1
|
Vozella V, Borgonetti V, Cruz B, Onge CMS, Bullard R, Vlkolinsky R, Ceballos DG, Ozburn AR, Roberts AJ, Ciccocioppo R, Bajo M, Roberto M. Apremilast reduces co-occurring alcohol drinking and mechanical allodynia and regulates central amygdala GABAergic transmission. JCI Insight 2025; 10:e189732. [PMID: 40260918 PMCID: PMC12016922 DOI: 10.1172/jci.insight.189732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/07/2025] [Indexed: 04/24/2025] Open
Abstract
The FDA-approved phosphodiesterase type 4 (PDE4) inhibitor, apremilast, has been recently investigated as a pharmacotherapy for alcohol use disorder (AUD) with promising efficacy in rodent models and humans. However, apremilast's effects on mechanical allodynia associated with AUD as well as distinct responses of this drug between males and females are understudied. The present study examined the behavioral and electrophysiological effects of apremilast in Marchigian Sardinian alcohol-preferring (msP) rats and their Wistar counterparts. We used a 2-bottle choice (2-BC) alcohol drinking procedure and tested mechanical sensitivity across our drinking regimen. Spontaneous inhibitory GABA-mediated postsynaptic currents from the central nucleus of the amygdala (CeA) following apremilast application were tested in a subset of rats using ex vivo electrophysiology. Transcript levels for Pde4a or -4b subtypes were assessed for their modulation by alcohol. Apremilast reduced alcohol drinking in both strains of rats. Apremilast reduced mechanical allodynia immediately after drinking, persisting into early and late abstinence. Apremilast increased GABAergic transmission in CeA slices of alcohol-exposed Wistars but not msP rats, suggesting neuroadaptations in msPs by excessive drinking and mechanical allodynia. Pde4 subtype transcript levels were increased in CeA by alcohol. These results suggest that apremilast alleviates co-occurring excessive drinking and pain sensitivity, and they further confirm PDE4's role in pain-associated AUD.
Collapse
Affiliation(s)
- Valentina Vozella
- Department of Translational Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Vittoria Borgonetti
- Department of Translational Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Bryan Cruz
- Department of Translational Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Celsey M. St. Onge
- Department of Translational Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Ryan Bullard
- Department of Translational Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Roman Vlkolinsky
- Department of Translational Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Diego Gomez Ceballos
- Department of Translational Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Angela R. Ozburn
- Department of Behavioral Neuroscience at Oregon Health & Science University and VA Portland Health Care System, Portland, Oregon, USA
| | - Amanda J. Roberts
- Animal Models Core Facility, Scripps Research, La Jolla, California, USA
| | - Roberto Ciccocioppo
- Pharmacology Unit, School of Pharmacy, University of Camerino, Camerino, Italy
| | - Michal Bajo
- Department of Translational Medicine, Scripps Research Institute, La Jolla, California, USA
| | - Marisa Roberto
- Department of Translational Medicine, Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
2
|
Grigsby K, Palacios J, Chan AE, Spencer SM, Ozburn AR. Effects of metformin on binge-like ethanol drinking and adenosine monophosphate kinase signaling in inbred high drinking in the dark line 1 mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:2269-2280. [PMID: 39589266 DOI: 10.1111/acer.15460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Adenosine monophosphate-activated protein kinase (AMPK) signaling plays a vital role in regulating cellular metabolism and energy throughout the body. Ethanol and cocaine both reduce AMPK activity in addiction-related brain regions. Though AMPK activation has been found to reduce cocaine seeking, its role in harmful drinking and alcohol use disorder (AUD) progression remains unclear. We asked whether metformin, a first-line type 2 diabetes medication that targets AMPK, can reduce binge-like ethanol intake in inbred High Drinking in the Dark Line-1 (iHDID-1) mice, a genetic risk model for drinking to intoxication. We then determined whether metformin altered ethanol clearance in iHDID-1 mice. Next, we tested whether metformin and/or ethanol altered AMPK signaling in the nucleus accumbens (NAc), a brain region critically important for harmful drinking. METHODS We measured the effects of metformin [0 or 250 mg/kg; intraperitoneal injection (i.p.)] on binge-like ethanol intake in separate acute (Experiment 1) and chronic (Experiment 3A) drinking studies (n = 6-8 iHDID-1 mice/sex/treatment/experiment). The effect of metformin (0 or 250 mg/kg) on ethanol (2.0 g/kg, i.p.) clearance was tested in iHDID-1 mice (Experiment 2; n = 7-9/sex/treatment). Lastly, we measured NAc AMPK and phosphorylated AMPK (pAMPK) levels in response to chronic ethanol (or water) drinking (n = 6 iHDID-1 mice/sex/treatment/fluid type; Experiment 3B) and an intoxicating dose of ethanol (2.0 g/kg; i.p.; Experiment 4). RESULTS Metformin reduced binge-like ethanol drinking intake in acute and chronic studies in both male and female iHDID-1 mice (p's < 0.05). We found no significant changes in ethanol clearance in response to metformin. Moreover, no differences in AMPK or pAMPK levels in the NAc were observed with either ethanol or metformin. CONCLUSIONS These findings provide early support for the repurposing of metformin, an affordable and safe diabetes medication, to reduce harmful ethanol intake and lay a foundation for testing its efficacy to treat individuals with AUD.
Collapse
Affiliation(s)
- Kolter Grigsby
- Research and Development Service, Portland Veterans Affairs Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Jonathan Palacios
- Research and Development Service, Portland Veterans Affairs Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Amy E Chan
- Research and Development Service, Portland Veterans Affairs Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Sade M Spencer
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota, USA
| | - Angela R Ozburn
- Research and Development Service, Portland Veterans Affairs Medical Center, Portland, Oregon, USA
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Wei R, Zong F, Dong J, Zhao W, Zhang F, Wang W, Zhao S, Wang Z, Zhang F, Zhang HT. Identification of Phosphodiesterase-7A (PDE7A) as a Novel Target for Reducing Ethanol Consumption in Mice. Int J Neuropsychopharmacol 2024; 27:pyae032. [PMID: 39099166 PMCID: PMC11348009 DOI: 10.1093/ijnp/pyae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Ethanol elicits a rapid stimulatory effect and a subsequent, prolonged sedative response, which are potential predictors of EtOH consumption by decreasing adenosine signaling; this phenomenon also reflects the obvious sex difference. cAMP (cyclic Adenosine Monophosphate)-PKA (Protein Kinase A) signaling pathway modulation can influence the stimulatory and sedative effects induced by EtOH in mice. This study's objective is to clarify the role of phosphodiesterase (PDE) in mediating the observed sex differences in EtOH responsiveness between male and female animals. METHODS EtOH was administered i.p. for 7 days to identify the changes in PDE isoforms in response to EtOH treatment. Additionally, EtOH consumption and preference of male and female C57BL/6J mice were assessed using the drinking-in-the-dark and 2-bottle choice tests. Further, pharmacological inhibition of PDE7A heterozygote knockout mice was performed to investigate its effects on EtOH-induced stimulation and sedation in both male and female mice. Finally, Western blotting analysis was performed to evaluate the alterations in cAMP-PKA/Epac2 pathways. RESULTS EtOH administration resulted in an immediate upregulation in PDE7A expression in female mice, indicating a strong association between PDE7A and EtOH stimulation. Through the pharmacological inhibition of PDE7A KD mice, we have demonstrated for the first time, to our knowledge, that PDE7A selectively attenuates EtOH responsiveness and consumption exclusively in female mice, whichmay be associated with the cAMP-PKA/Epac2 pathway and downstream phosphorylation of CREB and ERK1/2. CONCLUSIONS Inhibition or knockdown of PDE7A attenuates EtOH responsivenessand consumption exclusively in female mice, which is associated with alterations in the cAMP-PKA/Epac2 signaling pathways, thereby highlighting its potential as a novel therapeutic target for alcohol use disorder.
Collapse
Affiliation(s)
- Ran Wei
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
- Weifang Chinese Medical Hospital, Shandong Second Medical University, Weifang, China
| | - Fangjiao Zong
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Jiahao Dong
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
- Weifang People’s Hospital, Shandong Second Medical University, Weifang, China
| | - Wei Zhao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Fangfang Zhang
- Institude of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Wei Wang
- Institude of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, China
| | - Shuang Zhao
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Ziqi Wang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Fang Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| | - Han-Ting Zhang
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, China
| |
Collapse
|
4
|
Heilig M, Witkiewitz K, Ray LA, Leggio L. Novel medications for problematic alcohol use. J Clin Invest 2024; 134:e172889. [PMID: 38828724 PMCID: PMC11142745 DOI: 10.1172/jci172889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Alcohol-related harm, a major cause of disease burden globally, affects people along a spectrum of use. When a harmful pattern of drinking is present in the absence of significant behavioral pathology, low-intensity brief interventions that provide information about health consequences of continued use provide large health benefits. At the other end of the spectrum, profound behavioral pathology, including continued use despite knowledge of potentially fatal consequences, warrants a medical diagnosis, and treatment is strongly indicated. Available behavioral and pharmacological treatments are supported by scientific evidence but are vastly underutilized. Discovery of additional medications, with a favorable balance of efficacy versus safety and tolerability can improve clinical uptake of treatment, allow personalized treatment, and improve outcomes. Here, we delineate the clinical conditions when pharmacotherapy should be considered in relation to the main diagnostic systems in use and discuss clinical endpoints that represent meaningful clinical benefits. We then review specific developments in three categories of targets that show promise for expanding the treatment toolkit. GPCRs remain the largest category of successful drug targets across contemporary medicine, and several GPCR targets are currently pursued for alcohol-related indications. Endocrine systems are another established category, and several promising targets have emerged for alcohol indications. Finally, immune modulators have revolutionized treatment of multiple medical conditions, and they may also hold potential to produce benefits in patients with alcohol problems.
Collapse
Affiliation(s)
- Markus Heilig
- Center for Social and Affective Neuroscience, Linköping University, and Department of Psychiatry, Linköping University Hospital, Linköping, Sweden
| | - Katie Witkiewitz
- Department of Psychology and Center on Alcohol, Substance Use and Addictions, University of New Mexico, Albuquerque, New Mexico, USA
| | - Lara A. Ray
- Department of Psychology, UCLA, Los Angeles, California, USA
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, NIH, Baltimore and Bethesda, Maryland, USA
| |
Collapse
|
5
|
Grodin EN. Neuroimmune modulators as novel pharmacotherapies for substance use disorders. Brain Behav Immun Health 2024; 36:100744. [PMID: 38435721 PMCID: PMC10906159 DOI: 10.1016/j.bbih.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/20/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
One promising avenue of research is the use of neuroimmune modulators to treat substance use disorders (SUDs). Neuroimmune modulators target the interactions between the nervous system and immune system, which have been found to play a crucial role in the development and maintenance of SUDs. Multiple classes of substances produce alterations to neuroimmune signaling and peripheral immune function, including alcohol, opioids, and psychostimulants Preclinical studies have shown that neuroimmune modulators can reduce drug-seeking behavior and prevent relapse in animal models of SUDs. Additionally, early-phase clinical trials have demonstrated the safety and feasibility of using neuroimmune modulators as a treatment for SUDs in humans. These therapeutics can be used as stand-alone treatments or as adjunctive. This review summarizes the current state of the field and provides future directions with a specific focus on personalized medicine.
Collapse
Affiliation(s)
- Erica N. Grodin
- Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, USA
- Cousins Center for Psychoneuroimmunology, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Hitzemann R, Ozburn AR, Lockwood D, Phillips TJ. Modeling Brain Gene Expression in Alcohol Use Disorder with Genetic Animal Models. Curr Top Behav Neurosci 2023:10.1007/7854_2023_455. [PMID: 37982929 PMCID: PMC11566292 DOI: 10.1007/7854_2023_455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Animal genetic models have and will continue to provide important new information about the behavioral and physiological adaptations associated with alcohol use disorder (AUD). This chapter focuses on two models, ethanol preference and drinking in the dark (DID), their usefulness in interrogating brain gene expression data and the relevance of the data obtained to interpret AUD-related GWAS and TWAS studies. Both the animal and human data point to the importance for AUD of changes in synaptic transmission (particularly glutamate and GABA transmission), of changes in the extracellular matrix (specifically including collagens, cadherins and protocadherins) and of changes in neuroimmune processes. The implementation of new technologies (e.g., cell type-specific gene expression) is expected to further enhance the value of genetic animal models in understanding AUD.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, USA.
| | - Angela R Ozburn
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Denesa Lockwood
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Tamara J Phillips
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, USA
- Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
7
|
Diaz LA, Winder GS, Leggio L, Bajaj JS, Bataller R, Arab JP. New insights into the molecular basis of alcohol abstinence and relapse in alcohol-associated liver disease. Hepatology 2023:01515467-990000000-00605. [PMID: 37862466 DOI: 10.1097/hep.0000000000000645] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Alcohol use disorder remains a significant public health concern, affecting around 5% of adults worldwide. Novel pathways of damage have been described during the last years, providing insight into the mechanism of injury due to alcohol misuse beyond the direct effect of ethanol byproducts on the liver parenchyma and neurobehavioral mechanisms. Thus, the gut-liver-brain axis and immune system involvement could be therapeutic targets for alcohol use disorder. In particular, changes in gut microbiota composition and function, and bile acid homeostasis, have been shown with alcohol consumption and cessation. Alcohol can also directly disrupt intestinal and blood-brain barriers. Activation of the immune system can be triggered by intestinal barrier dysfunction and translocation of bacteria, pathogen-associated molecular patterns (such as lipopolysaccharide), cytokines, and damage-associated molecular patterns. These factors, in turn, promote liver and brain inflammation and the progression of liver fibrosis. Other involved mechanisms include oxidative stress, apoptosis, autophagy, and the release of extracellular vesicles and miRNA from hepatocytes. Potential therapeutic targets include gut microbiota (probiotics and fecal microbiota transplantation), neuroinflammatory pathways, as well as neuroendocrine pathways, for example, the ghrelin system (ghrelin receptor blockade), incretin mimetics (glucagon-like peptide-1 analogs), and the mineralocorticoid receptor system (spironolactone). In addition, support with psychological and behavioral treatments is essential to address the multiple dimensions of alcohol use disorder. In the future, a personalized approach considering these novel targets can contribute to significantly decreasing the alcohol-associated burden of disease.
Collapse
Affiliation(s)
- Luis Antonio Diaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institutes of Health, NIDA and NIAAA, Baltimore, Maryland, USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology, and Nutrition, Virginia Commonwealth University and Central Virginia Veterans Health Care System, Richmond, Virginia, USA
| | - Ramon Bataller
- Liver Unit, Hospital Clinic, Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Medicine, Division of Gastroenterology, Schulich School of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
8
|
Cruz B, Borgonetti V, Bajo M, Roberto M. Sex-dependent factors of alcohol and neuroimmune mechanisms. Neurobiol Stress 2023; 26:100562. [PMID: 37601537 PMCID: PMC10432974 DOI: 10.1016/j.ynstr.2023.100562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Excessive alcohol use disrupts neuroimmune signaling across various cell types, including neurons, microglia, and astrocytes. The present review focuses on recent, albeit limited, evidence of sex differences in biological factors that mediate neuroimmune responses to alcohol and underlying neuroimmune systems that may influence alcohol drinking behaviors. Females are more vulnerable than males to the neurotoxic and negative consequences of chronic alcohol drinking, reflected by elevations of pro-inflammatory cytokines and inflammatory mediators. Differences in cytokine, microglial, astrocytic, genomic, and transcriptomic evidence suggest females are more reactive than males to neuroinflammatory changes after chronic alcohol exposure. The growing body of evidence supports that innate immune factors modulate synaptic transmission, providing a mechanistic framework to examine sex differences across neurocircuitry. Targeting neuroimmune signaling may be a viable strategy for treating AUD, but more research is needed to understand sex-specific differences in alcohol drinking and neuroimmune mechanisms.
Collapse
Affiliation(s)
- Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA, 92073
| |
Collapse
|
9
|
Grigsby KB, Mangieri RA, Roberts AJ, Lopez MF, Firsick EJ, Townsley KG, Beneze A, Bess J, Eisenstein TK, Meissler JJ, Light JM, Miller J, Quello S, Shadan F, Skinner M, Aziz HC, Metten P, Morrisett RA, Crabbe JC, Roberto M, Becker HC, Mason BJ, Ozburn AR. Preclinical and clinical evidence for suppression of alcohol intake by apremilast. J Clin Invest 2023; 133:e159103. [PMID: 36656645 PMCID: PMC10014105 DOI: 10.1172/jci159103] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Treatment options for alcohol use disorders (AUDs) have minimally advanced since 2004, while the annual deaths and economic toll have increased alarmingly. Phosphodiesterase type 4 (PDE4) is associated with alcohol and nicotine dependence. PDE4 inhibitors were identified as a potential AUD treatment using a bioinformatics approach. We prioritized a newer PDE4 inhibitor, apremilast, as ideal for repurposing (i.e., FDA approved for psoriasis, low incidence of adverse events, excellent safety profile) and tested it using multiple animal strains and models, as well as in a human phase IIa study. We found that apremilast reduced binge-like alcohol intake and behavioral measures of alcohol motivation in mouse models of genetic risk for drinking to intoxication. Apremilast also reduced excessive alcohol drinking in models of stress-facilitated drinking and alcohol dependence. Using site-directed drug infusions and electrophysiology, we uncovered that apremilast may act to lessen drinking in mice by increasing neural activity in the nucleus accumbens, a key brain region in the regulation of alcohol intake. Importantly, apremilast (90 mg/d) reduced excessive drinking in non-treatment-seeking individuals with AUD in a double-blind, placebo-controlled study. These results demonstrate that apremilast suppresses excessive alcohol drinking across the spectrum of AUD severity.
Collapse
Affiliation(s)
- Kolter B. Grigsby
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, Oregon, USA
| | - Regina A. Mangieri
- Waggoner Center for Alcohol and Addiction Research, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, California, USA
| | - Marcelo F. Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Evan J. Firsick
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, Oregon, USA
| | - Kayla G. Townsley
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, Oregon, USA
| | - Alan Beneze
- Pearson Center for Alcoholism and Addiction Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Jessica Bess
- Pearson Center for Alcoholism and Addiction Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Toby K. Eisenstein
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Joseph J. Meissler
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | | | - Jenny Miller
- Pearson Center for Alcoholism and Addiction Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Susan Quello
- Pearson Center for Alcoholism and Addiction Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Farhad Shadan
- Pearson Center for Alcoholism and Addiction Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Michael Skinner
- Pearson Center for Alcoholism and Addiction Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Heather C. Aziz
- Waggoner Center for Alcohol and Addiction Research, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Pamela Metten
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, Oregon, USA
| | - Richard A. Morrisett
- Waggoner Center for Alcohol and Addiction Research, Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - John C. Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, Oregon, USA
| | - Marisa Roberto
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Howard C. Becker
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
- RHJ Department of Veterans Affairs Medical Center, Charleston, South Carolina, USA
| | - Barbara J. Mason
- Pearson Center for Alcoholism and Addiction Research, Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Angela R. Ozburn
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and VA Portland Health Care System, Portland, Oregon, USA
| |
Collapse
|
10
|
Mansour HM, El-Khatib AS. Repositioning of receptor tyrosine kinase inhibitors. RECEPTOR TYROSINE KINASES IN NEURODEGENERATIVE AND PSYCHIATRIC DISORDERS 2023:353-401. [DOI: 10.1016/b978-0-443-18677-6.00010-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Gatta E, Camussi D, Auta J, Guidotti A, Pandey SC. Neurosteroids (allopregnanolone) and alcohol use disorder: From mechanisms to potential pharmacotherapy. Pharmacol Ther 2022; 240:108299. [PMID: 36323379 PMCID: PMC9810076 DOI: 10.1016/j.pharmthera.2022.108299] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
Abstract
Alcohol Use Disorder (AUD) is a multifaceted relapsing disorder that is commonly comorbid with psychiatric disorders, including anxiety. Alcohol exposure produces a plethora of effects on neurobiology. Currently, therapeutic strategies are limited, and only a few treatments - disulfiram, acamprosate, and naltrexone - are available. Given the complexity of this disorder, there is a great need for the identification of novel targets to develop new pharmacotherapy. The GABAergic system, the primary inhibitory system in the brain, is one of the well-known targets for alcohol and is responsible for the anxiolytic effects of alcohol. Interestingly, GABAergic neurotransmission is fine-tuned by neuroactive steroids that exert a regulatory role on several endocrine systems involved in neuropsychiatric disorders including AUD. Mounting evidence indicates that alcohol alters the biosynthesis of neurosteroids, whereas acute alcohol increases and chronic alcohol decreases allopregnanolone levels. Our recent work highlighted that chronic alcohol-induced changes in neurosteroid levels are mediated by epigenetic modifications, e.g., DNA methylation, affecting key enzymes involved in neurosteroid biosynthesis. These changes were associated with changes in GABAA receptor subunit expression, suggesting an imbalance between excitatory and inhibitory signaling in AUD. This review will recapitulate the role of neurosteroids in the regulation of the neuroendocrine system, highlight their role in the observed allostatic load in AUD, and develop a framework from mechanisms to potential pharmacotherapy.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA
| | - Diletta Camussi
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA
| | - James Auta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA
| | - Alessandro Guidotti
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, USA; Jesse Brown Veterans Affairs Medical Center Chicago, IL 60612, USA.
| |
Collapse
|
12
|
Grigsby K, Ledford C, Batish T, Kanadibhotla S, Smith D, Firsick E, Tran A, Townsley K, Reyes KAV, LeBlanc K, Ozburn A. Targeting the Maladaptive Effects of Binge Drinking on Circadian Gene Expression. Int J Mol Sci 2022; 23:11084. [PMID: 36232380 PMCID: PMC9569456 DOI: 10.3390/ijms231911084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Previous studies (1) support a role of circadian genes in regulating alcohol intake, and (2) reveal that harmful alcohol use alters circadian rhythms. However, there is minimal knowledge of the effects of chronic alcohol processes on rhythmic circadian gene expression across brain regions important for circadian biology and alcohol intake. Therefore, the present study sought to test the effects of chronic binge-like drinking on diurnal circadian gene expression patterns in the master circadian pacemaker (SCN), the ventral tegmental area (VTA), and the nucleus accumbens (NAc) in High Drinking in the Dark-1 (HDID-1) mice, a unique genetic risk model for drinking to intoxication. Consistent with earlier findings, we found that 8 weeks of binge-like drinking reduced the amplitude of several core circadian clock genes in the NAc and SCN, but not the VTA. To better inform the use of circadian-relevant pharmacotherapies in reducing harmful drinking and ameliorating alcohol's effects on circadian gene expression, we tested whether the casein kinase-1 inhibitor, PF-67046, or the phosphodiesterase type-4 (an upstream regulator of circadian signalling) inhibitor, apremilast, would reduce binge-like intake and mitigate circadian gene suppression. PF-67046 did not reduce intake but did have circadian gene effects. In contrast, apremilast reduced drinking, but had no effect on circadian expression patterns.
Collapse
Affiliation(s)
- Kolter Grigsby
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Courtney Ledford
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Tanvi Batish
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Snigdha Kanadibhotla
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Delaney Smith
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Evan Firsick
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Alexander Tran
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Kayla Townsley
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Kaylee-Abril Vasquez Reyes
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Katherine LeBlanc
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Angela Ozburn
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR 97239, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
13
|
Savarese AM, Metten P, Phillips TJ, Jensen BE, Crabbe JC, Ozburn AR. Midazolam, methamphetamine, morphine and nicotine intake in high-drinking-in-the-dark mice. Addict Biol 2022; 27:e13212. [PMID: 36001437 PMCID: PMC9677807 DOI: 10.1111/adb.13212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022]
Abstract
The high-drinking-in-the-dark (HDID) lines of mice were selectively bred for achieving high blood alcohol levels in the drinking-in-the-dark (DID) task and have served as a unique genetic risk model for binge-like alcohol intake. However, little is known about their willingness to consume other addictive drugs. Here, we examined (a) whether the HDID-1 and HDID-2 lines of mice would voluntarily consume midazolam, methamphetamine, morphine and nicotine in a DID test and (b) whether the HDID lines differ from their founders, heterogeneous stock/Northport (HS/NPT), in consumption levels of these drugs at the concentrations tested. Separate groups of HDID-1, HDID-2 and HS/NPT mice were given 4 days of access to each drug, using the single-bottle, limited-access DID paradigm. Male and female mice of both HDID lines consumed all four offered drugs. We observed no genotype differences in 40 μg/ml methamphetamine intake, but significant differences in nicotine, midazolam and morphine intake. Both HDID lines drank significantly more (150 μg/ml) midazolam than their founders, providing strong support for a shared genetic contribution to binge ethanol and midazolam intake. HDID-2 mice, but not HDID-1 mice, consumed more morphine (700 μg/ml) and more nicotine across a range of concentrations than HS/NPT mice. These results demonstrate that the HDID mice can be utilized for tests of voluntary drug consumption other than ethanol and highlight potentially important differences between HDID lines in risk for elevated drug intake.
Collapse
Affiliation(s)
- Antonia M. Savarese
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, USA
| | - Pamela Metten
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, USA
- VA Portland Health Care System, Portland, USA
| | - Tamara J. Phillips
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, USA
- VA Portland Health Care System, Portland, USA
| | - Bryan E. Jensen
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, USA
- VA Portland Health Care System, Portland, USA
| | - John C. Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, USA
- VA Portland Health Care System, Portland, USA
| | - Angela R. Ozburn
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, USA
- VA Portland Health Care System, Portland, USA
| |
Collapse
|
14
|
Borrego MB, Chan AE, Ozburn AR. Regulation of alcohol drinking by ventral striatum and extended amygdala circuitry. Neuropharmacology 2022; 212:109074. [PMID: 35487273 PMCID: PMC9677601 DOI: 10.1016/j.neuropharm.2022.109074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023]
Abstract
Alcohol use disorder is a complex psychiatric disorder that can be modeled in rodents using a number of drinking paradigms. Drinking-in-the-dark (DID) is widely used to model the binge/intoxication stage of addiction, and chronic intermittent ethanol vapor procedures (CIE) are used to induce dependence and model withdrawal/negative affect induced escalation of drinking. We discuss experiments showing the ventral striatum (vStr) and extended amygdala (EA) are engaged in response to ethanol in rodents through c-Fos/Fos immunoreactivity studies. We also discuss experiments in rodents that span a wide variety of techniques where the function of vStr and EA structures are changed following DID or CIE, and the role of neurotransmitter and neuropeptide systems studies in these ethanol-related outcomes. We note where signaling systems converge across regions and paradigms and where there are still gaps in the literature. Dynorphin/κ-opioid receptor (KOR) signaling, as well as corticotropin releasing factor (CRF)/CRF receptor signaling were found to be important regulators of drinking behaviors across brain regions and drinking paradigms. Future research will require that females and a variety of rodent strains are used in preclinical experiments in order to strengthen the generalizability of findings and improve the likelihood of success for testing potential therapeutics in human laboratory studies.
Collapse
Affiliation(s)
- Marissa B Borrego
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, USA
| | - Amy E Chan
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, USA
| | - Angela R Ozburn
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR, 97239, USA.
| |
Collapse
|
15
|
Savarese AM, Grigsby KB, Jensen BE, Borrego MB, Finn DA, Crabbe JC, Ozburn AR. Corticosterone Levels and Glucocorticoid Receptor Gene Expression in High Drinking in the Dark Mice and Their Heterogeneous Stock (HS/NPT) Founder Line. Front Behav Neurosci 2022; 16:821859. [PMID: 35645743 PMCID: PMC9135139 DOI: 10.3389/fnbeh.2022.821859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
The High Drinking in the Dark (HDID-1) line of mice has been selectively bred for achieving high blood alcohol levels (BALs) in the Drinking in the Dark task, a model of binge-like drinking. Recently, we determined that glucocorticoid receptor (GR) antagonism with either mifepristone or CORT113176 (a selective GR antagonist) reduced binge-like ethanol intake in the HDID-1 mice, but not in their founder line, HS/NPT. Here, we examined whether the selection process may have altered glucocorticoid functioning by measuring (1) plasma corticosterone levels and (2) expression of the genes encoding GR (Nr3c1) and two of its chaperone proteins FKBP51 and FKBP52 (Fkbp5 and Fkbp4) in the brains (nucleus accumbens, NAc) of HDID-1 and HS/NPT mice. We observed no genotype differences in baseline circulating corticosterone levels. However, HDID-1 mice exhibited a greater stimulated peak corticosterone response to an IP injection (of either ethanol or saline) relative to their founder line. We further observed reduced basal expression of Fkbp4 and Nr3c1 in the NAc of HDID-1 mice relative to HS/NPT mice. Finally, HDID-1 mice exhibited reduced Fkbp5 expression in the NAc relative to HS/NPT mice following an injection of 2 g/kg ethanol. Together, these data suggest that selective breeding for high BALs may have altered stress signaling in the HDID-1 mice, which may contribute to the observed selective efficacy of GR antagonism in reducing binge-like ethanol intake in HDID-1, but not HS/NPT mice. These data have important implications for the role that stress signaling plays in the genetic risk for binge drinking.
Collapse
Affiliation(s)
- Antonia M. Savarese
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Kolter B. Grigsby
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Bryan E. Jensen
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Marissa B. Borrego
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Deborah A. Finn
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - John C. Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Angela R. Ozburn
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
16
|
Meredith LR, Grodin EN, Montoya AK, Miranda R, Squeglia LM, Towns B, Evans C, Ray LA. The effect of neuroimmune modulation on subjective response to alcohol in the natural environment. Alcohol Clin Exp Res 2022; 46:876-890. [PMID: 35362101 PMCID: PMC10460619 DOI: 10.1111/acer.14821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/28/2022] [Accepted: 03/18/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Despite the promising implications for novel immune therapeutics, few clinical trials have tested these therapies to date. An understanding of how immune pharmacotherapies influence complex alcohol use disorder (AUD) profiles, including subjective response to alcohol, is very limited. Initial findings show that ibudilast, a neuroimmune modulator, reduces rates of heavy drinking and measures of alcohol craving. METHODS This study is a secondary analysis of a 2-week clinical trial of ibudilast that enrolled a nontreatment-seeking sample with AUD. Eligible participants (N = 52) were randomized to receive ibudilast or matched placebo and completed daily diary assessments (DDAs) during the 2-week period. Each morning, participants reported on their mood and craving levels both before and during the previous day's drinking episode, as well as stimulation and sedation levels during the previous day's drinking episode. Multilevel models were used to compare the effects of ibudilast and placebo on subjective alcohol response. Exploratory analyses tested whether ibudilast moderated the relationship between daily stimulation/sedation and alcohol intake and whether withdrawal-related dysphoria moderated ibudilast's effects on subjective response. RESULTS Ibudilast did not significantly alter mean levels of stimulation or sedation (p's > 0.05). It did, however, moderate the effect of daily stimulation on drinking (p = 0.045). Ibudilast attenuated alcohol-induced increases in craving compared with placebo (p = 0.047), but not other subjective response measures. Ibudilast significantly tempered daily alcohol-induced changes in urge to drink and positive mood only among individuals without withdrawal-related dysphoria. CONCLUSIONS Ibudilast's effects on subjective alcohol responses appear to be nuanced and perhaps most salient for individuals drinking for positive reinforcement as distinguished from those who drink to feel normal. Consistent with previous findings, reductions in alcohol craving may represent a primary mechanism of ibudilast's effects on drinking. The ecologically valid nature of DDAs provide a clinically useful window into how individuals experience alcohol's effects while taking ibudilast.
Collapse
Affiliation(s)
| | - Erica N. Grodin
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Amanda K. Montoya
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Robert Miranda
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI, USA
- E. P. Bradley Hospital, Riverside, RI, USA
| | - Lindsay M. Squeglia
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Brandon Towns
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Christopher Evans
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Lara A. Ray
- Department of Psychology, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Honeywell KM, Doren EV, Szumlinski KK. Selective Inhibition of PDE4B Reduces Methamphetamine Reinforcement in Two C57BL/6 Substrains. Int J Mol Sci 2022; 23:4872. [PMID: 35563262 PMCID: PMC9099926 DOI: 10.3390/ijms23094872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 12/02/2022] Open
Abstract
Methamphetamine (MA) is a highly addictive psychostimulant drug, and the number of MA-related overdose deaths has reached epidemic proportions. Repeated MA exposure induces a robust and persistent neuroinflammatory response, and the evidence supports the potential utility of targeting neuroimmune function using non-selective phosphodiesterase 4 (PDE4) inhibitors as a therapeutic strategy for attenuating addiction-related behavior. Off-target, emetic effects associated with non-selective PDE4 blockade led to the development of isozyme-selective inhibitors, of which the PDE4B-selective inhibitor A33 was demonstrated recently to reduce binge drinking in two genetically related C57BL/6 (B6) substrains (C57BL/6NJ (B6NJ) and C57BL/6J (B6J)) that differ in their innate neuroimmune response. Herein, we determined the efficacy of A33 for reducing MA self-administration and MA-seeking behavior in these two B6 substrains. Female and male mice of both substrains were first trained to nose poke for a 100 mg/L MA solution followed by a characterization of the dose-response function for oral MA reinforcement (20 mg/L-3.2 g/L), the demand-response function for 400 mg/L MA, and cue-elicited MA seeking following a period of forced abstinence. During this substrain comparison of MA self-administration, we also determined the dose-response function for A33 pretreatment (0-1 mg/kg) on the maintenance of MA self-administration and cue-elicited MA seeking. Relative to B6NJ mice, B6J mice earned fewer reinforcers, consumed less MA, and took longer to reach acquisition criterion with males of both substrains exhibiting some signs of lower MA reinforcement than their female counterparts during the acquisition phase of the study. A33 pretreatment reduced MA reinforcement at all doses tested. These findings provide the first evidence that pretreatment with a selective PDE4B inhibitor effectively reduces MA self-administration in both male and female mice of two genetically distinct substrains but does not impact cue-elicited MA seeking following abstinence. If relevant to humans, these results posit the potential clinical utility of A33 or other selective PDE4B inhibitors for curbing active drug-taking in MA use disorder.
Collapse
Affiliation(s)
- Kevin M. Honeywell
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA; (K.M.H.); (E.V.D.)
| | - Eliyana Van Doren
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA; (K.M.H.); (E.V.D.)
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA; (K.M.H.); (E.V.D.)
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| |
Collapse
|
18
|
Abstract
Alcohol use disorder (AUD) is a highly prevalent but severely under-treated disorder, with only three widely-approved pharmacotherapies. Given that AUD is a very heterogeneous disorder, it is unlikely that one single medication will be effective for all individuals with an AUD. As such, there is a need to develop new, more effective, and diverse pharmacological treatment options for AUD with the hopes of increasing utilization and improving care. In this qualitative literature review, we discuss the efficacy, mechanism of action, and tolerability of approved, repurposed, and novel pharmacotherapies for the treatment of AUD with a clinical perspective. Pharmacotherapies discussed include: disulfiram, acamprosate, naltrexone, nalmefene, topiramate, gabapentin, varenicline, baclofen, sodium oxybate, aripiprazole, ondansetron, mifepristone, ibudilast, suvorexant, prazosin, doxazosin, N-acetylcysteine, GET73, ASP8062, ABT-436, PF-5190457, and cannabidiol. Overall, many repurposed and novel agents discussed in this review demonstrate clinical effectiveness and promise for the future of AUD treatment. Importantly, these medications also offer potential improvements towards the advancement of precision medicine and personalized treatment for the heterogeneous AUD population. However, there remains a great need to improve access to treatment, increase the menu of approved pharmacological treatments, and de-stigmatize and increase treatment-seeking for AUD.
Collapse
|
19
|
Crabbe JC, Hack WR, Ozburn AR, Savarese AM, Metten P. Long-term alcohol drinking in High Drinking in the Dark mice is stable for many months and does not show alcohol deprivation effects. Addict Biol 2022; 27:e13074. [PMID: 34227188 PMCID: PMC8720065 DOI: 10.1111/adb.13074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/22/2021] [Accepted: 06/08/2021] [Indexed: 01/03/2023]
Abstract
We have modelled genetic risk for binge-like drinking by selectively breeding High Drinking in the Dark-1 and -2 (HDID-1 and HDID-2) mice for their propensity to reach intoxicating blood alcohol levels (BALs) after binge-like drinking in a single bottle, limited access paradigm. Interestingly, in standard two-bottle choice (2BC) tests for continuously available alcohol versus water, HDID mice show modest levels of preference. This indicates some degree of independence of the genetic contributions to risk for binge-like and sustained, continuous access drinking. We had few data where the drinking in the dark (DID) tests of binge-like drinking had been repeatedly performed, so we serially offered multiple DID tests to see whether binge-like drinking escalated. It did not. We also asked whether HDID mice would escalate their voluntary intake with prolonged exposure to alcohol 2BC. They did not. Lastly, we assessed whether an alcohol deprivation effect (ADE) developed. ADE is a temporary elevation in drinking typically observed after a period of abstinence from sustained access to alcohol choice. With repetition, these periods of ADE sometimes have led to more sustained elevations in drinking. We therefore asked whether repeated ADE episodes would elevate choice drinking in HDID mice. They did not. After nearly 500 days of alcohol access, the intake of HDID mice remained stable. We conclude that a genetically-enhanced high risk for binge-like drinking is not sufficient to yield alterations in long-term alcohol intake.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, VA Portland Health Care System (R&D 12), Portland, Oregon, USA
| | - Wyatt R Hack
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, VA Portland Health Care System (R&D 12), Portland, Oregon, USA
| | - Angela R Ozburn
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, VA Portland Health Care System (R&D 12), Portland, Oregon, USA
| | - Antonia M Savarese
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, VA Portland Health Care System (R&D 12), Portland, Oregon, USA
| | - Pamela Metten
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, VA Portland Health Care System (R&D 12), Portland, Oregon, USA
| |
Collapse
|
20
|
Hao L, Alkry LT, Alattar A, Faheem M, Alshaman R, Shah FA, Li S. Ibrutinib attenuated DSS-induced ulcerative colitis, oxidative stress, and the inflammatory cascade by modulating the PI3K/Akt and JNK/NF-κB pathways. Arch Med Sci 2022; 18:805-815. [PMID: 35591835 PMCID: PMC9103379 DOI: 10.5114/aoms/146792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Liangliang Hao
- Hospital of Chengdu University of Traditional Chinese Medicine, China
| | - Lina Tariq Alkry
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, United Arab Emirates
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Muhammad Faheem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|
21
|
Grimm SL, Mendez EF, Stertz L, Meyer TD, Fries GR, Gandhi T, Kanchi R, Selvaraj S, Teixeira AL, Kosten TR, Gunaratne P, Coarfa C, Walss-Bass C. MicroRNA-mRNA networks are dysregulated in opioid use disorder postmortem brain: Further evidence for opioid-induced neurovascular alterations. Front Psychiatry 2022; 13:1025346. [PMID: 36713930 PMCID: PMC9878702 DOI: 10.3389/fpsyt.2022.1025346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/05/2022] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION To understand mechanisms and identify potential targets for intervention in the current crisis of opioid use disorder (OUD), postmortem brains represent an under-utilized resource. To refine previously reported gene signatures of neurobiological alterations in OUD from the dorsolateral prefrontal cortex (Brodmann Area 9, BA9), we explored the role of microRNAs (miRNA) as powerful epigenetic regulators of gene function. METHODS Building on the growing appreciation that miRNAs can cross the blood-brain barrier, we carried out miRNA profiling in same-subject postmortem samples from BA9 and blood tissues. RESULTS miRNA-mRNA network analysis showed that even though miRNAs identified in BA9 and blood were fairly distinct, their target genes and corresponding enriched pathways overlapped strongly. Among the dominant enriched biological processes were tissue development and morphogenesis, and MAPK signaling pathways. These findings point to robust, redundant, and systemic opioid-induced miRNA dysregulation with a potential functional impact on transcriptomic changes. Further, using correlation network analysis, we identified cell-type specific miRNA targets, specifically in astrocytes, neurons, and endothelial cells, associated with OUD transcriptomic dysregulation. Finally, leveraging a collection of control brain transcriptomes from the Genotype-Tissue Expression (GTEx) project, we identified a correlation of OUD miRNA targets with TGF beta, hypoxia, angiogenesis, coagulation, immune system, and inflammatory pathways. DISCUSSION These findings support previous reports of neurovascular and immune system alterations as a consequence of opioid abuse and shed new light on miRNA network regulators of cellular response to opioid drugs.
Collapse
Affiliation(s)
- Sandra L Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Emily F Mendez
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Laura Stertz
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Thomas D Meyer
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Gabriel R Fries
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tanmay Gandhi
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Rupa Kanchi
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Sudhakar Selvaraj
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Antonio L Teixeira
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Thomas R Kosten
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Psychiatry, Baylor College of Medicine, Houston, TX, United States
| | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston, TX, United States
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, United States
| | - Consuelo Walss-Bass
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
22
|
Meredith LR, Burnette EM, Grodin EN, Irwin MR, Ray LA. Immune treatments for alcohol use disorder: A translational framework. Brain Behav Immun 2021; 97:349-364. [PMID: 34343618 PMCID: PMC9044974 DOI: 10.1016/j.bbi.2021.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/10/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
While the immune system is essential for survival, an excessive or prolonged inflammatory response, such as that resulting from sustained heavy alcohol use, can damage the host and contribute to psychiatric disorders. A growing body of literature indicates that the immune system plays a critical role in the development and maintenance of alcohol use disorder (AUD). As such, there is enthusiasm for treatments that can restore healthy levels of inflammation as a mechanism to reduce drinking and promote recovery. In this qualitative literature review, we provide a conceptual rationale for immune therapies and discuss progress in medications development for AUD focused on the immune system as a treatment target. This review is organized into sections based on primary signaling pathways targeted by the candidate therapies, namely: (a) toll-like receptors, (b) phosphodiesterase inhibitors, (c) peroxisome proliferator-activated receptors, (d) microglia and astrocytes, (e) other immune pharmacotherapies, and (f) behavioral therapies. As relevant within each section, we examine the basic biological mechanisms of each class of therapy and evaluate preclinical research testing the role of the therapy on mitigating alcohol-related behaviors in animal models. To the extent available, translational findings are reviewed with discussion of completed and ongoing randomized clinical trials and their findings to date. An applied and clinically focused approach is taken to identify the potential clinical applications of the various treatments reviewed. We conclude by delineating the most promising candidate treatments and discussing future directions by considering opportunities for immune treatment development and personalized medicine for AUD.
Collapse
Affiliation(s)
- Lindsay R Meredith
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elizabeth M Burnette
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erica N Grodin
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael R Irwin
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA; Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA; Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lara A Ray
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Savarese AM, Ozburn AR, Barkley-Levenson AM, Metten P, Crabbe JC. The impact of Drinking in the Dark (DID) procedural manipulations on ethanol intake in High Drinking in the Dark (HDID) mice. Alcohol 2021; 93:45-56. [PMID: 33556460 DOI: 10.1016/j.alcohol.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 01/22/2023]
Abstract
The High Drinking in the Dark mouse lines (HDID-1 and HDID-2) were selectively bred to achieve high blood ethanol concentrations (BECs) in the Drinking in the Dark (DID) task, a widely used model of binge-like intake of 20% ethanol. There are several components that differentiate DID from other animal models of ethanol intake: time of day of testing, length of ethanol access, single-bottle access, and individual housing. Here, we sought to determine how some of these individual factors contribute to the high ethanol intake observed in HDID mice. HDID-1, HDID-2, and non-selected HS/NPT mice were tested in a series of DID experiments where one of the following factors was manipulated: length of ethanol access, fluid choice, number of ethanol bottles, and housing condition. We observed that 1) HDID mice achieve intoxicating BECs in DID, even when they are group-housed; 2) HDID mice continue to show elevated ethanol intake relative to HS/NPT mice during an extended access session, but this is most apparent during the first 4 h of access; and 3) offering a water choice during DID prevents elevated intake in the HDID-1 mice, but not necessarily in HDID-2 mice. Together, these results suggest that the lack of choice in the DID paradigm, together with the length of ethanol access, are important factors contributing to elevated ethanol intake in the HDID mice. These results further suggest important differences between the HDID lines in response to procedural manipulations of housing condition and ethanol bottle number in the DID paradigm, highlighting the distinct characteristics that each of these lines possess, despite being selectively bred for the same phenotype.
Collapse
|
24
|
Jimenez Chavez CL, Bryant CD, Munn-Chernoff MA, Szumlinski KK. Selective Inhibition of PDE4B Reduces Binge Drinking in Two C57BL/6 Substrains. Int J Mol Sci 2021; 22:ijms22115443. [PMID: 34064099 PMCID: PMC8196757 DOI: 10.3390/ijms22115443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 01/15/2023] Open
Abstract
Cyclic AMP (cAMP)-dependent signaling is highly implicated in the pathophysiology of alcohol use disorder (AUD), with evidence supporting the efficacy of inhibiting the cAMP hydrolyzing enzyme phosphodiesterase 4 (PDE4) as a therapeutic strategy for drinking reduction. Off-target emetic effects associated with non-selective PDE4 inhibitors has prompted the development of selective PDE4 isozyme inhibitors for treating neuropsychiatric conditions. Herein, we examined the effect of a selective PDE4B inhibitor A33 (0–1.0 mg/kg) on alcohol drinking in both female and male mice from two genetically distinct C57BL/6 substrains. Under two different binge-drinking procedures, A33 pretreatment reduced alcohol intake in male and female mice of both substrains. In both drinking studies, there was no evidence for carry-over effects the next day; however, we did observe some sign of tolerance to A33’s effect on alcohol intake upon repeated, intermittent, treatment (5 injections of 1.0 mg/kg, every other day). Pretreatment with 1.0 mg/kg of A33 augmented sucrose intake by C57BL/6NJ, but not C57BL/6J, mice. In mice with a prior history of A33 pretreatment during alcohol-drinking, A33 (1.0 mg/kg) did not alter spontaneous locomotor activity or basal motor coordination, nor did it alter alcohol’s effects on motor activity, coordination or sedation. In a distinct cohort of alcohol-naïve mice, acute pretreatment with 1.0 mg/kg of A33 did not alter motor performance on a rotarod and reduced sensitivity to the acute intoxicating effects of alcohol. These data provide the first evidence that selective PDE4B inhibition is an effective strategy for reducing excessive alcohol intake in murine models of binge drinking, with minimal off-target effects. Despite reducing sensitivity to acute alcohol intoxication, PDE4B inhibition reduces binge alcohol drinking, without influencing behavioral sensitivity to alcohol in alcohol-experienced mice. Furthermore, A33 is equally effective in males and females and exerts a quantitatively similar reduction in alcohol intake in mice with a genetic predisposition for high versus moderate alcohol preference. Such findings further support the safety and potential clinical utility of targeting PDE4 for treating AUD.
Collapse
Affiliation(s)
- C. Leonardo Jimenez Chavez
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA;
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Melissa A. Munn-Chernoff
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA;
- Correspondence:
| |
Collapse
|
25
|
Grigsby KB, Savarese AM, Metten P, Mason BJ, Blednov YA, Crabbe JC, Ozburn AR. Effects of Tacrolimus and Other Immune Targeting Compounds on Binge-Like Ethanol Drinking in High Drinking in the Dark Mice. Neurosci Insights 2020; 15:2633105520975412. [PMID: 33294845 PMCID: PMC7705291 DOI: 10.1177/2633105520975412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022] Open
Abstract
High Drinking in the Dark (HDID-1) mice represent a unique genetic risk model of binge-like drinking and a novel means of screening potential pharmacotherapies to treat alcohol use disorders (AUDs). We tested the effects of tacrolimus (0, 0.5, 1, and 2 mg/kg), sirolimus (0, 5, 10, and 20 mg/kg), palmitoylethanolamide (PEA; 0, 75, 150, and 225 mg/kg), and secukinumab (0, 5, 20, and 60 mg/kg) on binge-like ethanol intake (2-day, "Drinking in the Dark" [DID]) and blood alcohol levels (BALs) in HDID-1 mice. Tacrolimus reduced ethanol intake and BALs. Tacrolimus had no effect on water intake, but reduced saccharin intake. There was no effect of sirolimus, PEA, or secukinumab on ethanol intake or BALs. These results compare and contrast with previous work addressing these compounds or their targeted mechanisms of action on ethanol drinking, highlighting the importance of screening a wide range of models and genotypes to inform the role of neuroimmune signaling in AUDs.
Collapse
Affiliation(s)
- Kolter B Grigsby
- Portland Alcohol Research Center,
Department of Behavioral Neuroscience at Oregon Health and Science University and VA
Portland Health Care System, Portland, OR, USA
| | - Antonia M Savarese
- Portland Alcohol Research Center,
Department of Behavioral Neuroscience at Oregon Health and Science University and VA
Portland Health Care System, Portland, OR, USA
| | - Pamela Metten
- Portland Alcohol Research Center,
Department of Behavioral Neuroscience at Oregon Health and Science University and VA
Portland Health Care System, Portland, OR, USA
| | - Barbara J Mason
- Department of Molecular Medicine, The
Scripps Research Institute, La Jolla, CA, USA
| | - Yuri A Blednov
- Waggoner Center for Alcoholism and
Addiction Research, University of Texas at Austin, Austin, TX, USA
| | - John C Crabbe
- Portland Alcohol Research Center,
Department of Behavioral Neuroscience at Oregon Health and Science University and VA
Portland Health Care System, Portland, OR, USA
| | - Angela R Ozburn
- Portland Alcohol Research Center,
Department of Behavioral Neuroscience at Oregon Health and Science University and VA
Portland Health Care System, Portland, OR, USA
| |
Collapse
|
26
|
Savarese AM, Ozburn AR, Metten P, Schlumbohm JP, Hack WR, LeMoine K, Hunt H, Hausch F, Bauder M, Crabbe JC. Targeting the Glucocorticoid Receptor Reduces Binge-Like Drinking in High Drinking in the Dark (HDID-1) Mice. Alcohol Clin Exp Res 2020; 44:1025-1036. [PMID: 32154593 PMCID: PMC7211124 DOI: 10.1111/acer.14318] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Chronic alcohol exposure can alter glucocorticoid receptor (GR) function in some brain areas that promotes escalated and compulsive-like alcohol intake. GR antagonism can prevent dependence-induced escalation in drinking, but very little is known about the role of GR in regulating high-risk nondependent alcohol intake. Here, we investigate the role of GR in regulating binge-like drinking and aversive responses to alcohol in the High Drinking in the Dark (HDID-1) mice, which have been selectively bred for high blood ethanol (EtOH) concentrations (BECs) in the Drinking in the Dark (DID) test, and in their founder line, the HS/NPT. METHODS In separate experiments, male and female HDID-1 mice were administered one of several compounds that inhibited GR or its negative regulator, FKBP51 (mifepristone [12.5, 25, 50, 100 mg/kg], CORT113176 [20, 40, 80 mg/kg], and SAFit2 [10, 20, 40 mg/kg]) during a 2-day DID task. EtOH consumption and BECs were measured. EtOH conditioned taste and place aversion (CTA and CPA, respectively) were measured in separate HDID-1 mice after mifepristone administration to assess GR's role in regulating the conditioned aversive effects of EtOH. Lastly, HS/NPT mice were administered CORT113176 during DID to assess whether dissimilar effects from those of HDID-1 would be observed, which could suggest that selective breeding had altered sensitivity to the effects of GR antagonism on binge-like drinking. RESULTS GR antagonism (with both mifepristone and CORT113176) selectively reduced binge-like EtOH intake and BECs in the HDID-1 mice, while inhibition of FKBP51 did not alter intake or BECs. In contrast, GR antagonism had no effect on EtOH intake or BECs in the HS/NPT mice. Although HDID-1 mice exhibit attenuated EtOH CTA, mifepristone administration did not enhance the aversive effects of EtOH in either a CTA or CPA task. CONCLUSION These data suggest that the selection process increased sensitivity to GR antagonism on EtOH intake in the HDID-1 mice, and support a role for the GR as a genetic risk factor for high-risk alcohol intake.
Collapse
Affiliation(s)
- Antonia M Savarese
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Angela R Ozburn
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Pamela Metten
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Jason P Schlumbohm
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Wyatt R Hack
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Kathryn LeMoine
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, California
| | - Felix Hausch
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Michael Bauder
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - John C Crabbe
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon
- VA Portland Health Care System, Portland, Oregon
| |
Collapse
|