1
|
Wang S, Lv S, Hu J, Shi Y, Li Y, Zhang J, Tan X, Chen R, Hong Y. Conditional Overexpression of Neuritin in Supporting Cell Protects Cochlear Hair Cell and Delays Age-Related Hearing Loss by Enhancing Autophagy. Int J Mol Sci 2025; 26:3709. [PMID: 40332354 PMCID: PMC12027747 DOI: 10.3390/ijms26083709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Age-related hearing loss (ARHL) is a highly prevalent, burdensome sensorineural hearing loss closely associated with impaired autophagic influx. Our previous studies revealed that neuritin, a neurotrophic factor primarily expressed in the central nervous system, could alleviate drug-induced damages in hair cells (HCs) and spiral ganglion neurons. However, its effects on ARHL and whether these effects are closely related to autophagy remain unclear. Using the Nrn1 knock-in mice and cultured cochlear basilar membrane (CBM) of the neonatal mouse, we show that neuritin could restore aging-associated hearing loss and alleviate senescence-associated damage in the cochlea. Overexpression of neuritin in support cells (SCs) alleviates the loss of cochlear HCs and nerve fibers, reducing the damage to spiral ganglion neurons and the shifts in ABR's high-frequency threshold. Furthermore, conditional overexpression of neuritin in SCs improves autophagic influx by upregulating the expression of microtubule-associated protein 1 light chain 3 type B (LCB3) protein and downregulating the expression of p21 protein. In cultured neonatal mouse CBM, neuritin administration significantly inhibits D-galactose-induced HC loss, cellular apoptosis, and ROS production and promotes autophagic influx. These effects were weakened when the autophagy inhibitor 3-MA was added. In summary, our results confirm the therapeutic potential of neuritin treatment for ARHL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rong Chen
- School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; (S.W.); (S.L.); (J.H.); (Y.S.); (Y.L.); (J.Z.); (X.T.)
| | - Yu Hong
- School of Public Health, Hangzhou Normal University, Hangzhou 311121, China; (S.W.); (S.L.); (J.H.); (Y.S.); (Y.L.); (J.Z.); (X.T.)
| |
Collapse
|
2
|
Li W, Li Y, Wang M, Liu H, Hong G, Jiang L, Liu Z, Wu Y, Yuan L, Zhao X, He Z, Guo S, Xiao Y, Bi X, Xia M, Zou G, Zhang L, Gao J, Fu X. TNFAIP8L2 maintains hair cell function and regulates age-related hearing loss via mTORC1 signaling. Mol Ther 2025:S1525-0016(25)00218-7. [PMID: 40165373 DOI: 10.1016/j.ymthe.2025.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/15/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Age-related hearing loss (ARHL) is one of the most prevalent and complex disorders. Our previous study demonstrated that abnormal activation of mammalian target of rapamycin complex 1 (mTORC1) signaling in the cochlear neurosensory epithelium causes auditory hair cell (HC) damage and contributes to ARHL. However, the underlying mechanism of mTORC1 activation remains unclear. In this study, we identified tumor necrosis factor-alpha-induced protein 8-like 2 (TNFAIP8L2), an immune regulatory gene, as a potential candidate. To elucidate the effect of TNFAIP8L2 on mTORC1 signaling in the neurosensory epithelium and on hearing function, we generated a Tnfaip8l2-deficient (Tnfaip8l2-/-) mouse model. We discovered that Tnfaip8l2 deficiency led to features of oxidative stress in cochlear HCs and age-related hearing degeneration, exhibiting a similar phenotype to the mTORC1-over-activated Tsc1-cKO mice described previously. Furthermore, rapamycin, a well-known mTORC1 inhibitor, significantly mitigated the hearing dysfunction caused by Tnfaip8l2-deficiency. Mechanistically, we found that TNFAIP8L2 regulates mTORC1 signaling by simultaneously inhibiting the GTPase activity of Ras homolog enriched in brain (RHEB) and Ras-related C3 botulinum toxin substrate 1 (RAC1). Notably, both RHEB and RAC1 inhibitors alleviated the hearing phenotype observed in Tnfaip8l2-/- mice by inhibiting mTORC1 signaling. Collectively, our results provide insights into the activation of the mTORC1 pathway in aged mouse cochleae and positions TNFAIP8L2 as a valuable theoretical strategy.
Collapse
Affiliation(s)
- Wen Li
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yu Li
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Min Wang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Hao Liu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Guodong Hong
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Luhan Jiang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ziyi Liu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yunhao Wu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Liangjie Yuan
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiaoxu Zhao
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Siwei Guo
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yu Xiao
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiuli Bi
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ming Xia
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Guichang Zou
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Lining Zhang
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jiangang Gao
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaolong Fu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
3
|
Hattori K, Hamaguchi T, Azuma-Suzuki R, Higashi S, Manji A, Morifuji M. Administration of nicotinamide mononucleotide suppresses the progression of age-related hearing loss in mice. Hear Res 2025; 457:109182. [PMID: 39778468 DOI: 10.1016/j.heares.2025.109182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
Age-related hearing loss (ARHL) is a widespread problem in the elderly, significantly impairing their quality of life. Despite its high prevalence, no fundamental treatment for ARHL has been established. Nicotinamide adenine dinucleotide (NAD+) is required for various biological processes and tissue levels of the coenzyme NAD+ are known to decrease with age. A previous report suggested that declining NAD+ levels induce age-related diseases and NAD+ supplementation might be effective for treating or preventing age-related diseases. To clarify the effect of NAD+ supplementation on ARHL, C57BL/6J mice used as an animal model of ARHL were treated with nicotinamide mononucleotide (NMN), a precursor of NAD+. Oral administration of NMN at 500 mg/kg/day effectively suppressed the development of ARHL in C57BL/6J mice. To elucidate the mechanism by which NMN administration suppressed the development of ARHL, NAD+-related metabolites were assessed, and a comprehensive transcriptomic analysis of the inner ear tissue was performed. NMN administration resulted in increased NAD+ levels in inner ear tissues and induced changes in the transcriptome, specifically in genes related to metal ion metabolism. These findings suggest that NMN administration enhanced NAD+ levels in inner ear tissues, modulating metal ion metabolism to potentially protect against oxidative stress. This study provides a novel therapeutic approach to mitigating ARHL through NAD+ supplementation.
Collapse
Affiliation(s)
- Kouya Hattori
- Wellness Science Labs, Meiji Holdings Co., Ltd., Tokyo, 192-0919, Japan
| | | | - Rika Azuma-Suzuki
- Wellness Science Labs, Meiji Holdings Co., Ltd., Tokyo, 192-0919, Japan
| | - Seiichiro Higashi
- Wellness Science Labs, Meiji Holdings Co., Ltd., Tokyo, 192-0919, Japan
| | - Aiko Manji
- Wellness Science Labs, Meiji Holdings Co., Ltd., Tokyo, 192-0919, Japan
| | - Masashi Morifuji
- Wellness Science Labs, Meiji Holdings Co., Ltd., Tokyo, 192-0919, Japan.
| |
Collapse
|
4
|
Okur MN, Ratajczak A, Kheradvar A, Djalilian HR. Autologous mitochondrial transplantation enhances the bioenergetics of auditory cells and mitigates cell loss induced by H 2O 2. Mitochondrion 2025; 81:102003. [PMID: 40390547 PMCID: PMC12090353 DOI: 10.1016/j.mito.2024.102003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/21/2024] [Accepted: 12/24/2024] [Indexed: 05/21/2025]
Abstract
Hearing loss is a widespread and disabling condition with no current cure, underscoring the urgent need for new therapeutic approaches for treatment and prevention. A recent mitochondrial therapy approach by introducing exogenous mitochondria to the cells has shown promising results in mitigating mitochondria-related disorders. Despite the essential role of mitochondria in hearing, this novel strategy has not yet been tested for the treatment of hearing loss. More importantly, whether cochlear cells take up exogenous mitochondria and its consequence on cell bioenergetics has never been tested before. Here, we showed that exogenous mitochondria from HEI-OC1 auditory cells internalize into a new set of HEI-OC1 cells through co-incubation in a dose-dependent manner without inducing toxicity. We observed that auditory cells that received exogenous mitochondria exhibited increased bioenergetics compared to the controls that received none. Furthermore, we found that mitochondrial transplantation protects cells from oxidative stress and H2O2-induced apoptosis, while partially restoring bioenergetics diminished by H2O2 exposure. These findings support initial evidence for the feasibility and potential advantages of mitochondrial therapy in auditory cells. If successful in animal models and ultimately in humans, this novel therapy offers prominent potential for the treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Mustafa Nazir Okur
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| | - Adam Ratajczak
- Department of Biomedical Engineering, University of California, 2420 Engineering Hall, Irvine, CA,92697-2730, USA
| | - Arash Kheradvar
- Department of Biomedical Engineering, University of California, 2420 Engineering Hall, Irvine, CA,92697-2730, USA
| | - Hamid R Djalilian
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, 2420 Engineering Hall, Irvine, CA,92697-2730, USA; Department of Neurological Surgery, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
Guo D, Wu J, Shen C, Zhang A, Zou T, Chen K, Huang W, Pan Y, Shen Y, Ji P, Zhong Y, Wen Q, Kong B, Xiang M, Ye B. Upregulation of LXRβ/ABCA1 pathway alleviates cochlear hair cell senescence of C57BL/6 J mice via reducing lipid droplet accumulation. Biogerontology 2025; 26:49. [PMID: 39890652 DOI: 10.1007/s10522-025-10192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Senescence and loss of cochlear hair cells is an important pathologic basis of age-related hearing loss. Lipid droplet accumulation has previously been shown to play an important role in neurodegeneration; however, its role in age-related hearing loss has not yet been investigated. LXRβ/ABCA1 is a key pathway that regulates lipid metabolism, while its dysfunction can cause abnormal accumulation of lipid droplets in neurons, leading to neurodegeneration. In this study, we found that decreased expression of LXRβ/ABCA1, elevated levels of lipid droplet accumulation, and increased activation of the NLRP3 inflammasome were demonstrated in senescent cochlear hair cells in both animal and cellular models of age-related hearing loss. We then manipulated the LXRβ/ABCA1 pathway transduction of cochlear hair cells. Upregulation of LXRβ/ABCA1 in senescent hair cells was found to reduce the accumulation of lipid droplets, inhibit NLRP3 inflammasome activation, and ultimately alleviate cochlear hair cell senescence. In our study, we also found that NLRP3 inflammasome activation can abrogate the alleviated effect of LXRβ/ABCA1 pathway on the senescence of cochlear hair cells but did not affect the expression of LXRβ/ABCA1.Our study are the first to demonstrate that abnormal lipid droplet accumulation and decreased LXRβ/ABCA1 pathway are observed in cochlear hair cells following the occurrence of age-related hearing loss. Upregulation of LXRβ/ABCA1 in senescent cochlear hair cells can reduce lipid droplet accumulation in cochlear hair cells and alleviate their senescence, which may be related to the inhibition of NLRP3 inflammasome activation. These findings provide potential targets for the treatment of age-related hearing loss.
Collapse
Affiliation(s)
- Dongye Guo
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jichang Wu
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenling Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andi Zhang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyuan Zou
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kaili Chen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiyi Huang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Pan
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Shen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peilin Ji
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Zhong
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Audiology & Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Wen
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Kong
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Audiology & Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bin Ye
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Translational Medicine On Ear and Nose Diseases, Shanghai, China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Audiology & Speech-Language Pathology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Sakata H, Hayashi K, Matsuyama R, Omata T, Kanou M, Yamana K, Kanzaki S. Association Between the Development of Sensorineural Hearing Loss and Blood NAD + Levels. J Clin Med Res 2024; 16:519-526. [PMID: 39635338 PMCID: PMC11614409 DOI: 10.14740/jocmr6083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Background Hearing loss prevalence increases with age, affecting over 25% of the global population aged 60 years or older. The aim of the study was to investigate the association between the development of sensorineural hearing loss (SNHL) and the blood levels of nicotinamide adenine dinucleotide (NAD+). Methods A single-center, observational study was conducted at Kawagoe Otology Institute in Japan. A total of 80 patients were included and allocated to four groups of 20 patients each: patients aged 50 - 79 years with or without unilateral sudden sensorineural hearing loss (SSNHL), and patients aged ≥ 80 years with or without bilateral age-related hearing loss (ARHL). The distribution of whole-blood NAD+ levels was investigated. We also measured oxidative stress markers (diacron-reactive oxygen metabolites (dROMs) and biological antioxidant potential (BAP)) and examined the relationship between the development of SNHL and whole-blood NAD+ levels, dROMs, and BAP. Results Comparison of NAD+ levels with and without hearing loss in the same age group by analysis of covariance showed a significantly lower NAD+ level in those with hearing loss than those without in the ≥ 80 age group (P = 0.047), whereas there was no difference between the two groups in the 50 - 79 age group (P = 0.232). All 80 patients, without consideration of age or type of hearing loss, were subjected to multivariate analysis to explore factors contributing to the development of hearing loss. With each 1 µM increase in the NAD+ level, the probability of developing SNHL decreased to 0.9-fold (P = 0.047), and each 1 U.CARR increase in dROMs was associated with a 1.01-fold increase in the risk of developing SNHL (P = 0.014). Whole-blood NAD+ levels in ARHL patients were significantly lower than those in non-ARHL patients. There was no association between whole-blood NAD+ and dROMs or BAP levels. This study has some limitations, including a sample size that was not large enough to detect a significant difference and an imbalance in the male-to-female ratio. Conclusions Decreased amount of NAD+ in the body and increased dROMs levels were associated with increased risk of developing SNHL, and the development of ARHL was especially highly associated with a decreased amount of NAD+ in the body.
Collapse
Affiliation(s)
- Hideaki Sakata
- Kawagoe Ear Institute, Division of Otorhinolaryngology, Kawagoe Mine Medical Center, Kawagoe City, Saitama 350-1122, Japan
| | - Ken Hayashi
- Kawagoe Ear Institute, Division of Otorhinolaryngology, Kawagoe Mine Medical Center, Kawagoe City, Saitama 350-1122, Japan
| | - Ryo Matsuyama
- Nutraceutical Group, New Business Development Unit, Teijin Limited, Hino, Tokyo, Japan
- Discovery DMPK Research Group, Toxicology & DMPK Research Department, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Tomoyo Omata
- Discovery DMPK Research Group, Toxicology & DMPK Research Department, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Masanobu Kanou
- Nutraceutical Group, New Business Development Unit, Teijin Limited, Hino, Tokyo, Japan
- NOMON Co. Ltd, Kasumigaseki, Chiyoda Ku, Tokyo, Japan
| | - Kei Yamana
- Nutraceutical Group, New Business Development Unit, Teijin Limited, Hino, Tokyo, Japan
- NOMON Co. Ltd, Kasumigaseki, Chiyoda Ku, Tokyo, Japan
| | - Sho Kanzaki
- Division of Auditory Disorders, National Institute of Sensory Organ, National Hospital Organization of Tokyo Medical Center, Meguro Ku, Tokyo, Japan
| |
Collapse
|
7
|
Marmolejo-Garza A, Chatre L, Croteau DL, Herron-Bedoya A, Luu MDA, Bernay B, Pontin J, Bohr VA, Boddeke E, Dolga AM. Nicotinamide riboside modulates the reactive species interactome, bioenergetic status and proteomic landscape in a brain-region-specific manner. Neurobiol Dis 2024; 200:106645. [PMID: 39179121 DOI: 10.1016/j.nbd.2024.106645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Nicotinamide riboside (NR), a precursor of nicotinamide adenine dinucleotide (NAD+), has robust cognitive benefits and alleviates neuroinflammation in Alzheimer's Disease (AD) mouse models without decreasing beta-amyloid plaque pathology. Such effects may be mediated by the reactive species interactome (RSI), at the metabolome level. In this study, we employed in vitro and in vivo models of oxidative stress, aging and AD to profile the effects of NR on neuronal survival, RSI, and the whole proteome characterization of cortex and hippocampus. RSI analysis yielded a complex modulation upon NR treatment. We constructed protein co-expression networks and correlated them to NR treatment and all measured reactive species. We observed brain-area specific effects of NR on co-expressed protein modules of oxidative phosphorylation, fatty acid oxidation, and neurotransmitter regulation pathways, which correlated with RSI components. The current study contributes to the understanding of modulation of the metabolome, specifically after NR treatment in AD and how it may play disease-modifying roles.
Collapse
Affiliation(s)
- Alejandro Marmolejo-Garza
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713, AV, Groningen, the Netherlands; Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Laurent Chatre
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT, UMR6030, GIP CYCERON, F-14000 Caen, France
| | - Deborah L Croteau
- Section on DNA repair, National Institute on Aging, 251 Bayview Blvd, Baltimore, MD, USA; Laboratory of Genetics and Genomics, Computational Biology and Genomics Core, National Institute on Aging, 251 Bayview Blvd, Baltimore, USA
| | - Alejandro Herron-Bedoya
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713, AV, Groningen, the Netherlands
| | - Minh Danh Anh Luu
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713, AV, Groningen, the Netherlands
| | - Benoit Bernay
- Université de Caen Normandie, US EMerode, Plateform Proteogen, F-14000 Caen, France
| | - Julien Pontin
- Université de Caen Normandie, US EMerode, Plateform Proteogen, F-14000 Caen, France
| | - Vilhelm A Bohr
- Section on DNA repair, National Institute on Aging, 251 Bayview Blvd, Baltimore, MD, USA; Center for Healthy Aging, Department of Cellular and Molecular Medicine, SUND, University of Copenhagen, 2200, Copenhagen N, Denmark; Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Erik Boddeke
- Department of Biomedical Sciences of Cells & Systems, section Molecular Neurobiology, Faculty of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Amalia M Dolga
- Faculty of Science and Engineering, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9713, AV, Groningen, the Netherlands.
| |
Collapse
|
8
|
Ege T, Tao L, North BJ. The Role of Molecular and Cellular Aging Pathways on Age-Related Hearing Loss. Int J Mol Sci 2024; 25:9705. [PMID: 39273652 PMCID: PMC11396656 DOI: 10.3390/ijms25179705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Aging, a complex process marked by molecular and cellular changes, inevitably influences tissue and organ homeostasis and leads to an increased onset or progression of many chronic diseases and conditions, one of which is age-related hearing loss (ARHL). ARHL, known as presbycusis, is characterized by the gradual and irreversible decline in auditory sensitivity, accompanied by the loss of auditory sensory cells and neurons, and the decline in auditory processing abilities associated with aging. The extended human lifespan achieved by modern medicine simultaneously exposes a rising prevalence of age-related conditions, with ARHL being one of the most significant. While our understanding of the molecular basis for aging has increased over the past three decades, a further understanding of the interrelationship between the key pathways controlling the aging process and the development of ARHL is needed to identify novel targets for the treatment of AHRL. The dysregulation of molecular pathways (AMPK, mTOR, insulin/IGF-1, and sirtuins) and cellular pathways (senescence, autophagy, and oxidative stress) have been shown to contribute to ARHL. However, the mechanistic basis for these pathways in the initiation and progression of ARHL needs to be clarified. Therefore, understanding how longevity pathways are associated with ARHL will directly influence the development of therapeutic strategies to treat or prevent ARHL. This review explores our current understanding of the molecular and cellular mechanisms of aging and hearing loss and their potential to provide new approaches for early diagnosis, prevention, and treatment of ARHL.
Collapse
Affiliation(s)
| | - Litao Tao
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Brian J. North
- Biomedical Sciences Department, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| |
Collapse
|
9
|
Feng B, Dong T, Song X, Zheng X, Jin C, Cheng Z, Liu Y, Zhang W, Wang X, Tao Y, Wu H. Personalized Porous Gelatin Methacryloyl Sustained-Release Nicotinamide Protects Against Noise-Induced Hearing Loss. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305682. [PMID: 38225752 DOI: 10.1002/advs.202305682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/11/2023] [Indexed: 01/17/2024]
Abstract
There are no Food and Drug Administration-approved drugs for treating noise-induced hearing loss (NIHL), reflecting the absence of clear specific therapeutic targets and effective delivery strategies. Noise trauma is demonstrated results in nicotinamide adenine dinucleotide (NAD+) downregulation and mitochondrial dysfunction in cochlear hair cells (HCs) and spiral ganglion neurons (SGNs) in mice, and NAD+ boosted by nicotinamide (NAM) supplementation maintains cochlear mitochondrial homeostasis and prevents neuroexcitatory toxic injury in vitro and ex vivo, also significantly ameliorated NIHL in vivo. To tackle the limited drug delivery efficiency due to sophisticated anatomical barriers and unique clearance pathway in ear, personalized NAM-encapsulated porous gelatin methacryloyl (PGMA@NAM) are developed based on anatomy topography of murine temporal bone by micro-computed tomography and reconstruction of round window (RW) niche, realizing hydrogel in situ implantation completely, NAM sustained-release and long-term auditory preservation in mice. This study strongly supports personalized PGMA@NAM as NIHL protection drug with effective inner ear delivery, providing new inspiration for drug-based treatment of NIHL.
Collapse
Affiliation(s)
- Baoyi Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Tingting Dong
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Xinyu Song
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xiaofei Zheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Chenxi Jin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Zhenzhe Cheng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Yiqing Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, P. R. China
| | - Xueling Wang
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Yong Tao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, P. R. China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, No.115, Jinzun Road, Shanghai, 200125, P. R. China
- Shanghai Key Laboratory of Translation Medicine on Ear and Nose Disease, No.115, Jinzun Road, Shanghai, 200125, P. R. China
| |
Collapse
|
10
|
Gu X, Lin L. Spatiotemporal expression of AP-2/myosin Ⅵ in mouse cochlear IHCs and correlation with auditory function. Acta Otolaryngol 2024; 144:198-206. [PMID: 38662892 DOI: 10.1080/00016489.2024.2341126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Recycling of synaptic vesicles plays an important role in vesicle pool replenishment, neurotransmitter release and synaptic plasticity. Clathrin-mediated endocytosis (CME) is considered to be the main mechanism for synaptic vesicle replenishment. AP-2 (adaptor-related protein complex 2) and myosin Ⅵ are known as key proteins that regulate the structure and dynamics of CME. OBJECTIVE This study aims to reveal the spatiotemporal expression of AP-2/myosin Ⅵ in inner hair cells (IHCs) of the mouse cochlea and its correlation with auditory function. MATERIAL AND METHODS Immunofluorescence was used to detect the localization and expression of AP-2 and myosin Ⅵ in cochlear hair cells (HCs) of CBA/CaJ mice of various ages. qRT-PCR was used to verify the differential expression of AP-2 and myosin Ⅵ mRNA in the mouse cochlea, and ABR tests were administered to mice of various ages. A preliminary analysis of the correlation between AP-2/myosin Ⅵ levels and auditory function was conducted. RESULTS AP-2 was located in the cytoplasmic region of IHCs and was mainly expressed in the basal region of IHCs and the area near ribbon synapses, while myosin Ⅵ was expressed in the cytoplasmic region of IHCs and OHCs. Furthermore, AP-2 and myosin Ⅵ were not significant detected in the cochleae of P7 mice; the expression level reached a peak at P35 and then decreased significantly with age. The expression patterns and expression levels of AP-2 and myosin Ⅵ in the cochleae of the mice were consistent with the development of the auditory system. CONCLUSIONS AND SIGNIFICANCE AP-2 and myosin Ⅵ protein expression may differ in mice of different ages, and this variation probably leads to a difference in the efficiency in CME; it may also cause a defect in IHC function.
Collapse
Affiliation(s)
- Xiang Gu
- Department of Otolaryngology Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Lin
- Department of Otolaryngology Head and Neck Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Li Y, Zhang C, Li Z, Bai F, Jing Y, Ke H, Zhang S, Yan Y, Yu Y. Nicotinamide Riboside Regulates Chemotaxis to Decrease Inflammation and Ameliorate Functional Recovery Following Spinal Cord Injury in Mice. Curr Issues Mol Biol 2024; 46:1291-1307. [PMID: 38392200 PMCID: PMC10887503 DOI: 10.3390/cimb46020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Changes in intracellular nicotinamide adenine dinucleotide (NAD+) levels have been observed in various disease states. A decrease in NAD+ levels has been noted following spinal cord injury (SCI). Nicotinamide riboside (NR) serves as the precursor of NAD+. Previous research has demonstrated the anti-inflammatory and apoptosis-reducing effects of NR supplements. However, it remains unclear whether NR exerts a similar role in mice after SCI. The objective of this study was to investigate the impact of NR on these changes in a mouse model of SCI. Four groups were considered: (1) non-SCI without NR (Sham), (2) non-SCI with NR (Sham +NR), (3) SCI without NR (SCI), and (4) SCI with NR (SCI + NR). Female C57BL/6J mice aged 6-8 weeks were intraperitoneally administered with 500 mg/kg/day NR for a duration of one week. The supplementation of NR resulted in a significant elevation of NAD+ levels in the spinal cord tissue of mice after SCI. In comparison to the SCI group, NR supplementation exhibited regulatory effects on the chemotaxis/recruitment of leukocytes, leading to reduced levels of inflammatory factors such as IL-1β, TNF-α, and IL-22 in the injured area. Moreover, NR supplementation notably enhanced the survival of neurons and synapses within the injured area, ultimately resulting in improved motor functions after SCI. Therefore, our research findings demonstrated that NR supplementation had inhibitory effects on leukocyte chemotaxis, anti-inflammatory effects, and could significantly improve the immune micro-environment after SCI, thereby promoting neuronal survival and ultimately enhancing the recovery of motor functions after SCI. NR supplementation showed promise as a potential clinical treatment strategy for SCI.
Collapse
Affiliation(s)
- Yan Li
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing 100068, China
| | - Zihan Li
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Fan Bai
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Yingli Jing
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing 100068, China
| | - Shuangyue Zhang
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Yitong Yan
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
| | - Yan Yu
- Institute of Rehabilitation Medicine, China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing 100068, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100068, China
- School of Rehabilitation, Capital Medical University, Beijing 100068, China
| |
Collapse
|
12
|
Arizono I, Fujita N, Tsukahara C, Sase K, Sekine R, Jujo T, Otsubo M, Tokuda N, Kitaoka Y. Axonal Protection by Oral Nicotinamide Riboside Treatment with Upregulated AMPK Phosphorylation in a Rat Glaucomatous Degeneration Model. Curr Issues Mol Biol 2023; 45:7097-7109. [PMID: 37754233 PMCID: PMC10527704 DOI: 10.3390/cimb45090449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/12/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Nicotinamide riboside (NR), a precursor of nicotinamide adenine dinucleotide (NAD+), has been studied to support human health against metabolic stress, cardiovascular disease, and neurodegenerative disease. In the present study, we investigated the effects of oral NR on axonal damage in a rat ocular hypertension model. Intraocular pressure (IOP) elevation was induced by laser irradiation and then the rats received oral NR of 1000 mg/kg/day daily. IOP elevation was seen 7, 14, and 21 days after laser irradiation compared with the controls. We confirmed that oral NR administration significantly increased NAD+ levels in the retina. After 3-week oral administration of NR, morphometric analysis of optic nerve cross-sections showed that the number of axons was protected compared with that in the untreated ocular hypertension group. Oral NR administration significantly prevented retinal ganglion cell (RGC) fiber loss in retinal flat mounts, as shown by neurofilament immunostaining. Immunoblotting samples from the optic nerves showed that oral NR administration augmented the phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK) level in rats with and without ocular hypertension induction. Immunohistochemical analysis showed that some p-AMPK-immunopositive fibers were colocalized with neurofilament immunoreactivity in the control group, and oral NR administration enhanced p-AMPK immunopositivity. Our findings suggest that oral NR administration protects against glaucomatous RGC axonal degeneration with the possible upregulation of p-AMPK.
Collapse
Affiliation(s)
- Ibuki Arizono
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; (I.A.)
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Naoki Fujita
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Chihiro Tsukahara
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Kana Sase
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Reio Sekine
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Tatsuya Jujo
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Mizuki Otsubo
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; (I.A.)
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Naoto Tokuda
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| | - Yasushi Kitaoka
- Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, Kawasaki 216-8511, Japan; (I.A.)
- Department of Ophthalmology, St. Marianna University School of Medicine, Kawasaki 216-8511, Japan
| |
Collapse
|