID: PMC10550897 DOI: 10.1007/s12195-023-00782-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Neuroinflammation and metabolic dysfunction are early alterations in Alzheimer's disease (AD) brain that are thought to contribute to disease onset and progression. Glial activation due to protein deposition results in cytokine secretion and shifts in brain metabolism, which have been observed in AD patients. However, the mechanism by which this immunometabolic feedback loop can injure neurons and cause neurodegeneration remains unclear. Methods We used Luminex XMAP technology to quantify hippocampal cytokine concentrations in the 5xFAD mouse model of AD at milestone timepoints in disease development. We used partial least squares regression to build cytokine signatures predictive of disease progression, as compared to healthy aging in wild-type littermates. We applied the disease-defining cytokine signature to wild-type primary neuron cultures and measured downstream changes in gene expression using the NanoString nCounter system and mitochondrial function using the Seahorse Extracellular Flux live-cell analyzer. Results We identified a pattern of up-regulated IFNγ, IP-10/CXCL10, and IL-9 as predictive of advanced disease. When healthy neurons were exposed to these cytokines in proportions found in diseased brain, gene expression of mitochondrial electron transport chain complexes, including ATP synthase, was suppressed. In live cells, basal and maximal mitochondrial respiration were impaired following cytokine stimulation. Conclusions We identify a pattern of cytokine secretion predictive of progressing amyloid-β pathology in the 5xFAD mouse model of AD that reduces expression of mitochondrial electron transport complexes and impairs mitochondrial respiration in healthy neurons. We establish a mechanistic link between disease-specific immune cues and impaired neuronal metabolism, potentially causing neuronal vulnerability and susceptibility to degeneration in AD. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00782-y.
Collapse
Affiliation(s)
- Madison K. Kuhn
- Department of Neurosurgery, Penn State College of Medicine, Hershey, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA USA
| | - Rebecca M. Fleeman
- Department of Neurosurgery, Penn State College of Medicine, Hershey, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA
| | - Lynne M. Beidler
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, PA USA
| | - Amanda M. Snyder
- Department of Neurology, Penn State College of Medicine, Hershey, PA USA
| | - Dennis C. Chan
- Department of Neurosurgery, Penn State College of Medicine, Hershey, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA USA
| | - Elizabeth A. Proctor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA USA
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA USA
| |
Collapse
|
16
|
Wang X, Wang J, Zhao X, Wu H, Li J, Cheng Y, Guo Q, Cao X, Liang T, Sun L, Zhang G. METTL3-mediated m6A modification of SIRT1 mRNA inhibits progression of endometriosis by cellular senescence enhancing. J Transl Med 2023; 21:407. [PMID: 37353804 PMCID: PMC10288727 DOI: 10.1186/s12967-023-04209-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/18/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Endometriosis (EMs), the ectopic planting of functional endometrium outside of the uterus, is a leading cause of infertility and pelvic pain. As a fundamental mRNA modification, N6-methyladenosine (m6A) participates in various pathological processes. However, the role of m6A RNA modification in endometriosis remains unclear. The present study explores METTL3-mediated m6A modification and the mechanisms involved in endometriosis. METHODS The dominant m6A regulators in EMs were analysed using RT‒PCR. Candidate targets and possible mechanisms of METTL3 were assessed by m6A-mRNA epitranscriptomic microarray and RNA sequencing. A primary ESCs model was employed to verify the effect of METTL3 on m6A modification of SIRT1 mRNA, and the mechanism was elucidated by RT‒PCR, Western blotting, MeRIP, and RIP assays. CCK-8 viability assays, Transwell invasion assays, EdU proliferation assays, wound healing migration assays, and senescence-associated β-galactosidase staining were performed to illuminate the potential biological mechanism of METTL3 and SIRT1 in ESCs in vitro. An in vivo PgrCre/ + METTL3 -/- female homozygous mouse model and a nude mouse xenograft model were employed to further investigate the physiologic consequences of METTL3-mediated m6A alteration on EMs. RESULTS Our data show that decreased METTL3 expression significantly downregulates m6A RNA methylation levels in ESCs. Silencing m6A modifications mediated by METTL3 accelerates ESCs viability, proliferation, migration, and invasion in vitro. The m6A reader protein YTHDF2 binds to m6A modifications to induce the degradation of SIRT1 mRNA. SIRT1/FOXO3a signalling pathway activation is subsequently inhibited, promoting the cellular senescence of ESCs and inhibiting the ectopic implantation of ESCs in vitro and in vivo. CONCLUSIONS Our findings demonstrate that METTL3-mediated m6A methylation epigenetically regulates the ectopic implantation of ESCs, resulting in the progression of endometriosis. Our study establishes METTL3-YTHDF2-SIRT1/FOXO3a as a critical axis and potential mechanism in endometriosis.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Gynaecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Wang
- Department of Gynaecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xibo Zhao
- Department of Gynaecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Han Wu
- Department of Gynaecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jixin Li
- Department of Gynaecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Cheng
- Department of Gynaecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiuyan Guo
- Department of Gynaecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuejiao Cao
- Department of Gynaecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tian Liang
- Department of Gynaecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liyuan Sun
- Department of Gynaecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangmei Zhang
- Department of Gynaecology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
17
|
Li J, Deng Y, Wang Y, Nepovimova E, Wu Q, Kuca K. Mycotoxins Have a Potential of Inducing Cell Senescence: A New Understanding of Mycotoxin Immunotoxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104188. [PMID: 37331672 DOI: 10.1016/j.etap.2023.104188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Mycotoxins result in immune dysfunction and cause immune diseases in animals and humans. However, the mechanisms of immunotoxicity involved in mycotoxins have not been fully explored, and emerging evidence suggests that these toxins may promote their immunotoxicity via cellular senescence. Mycotoxins induce cell senescence after DNA damage, and activate signaling via the NF-κB and JNK pathways to promote the secretion of senescence-associated secretory phenotype (SASP) cytokines including IL-6, IL-8, and TNF-α. DNA damage can also over-activate or cleave poly (ADP-ribose) polymerase-1 (PARP-1), increase the expression of cell cycle inhibitory proteins p21, and p53, and induce cell cycle arrest and then senescence. These senescent cells further down-regulate proliferation-related genes and overexpress inflammatory factors resulting in chronic inflammation and eventual immune exhaustion. Here we review the underlying mechanisms by which mycotoxins trigger cell senescence and the potential roles of SASP and PARP in these pathways. This work will help to further understand the mechanisms of immunotoxicity involved in mycotoxins.
Collapse
Affiliation(s)
- Jiefeng Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Ying Deng
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Yating Wang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 50003, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 50003, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové 50003, Czech Republic; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain; Biomedical Reseaerch Center, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
18
|
Sun K, Zhang Y, Li Y, Yang P, Sun Y. Biochemical Targets and Molecular Mechanism of Matrine against Aging. Int J Mol Sci 2023; 24:10098. [PMID: 37373246 DOI: 10.3390/ijms241210098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study is to explore the potential targets and molecular mechanism of matrine (MAT) against aging. Bioinformatic-based network pharmacology was used to investigate the aging-related targets and MAT-treated targets. A total of 193 potential genes of MAT against aging were obtained and then the top 10 key genes (cyclin D1, cyclin-dependent kinase 1, Cyclin A2, androgen receptor, Poly [ADP-ribose] polymerase-1 (PARP1), histone-lysine N-methyltransferase, albumin, mammalian target of rapamycin, histone deacetylase 2, and matrix metalloproteinase 9) were filtered by the molecular complex detection, maximal clique centrality (MMC) algorithm, and degree. The Metascape tool was used for analyzing biological processes and pathways of the top 10 key genes. The main biological processes were response to an inorganic substance and cellular response to chemical stress (including cellular response to oxidative stress). The major pathways were involved in cellular senescence and the cell cycle. After an analysis of major biological processes and pathways, it appears that PARP1/nicotinamide adenine dinucleotide (NAD+)-mediated cellular senescence may play an important role in MAT against aging. Molecular docking, molecular dynamics simulation, and in vivo study were used for further investigation. MAT could interact with the cavity of the PARP1 protein with the binding energy at -8.5 kcal/mol. Results from molecular dynamics simulations showed that the PARP1-MAT complex was more stable than PARP1 alone and that the binding-free energy of the PARP1-MAT complex was -15.962 kcal/mol. The in vivo study showed that MAT could significantly increase the NAD+ level of the liver of d-gal-induced aging mice. Therefore, MAT could interfere with aging through the PARP1/NAD+-mediated cellular senescence signaling pathway.
Collapse
Affiliation(s)
- Kaiyue Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingzi Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingliang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Pengyu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingting Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| |
Collapse
|
19
|
Kuhn MK, Fleeman RM, Beidler LM, Snyder AM, Chan DC, Proctor EA. Alzheimer's disease-specific cytokine secretion suppresses neuronal mitochondrial metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536014. [PMID: 37066287 PMCID: PMC10104145 DOI: 10.1101/2023.04.07.536014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Introduction Neuroinflammation and metabolic dysfunction are early alterations in Alzheimer's disease brain that are thought to contribute to disease onset and progression. Glial activation due to protein deposition results in cytokine secretion and shifts in brain metabolism, which have been observed in Alzheimer's disease patients. However, the mechanism by which this immunometabolic feedback loop can injure neurons and cause neurodegeneration remains unclear. Methods We used Luminex XMAP technology to quantify hippocampal cytokine concentrations in the 5xFAD mouse model of Alzheimer's disease at milestone timepoints in disease development. We used partial least squares regression to build cytokine signatures predictive of disease progression, as compared to healthy aging in wild-type littermates. We applied the disease-defining cytokine signature to wild-type primary neuron cultures and measured downstream changes in gene expression using the NanoString nCounter system and mitochondrial function using the Seahorse Extracellular Flux live-cell analyzer. Results We identified a pattern of up-regulated IFNγ, IP-10, and IL-9 as predictive of advanced disease. When healthy neurons were exposed to these cytokines in proportions found in diseased brain, gene expression of mitochondrial electron transport chain complexes, including ATP synthase, was suppressed. In live cells, basal and maximal mitochondrial respiration were impaired following cytokine stimulation. Conclusions An Alzheimer's disease-specific pattern of cytokine secretion reduces expression of mitochondrial electron transport complexes and impairs mitochondrial respiration in healthy neurons. We establish a mechanistic link between disease-specific immune cues and impaired neuronal metabolism, potentially causing neuronal vulnerability and susceptibility to degeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Madison K. Kuhn
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Rebecca M. Fleeman
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Lynne M. Beidler
- Department of Microbiology & Immunology, Penn State College of Medicine, Hershey, PA, USA
| | - Amanda M. Snyder
- Department of Neurology, Penn State College of Medicine, Hershey, PA, USA
| | - Dennis C. Chan
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Elizabeth A. Proctor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
20
|
Xi T, Wang R, Pi D, Ouyang J, Yang J. The p53/miR-29a-3p axis mediates the antifibrotic effect of leonurine on angiotensin II-stimulated rat cardiac fibroblasts. Exp Cell Res 2023; 426:113556. [PMID: 36933858 DOI: 10.1016/j.yexcr.2023.113556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/20/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
Overactivation of cardiac fibroblasts (CFs) is one of the main causes of myocardial fibrosis (MF), and inhibition of CF activation is a crucial strategy for MF therapy. A previous study by our group demonstrated that leonurine (LE) effectively inhibits collagen synthesis and myofibroblast generation originated from CFs, and eventually mitigates the progression of MF (where miR-29a-3p is likely to be a vital mediator). However, the underlying mechanisms involved in this process remain unknown. Thus, the present study aimed to investigate the precise role of miR-29a-3p in LE-treated CFs, and to elucidate the pharmacological effects of LE on MF. Neonatal rat CFs were isolated and stimulated by angiotensin II (Ang II) to mimic the pathological process of MF in vitro. The results show that LE distinctly inhibits collagen synthesis, as well as the proliferation, differentiation and migration of CFs, all of which could be induced by Ang II. In addition, LE promotes apoptosis in CFs under Ang II stimulation. During this process, the down-regulated expressions of miR-29a-3p and p53 are partly restored by LE. Either knockdown of miR-29a-3p or inhibition of p53 by PFT-α (a p53 inhibitor) blocks the antifibrotic effect of LE. Notably, PFT-α suppresses miR-29a-3p levels in CFs under both normal and Ang II-treated conditions. Furthermore, ChIP analysis confirmed that p53 is bound to the promoter region of miR-29a-3p, and directly regulates its expression. Overall, our study demonstrates that LE upregulates p53 and miR-29a-3p expression, and subsequently inhibits CF overactivation, suggesting that the p53/miR-29a-3p axis may play a crucial role in mediating the antifibrotic effect of LE against MF.
Collapse
Affiliation(s)
- Tianlan Xi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Ruiyu Wang
- Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Damao Pi
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Ouyang
- Clinical Research Center, Chongqing Public Health Medical Center, Chongqing, China.
| | - Jiadan Yang
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
21
|
Dou W, Xie J, Chen J, Zhou J, Xu Z, Wang Z, Zhu Q. Overexpression of adrenomedullin (ADM) alleviates the senescence of human dental pulp stem cells by regulating the miR-152/CCNA2 pathway. Cell Cycle 2023; 22:565-579. [PMID: 36310381 PMCID: PMC9928452 DOI: 10.1080/15384101.2022.2135621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The limitation of human dental pulp stem cells (DPSCs), which have potential application value in regenerative medicine, is that they are prone to age in vitro. Studies have shown adrenomedullin (ADM) is believed to promote the proliferation of human DPSCs, but whether it can also affect aging remains to be investigated. A lentivirus vector was used to construct human DPSCs overexpressing ADM. Senescence tests were carried out on cells of the 7th and 15th passage. Transcriptome analysis was conducted to analyze microRNA expression regulation changes after human DPSCs overexpressed ADM. H2O2 induced the aging model of human DPSCs, and we examined the mechanism of recovery of aging through transfection experiments with miR-152 mimic, pCDH-CCNA2, and CCNA2 siRNA. Overexpression of ADM significantly upregulated the G2/M phase ratio of human DPSCs in natural passage culture (P = 0.001) and inhibited the expression of p53 (P = 0.014), P21 WAF1 (P = 0.015), and P16 INK4A (P = 0.001). Decreased ROS accumulation was observed in human DPSCs during long-term natural passage (P = 0.022). Transcriptome analysis showed that miR-152 was significantly upregulated during human DPSC senescence (P = 0.001) and could induce cell senescence by directly targeting CCNA2. Transfection with miR-152 mimic significantly reversed the inhibitory effect of ADM overexpression on p53 (P = 0.006), P21 WAF1 (P = 0.012), and P16 INK4A (P = 0.01) proteins in human DPSCs (H2O2-induced). In contrast, pCDH-CCNA2 weakened the effect of the miR-152 mimic, thus promoting cell proliferation and antiaging. ADM-overexpressing human DPSCs promote cell cycle progression and resist cellular senescence through CCNA2 expression promotion by inhibiting miR-152.
Collapse
Affiliation(s)
- Wenxue Dou
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, China
| | - Jiaye Xie
- Department of Stomatology, Tongren Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianan Chen
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, China
| | - Jiajun Zhou
- Department of Stomatology, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zunyue Xu
- Department of Stomatology, Shanghai Songjiang District Central Hospital, Shanghai, China
| | - Zheng Wang
- Department of Stomatology, Tongren Hospital Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiang Zhu
- Department of Stomatology, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, China,CONTACT Qiang Zhu Department of Stomatology, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai200433, China
| |
Collapse
|
22
|
Inhibitory Effects of Rabdosia rubescens in Esophageal Squamous Cell Carcinoma: Network Pharmacology and Experimental Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2696347. [DOI: 10.1155/2022/2696347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 11/12/2022]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most frequently occurring diseases in the world. Rabdosia rubescens (RR) has been demonstrated to be effective against ESCC; however, the mechanism is unknown. The primary gene modules related to the clinical characteristics of ESCC were initially investigated in this research using weighted gene co-expression network analysis (WCGNA) and differential expression gene (DEG) analysis. We employed network pharmacology to study the hub genes linked with RR therapy on ESCC. A molecular docking simulation was achieved to identify the binding activity of central genes to RR compounds. Lastly, a chain of experimentations was used to verify the inhibitory effect of RR water extract on the ESCC cell line in vitro. The outcomes revealed that CCNA2, TOP2A, AURKA, CCNB2, CDK2, CHEK1, and other potential central targets were therapeutic targets for RR treatment of ESCC. In addition, these targets are over-represented in several cancer-related pathways, including the cell cycle signaling pathway and the p53 signaling pathway. The predicted targets displayed good bonding activity with the RR bioactive chemical according to a molecular docking simulation. In vitro experiments revealed that RR water extracts could inhibit ESCC cells, induce cell cycle arrest, inhibit cell proliferation, increase P53 expression, and decrease CCNA2, TOP2A, AURKA, CCNB2, CDK2, and CHEK1. In conclusion, our study reveals the molecular mechanism of RR therapy for ESCC, providing great potential for identifying effective compounds and biomarkers for ESCC therapy.
Collapse
|
23
|
Abstract
Cellular senescence, once thought an artifact of in vitro culture or passive outcome of aging, has emerged as fundamental to tissue development and function. The senescence mechanism importantly halts cell cycle progression to protect against tumor formation, while transiently present senescent cells produce a complex secretome (or SASP) of inflammatory mediators, proteases, and growth factors that guide developmental remodeling and tissue regeneration. Transiently present senescence is important for skin repair, where it accelerates extracellular matrix formation, limits fibrosis, promotes reepithelialization, and modulates inflammation. Unfortunately, advanced age and diabetes drive pathological accumulation of senescent cells in chronic wounds, which is perpetuated by a proinflammatory SASP, advanced glycation end-products, and oxidative damage. Although the biology of wound senescence remains incompletely understood, drugs that selectively target senescent cells are showing promise in clinical trials for diverse pathological conditions. It may not be long before senescence-targeted therapies will be available for the management, or perhaps even prevention, of chronic wounds.
Collapse
Affiliation(s)
- Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, United Kingdom
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, United Kingdom
| |
Collapse
|
24
|
Jeon M, Xie Z, Evangelista JE, Wojciechowicz ML, Clarke DJB, Ma’ayan A. Transforming L1000 profiles to RNA-seq-like profiles with deep learning. BMC Bioinformatics 2022; 23:374. [PMID: 36100892 PMCID: PMC9472394 DOI: 10.1186/s12859-022-04895-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractThe L1000 technology, a cost-effective high-throughput transcriptomics technology, has been applied to profile a collection of human cell lines for their gene expression response to > 30,000 chemical and genetic perturbations. In total, there are currently over 3 million available L1000 profiles. Such a dataset is invaluable for the discovery of drug and target candidates and for inferring mechanisms of action for small molecules. The L1000 assay only measures the mRNA expression of 978 landmark genes while 11,350 additional genes are computationally reliably inferred. The lack of full genome coverage limits knowledge discovery for half of the human protein coding genes, and the potential for integration with other transcriptomics profiling data. Here we present a Deep Learning two-step model that transforms L1000 profiles to RNA-seq-like profiles. The input to the model are the measured 978 landmark genes while the output is a vector of 23,614 RNA-seq-like gene expression profiles. The model first transforms the landmark genes into RNA-seq-like 978 gene profiles using a modified CycleGAN model applied to unpaired data. The transformed 978 RNA-seq-like landmark genes are then extrapolated into the full genome space with a fully connected neural network model. The two-step model achieves 0.914 Pearson’s correlation coefficients and 1.167 root mean square errors when tested on a published paired L1000/RNA-seq dataset produced by the LINCS and GTEx programs. The processed RNA-seq-like profiles are made available for download, signature search, and gene centric reverse search with unique case studies.
Collapse
|
25
|
Hong J, Cai X. Construction of a Novel Oxidative Stress Response-Related Gene Signature for Predicting the Prognosis and Therapeutic Responses in Hepatocellular Carcinoma. DISEASE MARKERS 2022; 2022:6201987. [PMID: 36133439 PMCID: PMC9484914 DOI: 10.1155/2022/6201987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy with poor outcomes, and the assessment of its prognosis as well as its response to therapy is still challenging. In this study, we aimed to construct an oxidative stress response-related genes-(OSRGs-) based gene signature for predicting prognosis and estimating treatment response in patients with HCC. We integrated the transcriptomic data and clinicopathological information of HCC patients from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) databases. LASSO Cox regression analysis was utilized to establish an integrated multigene signature in the TCGA cohort, and its prediction performance was validated in the ICGC cohort. The CIBERSORT algorithm was employed to evaluate immune cell infiltration. The response rate to immune checkpoint inhibition (ICI) therapy was assessed using a TIDE platform. Drug activity data from the Cancer Genome Project and NCI-60 human cancer cell lines were used to predict sensitivity to chemotherapy. We successfully established a gene signature comprising G6PD, MT3, CBX2, CDKN2B, CCNA2, MAPT, EZH2, and SLC7A11. The risk score of each patient, which was determined by the multigene signature, was identified as an independent prognostic marker. The immune cell infiltration patterns, response rates to ICI therapy, and the estimated sensitivity of 89 chemotherapeutic drugs were associated with risk scores. Individual prognostic genes were also associated with susceptibility to various FDA-approved drugs. Our study indicates that a comprehensive transcriptomic analysis of OSRGs can provide a reliable molecular model to predict prognosis and therapeutic response in patients with HCC.
Collapse
Affiliation(s)
- Junjie Hong
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xiujun Cai
- Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
26
|
Mejía-Hernández JO, Raghu D, Caramia F, Clemons N, Fujihara K, Riseborough T, Teunisse A, Jochemsen AG, Abrahmsén L, Blandino G, Russo A, Gamell C, Fox SB, Mitchell C, Takano EA, Byrne D, Miranda PJ, Saleh R, Thorne H, Sandhu S, Williams SG, Keam SP, Haupt Y, Haupt S. Targeting MDM4 as a Novel Therapeutic Approach in Prostate Cancer Independent of p53 Status. Cancers (Basel) 2022; 14:3947. [PMID: 36010941 PMCID: PMC9405814 DOI: 10.3390/cancers14163947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Metastatic prostate cancer is a lethal disease in patients incapable of responding to therapeutic interventions. Invasive prostate cancer spread is caused by failure of the normal anti-cancer defense systems that are controlled by the tumour suppressor protein, p53. Upon mutation, p53 malfunctions. Therapeutic strategies to directly re-empower the growth-restrictive capacities of p53 in cancers have largely been unsuccessful, frequently because of a failure to discriminate responses in diseased and healthy tissues. Our studies sought alternative prostate cancer drivers, intending to uncover new treatment targets. We discovered the oncogenic potency of MDM4 in prostate cancer cells, both in the presence and absence of p53 and also its mutation. We uncovered that sustained depletion of MDM4 is growth inhibitory in prostate cancer cells, involving either apoptosis or senescence, depending on the cell and genetic context. We identified that the potency of MDM4 targeting could be potentiated in prostate cancers with mutant p53 through the addition of a first-in-class small molecule drug that was selected as a p53 reactivator and has the capacity to elevate oxidative stress in cancer cells to drive their death.
Collapse
Affiliation(s)
- Javier Octavio Mejía-Hernández
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Dinesh Raghu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, VIC 3084, Australia
| | - Franco Caramia
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicholas Clemons
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kenji Fujihara
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Thomas Riseborough
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Amina Teunisse
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333 Leiden, The Netherlands
| | - Aart G. Jochemsen
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333 Leiden, The Netherlands
| | | | - Giovanni Blandino
- Translational Oncology Research Unit, IRCSS Regina Elena National Cancer Institute, 0144 Rome, Italy
| | - Andrea Russo
- Surgical Pathology Unit, Department of Research, Advanced Diagnostics and Technological Innovation, IRCSS Regina Elena National Cancer Institute, 0144 Rome, Italy
| | - Cristina Gamell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen B. Fox
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Catherine Mitchell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Elena A. Takano
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - David Byrne
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Pathology Department, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Panimaya Jeffreena Miranda
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Reem Saleh
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Heather Thorne
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Scott G. Williams
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Parkville, VIC 3000, Australia
| | - Simon P. Keam
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ygal Haupt
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sue Haupt
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Tumour Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
27
|
Siqueira IR, de Souza Rodrigues A, Flores MS, Vieira Cunha EL, Goldberg M, Harmon B, Batabyal R, Freishtat RJ, Cechinel LR. Circulating Extracellular Vesicles and Particles Derived From Adipocytes: The Potential Role in Spreading MicroRNAs Associated With Cellular Senescence. FRONTIERS IN AGING 2022; 3:867100. [PMID: 36016863 PMCID: PMC9395989 DOI: 10.3389/fragi.2022.867100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022]
Abstract
Aging is associated with adipose tissue dysfunction and is recognized as a risk factor for shortened life span. Considering that in vitro findings have shown the involvement of microRNA in extracellular vesicles and particles (EVPs) on senescence, we hypothesized that circulating EVPs derived from adipocytes can be involved in the aging process via their microRNA cargo. We aimed to determine the microRNA profiles of circulating EVPs derived from adipocytes (FABP4+) from aged and young adult animals and to perform in silico prediction of their downstream signaling effects. Plasma was obtained from Wistar rats (3 and 21 months old), and adipocyte-derived EVPs were isolated using the commercially available kit. Fatty acid-binding protein 4 (FABP4) was used for adipocyte-derived EVPs isolation; microRNA isolation and microarray expression analysis were performed. The analysis revealed 728 miRNAs, 32 were differentially between groups (p < 0.05; fold change ≥ |1.1|), of which 15 miRNAs were upregulated and 17 were downregulated in circulating EVPs from aged animals compared to young adults. A conservative filter was applied, and 18 microRNAs had experimentally validated and highly conserved predicted mRNA targets, with a total of 2,228 mRNAs. Canonical pathways, disease and functions, and upstream regulator analyses were performed using IPA-QIAGEN, allowing a global and interconnected evaluation. IPA categories impacted negatively were cell cycle, cellular development, cellular growth and proliferation, and tissue development, while those impacted positively were “digestive system cancer” and “endocrine gland tumor.” Interestingly, the upregulated miR-15-5p targets several cyclins, such as CCND1 and CCND2, and miR-24-3p seems to target CDK4 (cyclin-dependent kinase 4); then potentially inhibiting their expression, both miRNAs can induce a negative regulation of cell cycle progression. In contrast, silencing of negative cell cycle checkpoint regulators, such as p21 and p16, can be predicted, which can induce impairment in response to genotoxic stressors. In addition, predicted targets, such as SMAD family members, seem to be involved in the positive control of digestive and endocrine tumors. Taken together, this exploratory study indicates that miRNA signature in circulating adipocyte-derived EVPs may be involved with the double-edged sword of cellular senescence, including irreversible proliferation arrest and tissue-dependent cancer, and seems to be suitable for further validation and confirmatory studies.
Collapse
Affiliation(s)
- Ionara Rodrigues Siqueira
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Ionara Rodrigues Siqueira,
| | - Andressa de Souza Rodrigues
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina Siqueira Flores
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduarda Letícia Vieira Cunha
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Madeleine Goldberg
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, WC, United States
| | - Brennan Harmon
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, WC, United States
| | - Rachael Batabyal
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, WC, United States
| | - Robert J. Freishtat
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, WC, United States
| | - Laura Reck Cechinel
- Programa de Pós-Graduação em Ciências Biológicas: Farmacologia e Terapêutica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, WC, United States
| |
Collapse
|
28
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Baniahmad A, Branicki W, Taheri M, Eghbali A. Emerging Role of Non-Coding RNAs in Senescence. Front Cell Dev Biol 2022; 10:869011. [PMID: 35865636 PMCID: PMC9294638 DOI: 10.3389/fcell.2022.869011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Senescence is defined as a gradual weakening of functional features of a living organism. Cellular senescence is a process that is principally aimed to remove undesirable cells by prompting tissue remodeling. This process is also regarded as a defense mechanism induced by cellular damage. In the course of oncogenesis, senescence can limit tumor progression. However, senescence participates in the pathoetiology of several disorders such as fibrotic disorders, vascular disorders, diabetes, renal disorders and sarcopenia. Recent studies have revealed contribution of different classes of non-coding RNAs in the cellular senescence. Long non-coding RNAs, microRNAs and circular RNAs are three classes of these transcripts whose contributions in this process have been more investigated. In the current review, we summarize the available literature on the impact of these transcripts in the cellular senescence.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospitals, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Aria Baniahmad, ; Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
29
|
The Antisenescence Effect of Exosomes from Human Adipose-Derived Stem Cells on Skin Fibroblasts. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1034316. [PMID: 35813225 PMCID: PMC9259368 DOI: 10.1155/2022/1034316] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/08/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Human adipose-derived stem cells (ADSCs) have become a promising therapeutic approach against skin aging. Recent studies confirm that exosomes partially mediate the therapeutic effect of stem cells. This study successfully isolated exosomes from the ADSC culture medium and discovered that ADSC-derived exosomes (ADSC-Exos) could alleviate human dermal fibroblast (HDF) senescence and stimulate HDF migration. Moreover, ADSC-Exos increased the type I collagen expression level and reduced the reactive oxygen species (ROS) and senescence-associated β-galactosidase (SA-β-Gal) activity in HDFs. In addition, we demonstrated that ADSC-Exos significantly inhibited senescence-related protein expression levels of p53, p21, and p16. In conclusion, our results have revealed the antisenescence effects of ADSC-Exos on HDFs and ADSC-Exos may be a novel cell-free therapeutic tool for antiaging.
Collapse
|
30
|
Wang Z, Gao J, Xu C. Tackling cellular senescence by targeting miRNAs. Biogerontology 2022; 23:387-400. [PMID: 35727469 DOI: 10.1007/s10522-022-09972-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Cellular senescence, which is characterized by permanent proliferation arrest, has become an important target for the amelioration of various human diseases. The activity of senescent cells is mainly related to the senescence-associated secretory phenotype (SASP). The SASP can cause chronic inflammation in local tissues and organs through autocrine and paracrine mechanisms, and a series of factors secreted by senescent cells can deteriorate the cellular microenvironment, promoting tumor formation and exacerbating aging-related diseases. Therefore, avoiding the promotion of cancer is an urgent problem. In recent years, increased attention has been given to the mechanistic study of microRNAs in senescence. As important posttranscriptional regulators, microRNAs possess unique tissue-specific expression in senescence. MicroRNAs can regulate the SASP by regulating proteins in the senescence signaling pathway, the reverse transcriptase activity of telomerase, the generation of reactive oxygen species and oxidative damage to mitochondria. Numerous studies have confirmed that removing senescent cells does not cause significant side effects, which also opens the door to the development of treatment modalities against senescent cells. Herein, this review discusses the double-edged sword of cellular senescence in tumors and aging-related diseases and emphasizes the roles of microRNAs in regulating the SASP, especially the potential of microRNAs to be used as therapeutic targets to inhibit senescence, giving rise to novel therapeutic approaches for the treatment of aging-associated diseases.
Collapse
Affiliation(s)
- Zehua Wang
- Obstetrics and Gynecology, Hospital of Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Jianwen Gao
- School of Medical Engineering, Ma'anshan University, No. 8, Huangchi Road, Gushu Town, Dangtu County, Ma'anshan, 243100, Anhui, China. .,Major of Biotechnological Pharmaceutics, Shanghai Pharmaceutical School, Shanghai, 200135, China.
| | - Congjian Xu
- Obstetrics and Gynecology, Hospital of Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, China
| |
Collapse
|
31
|
Iakovou E, Kourti M. A Comprehensive Overview of the Complex Role of Oxidative Stress in Aging, The Contributing Environmental Stressors and Emerging Antioxidant Therapeutic Interventions. Front Aging Neurosci 2022; 14:827900. [PMID: 35769600 PMCID: PMC9234325 DOI: 10.3389/fnagi.2022.827900] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Aging is a normal, inevitable, irreversible, and progressive process which is driven by internal and external factors. Oxidative stress, that is the imbalance between prooxidant and antioxidant molecules favoring the first, plays a key role in the pathophysiology of aging and comprises one of the molecular mechanisms underlying age-related diseases. However, the oxidative stress theory of aging has not been successfully proven in all animal models studying lifespan, meaning that altering oxidative stress/antioxidant defense systems did not always lead to a prolonged lifespan, as expected. On the other hand, animal models of age-related pathological phenotypes showed a well-correlated relationship with the levels of prooxidant molecules. Therefore, it seems that oxidative stress plays a more complicated role than the one once believed and this role might be affected by the environment of each organism. Environmental factors such as UV radiation, air pollution, and an unbalanced diet, have also been implicated in the pathophysiology of aging and seem to initiate this process more rapidly and even at younger ages. Aim The purpose of this review is to elucidate the role of oxidative stress in the physiology of aging and the effect of certain environmental factors in initiating and sustaining this process. Understanding the pathophysiology of aging will contribute to the development of strategies to postpone this phenomenon. In addition, recent studies investigating ways to alter the antioxidant defense mechanisms in order to prevent aging will be presented. Conclusions Careful exposure to harmful environmental factors and the use of antioxidant supplements could potentially affect the biological processes driving aging and slow down the development of age-related diseases. Maybe a prolonged lifespan could not be achieved by this strategy alone, but a longer healthspan could also be a favorable target.
Collapse
Affiliation(s)
- Evripides Iakovou
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
| | - Malamati Kourti
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- *Correspondence: Malamati Kourti
| |
Collapse
|
32
|
Hense JD, Garcia DN, Isola JV, Alvarado-Rincón JA, Zanini BM, Prosczek JB, Stout MB, Mason JB, Walsh PT, Brieño-Enríquez MA, Schadock I, Barros CC, Masternak MM, Schneider A. Senolytic treatment reverses obesity-mediated senescent cell accumulation in the ovary. GeroScience 2022; 44:1747-1759. [PMID: 35460445 DOI: 10.1007/s11357-022-00573-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/13/2022] [Indexed: 11/26/2022] Open
Abstract
Senescent cells are in a cell cycle arrest state and accumulate with aging and obesity, contributing to a chronic inflammatory state. Treatment with senolytic drugs dasatinib and quercetin (D + Q) can reduce senescent cell burden in several tissues, increasing lifespan. Despite this, there are few reports about senescent cells accumulating in female reproductive tissues. Therefore, the aim of the study was to characterize the ovarian reserve and its relationship with cellular senescence in genetically obese mice (ob/ob). In experiment 1, ob/ob (n = 5) and wild-type (WT) mice (n = 5) at 12 months of age were evaluated. In experiment 2, 2-month-old female ob/ob mice were treated with senolytics (D + Q, n = 6) or placebo (n = 6) during the 4 months. Obese mice had more senescent cells in ovaries, indicated by increased p21 and p16 and lipofuscin staining and macrophage infiltration. Treatment with D + Q significantly reduced senescent cell burden in ovaries of obese mice. Neither obesity nor treatment with D + Q affected the number of ovarian follicles. In conclusion, our data indicate that obesity due to leptin deficiency increases the load of senescent cells in the ovary, which is reduced by treatment by senolytics. However, neither obesity nor D + Q treatment affected the ovarian reserve.
Collapse
Affiliation(s)
- Jéssica D Hense
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Pelotas, Brazil
| | - Driele N Garcia
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - José V Isola
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Joao A Alvarado-Rincón
- Facultad de Ciencias Agropecuarias, Universidad de La Salle, Campus Utopía, Yopal, Casanare, Colombia
| | - Bianka M Zanini
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliane B Prosczek
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jeffrey B Mason
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Patrick T Walsh
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Miguel A Brieño-Enríquez
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ines Schadock
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Carlos C Barros
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil.
| |
Collapse
|
33
|
Nikolajevic J, Ariaee N, Liew A, Abbasnia S, Fazeli B, Sabovic M. The Role of MicroRNAs in Endothelial Cell Senescence. Cells 2022; 11:cells11071185. [PMID: 35406749 PMCID: PMC8997793 DOI: 10.3390/cells11071185] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 12/05/2022] Open
Abstract
Cellular senescence is a complex, dynamic process consisting of the irreversible arrest of growth and gradual deterioration of cellular function. Endothelial senescence affects the cell’s ability to repair itself, which is essential for maintaining vascular integrity and leads to the development of endothelial dysfunction, which has an important role in the pathogenesis of cardiovascular diseases. Senescent endothelial cells develop a particular, senescence-associated secretory phenotype (SASP) that detrimentally affects both surrounding and distant endothelial cells, thereby facilitating the ageing process and development of age-related disorders. Recent studies highlight the role of endothelial senescence and its dysfunction in the pathophysiology of several age-related diseases. MicroRNAs are small noncoding RNAs that have an important role in the regulation of gene expression at the posttranscriptional level. Recently, it has been discovered that miRNAs could importantly contribute to endothelial cell senescence. Overall, the research focus has been shifting to new potential mechanisms and targets to understand and prevent the structural and functional changes in ageing senescent endothelial cells in order to prevent the development and limit the progression of the wide spectrum of age-related diseases. The aim of this review is to provide some insight into the most important pathways involved in the modulation of endothelial senescence and to reveal the specific roles of several miRNAs involved in this complex process. Better understanding of miRNA’s role in endothelial senescence could lead to new approaches for prevention and possibly also for the treatment of endothelial cells ageing and associated age-related diseases.
Collapse
Affiliation(s)
- Jovana Nikolajevic
- Department of Vascular Diseases, University Medical Center, 1000 Ljubljana, Slovenia;
- Correspondence:
| | - Nazila Ariaee
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Aaron Liew
- Department of Medicine, National University of Galway, H91 CF50 Galway, Ireland;
| | - Shadi Abbasnia
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Bahare Fazeli
- Vascular Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad 1696700, Iran;
| | - Miso Sabovic
- Department of Vascular Diseases, University Medical Center, 1000 Ljubljana, Slovenia;
- Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
34
|
Perdaens O, van Pesch V. Molecular Mechanisms of Immunosenescene and Inflammaging: Relevance to the Immunopathogenesis and Treatment of Multiple Sclerosis. Front Neurol 2022; 12:811518. [PMID: 35281989 PMCID: PMC8913495 DOI: 10.3389/fneur.2021.811518] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
Aging is characterized, amongst other features, by a complex process of cellular senescence involving both innate and adaptive immunity, called immunosenescence and associated to inflammaging, a low-grade chronic inflammation. Both processes fuel each other and partially explain increasing incidence of cancers, infections, age-related autoimmunity, and vascular disease as well as a reduced response to vaccination. Multiple sclerosis (MS) is a lifelong disease, for which considerable progress in disease-modifying therapies (DMTs) and management has improved long-term survival. However, disability progression, increasing with age and disease duration, remains. Neurologists are now involved in caring for elderly MS patients, with increasing comorbidities. Aging of the immune system therefore has relevant implications for MS pathogenesis, response to DMTs and the risks mediated by these treatments. We propose to review current evidence regarding markers and molecular mechanisms of immunosenescence and their relevance to understanding MS pathogenesis. We will focus on age-related changes in the innate and adaptive immune system in MS and other auto-immune diseases, such as systemic lupus erythematosus and rheumatoid arthritis. The consequences of these immune changes on MS pathology, in interaction with the intrinsic aging process of central nervous system resident cells will be discussed. Finally, the impact of immunosenescence on disease evolution and on the safety and efficacy of current DMTs will be presented.
Collapse
Affiliation(s)
- Océane Perdaens
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Vincent van Pesch
- Laboratory of Neurochemistry, Institute of Neuroscience, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- Department of Neurology, Cliniques universitaires Saint-Luc, Université catholique de Louvain (UCLouvain), Brussels, Belgium
- *Correspondence: Vincent van Pesch
| |
Collapse
|
35
|
Paramos-de-Carvalho D, Jacinto A, Saúde L. The right time for senescence. eLife 2021; 10:72449. [PMID: 34756162 PMCID: PMC8580479 DOI: 10.7554/elife.72449] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Cellular senescence is a highly complex and programmed cellular state with diverse and, at times, conflicting physiological and pathological roles across the lifespan of an organism. Initially considered a cell culture artifact, senescence evolved from an age-related circumstance to an intricate cellular defense mechanism in response to stress, implicated in a wide spectrum of biological processes like tissue remodelling, injury and cancer. The development of new tools to study senescence in vivo paved the way to uncover its functional roles in various frameworks, which are sometimes hard to reconcile. Here, we review the functional impact of senescent cells on different organismal contexts. We provide updated insights on the role of senescent cells in tissue repair and regeneration, in which they essentially modulate the levels of fibrosis and inflammation, discussing how "time" seems to be the key maestro of their effects. Finally, we overview the current clinical research landscape to target senescent cells and contemplate its repercussions on this fast-evolving field.
Collapse
Affiliation(s)
- Diogo Paramos-de-Carvalho
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal.,CEDOC, NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisbon, Portugal
| | - Antonio Jacinto
- CEDOC, NOVA Medical School, Faculdade de Ciências Médicas da Universidade Nova de Lisboa, Lisbon, Portugal
| | - Leonor Saúde
- Instituto de Medicina Molecular - João Lobo Antunes e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
36
|
Das T, Das TK, Khodarkovskaya A, Dash S. Non-coding RNAs and their bioengineering applications for neurological diseases. Bioengineered 2021; 12:11675-11698. [PMID: 34756133 PMCID: PMC8810045 DOI: 10.1080/21655979.2021.2003667] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Engineering of cellular biomolecules is an emerging landscape presenting creative therapeutic opportunities. Recently, several strategies such as biomimetic materials, drug-releasing scaffolds, stem cells, and dynamic culture systems have been developed to improve specific biological functions, however, have been confounded with fundamental and technical roadblocks. Rapidly emerging investigations on the bioengineering prospects of mammalian ribonucleic acid (RNA) is expected to result in significant biomedical advances. More specifically, the current trend focuses on devising non-coding (nc) RNAs as therapeutic candidates for complex neurological diseases. Given the pleiotropic and regulatory role, ncRNAs such as microRNAs and long non-coding RNAs are deemed as attractive therapeutic candidates. Currently, the list of non-coding RNAs in mammals is evolving, which presents the plethora of hidden possibilities including their scope in biomedicine. Herein, we critically review on the emerging repertoire of ncRNAs in neurological diseases such as Alzheimer’s disease, Parkinson’s disease, neuroinflammation and drug abuse disorders. Importantly, we present the advances in engineering of ncRNAs to improve their biocompatibility and therapeutic feasibility as well as provide key insights into the applications of bioengineered non-coding RNAs that are investigated for neurological diseases.
Collapse
Affiliation(s)
- Tuhin Das
- Quanta Therapeutics, San Francisco, CA, 94158, USA.,RayBiotech, Inc, 3607 Parkway Lane, Peachtree Corners, GA, 30092, USA
| | - Tushar Kanti Das
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Anne Khodarkovskaya
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA
| | - Sabyasachi Dash
- Department of Pathology, Weill Cornell Medicine, Medical College of Cornell University, New York, NY, 10065, USA.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024 India
| |
Collapse
|
37
|
Wang P, Wang S, Ji F, Zhang R. Muse Cells Have Higher Stress Tolerance than Adipose Stem Cells due to the Overexpression of the CCNA2 Gene. Stem Cells Dev 2021; 30:1056-1069. [PMID: 34486391 DOI: 10.1089/scd.2021.0088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This study aimed to investigate the stress tolerance mechanism of multilineage-differentiating stress enduring (Muse) cells and elucidate the means to improve the stress tolerance of mesenchymal stem cells. Cell viability, apoptosis, and senescence-related protein expression were detected under H2O2 stress by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium reduction assay, flow cytometry in combination with Annexin V-FITC/PI staining, and western blotting analysis, respectively. A significant increase in the CCNA2 gene level within Muse cells relative to adipose stem cells (ASCs) was observed. In the H2O2 stress environment in vitro, the survival rate of Muse cells remarkably increased compared with the survival rate of the ASCs. In addition, a reduced level of apoptosis and senescence-related protein expression of Muse cells relative to ASCs was documented. The miR-29b-3p-induced negative regulation of CCNA2 gene expression was confirmed by in vitro luciferase assay. A significant upregulation of CCNA2 gene expression in ASCs, transfected with antagomir-29b-3p, improved the survival rate of ASCs under H2O2 stress but dramatically reduced the apoptosis and expression of the senescence-related gene; agomir-29b-3p could partially reverse these effects. In conclusion, high expression of the CCNA2 gene is associated with an increased stress tolerance of Muse cells. Regulating the expression of CCNA2 by miR-29b-3p can alter the stress tolerance of ASCs.
Collapse
Affiliation(s)
- Peng Wang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Intensive Care Unit, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shengyi Wang
- The Dermal and Venereal Department, Xuzhou Central Hospital, Xuzhou, China.,The Dermal and Venereal Department, The Third Affiliated Hospital of Suzhou University, Changzhou, China
| | - Fuhai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ruzhi Zhang
- The Dermal and Venereal Department, The Third Affiliated Hospital of Suzhou University, Changzhou, China
| |
Collapse
|
38
|
Landscape analysis of lncRNAs shows that DDX11-AS1 promotes cell-cycle progression in liver cancer through the PARP1/p53 axis. Cancer Lett 2021; 520:282-294. [PMID: 34371129 DOI: 10.1016/j.canlet.2021.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 12/13/2022]
Abstract
Although long non-coding RNAs (lncRNAs) play important roles in tumorigenesis, the underlying mechanisms are unclear. Transcriptomic analysis of 33 hepatocellular carcinoma (HCC) samples revealed that the most enriched pathway for differentially expressed genes was related to the cell cycle process, where DDX11-AS1 is the most significant lncRNA. Upregulation of DDX11-AS1 expression through demethylation was significantly associated with a poor prognosis. Further mechanistic studies revealed that DDX11-AS1 promoted the growth of HCC by interacting with PARP1 through attenuating its binding to p53, leading to downregulated expression of p53 for inhibiting the transcription of downstream genes such as p21. Knockdown of DDX11-AS1 expression in xenograft mice using anti-DDX11-AS1 oligonucleotide suppressed liver tumor proliferation. These findings indicate that DDX11-AS1 plays a role in the development of liver cancer by affecting the cell cycle.
Collapse
|
39
|
Fang Y, Zekiy AO, Ghaedrahmati F, Timoshin A, Farzaneh M, Anbiyaiee A, Khoshnam SE. Tribbles homolog 2 (Trib2), a pseudo serine/threonine kinase in tumorigenesis and stem cell fate decisions. Cell Commun Signal 2021; 19:41. [PMID: 33794905 PMCID: PMC8015142 DOI: 10.1186/s12964-021-00725-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 02/08/2023] Open
Abstract
The family of Tribbles proteins play many critical nonenzymatic roles and regulate a wide range of key signaling pathways. Tribbles homolog 2 (Trib2) is a pseudo serine/threonine kinase that functions as a scaffold or adaptor in various physiological and pathological processes. Trib2 can interact with E3 ubiquitin ligases and control protein stability of downstream effectors. This protein is induced by mitogens and enhances the propagation of several cancer cells, including myeloid leukemia, liver, lung, skin, bone, brain, and pancreatic. Thus, Trib2 can be a predictive and valuable biomarker for the diagnosis and treatment of cancer. Recent studies have illustrated that Trib2 plays a major role in cell fate determination of stem cells. Stem cells have the capacity to self-renew and differentiate into specific cell types. Stem cells are important sources for cell-based regenerative medicine and drug screening. Trib2 has been found to increase the self-renewal ability of embryonic stem cells, the reprogramming efficiency of somatic cells, and chondrogenesis. In this review, we will focus on the recent advances of Trib2 function in tumorigenesis and stem cell fate decisions. Video abstract
Collapse
Affiliation(s)
- Yu Fang
- Anyang Center for Chemical and Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, Henan, People's Republic of China. .,Key Laboratory of New Opto-Electronic Functional Materials of Henan Province, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, Henan, People's Republic of China.
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, 61357-15794, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
40
|
Kumari R, Jat P. Mechanisms of Cellular Senescence: Cell Cycle Arrest and Senescence Associated Secretory Phenotype. Front Cell Dev Biol 2021; 9:645593. [PMID: 33855023 PMCID: PMC8039141 DOI: 10.3389/fcell.2021.645593] [Citation(s) in RCA: 826] [Impact Index Per Article: 206.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a stable cell cycle arrest that can be triggered in normal cells in response to various intrinsic and extrinsic stimuli, as well as developmental signals. Senescence is considered to be a highly dynamic, multi-step process, during which the properties of senescent cells continuously evolve and diversify in a context dependent manner. It is associated with multiple cellular and molecular changes and distinct phenotypic alterations, including a stable proliferation arrest unresponsive to mitogenic stimuli. Senescent cells remain viable, have alterations in metabolic activity and undergo dramatic changes in gene expression and develop a complex senescence-associated secretory phenotype. Cellular senescence can compromise tissue repair and regeneration, thereby contributing toward aging. Removal of senescent cells can attenuate age-related tissue dysfunction and extend health span. Senescence can also act as a potent anti-tumor mechanism, by preventing proliferation of potentially cancerous cells. It is a cellular program which acts as a double-edged sword, with both beneficial and detrimental effects on the health of the organism, and considered to be an example of evolutionary antagonistic pleiotropy. Activation of the p53/p21WAF1/CIP1 and p16INK4A/pRB tumor suppressor pathways play a central role in regulating senescence. Several other pathways have recently been implicated in mediating senescence and the senescent phenotype. Herein we review the molecular mechanisms that underlie cellular senescence and the senescence associated growth arrest with a particular focus on why cells stop dividing, the stability of the growth arrest, the hypersecretory phenotype and how the different pathways are all integrated.
Collapse
Affiliation(s)
- Ruchi Kumari
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Parmjit Jat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| |
Collapse
|
41
|
Roupakia E, Markopoulos GS, Kolettas E. Genes and pathways involved in senescence bypass identified by functional genetic screens. Mech Ageing Dev 2021; 194:111432. [PMID: 33422562 DOI: 10.1016/j.mad.2021.111432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 10/22/2022]
Abstract
Cellular senescence is a state of stable and irreversible cell cycle arrest with active metabolism, that normal cells undergo after a finite number of divisions (Hayflick limit). Senescence can be triggered by intrinsic and/or extrinsic stimuli including telomere shortening at the end of a cell's lifespan (telomere-initiated senescence) and in response to oxidative, genotoxic or oncogenic stresses (stress-induced premature senescence). Several effector mechanisms have been proposed to explain senescence programmes in diploid cells, including the induction of DNA damage responses, a senescence-associated secretory phenotype and epigenetic changes. Senescent cells display senescence-associated-β-galactosidase activity and undergo chromatin remodeling resulting in heterochromatinisation. Senescence is established by the pRb and p53 tumour suppressor networks. Senescence has been detected in in vitro cellular settings and in premalignant, but not malignant lesions in mice and humans expressing mutant oncogenes. Despite oncogene-induced senescence, which is believed to be a cancer initiating barrier and other tumour suppressive mechanisms, benign cancers may still develop into malignancies by bypassing senescence. Here, we summarise the functional genetic screens that have identified genes, uncovered pathways and characterised mechanisms involved in senescence evasion. These include cell cycle regulators and tumour suppressor pathways, DNA damage response pathways, epigenetic regulators, SASP components and noncoding RNAs.
Collapse
Affiliation(s)
- Eugenia Roupakia
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece
| | - Georgios S Markopoulos
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, Ioannina, 45100, Greece; Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Ioannina, 45110, Greece.
| |
Collapse
|
42
|
Metformin-Induced MicroRNA-34a-3p Downregulation Alleviates Senescence in Human Dental Pulp Stem Cells by Targeting CAB39 through the AMPK/mTOR Signaling Pathway. Stem Cells Int 2021; 2021:6616240. [PMID: 33505470 PMCID: PMC7806386 DOI: 10.1155/2021/6616240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Dental pulp stem cells (DPSCs) are ideal seed cells for the regeneration of dental tissues. However, DPSC senescence restricts its clinical applications. Metformin (Met), a common prescription drug for type 2 diabetes, is thought to influence the aging process. This study is aimed at determining the effects of metformin on DPSC senescence. Young and aging DPSCs were isolated from freshly extracted human teeth. Flow cytometry confirmed that DPSCs expressed characteristic surface antigen markers of mesenchymal stem cells (MSCs). Cell Counting Kit-8 (CCK-8) assay showed that a concentration of 100 μM metformin produced the highest increase in the proliferation of DPSCs. Metformin inhibited senescence in DPSCs as evidenced by senescence-associated β-galactosidase (SA-β-gal) staining and the expression levels of senescence-associated proteins. Additionally, metformin significantly suppressed microRNA-34a-3p (miR-34a-3p) expression, elevated calcium-binding protein 39 (CAB39) expression, and activated the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway. Dual-luciferase reporter assay confirmed that CAB39 is a direct target for miR-34a-3p. Furthermore, transfection of miR-34a-3p mimics promoted the senescence of DPSCs, while metformin treatment or Lenti-CAB39 transfection inhibited cellular senescence. In conclusion, these results indicated that metformin could alleviate the senescence of DPSCs by downregulating miR-34a-3p and upregulating CAB39 through the AMPK/mTOR signaling pathway. This study elucidates on the inhibitory effect of metformin on DPSC senescence and its potential as a therapeutic target for senescence treatment.
Collapse
|
43
|
Jia CY, Xiang W, Liu JB, Jiang GX, Sun F, Wu JJ, Yang XL, Xin R, Shi Y, Zhang DD, Li W, Zuberi Z, Zhang J, Lu GX, Wang HM, Wang PY, Yu F, Lv ZW, Ma YS, Fu D. MiR-9-1 Suppresses Cell Proliferation and Promotes Apoptosis by Targeting UHRF1 in Lung Cancer. Technol Cancer Res Treat 2021; 20:15330338211041191. [PMID: 34520284 PMCID: PMC8445543 DOI: 10.1177/15330338211041191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 07/30/2021] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is listed as the most common reason for cancer-related death all over the world despite diagnostic improvements and the development of chemotherapy and targeted therapies. MicroRNAs control both physiological and pathological processes including development and cancer. A microRNA-9 to 1 (miR-9 to 1) overexpression model in lung cancer cell lines was established and miR-9 to 1 was found to significantly suppress the proliferation rate in lung cancer cell lines, colony formation in vitro, and tumorigenicity in nude mice of A549 cells. Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1) was then identified to direct target of miR-9 to 1. The inhibition of UHRF1 by miR-9 to 1 causes G1 arrest and p15, p16, and p21 were re-expressed in miR-9 to 1 group in mRNA level and protein level. Silence of UHRF1 expression in A549 cells resulted in the similar re-expression of p15, p16, p21 which is similar with miR-9 to 1 infection. Therefore, we concluded that UHRF1 is a new target for miR-9 to 1 to suppress cell proliferation by re-expression of tumor suppressors p15, p16, and p21 mediated by UHRF1.
Collapse
Affiliation(s)
- Cheng-You Jia
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Xiang
- Shanghai Punan Hospital, Shanghai, China
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Geng-Xi Jiang
- Navy Military Medical University Affiliated Changhai Hospital, Shanghai, China
| | - Feng Sun
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jian-Jun Wu
- Nantong Haimen Yuelai Health Centre, Haimen, China
| | - Xiao-Li Yang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rui Xin
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Shi
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dan-Dan Zhang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Li
- Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Zavuga Zuberi
- Dares Salaam Institute of Technology, Salaam, Tanzania
| | - Jie Zhang
- School of Medicine, Nantong University, Nantong, China
| | - Gai-Xia Lu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui-Min Wang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pei-Yao Wang
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Yu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhong-Wei Lv
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu-Shui Ma
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Eastern Hepatobiliary Surgery Hospital/Institute, National Center for Liver Cancer, the Second Military Medical University, Shanghai, China
| | - Da Fu
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Wang T, Li LY, Chen YF, Fu SW, Wu ZW, Du BB, Yang XF, Zhang WS, Hao XY, Guo TK. Ribosome assembly factor URB1 contributes to colorectal cancer proliferation through transcriptional activation of ATF4. Cancer Sci 2020; 112:101-116. [PMID: 32888357 PMCID: PMC7780016 DOI: 10.1111/cas.14643] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/17/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Ribosome assembly factor URB1 is essential for ribosome biogenesis. However, its latent role in cancer remains unclear. Analysis of The Cancer Genome Atlas database and clinical tissue microarray staining showed that URB1 expression was upregulated in colorectal cancer (CRC) and prominently related to clinicopathological characteristics. Silencing of URB1 hampered human CRC cell proliferation and growth in vitro and in vivo. Microarray screening, ingenuity pathway analysis, and JASPAR assessment indicated that activating transcription factor 4 (ATF4) and X‐box binding protein 1 (XBP1) are potential downstream targets of URB1 and could transcriptionally interact through direct binding. Silencing of URB1 significantly decreased ATF4 and cyclin A2 (CCNA2) expression in vivo and in vitro. Restoration of ATF4 effectively reversed the malignant proliferation phenotype of URB1‐silenced CRC cells. Dual‐luciferase reporter and ChIP assays indicated that XBP1 transcriptionally activated ATF4 by binding with its promoter region. X‐box binding protein 1 colocalized with ATF4 in the nuclei of RKO cells, and ATF4 mRNA expression was positively regulated by XBP1. This study shows that URB1 contributes to oncogenesis and CRC growth through XBP1‐mediated transcriptional activation of ATF4. Therefore, URB1 could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Tao Wang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China.,The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Lai-Yuan Li
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Yi-Feng Chen
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Si-Wu Fu
- The School of Medical College, Northwest Minzu University, Lanzhou, China
| | - Zhi-Wei Wu
- The School of Preclinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Bin-Bin Du
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiong-Fei Yang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Wei-Sheng Zhang
- Department of Colorectal Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Xiang-Yong Hao
- Department of General Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| | - Tian-Kang Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China.,Department of General Surgery, Gansu Provincial People's Hospital, Lanzhou, China
| |
Collapse
|
45
|
Banaganapalli B, Mansour H, Mohammed A, Alharthi AM, Aljuaid NM, Nasser KK, Ahmad A, Saadah OI, Al-Aama JY, Elango R, Shaik NA. Exploring celiac disease candidate pathways by global gene expression profiling and gene network cluster analysis. Sci Rep 2020; 10:16290. [PMID: 33004927 PMCID: PMC7529771 DOI: 10.1038/s41598-020-73288-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022] Open
Abstract
Celiac disease (CeD) is a gastrointestinal autoimmune disorder, whose specific molecular basis is not yet fully interpreted. Therefore, in this study, we compared the global gene expression profile of duodenum tissues from CeD patients, both at the time of disease diagnosis and after two years of the gluten-free diet. A series of advanced systems biology approaches like differential gene expression, protein–protein interactions, gene network-cluster analysis were deployed to annotate the candidate pathways relevant to CeD pathogenesis. The duodenum tissues from CeD patients revealed the differential expression of 106 up- and 193 down-regulated genes. The pathway enrichment of differentially expressed genes (DEGs) highlights the involvement of biological pathways related to loss of cell division regulation (cell cycle, p53 signalling pathway), immune system processes (NOD-like receptor signalling pathway, Th1, and Th2 cell differentiation, IL-17 signalling pathway) and impaired metabolism and absorption (mineral and vitamin absorptions and drug metabolism) in celiac disease. The molecular dysfunctions of these 3 biological events tend to increase the number of intraepithelial lymphocytes (IELs) and villous atrophy of the duodenal mucosa promoting the development of CeD. For the first time, this study highlights the involvement of aberrant cell division, immune system, absorption, and metabolism pathways in CeD pathophysiology and presents potential novel therapeutic opportunities.
Collapse
Affiliation(s)
- Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haifa Mansour
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Arif Mohammed
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Arwa Mastoor Alharthi
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nada Mohammed Aljuaid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalidah Khalid Nasser
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aftab Ahmad
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omar I Saadah
- Pediatric Gastroenterology Unit, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Yousuf Al-Aama
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia. .,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia. .,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
46
|
Network Pharmacology-Based Strategy to Investigate the Pharmacological Mechanisms of Ginkgo biloba Extract for Aging. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8508491. [PMID: 32802136 PMCID: PMC7403930 DOI: 10.1155/2020/8508491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Aging is a main risk factor for a number of debilitating diseases and contributes to an increase in mortality. Previous studies have shown that Ginkgo biloba extract (EGb) can prevent and treat aging-related diseases, but its pharmacological effects need to be further clarified. This study aimed to propose a network pharmacology-based method to identify the therapeutic pathways of EGb for aging. The active components of EGb and targets of sample chemicals were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database. Information on aging-related genes was obtained from the Human Ageing Genomic Resources database and JenAge Ageing Factor Database. Subsequently, a network containing the interactions between the putative targets of EGb and known therapeutic targets of aging was established, which was used to investigate the pharmacological mechanisms of EGb for aging. A total of 24 active components, 154 targets of active components of EGb, and 308 targets of aging were obtained. Network construction and pathway enrichment were conducted after data integration. The study found that flavonoids (quercetin, luteolin, and kaempferol) and beta-sitosterol may be the main active components of EGb. The top eight candidate targets, namely, PTGS2, PPARG, DPP4, GSK3B, CCNA2, AR, MAPK14, and ESR1, were selected as the main therapeutic targets of EGb. Pathway enrichment results in various pathways were associated with inhibition of oxidative stress, inhibition of inflammation, amelioration of insulin resistance, and regulation of cellular biological processes. Molecular docking results showed that PPARG had better binding capacity with beta-sitosterol, and PTGS2 had better binding capacity with kaempferol and quercetin. The main components of EGb may act on multiple targets, such as PTGS2, PPARG, DPP4, and GSK3B, to regulate multiple pathways, and play an antiaging role by inhibiting oxidative stress, inhibiting inflammation, and ameliorating insulin resistance.
Collapse
|
47
|
Chen W, Wang X, Wei G, Huang Y, Shi Y, Li D, Qiu S, Zhou B, Cao J, Chen M, Qin P, Jin W, Ni T. Single-Cell Transcriptome Analysis Reveals Six Subpopulations Reflecting Distinct Cellular Fates in Senescent Mouse Embryonic Fibroblasts. Front Genet 2020; 11:867. [PMID: 32849838 PMCID: PMC7431633 DOI: 10.3389/fgene.2020.00867] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022] Open
Abstract
Replicative senescence is a hallmark of aging, which also contributes to individual aging. Mouse embryonic fibroblasts (MEFs) provide a convenient replicative senescence model. However, the heterogeneity of single MEFs during cellular senescence has remained unclear. Here, we conducted single-cell RNA sequencing on senescent MEFs. Principal component analysis showed obvious heterogeneity among these MEFs such that they could be divided into six subpopulations. Three types of gene expression analysis revealed distinct expression features of these six subpopulations. Trajectory analysis revealed three distinct lineages during MEF senescence. In the main lineage, some senescence-associated secretory phenotypes were upregulated in a subset of cells from senescent clusters, which could not be distinguished in a previous bulk study. In the other two lineages, a possibility of escape from cell cycle arrest and coupling between translation-related genes and ATP synthesis-related genes were also discovered. Additionally, we found co-expression of transcription factor HOXD8 coding gene and its potential target genes in the main lineage. Overexpression of Hoxd8 led to senescence-associated phenotypes, suggesting HOXD8 is a new regulator of MEF senescence. Together, our single-cell sequencing on senescent MEFs largely expanded the knowledge of a basic cell model for aging research.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xuefei Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yin Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yufang Shi
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- The First Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Dan Li
- Field Application Department, Fluidigm (Shanghai) Instrument Technology Co., Ltd., Shanghai, China
| | - Shengnu Qiu
- Division of Biosciences, Faculty of Life Sciences, University College London, London, United Kingdom
| | - Bin Zhou
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Junhong Cao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Meng Chen
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengfei Qin
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wenfei Jin
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
48
|
The microRNA-34a-Induced Senescence-Associated Secretory Phenotype (SASP) Favors Vascular Smooth Muscle Cells Calcification. Int J Mol Sci 2020; 21:ijms21124454. [PMID: 32585876 PMCID: PMC7352675 DOI: 10.3390/ijms21124454] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
The senescence of vascular smooth muscle cells (VSMCs), characterized by the acquisition of senescence-associated secretory phenotype (SASP), is relevant for VSMCs osteoblastic differentiation and vascular calcification (VC). MicroRNA-34a (miR-34a) is a driver of such phenomena and could play a role in vascular inflammaging. Herein, we analyzed the relationship between miR-34a and the prototypical SASP component IL6 in in vitro and in vivo models. miR-34a and IL6 levels increased and positively correlated in aortas of 21 months-old male C57BL/6J mice and in human aortic smooth muscle cells (HASMCs) isolated from donors of different age and undergone senescence. Lentiviral overexpression of miR-34a in HASMCs enhanced IL6 secretion. HASMCs senescence and calcification accelerated after exposure to conditioned medium of miR-34a-overexpressing cells. Analysis of miR-34a-induced secretome revealed enhancement of several pro-inflammatory cytokines and chemokines, including IL6, pro-senescent growth factors and matrix-degrading molecules. Moreover, induction of aortas medial calcification and concomitant IL6 expression, with an overdose of vitamin D, was reduced in male C57BL/6J Mir34a-/- mice. Finally, a positive correlation was observed between circulating miR-34a and IL6 in healthy subjects of 20-90 years. Hence, the vascular age-associated miR-34a promotes VSMCs SASP activation and contributes to arterial inflammation and dysfunctions such as VC.
Collapse
|
49
|
The bright and dark side of extracellular vesicles in the senescence-associated secretory phenotype. Mech Ageing Dev 2020; 189:111263. [PMID: 32461143 PMCID: PMC7347005 DOI: 10.1016/j.mad.2020.111263] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/17/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs) are key mediators within the senescence-associated secretory phenotype (SASP). Increased EV production has been demonstrated following senescence induction. Changes in EVs cargoes including proteins, nucleic acids and lipids have been demonstrated following senescence induction. EVs have been demonstrated to contribute to both the beneficial (Bright) and detrimental (Dark) sides of the SASP.
Senescence is a state of proliferative arrest which has been described as a protective mechanism against the malignant transformation of cells. However, senescent cells have also been demonstrated to accumulate with age and to contribute to a variety of age-related pathologies. These pathological effects have been attributed to the acquisition of an enhanced secretory profile geared towards inflammatory molecules and tissue remodelling agents – known as the senescence-associated secretory phenotype (SASP). Whilst the SASP has long been considered to be comprised predominantly of soluble mediators, growing evidence has recently emerged for the role of extracellular vesicles (EVs) as key players within the secretome of senescent cells. This review is intended to consolidate recent evidence for the roles of senescent cell-derived EVs to both the beneficial (Bright) and detrimental (Dark) effects of the SASP.
Collapse
|
50
|
Ma X, Zheng Q, Zhao G, Yuan W, Liu W. Regulation of cellular senescence by microRNAs. Mech Ageing Dev 2020; 189:111264. [PMID: 32450085 DOI: 10.1016/j.mad.2020.111264] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/26/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022]
Abstract
Cellular senescence is mainly characterized as a stable proliferation arrest and a senescence associated secretory phenotype (SASP). Senescence is triggered by diverse stimuli such as telomere shortening, oxidative stress, oncogene activation and DNA damage, and consequently contributes to multiple physiology and pathology outcomes, including embryonic development, wound healing and tumor suppression as well as aging or age-associated diseases. Interestingly, therapeutic clearance of senescent cells in tissues has recently been demonstrated to be beneficial for extending a healthy lifespan and for improving numerous age-related disorders. However the molecular mechanisms of senescence regulation remain partially understood. Theoretically, senescence is tightly regulated by a vast number of molecules, among which the p16 and p53 pathways are the most classical. In addition, intracellular cellular calcium signaling has emerged as a key regulator of senescence. In the last few decades, a growing number of studies have demonstrated that microRNAs (miRNAs, small non-coding RNAs) are strongly implicated in controlling senescence, especially at the transcriptional and post-transcriptional levels. In this review we will discuss the involvement of miRNAs in modulating senescence through the major p16, p53, SASP and calcium signaling pathways, thus aiming to reveal the mechanisms of how miRNAs regulate cellular senescence.
Collapse
Affiliation(s)
- Xingjie Ma
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China; Department of the Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Qingbin Zheng
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Guangming Zhao
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Wenjie Yuan
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Weili Liu
- Department of Intensive Care, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| |
Collapse
|