1
|
Gutherz OR, Li Q, Deyssenroth M, Wainwright H, Jacobson JL, Meintjes EM, Chen J, Jacobson SW, Carter RC. The roles of maternal one-carbon metabolism and placental imprinted gene expression in placental development and somatic growth in a longitudinal birth cohort. Placenta 2025; 167:109-121. [PMID: 40367685 DOI: 10.1016/j.placenta.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/16/2025] [Accepted: 04/20/2025] [Indexed: 05/16/2025]
Abstract
OBJECTIVES One-carbon nutrients and imprinted genes both play critical roles in placental development and somatic growth. We aimed to examine (1) the impact of maternal one-carbon nutrition on placental imprinted gene expression, placental development, and infant growth and (2) interactions between one-carbon nutrients and imprinted genes in placental development and infant growth. METHODS Women were interviewed prenatally about demographics and their alcohol, smoking, and drug use during pregnancy in a prospective longitudinal cohort study examining developmental effects of prenatal alcohol exposure in Cape Town, South Africa (N = 158). Erythrocyte folate, serum vitamin B12, and plasma choline concentrations were assayed at recruitment. Infant weight and height were assessed at age 2 weeks. Placental histopathology exams and placental expression of 109 imprinted genes (Nanostring) were assessed (n = 65). RESULTS In limma tests, women with plasma choline concentrations below the median had lower placental expression of EPS15, IGF2R, LINC00657, SGCE, ZC3H12C, and ZNF264 than women above the median (p < 0.05, FDR<0.10). In regression models adjusted for potential confounders, plasma choline (μM) was associated with larger placental weight (g) (B = 14.0(1.9, 26.2)) and reduced maternal vascular underperfusion (MVU) prevalence (B = -0.07(-0.12, -0.02). Trends were seen for mediation of the relation between choline and MVU by decreased LINC00657, ZC3H12C, and ZNF264 expression. In regression models examining plasma cholineXimprinted gene expression interaction effects, plasma choline modified relations of EPS15, ZC3H12C, and ZNF264 to placental weight and fetal growth. CONCLUSIONS These findings suggest maternal choline status may impact placental and fetal development, with imprinted genes playing potential mechanistic roles.
Collapse
Affiliation(s)
- Olivia R Gutherz
- Departments of Emergency Medicine and Pediatrics, Institute of Human Nutrition, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Qian Li
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maya Deyssenroth
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Helen Wainwright
- Department of Pathology, National Health Laboratory Service, Cape Town, South Africa
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA; Department of Human Biology, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Ernesta M Meintjes
- Department of Human Biology, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA; Department of Human Biology, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa; Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - R Colin Carter
- Departments of Emergency Medicine and Pediatrics, Institute of Human Nutrition, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA; Department of Human Biology, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa.
| |
Collapse
|
2
|
Lino GM, de Carvalho IN, de Amorim VOA, Bresani-Salvi CC, Luna VLM, Galvão PVM, Conrado GAM. Does supplementation of choline during or after pregnancies exposed to alcohol improve neurocognitive development of children? A meta-analysis. Pediatr Neonatol 2025:S1875-9572(25)00058-0. [PMID: 40251090 DOI: 10.1016/j.pedneo.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/21/2025] [Accepted: 02/10/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Alcohol impairs early cognitive development, especially in utero exposures. Nutrient supplementation may avert some of its consequences. OBJECTIVE We reviewed whether prenatal and postnatal choline supplementation could improve neurocognitive development in children of alcohol-exposed pregnancies. METHODS A systematic literature search was conducted in Medline, Embase, and Cochrane Library databases to identify randomized controlled trials published up to May 01, 2024. Data were analyzed using Standardized Mean Difference (SMD) with 95 % Confidence Intervals (CI) and a random-effects model. Sensitivity analyses and the posterior probability of benefit (Pr) were calculated using a Bayesian Markov chain Monte Carlo model. RESULTS Five trials were included in this review. Prenatal supplementation likely benefits memory (SMD 0.61, 95 % CI 0.19 to 1.02; Pr(SMD>0) = 96.29 %; I2 = 0 %; 2 trials; 94 participants; moderate-certainty evidence). Postnatal supplementation may improve global cognition (SMD 0.78, 95 % CI 0.21 to 1.34; Pr(SMD>0) = 96.94 %; I2 = 13 %; 2 trials; 62 participants; low-certainty evidence) and a small benefit to attention was only demonstrated in the Bayesian analysis (postnatal: SMD 0.44, 95 % CI -0.73 to 1.61; Pr(SMD>0) = 91.80 %; I2 = 84 %; 2 trials; 83 participants; low-certainty evidence). CONCLUSION Supplementation of choline in either period could benefit neurocognitive development in children of heavy-drinking mothers. REGISTRATION CRD42024537733 (PROSPERO).
Collapse
Affiliation(s)
| | | | | | - Cristiane C Bresani-Salvi
- Integrated Studies Group in Nutrition and Health, Prof. Fernando Figueira Integral Medicine Institute - IMIP, Recife, Brazil; Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Brazil
| | | | | | | |
Collapse
|
3
|
Wozniak JR, Eckerle JK, Gimbel BA, Ernst AM, Anthony ME, Tuominen KA, de Water E, Zeisel SH, Georgieff MK. Choline enhances elicited imitation memory performance in preschool children with prenatal alcohol exposure: a cumulative report of 3 randomized controlled trials. Am J Clin Nutr 2025; 121:921-931. [PMID: 39956364 PMCID: PMC12002193 DOI: 10.1016/j.ajcnut.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASDs) are associated with neurocognitive deficits for which there are no biological treatments. Choline supplementation may attenuate these deficits. OBJECTIVES This study was aimed to evaluate choline as a neurodevelopmental intervention for preschool-aged children with FASD. METHODS We present combined data from 104 participants with FASD (aged 2.5-5.9 y) from 3 placebo randomized controlled trials (RCTs). Participants in RCT1 and RCT2 were randomly assigned to 9 mo choline (500 mg daily) or placebo. Participants in RCT3 were randomly assigned to 9 mo choline (19 mg/kg daily) or placebo. The primary outcome measure was an elicited imitation (EI) memory task. RESULTS Adherence was high (78% doses received). Adverse effects were similar across groups except fishy body odor: choline group, 36%; placebo group, 8%. We observed a trend-level choline advantage; participants receiving choline performed 25% better on EI short-delay adjacent pairs (sequential memory) than those on placebo, with a steeper increase in scores between 6 and 9 mo (ŷ = -10.06; P = 0.03; 95% CI: -19.13, -0.99). No sex difference in response was seen, nor did we observe a dose-response relationship. Age-moderated response to choline between baseline and 9 mo (ŷ = 10.02; P = 0.01; 95% CI: 2.47, 17.57), with greater response in younger (≤4.2 y) than that in older (>4.2 y) participants. Overall, choline showed a beneficial effect on memory but no impact on executive functioning or intelligent quotient. CONCLUSIONS The results support choline as a neurodevelopmental intervention for improvement of memory in young children exposed to alcohol prenatally. Specifically, the use of choline bitartrate as a supplement in the range of 260-500 mg/d in children between 2.5 and 5.9 y of age is supported. Future studies are needed to further define appropriate dosage as well as optimal lengths and developmental windows for supplementation. This trial was registered at clinicaltrials.gov as NCT01149538 and NCT02735473.
Collapse
Affiliation(s)
- Jeffrey R Wozniak
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States.
| | - Judith K Eckerle
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Blake A Gimbel
- Department of Pediatric Psychology and Neuropsychology, Nationwide Children's Hospital, Columbus, OH, United States; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Abigail M Ernst
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Mary E Anthony
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Kent A Tuominen
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Erik de Water
- Great Lakes Neurobehavioral Center, Eagan, MN, United States
| | - Steven H Zeisel
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Michael K Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Gould JF, Hines S, Best KP, Grzeskowiak LE, Jansen O, Green TJ. Choline During Pregnancy and Child Neurodevelopment: A Systematic Review of Randomized Controlled Trials and Observational Studies. Nutrients 2025; 17:886. [PMID: 40077755 PMCID: PMC11901549 DOI: 10.3390/nu17050886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Most pregnant women have choline intakes below recommendations. Animal studies suggest that choline supplementation during pregnancy improves cognitive outcomes in the offspring. This review aims to determine whether higher choline levels during pregnancy are associated with improved child brain development. METHODS We systematically reviewed the evidence for the role of choline in pregnancy for human neurodevelopment in clinical trials and observational studies. RESULTS We identified four randomized trials of choline supplementation in pregnancy and five observational studies of prenatal choline. Neurodevelopmental assessments of these studies were reported across 20 eligible publications. Within both the trials and observational studies, most neurodevelopmental outcomes assessed did not support the hypothesis that higher prenatal choline benefits neurodevelopment. Among identified clinical trials, there were some instances where children whose mothers received choline supplementation had a better score on a neurodevelopmental measure. Still, each trial included multiple outcomes, and most were null. Observational studies were mixed as to whether an association between prenatal choline and an aspect of child neurodevelopment was identified. Critical limitations were present across clinical trials and observational studies, preventing confidence in the results and evidence base. CONCLUSIONS Current evidence is insufficient to support or refute the hypothesis that increasing choline intake in pregnancy improves the neurodevelopmental outcomes of the child.
Collapse
Affiliation(s)
- Jacqueline F. Gould
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5006, Australia; (J.F.G.); (K.P.B.); (L.E.G.); (O.J.)
- School of Psychology, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Sonia Hines
- Flinders University Rural and Remote Health SA, Flinders University, Alice Springs, NT 0870, Australia;
- Mparntwe Centre for Evidence in Health, Flinders University: A JBI Centre of Excellence, Alice Springs, NT 0870, Australia
| | - Karen P. Best
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5006, Australia; (J.F.G.); (K.P.B.); (L.E.G.); (O.J.)
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Luke E. Grzeskowiak
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5006, Australia; (J.F.G.); (K.P.B.); (L.E.G.); (O.J.)
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia
| | - Olivia Jansen
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5006, Australia; (J.F.G.); (K.P.B.); (L.E.G.); (O.J.)
- College of Nursing and Health Sciences, Flinders University, Adelaide, SA 5042, Australia
| | - Tim J. Green
- Women and Kids Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5006, Australia; (J.F.G.); (K.P.B.); (L.E.G.); (O.J.)
- College of Nursing and Health Sciences, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
5
|
Gimbel BA, Wozniak JR, Mueller BA, Tuominen KA, Ernst AM, Anthony ME, de Water E, Roediger DJ. Regional hippocampal thinning and gyrification abnormalities and associated cognition in children with prenatal alcohol exposure. J Neurodev Disord 2025; 17:5. [PMID: 39910445 PMCID: PMC11796126 DOI: 10.1186/s11689-025-09595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) impacts hippocampal structure and function, contributing to deficits in memory and decision-making in affected individuals. Here, we evaluate hippocampal anomalies in children with PAE and an unexposed comparison group using advanced MRI methods that characterize hippocampal curvature and thickness. METHODS Participants, ages 8 to 16 years, included children with PAE (n = 48) and an unexposed comparison group (n = 46) who underwent a dysmorphology exam, neuropsychological assessment, and an MRI scan. Height, weight, head circumference, and dysmorphic facial features were evaluated. Of those with PAE, 4.2% had fetal alcohol syndrome (FAS), 22.9% had partial FAS, and 72.9% had alcohol-related neurodevelopmental disorder. Neuropsychological testing included measures of intelligence and memory functioning. T1-weighted anatomical data were processed with the Hippunfold pipeline, which "unfolds" the complex hippocampal structure onto a template surface and provides measures of thickness and gyrification/curvature at each vertex. Permutation Analysis of Linear Models (PALM) was used to test for group differences (PAE vs. comparison) in hippocampal thickness and gyrification at each vertex and also to assess correlations with cognitive functioning. RESULTS There were significant regional differences in thickness and gyrification across bilateral hippocampi, with the PAE group showing substantially thinner tissue and less curvature than the comparison group, especially in CA1 and subiculum regions. For those with PAE, thinner subicular tissue (bilateral) was associated with lower IQ. Also in the PAE group, lower episodic memory performance was associated with thinness in the right hippocampus, especially in the subiculum region. There were no significant regional hippocampal patterns that were associated with cognitive functioning for individuals in the unexposed comparison group. CONCLUSIONS We used a novel MRI method to evaluate hippocampal structure in children with PAE and an unexposed comparison group. The data suggest that PAE disrupts hippocampal development, impacting both the early-stage folding of the structure and its ultimate thickness. The data also demonstrate that these developmental anomalies have functional consequences in terms of core memory functions as well as global intellectual functioning in children with PAE.
Collapse
Affiliation(s)
- Blake A Gimbel
- Nationwide Children's Hospital, Columbus, USA
- The Ohio State University, Columbus, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Olivares-Costa M, Fabio MC, De la Fuente-Ortega E, Haeger PA, Pautassi R. New therapeutics for the prevention or amelioration of fetal alcohol spectrum disorders: a narrative review of the preclinical literature. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:749-770. [PMID: 39023419 DOI: 10.1080/00952990.2024.2361442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 07/20/2024]
Abstract
Background: Ethanol consumption during pregnancy induces enduring detrimental effects in the offspring, manifesting as a spectrum of symptoms collectively termed as Fetal Alcohol Spectrum Disorders (FASD). Presently, there is a scarcity of treatments for FASD.Objectives: To analyze current literature, emphasizing evidence derived from preclinical models, that could potentially inform therapeutic interventions for FASD.Methods: A narrative review was conducted focusing on four prospective treatments: nutritional supplements, antioxidants, anti-inflammatory compounds and environmental enrichment. The review also highlights innovative therapeutic strategies applied during early (e.g. folate administration, postnatal days 4-9) or late (e.g. NOX2 inhibitors given after weaning) postnatal stages that resulted in significant improvements in behavioral responses during adolescence (a critical period marked by the emergence of mental health issues in humans).Results: Our findings underscore the value of treatments centered around nutritional supplementation or environmental enrichment, aimed at mitigating oxidative stress and inflammation, implying shared mechanisms in FASD pathogenesis. Moreover, the review spotlights emerging evidence pertaining to the involvement of novel molecular components with potential pharmacological targets (such as NOX2, MCP1/CCR2, PPARJ, and PDE1).Conclusions: Preclinical studies have identified oxidative imbalance and neuroinflammation as relevant pathological mechanisms induced by prenatal ethanol exposure. The relevance of these mechanisms, which exhibit positive feedback loop mechanisms, appear to peak during early development and decreases in adulthood. These findings provide a framework for the future development of therapeutic avenues in the development of specific clinical treatments for FASD.
Collapse
Affiliation(s)
- Montserrat Olivares-Costa
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - María Carolina Fabio
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Coquimbo, Chile
| | - Erwin De la Fuente-Ortega
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Paola A Haeger
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
| | - Ricardo Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Coquimbo, Chile
| |
Collapse
|
7
|
Nohesara S, Mostafavi Abdolmaleky H, Thiagalingam S. Substance-Induced Psychiatric Disorders, Epigenetic and Microbiome Alterations, and Potential for Therapeutic Interventions. Brain Sci 2024; 14:769. [PMID: 39199463 PMCID: PMC11352452 DOI: 10.3390/brainsci14080769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Substance use disorders (SUDs) are complex biopsychosocial diseases that cause neurocognitive deficits and neurological impairments by altering the gene expression in reward-related brain areas. Repeated drug use gives rise to alterations in DNA methylation, histone modifications, and the expression of microRNAs in several brain areas that may be associated with the development of psychotic symptoms. The first section of this review discusses how substance use contributes to the development of psychotic symptoms via epigenetic alterations. Then, we present more evidence about the link between SUDs and brain epigenetic alterations. The next section presents associations between paternal and maternal exposure to substances and epigenetic alterations in the brains of offspring and the role of maternal diet in preventing substance-induced neurological impairments. Then, we introduce potential therapeutic agents/approaches such as methyl-rich diets to modify epigenetic alterations for alleviating psychotic symptoms or depression in SUDs. Next, we discuss how substance use-gut microbiome interactions contribute to the development of neurological impairments through epigenetic alterations and how gut microbiome-derived metabolites may become new therapeutics for normalizing epigenetic aberrations. Finally, we address possible challenges and future perspectives for alleviating psychotic symptoms and depression in patients with SUDs by modulating diets, the epigenome, and gut microbiome.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Mental Health Research Center, Psychosocial Health Research Institute, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Nutrition/Metabolism Laboratory, Department of Surgery, BIDMC, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
8
|
Kelley W, Ngo N, Dalca AV, Fischl B, Zöllei L, Hoffmann M. BOOSTING SKULL-STRIPPING PERFORMANCE FOR PEDIATRIC BRAIN IMAGES. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2024; 2024:10.1109/isbi56570.2024.10635307. [PMID: 39371473 PMCID: PMC11451993 DOI: 10.1109/isbi56570.2024.10635307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Skull-stripping is the removal of background and non-brain anatomical features from brain images. While many skull-stripping tools exist, few target pediatric populations. With the emergence of multi-institutional pediatric data acquisition efforts to broaden the understanding of perinatal brain development, it is essential to develop robust and well-tested tools ready for the relevant data processing. However, the broad range of neuroanatomical variation in the developing brain, combined with additional challenges such as high motion levels, as well as shoulder and chest signal in the images, leaves many adult-specific tools ill-suited for pediatric skull-stripping. Building on an existing framework for robust and accurate skull-stripping, we propose developmental SynthStrip (d-SynthStrip), a skull-stripping model tailored to pediatric images. This framework exposes networks to highly variable images synthesized from label maps. Our model substantially outperforms pediatric baselines across scan types and age cohorts. In addition, the <1-minute runtime of our tool compares favorably to the fastest baselines. We distribute our model at https://w3id.org/synthstrip.
Collapse
Affiliation(s)
- William Kelley
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nathan Ngo
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Adrian V Dalca
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Computer Science & Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Malte Hoffmann
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Division of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
9
|
Liu SX, Calixto Mancipe N, Gisslen T, Georgieff MK, Tran PV. Identification of Genes Responding to Iron or Choline Treatment for Early-Life Iron Deficiency in the Male Rat Hippocampal Transcriptomes. J Nutr 2024; 154:1141-1152. [PMID: 38408730 PMCID: PMC11007743 DOI: 10.1016/j.tjnut.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Developmental iron deficiency (ID) is associated with long-term cognitive and affective behavioral impairments in humans. Preclinical studies have shown that developmental ID has short- and long-term effects on gene regulation. Prenatal choline supplementation partially rescues early-life ID-induced cognitive deficits in adult male rats. OBJECTIVES To identify acute and long-term changes in biological processes regulated by developmental ID and modifiable by choline. METHODS This study compares the hippocampal transcriptomes of postnatal day (P) 15 iron-deficient (acute) and P65 formerly ID (persistent) rats with or without prenatal choline treatment. Pregnant rats were fed an ID (4 mg/kg Fe) or iron-sufficient (IS) (200 mg/kg Fe) diet from gestational day (G) 2 to P7 with or without choline supplementation (5 g/kg choline) from G11 to G18. Hippocampi were collected from P15 or P65 offspring and analyzed for gene expression by RNA sequencing. RESULTS Developmental ID-induced changes suggested modified activity of oxidative phosphorylation and fatty acid metabolism. Prenatal choline supplementation induced robust changes in gene expression, particularly in iron-deficient animals, where it partially mitigated the early-life ID-dysregulated genes. Choline supplementation also altered the hippocampal transcriptome in the IS rats, with indications for both beneficial and adverse effects. CONCLUSIONS This study provided global assessments of gene expression regulated by iron and choline. Our new findings highlight genes responding to iron or choline treatments, including a potentially novel choline-regulated transporter (IPO7), with shared effects on neuroinflammation in the male rat hippocampus.
Collapse
Affiliation(s)
- Shirelle X Liu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Natalia Calixto Mancipe
- Research Informatic Solutions, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, United States
| | - Tate Gisslen
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Michael K Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Phu V Tran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
10
|
Howard SL, Beaudin SA, Strupp BJ, Smith DR. Maternal choline supplementation lessens the behavioral dysfunction produced by developmental manganese exposure in a rodent model of ADHD. Neurotoxicol Teratol 2024; 102:107337. [PMID: 38423398 DOI: 10.1016/j.ntt.2024.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Studies in children have reported associations between elevated manganese (Mn) exposure and ADHD-related symptoms of inattention, impulsivity/hyperactivity, and psychomotor impairment. Maternal choline supplementation (MCS) during pregnancy/lactation may hold promise as a protective strategy because it has been shown to lessen cognitive dysfunction caused by numerous early insults. Our objectives were to determine whether (1) developmental Mn exposure alters behavioral reactivity/emotion regulation, in addition to impairing learning, attention, impulse control, and sensorimotor function, and (2) MCS protects against these Mn-induced impairments. Pregnant Long-Evans rats were given standard diet, or a diet supplemented with additional choline throughout gestation and lactation (GD 3 - PND 21). Male offspring were exposed orally to 0 or 50 mg Mn/kg/day over PND 1-21. In adulthood, animals were tested in a series of learning, attention, impulse control, and sensorimotor tasks. Mn exposure caused lasting dysfunction in attention, reactivity to errors and reward omission, learning, and sensorimotor function, recapitulating the constellation of symptoms seen in ADHD children. MCS lessened Mn-induced attentional dysfunction and partially normalized reactivity to committing an error or not receiving an expected reward but provided no protection against Mn-induced learning or sensorimotor dysfunction. In the absence of Mn exposure, MCS produces lasting offspring benefits in learning, attention, and reactivity to errors. To conclude, developmental Mn exposure produces a constellation of deficits consistent with ADHD symptomology, and MCS offered some protection against the adverse Mn effects, adding to the evidence that maternal choline supplementation is neuroprotective for offspring and improves offspring cognitive functioning.
Collapse
Affiliation(s)
- Shanna L Howard
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Stephane A Beaudin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
11
|
Kelley W, Ngo N, Dalca AV, Fischl B, Zöllei L, Hoffmann M. BOOSTING SKULL-STRIPPING PERFORMANCE FOR PEDIATRIC BRAIN IMAGES. ARXIV 2024:arXiv:2402.16634v1. [PMID: 38463507 PMCID: PMC10925384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Skull-stripping is the removal of background and non-brain anatomical features from brain images. While many skull-stripping tools exist, few target pediatric populations. With the emergence of multi-institutional pediatric data acquisition efforts to broaden the understanding of perinatal brain development, it is essential to develop robust and well-tested tools ready for the relevant data processing. However, the broad range of neuroanatomical variation in the developing brain, combined with additional challenges such as high motion levels, as well as shoulder and chest signal in the images, leaves many adult-specific tools ill-suited for pediatric skull-stripping. Building on an existing framework for robust and accurate skull-stripping, we propose developmental SynthStrip (d-SynthStrip), a skull-stripping model tailored to pediatric images. This framework exposes networks to highly variable images synthesized from label maps. Our model substantially outperforms pediatric baselines across scan types and age cohorts. In addition, the <1-minute runtime of our tool compares favorably to the fastest baselines. We distribute our model at https://w3id.org/synthstrip.
Collapse
Affiliation(s)
- William Kelley
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nathan Ngo
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Adrian V Dalca
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Computer Science & Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
| | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Malte Hoffmann
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
- Division of Health Sciences and Technology, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
12
|
Heras-Sola J, Gallo-Vallejo JL. [Importance of choline during pregnancy and lactation: A systematic review]. Semergen 2024; 50:102089. [PMID: 37862810 DOI: 10.1016/j.semerg.2023.102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 10/22/2023]
Abstract
Pregnancy is one of the most important and difficult moments that a woman goes through throughout her life. It is a period of great need for macro and micronutrients to meet the demands of the developing fetus and avoid deficiencies, in order to obtain the best possible result. Nowadays, most women who are pregnant or planning to become pregnant know the importance of getting the required amount of certain types of nutrients (proteins, fats, folate, etc.), as well as avoiding certain compounds (alcohol, tobacco, drugs, etc.) to avoid possible complications during pregnancy. In recent years, with the greatest scientific evidence available, it has been shown how some of these nutrients could have a more relevant role than previously believed in the optimal outcome of pregnancy. One of these nutrients being choline. Choline supplementation during pregnancy has been shown to be a non-pharmacological treatment capable of improving both physical (growth) and mental (memory) qualities of the new individual. Choline has been known as an essential nutrient since 1998 and several studies have shown its effectiveness in rodent models. The existence of recent publications that deal with its application in humans makes it necessary to carry out a systematic review. In this systematic review of the scientific evidence available from 2012 to the present that deals with the application of a higher intake of choline through supplementation as a treatment to improve pregnancy outcomes, its main objetive is to determine the effects that a nutritional intervention through choline supplementation in pregnant mothers can have on children's cognition. For this, 9studies have been analyzed where the treatment given to pregnant women is revealed, this being choline supplementation in different modalities (choline chloride, choline bitartrate, and phosphatidylcholine) and the different effects produced in the children of these mothers who have resulted from these treatment modalities. We conclude by stating that choline supplementation during pregnancy appears to be effective in improving or increasing cognition in children.
Collapse
Affiliation(s)
- J Heras-Sola
- Nutrición Humana y Dietética, Facultad de Farmacia, Universidad de Granada, Granada, España
| | - J L Gallo-Vallejo
- Servicio de Obstetricia y Ginecología, Hospital Universitario Virgen de las Nieves de Granada, Departamento de Obstetricia y Ginecología, Universidad de Granada, Granada, España.
| |
Collapse
|
13
|
Xu F, Thomas JD, Goldowitz D, Hamre KM. The ameliorative effects of choline on ethanol-induced cell death in the neural tube of susceptible BXD strains of mice. Front Neurosci 2023; 17:1203597. [PMID: 37790585 PMCID: PMC10543688 DOI: 10.3389/fnins.2023.1203597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction Fetal alcohol spectrum disorders (FASD) are the leading preventable cause of intellectual disability, providing the impetus for evaluating various potential treatments to ameliorate ethanol's teratogenic effects, particularly in the nervous system. One treatment is the dietary supplement choline which has been shown to mitigate at least some of ethanol's teratogenic effects. The present study was designed to investigate the effects of genetics on choline's efficacy in ameliorating cell death in the developing neural tube. Previously, we examined BXD recombinant inbred mice, and their parental C57BL/6 J (B6) and DBA/2 J strains, and identified strains that were sensitive to ethanol's teratogenic actions. Thus, we used these strains to identify response to choline treatment. Materials and methods Timed pregnant mice from 4 strains (B6, BXD51, BXD73, BXD2) were given either ethanol or isocaloric maltose-dextrin (5.8 g/kg in two administrations separated by 2 h) with choline at one of 3 doses: 0, 100 or 250 mg/kg. Subjects were exposed via intragastric gavage on embryonic day 9 and embryos were collected 7 h after the initial ethanol administrations. Cell death was analyzed using TUNEL staining in the developing forebrain and brainstem. Results Choline ameliorated the ethanol-induced cell death across all 4 strains without causing enhanced cell death in control mice. Choline was effective in both the developing telencephalon and in the brainstem. Both doses diminished cell death, with some differences across strains and brain regions, although the 100 mg/kg dose was most consistent in mitigating ethanol-related cell death. Comparisons across strains showed that there was an effect of strain, particularly in the forebrain at the higher dose. Discussion These results show that choline is effective in ameliorating ethanol-induced cell death at this early stage of nervous system development. However, there were some strain differences in its efficacy, especially at the high dose, providing further evidence of the importance of genetics in influencing the ability of choline to protect against prenatal alcohol exposure.
Collapse
Affiliation(s)
- Fannia Xu
- University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Jennifer D. Thomas
- Center for Behavioral Teratology, San Diego State University, San Diego, CA, United States
| | - Dan Goldowitz
- University of British Columbia, Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada
| | - Kristin M. Hamre
- Department Anatomy and Neurobiology, University Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
14
|
Graham AS, Ben-Azu B, Tremblay MÈ, Torre P, Senekal M, Laughton B, van der Kouwe A, Jankiewicz M, Kaba M, Holmes MJ. A review of the auditory-gut-brain axis. Front Neurosci 2023; 17:1183694. [PMID: 37600010 PMCID: PMC10435389 DOI: 10.3389/fnins.2023.1183694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Hearing loss places a substantial burden on medical resources across the world and impacts quality of life for those affected. Further, it can occur peripherally and/or centrally. With many possible causes of hearing loss, there is scope for investigating the underlying mechanisms involved. Various signaling pathways connecting gut microbes and the brain (the gut-brain axis) have been identified and well established in a variety of diseases and disorders. However, the role of these pathways in providing links to other parts of the body has not been explored in much depth. Therefore, the aim of this review is to explore potential underlying mechanisms that connect the auditory system to the gut-brain axis. Using select keywords in PubMed, and additional hand-searching in google scholar, relevant studies were identified. In this review we summarize the key players in the auditory-gut-brain axis under four subheadings: anatomical, extracellular, immune and dietary. Firstly, we identify important anatomical structures in the auditory-gut-brain axis, particularly highlighting a direct connection provided by the vagus nerve. Leading on from this we discuss several extracellular signaling pathways which might connect the ear, gut and brain. A link is established between inflammatory responses in the ear and gut microbiome-altering interventions, highlighting a contribution of the immune system. Finally, we discuss the contribution of diet to the auditory-gut-brain axis. Based on the reviewed literature, we propose numerous possible key players connecting the auditory system to the gut-brain axis. In the future, a more thorough investigation of these key players in animal models and human research may provide insight and assist in developing effective interventions for treating hearing loss.
Collapse
Affiliation(s)
- Amy S. Graham
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Benneth Ben-Azu
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
| | - Peter Torre
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA, United States
| | - Marjanne Senekal
- Department of Human Biology, Division of Physiological Sciences, University of Cape Town, Cape Town, South Africa
| | - Barbara Laughton
- Family Clinical Research Unit, Department of Pediatrics and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Andre van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States
- Department of Radiology, Harvard Medical School, Boston, MA, United States
| | - Marcin Jankiewicz
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
| | - Mamadou Kaba
- Department of Pathology, Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa
| | - Martha J. Holmes
- Imaging Sciences, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Division of Biomedical Engineering, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- ImageTech, Simon Fraser University, Surrey, BC, Canada
| |
Collapse
|
15
|
Serwatka CA, Griebel-Thompson AK, Eiden RD, Kong KL. Nutrient Supplementation during the Prenatal Period in Substance-Using Mothers: A Narrative Review of the Effects on Offspring Development. Nutrients 2023; 15:2990. [PMID: 37447316 DOI: 10.3390/nu15132990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Substance use during pregnancy increases the risk for poor developmental outcomes of the offspring, and for substance-dependent mothers, abstaining from substance use during pregnancy is often difficult. Given the addictive nature of many substances, strategies that may mitigate the harmful effects of prenatal substance exposure are important. Prenatal nutrient supplementation is an emerging intervention that may improve developmental outcomes among substance-exposed offspring. We provide a narrative review of the literature on micronutrient and fatty acid supplementation during pregnancies exposed to substance use in relation to offspring developmental outcomes. We first discuss animal models exposed to ethanol during pregnancy with supplementation of choline, zinc, vitamin E, iron, and fatty acids. We follow with human studies of both alcohol- and nicotine-exposed pregnancies with supplementation of choline and vitamin C, respectively. We identified only 26 animal studies on ethanol and 6 human studies on alcohol and nicotine that supplemented nutrients during pregnancy and reported offspring developmental outcomes. There were no studies that examined nutrient supplementation during pregnancies exposed to cannabis, illicit substances, or polysubstance use. Implementations and future directions are discussed.
Collapse
Affiliation(s)
- Catherine A Serwatka
- Baby Health Behavior Laboratory, Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Adrianne K Griebel-Thompson
- Baby Health Behavior Laboratory, Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Children's Mercy Hospital, Kansas City, MO 64108, USA
| | - Rina D Eiden
- Department of Psychology and the Social Science Research Institute, The Pennsylvania State University, University Park, PA 16801, USA
| | - Kai Ling Kong
- Baby Health Behavior Laboratory, Division of Health Services and Outcomes Research, Children's Mercy Research Institute, Children's Mercy Hospital, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City, Kansas City, MO 64110, USA
- Center for Children's Healthy Lifestyles and Nutrition, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
16
|
Upreti D, Rouzer SK, Bowring A, Labbe E, Kumar R, Miranda RC, Mahnke AH. Microbiota and nutrition as risk and resiliency factors following prenatal alcohol exposure. Front Neurosci 2023; 17:1182635. [PMID: 37397440 PMCID: PMC10308314 DOI: 10.3389/fnins.2023.1182635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Alcohol exposure in adulthood can result in inflammation, malnutrition, and altered gastroenteric microbiota, which may disrupt efficient nutrient extraction. Clinical and preclinical studies have documented convincingly that prenatal alcohol exposure (PAE) also results in persistent inflammation and nutrition deficiencies, though research on the impact of PAE on the enteric microbiota is in its infancy. Importantly, other neurodevelopmental disorders, including autism spectrum and attention deficit/hyperactivity disorders, have been linked to gut microbiota dysbiosis. The combined evidence from alcohol exposure in adulthood and from other neurodevelopmental disorders supports the hypothesis that gut microbiota dysbiosis is likely an etiological feature that contributes to negative developmental, including neurodevelopmental, consequences of PAE and results in fetal alcohol spectrum disorders. Here, we highlight published data that support a role for gut microbiota in healthy development and explore the implication of these studies for the role of altered microbiota in the lifelong health consequences of PAE.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Amanda H. Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, United States
| |
Collapse
|
17
|
Alldred MJ, Pidikiti H, Heguy A, Roussos P, Ginsberg SD. Basal forebrain cholinergic neurons are vulnerable in a mouse model of Down syndrome and their molecular fingerprint is rescued by maternal choline supplementation. FASEB J 2023; 37:e22944. [PMID: 37191946 PMCID: PMC10292934 DOI: 10.1096/fj.202202111rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Basal forebrain cholinergic neuron (BFCN) degeneration is a hallmark of Down syndrome (DS) and Alzheimer's disease (AD). Current therapeutics in these disorders have been unsuccessful in slowing disease progression, likely due to poorly understood complex pathological interactions and dysregulated pathways. The Ts65Dn trisomic mouse model recapitulates both cognitive and morphological deficits of DS and AD, including BFCN degeneration and has shown lifelong behavioral changes due to maternal choline supplementation (MCS). To test the impact of MCS on trisomic BFCNs, we performed laser capture microdissection to individually isolate choline acetyltransferase-immunopositive neurons in Ts65Dn and disomic littermates, in conjunction with MCS at the onset of BFCN degeneration. We utilized single population RNA sequencing (RNA-seq) to interrogate transcriptomic changes within medial septal nucleus (MSN) BFCNs. Leveraging multiple bioinformatic analysis programs on differentially expressed genes (DEGs) by genotype and diet, we identified key canonical pathways and altered physiological functions within Ts65Dn MSN BFCNs, which were attenuated by MCS in trisomic offspring, including the cholinergic, glutamatergic and GABAergic pathways. We linked differential gene expression bioinformatically to multiple neurological functions, including motor dysfunction/movement disorder, early onset neurological disease, ataxia and cognitive impairment via Ingenuity Pathway Analysis. DEGs within these identified pathways may underlie aberrant behavior in the DS mice, with MCS attenuating the underlying gene expression changes. We propose MCS ameliorates aberrant BFCN gene expression within the septohippocampal circuit of trisomic mice through normalization of principally the cholinergic, glutamatergic, and GABAergic signaling pathways, resulting in attenuation of underlying neurological disease functions.
Collapse
Affiliation(s)
- Melissa J. Alldred
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
| | - Harshitha Pidikiti
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Adriana Heguy
- Genome Technology Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Panos Roussos
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Departments of Genetics and Genomic Sciences and Psychiatry and the Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen D. Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Departments of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, USA
- NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
18
|
Glass L, Moore EM, Mattson SN. Current considerations for fetal alcohol spectrum disorders: identification to intervention. Curr Opin Psychiatry 2023; 36:249-256. [PMID: 36939372 PMCID: PMC10079626 DOI: 10.1097/yco.0000000000000862] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
PURPOSE OF REVIEW This review highlights recent findings regarding the prevalence, public health impact, clinical presentation, intervention access and conceptualization of fetal alcohol spectrum disorders (FASDs). Despite ongoing work in prevention and identification of this population, the rates of drinking during pregnancy have increased and significant gaps remain in diagnosis and intervention. RECENT FINDINGS Prenatal alcohol exposure is the most common preventable cause of developmental disability in the world. Research has focused on improving diagnostic clarity, utilizing technology and neuroimaging to facilitate identification, engaging broader stakeholders (including self-advocates) to inform understanding and needs, and increasing access to effective interventions. There is an emerging focus on developmental trajectories and experiences in young and middle adulthood. Public policy advocacy has also made great strides in recent years. SUMMARY Increases in public awareness, greater concordance of diagnostic schema, leveraged use of novel technology, and the development of targeted interventions within a holistic, strengths-based conceptualization are important considerations for this population.
Collapse
Affiliation(s)
- Leila Glass
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
- University of California, Los Angeles Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095, USA
| | - Eileen M. Moore
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Sarah N. Mattson
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| |
Collapse
|
19
|
Breton‐Larrivée M, Elder E, Legault L, Langford‐Avelar A, MacFarlane AJ, McGraw S. Mitigating the detrimental developmental impact of early fetal alcohol exposure using a maternal methyl donor-enriched diet. FASEB J 2023; 37:e22829. [PMID: 36856720 PMCID: PMC11977608 DOI: 10.1096/fj.202201564r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 03/02/2023]
Abstract
Fetal alcohol exposure at any stage of pregnancy can lead to fetal alcohol spectrum disorder (FASD), a group of life-long conditions characterized by congenital malformations, as well as cognitive, behavioral, and emotional impairments. The teratogenic effects of alcohol have long been publicized; yet fetal alcohol exposure is one of the most common preventable causes of birth defects. Currently, alcohol abstinence during pregnancy is the best and only way to prevent FASD. However, alcohol consumption remains astoundingly prevalent among pregnant women; therefore, additional measures need to be made available to help protect the developing embryo before irreparable damage is done. Maternal nutritional interventions using methyl donors have been investigated as potential preventative measures to mitigate the adverse effects of fetal alcohol exposure. Here, we show that a single acute preimplantation (E2.5; 8-cell stage) fetal alcohol exposure (2 × 2.5 g/kg ethanol with a 2h interval) in mice leads to long-term FASD-like morphological phenotypes (e.g. growth restriction, brain malformations, skeletal delays) in late-gestation embryos (E18.5) and demonstrate that supplementing the maternal diet with a combination of four methyl donor nutrients, folic acid, choline, betaine, and vitamin B12, prior to conception and throughout gestation effectively reduces the incidence and severity of alcohol-induced morphological defects without altering DNA methylation status of imprinting control regions and regulation of associated imprinted genes. This study clearly supports that preimplantation embryos are vulnerable to the teratogenic effects of alcohol, emphasizes the dangers of maternal alcohol consumption during early gestation, and provides a potential proactive maternal nutritional intervention to minimize FASD progression, reinforcing the importance of adequate preconception and prenatal nutrition.
Collapse
Affiliation(s)
- Mélanie Breton‐Larrivée
- Centre Hospitalier Universitaire Sainte‐Justine Research CenterMontrealCanada
- Department of Biochemistry and Molecular MedicineUniversité de MontréalMontrealCanada
| | - Elizabeth Elder
- Centre Hospitalier Universitaire Sainte‐Justine Research CenterMontrealCanada
- Department of Biochemistry and Molecular MedicineUniversité de MontréalMontrealCanada
| | - Lisa‐Marie Legault
- Centre Hospitalier Universitaire Sainte‐Justine Research CenterMontrealCanada
- Department of Biochemistry and Molecular MedicineUniversité de MontréalMontrealCanada
| | - Alexandra Langford‐Avelar
- Centre Hospitalier Universitaire Sainte‐Justine Research CenterMontrealCanada
- Department of Biochemistry and Molecular MedicineUniversité de MontréalMontrealCanada
| | - Amanda J. MacFarlane
- Agriculture, Food, and Nutrition Evidence CenterTexas A&M UniversityTexasFort WorthUSA
- Department of NutritionTexas A&M UniversityCollege StationTexasUSA
| | - Serge McGraw
- Centre Hospitalier Universitaire Sainte‐Justine Research CenterMontrealCanada
- Department of Biochemistry and Molecular MedicineUniversité de MontréalMontrealCanada
- Department of Obstetrics and GynecologyUniversité de MontréalMontrealCanada
| |
Collapse
|
20
|
Steane SE, Cuffe JSM, Moritz KM. The role of maternal choline, folate and one-carbon metabolism in mediating the impact of prenatal alcohol exposure on placental and fetal development. J Physiol 2023; 601:1061-1075. [PMID: 36755527 PMCID: PMC10952912 DOI: 10.1113/jp283556] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Prenatal alcohol consumption (PAE) may be associated with a broad spectrum of impacts, ranging from no overt effects, to miscarriage, fetal growth restriction and fetal alcohol spectrum disorder. A major mechanism underlying the effects of PAE is considered to be altered DNA methylation and gene expression. Maternal nutritional status may be an important factor in determining the extent to which PAE impacts pregnancy outcomes, particularly the dietary micronutrients folate and choline because they provide methyl groups for DNA methylation via one carbon metabolism. This review summarises the roles of folate and choline in development of the blastocyst, the placenta and the fetal brain, and examines the evidence that maternal intake of these micronutrients can modify the effects of PAE on development. Studies of folate or choline deficiency have found reduced blastocyst development and implantation, reduced placental invasion, vascularisation and nutrient transport capability, impaired fetal brain development, and abnormal neurodevelopmental outcomes. PAE has been shown to reduce absorption and/or metabolism of folate and choline and to produce similar outcomes to maternal choline/folate deficiency. A few studies have demonstrated that the effects of PAE on brain development can be ameliorated by folate or choline supplementation; however, there is very limited evidence on the effects of supplementation in early pregnancy on the blastocyst and placenta. Further studies are required to support these findings and to determine optimal supplementation parameters.
Collapse
Affiliation(s)
- Sarah E. Steane
- School of Biomedical SciencesThe University of QueenslandSt LuciaQLDAustralia
| | - James S. M. Cuffe
- School of Biomedical SciencesThe University of QueenslandSt LuciaQLDAustralia
| | - Karen M. Moritz
- School of Biomedical SciencesThe University of QueenslandSt LuciaQLDAustralia
| |
Collapse
|
21
|
Zhao Y, Zhao X, Wang J. Choline alleviated perinatal fluoride exposure-induced learning and memory impairment through α4β2 nAChRs and α7 nAChRs in offspring mice. ENVIRONMENTAL TOXICOLOGY 2023; 38:511-521. [PMID: 36286330 DOI: 10.1002/tox.23692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/28/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Fluoride pollution is widely present in the living environment. As a critical period of brain development, the perinatal period is extremely vulnerable to fluoride. Studies have found that choline can protect the brain's memory and enhance the ability to focus. However, the effect of choline on perinatal fluoride-induced nerve damage remains unclear. Therefore, 32 Kunming newly conceived female mice and their offspring mice were randomly divided into control, NaF, LC + NaF, and HC + NaF groups, and the HE staining, Y-maze test, RT-PCR, western blotting, immunohistochemistry, etc. were used in this study. The results showed that fluoride decreased the brain organ coefficients and brain protein content (p < 0.05, p < 0.01), and caused histomorphological damage in the hippocampus and cortex, which suggested that fluoride affected the development of the brain and damaged the brain. Moreover, the results of the Y-maze test showed that fluoride increased the number of learning days, error reaction time, and total reaction time, and decreased the AchE activity in the brain (p < 0.05, p < 0.01), which indicated that fluoride reduced the learning and memory ability of the mice. Besides, the results showed that fluoride decreased the mRNA and protein expression levels of α4β2 nAChRs and α7 nAChRs in the hippocampus and cortex (p < 0.05, p < 0.01). However, perinatal choline supplementation reversed the aforementioned fluoride-induced changes. In short, these results demonstrated that choline alleviated perinatal fluoride-induced learning and memory impairment, which will provide a rationale for the mitigation and prevention of fluoride-induced brain damage.
Collapse
Affiliation(s)
- Yangfei Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Xiaojuan Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
- Science and Technology Research Center of China Customs, Beijing, China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
22
|
Baker JA, Bodnar TS, Breit KR, Weinberg J, Thomas JD. Choline Supplementation Alters Hippocampal Cytokine Levels in Adolescence and Adulthood in an Animal Model of Fetal Alcohol Spectrum Disorders. Cells 2023; 12:546. [PMID: 36831213 PMCID: PMC9953782 DOI: 10.3390/cells12040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Alcohol (ethanol) exposure during pregnancy can adversely affect development, with long-lasting consequences that include neuroimmune, cognitive, and behavioral dysfunction. Alcohol-induced alterations in cytokine levels in the hippocampus may contribute to abnormal cognitive and behavioral outcomes in individuals with fetal alcohol spectrum disorders (FASD). Nutritional intervention with the essential nutrient choline can improve hippocampal-dependent behavioral impairments and may also influence neuroimmune function. Thus, we examined the effects of choline supplementation on hippocampal cytokine levels in adolescent and adult rats exposed to alcohol early in development. From postnatal day (PD) 4-9 (third trimester-equivalent), Sprague-Dawley rat pups received ethanol (5.25 g/kg/day) or sham intubations and were treated with choline chloride (100 mg/kg/day) or saline from PD 10-30; hippocampi were collected at PD 35 or PD 60. Age-specific ethanol-induced increases in interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and keratinocyte chemoattractant/human growth-regulated oncogene (KC/GRO) were identified in adulthood, but not adolescence, whereas persistent ethanol-induced increases of interleukin-6 (IL-6) levels were present at both ages. Interestingly, choline supplementation reduced age-related changes in interleukin-1 beta (IL-1β) and interleukin-5 (IL-5) as well as mitigating the long-lasting increase in IFN-γ in ethanol-exposed adults. Moreover, choline influenced inflammatory tone by modulating ratios of pro- to -anti-inflammatory cytokines. These results suggest that ethanol-induced changes in hippocampal cytokine levels are more evident during adulthood than adolescence, and that choline can mitigate some effects of ethanol exposure on long-lasting inflammatory tone.
Collapse
Affiliation(s)
- Jessica A. Baker
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| | - Tamara S. Bodnar
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kristen R. Breit
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
- Department of Psychology, West Chester University, West Chester, PA 19383, USA
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jennifer D. Thomas
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| |
Collapse
|
23
|
Kansakar U, Trimarco V, Mone P, Varzideh F, Lombardi A, Santulli G. Choline supplements: An update. Front Endocrinol (Lausanne) 2023; 14:1148166. [PMID: 36950691 PMCID: PMC10025538 DOI: 10.3389/fendo.2023.1148166] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 03/08/2023] Open
Abstract
In this comprehensive review, we examine the main preclinical and clinical investigations assessing the effects of different forms of choline supplementation currently available, including choline alfoscerate (C8H20NO6P), also known as alpha-glycerophosphocholine (α-GPC, or GPC), choline bitartrate, lecithin, and citicoline, which are cholinergic compounds and precursors of acetylcholine. Extensively used as food supplements, they have been shown to represent an effective strategy for boosting memory and enhancing cognitive function.
Collapse
Affiliation(s)
- Urna Kansakar
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
| | | | - Pasquale Mone
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
- ASL Avellino, Montefiore Health System, New York, NY, United States
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
| | - Angela Lombardi
- Department of Microbiology and Immunology, Montefiore Health System, New York, NY, United States
- *Correspondence: Angela Lombardi,
| | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Einstein Institute for Aging Research, Montefiore Health System, New York, NY, United States
- University of Naples “Federico II”, Naples, Italy
- Department of Molecular Pharmacology, Einstein-Sinai Diabetes Research Center (ES-DRC), Montefiore Health System, New York, NY, United States
| |
Collapse
|
24
|
Gimbel BA, Anthony ME, Ernst AM, Roediger DJ, de Water E, Eckerle JK, Boys CJ, Radke JP, Mueller BA, Fuglestad AJ, Zeisel SH, Georgieff MK, Wozniak JR. Long-term follow-up of a randomized controlled trial of choline for neurodevelopment in fetal alcohol spectrum disorder: corpus callosum white matter microstructure and neurocognitive outcomes. J Neurodev Disord 2022; 14:59. [PMID: 36526961 PMCID: PMC9756672 DOI: 10.1186/s11689-022-09470-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Fetal alcohol spectrum disorder (FASD) is a lifelong condition. Early interventions targeting core neurocognitive deficits have the potential to confer long-term neurodevelopmental benefits. Time-targeted choline supplementation is one such intervention that has been shown to provide neurodevelopmental benefits that emerge with age during childhood. We present a long-term follow-up study evaluating the neurodevelopmental effects of early choline supplementation in children with FASD approximately 7 years on average after an initial efficacy trial. METHODS The initial study was a randomized, double-blind, placebo-controlled trial of choline vs. placebo in 2.5 to 5 year olds with FASD. Participants in this long-term follow-up study include 18 children (9 placebo; 9 choline) seen 7 years on average following initial trial completion. The mean age at follow-up was 11.0 years old. Diagnoses were 28% fetal alcohol syndrome (FAS), 28% partial FAS, and 44% alcohol-related neurodevelopmental disorder. The follow-up included measures of executive functioning and an MRI scan. RESULTS Children who received choline had better performance on several tasks of lower-order executive function (e.g., processing speed) and showed higher white matter microstructure organization (i.e., greater axon coherence) in the splenium of the corpus callosum compared to the placebo group. CONCLUSIONS These preliminary findings, although exploratory at this stage, highlight potential long-term benefits of choline as a neurodevelopmental intervention for FASD and suggest that choline may affect white matter development, representing a potential target of choline in this population. TRIAL REGISTRATION Prior to enrollment, this trial was registered with clinicaltrials.gov ( NCT01149538 ) on June 23, 2010.
Collapse
Affiliation(s)
- Blake A Gimbel
- University of Minnesota Twin Cities, 2025 E. River Parkway, Minneapolis, MN, 55414, USA
| | - Mary E Anthony
- University of Minnesota Twin Cities, 2025 E. River Parkway, Minneapolis, MN, 55414, USA
| | - Abigail M Ernst
- University of Minnesota Twin Cities, 2025 E. River Parkway, Minneapolis, MN, 55414, USA
| | - Donovan J Roediger
- University of Minnesota Twin Cities, 2025 E. River Parkway, Minneapolis, MN, 55414, USA
| | | | - Judith K Eckerle
- University of Minnesota Twin Cities, 2025 E. River Parkway, Minneapolis, MN, 55414, USA
| | | | | | - Bryon A Mueller
- University of Minnesota Twin Cities, 2025 E. River Parkway, Minneapolis, MN, 55414, USA
| | | | | | - Michael K Georgieff
- University of Minnesota Twin Cities, 2025 E. River Parkway, Minneapolis, MN, 55414, USA
| | - Jeffrey R Wozniak
- University of Minnesota Twin Cities, 2025 E. River Parkway, Minneapolis, MN, 55414, USA.
| |
Collapse
|
25
|
Inadequate Choline Intake in Pregnant Women in Germany. Nutrients 2022; 14:nu14224862. [PMID: 36432547 PMCID: PMC9696170 DOI: 10.3390/nu14224862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Choline is an essential nutrient that is involved in various developmental processes during pregnancy. While the general adequate choline intake (AI) for adults has been set at 400 mg/day by the European Food Safety Authority (EFSA), an AI of 480 mg/day has been derived for pregnant women. To date, the choline intake of pregnant women in Germany has not been investigated yet. Therefore, in this survey, the total choline intake from dietary and supplementary sources in pregnant women was estimated using an online questionnaire. A total of 516 pregnant women participated in the survey, of which 283 met the inclusion criteria (13 to 41 weeks of gestational age, 19−45 years). 224 (79%) of the participants followed an omnivorous diet, 59 (21%) were vegetarian or vegan. Median choline intake was 260.4 (±141.4) mg/day, and only 19 women (7%) achieved the adequate choline intake. The median choline intake of omnivores was significantly higher than that of vegetarians/vegans (269.5 ± 141.5 mg/day vs. 205.2 ± 101.2 mg/day; p < 0.0001). 5% (13/283) of pregnant women took choline-containing dietary supplements. In these women, dietary supplements provided 19% of the total choline intake. Due to the importance of choline for the developmental processes during pregnancy, the study results prove the urgent need for an improved choline supply for pregnant women.
Collapse
|
26
|
Abstract
The role of early life nutrition's impact on relevant health outcomes across the lifespan laid the foundation for the field titled the developmental origins of health and disease. Studies in this area initially concentrated on nutrition and the risk of adverse cardio-metabolic and cancer outcomes. More recently the role of nutrition in early brain development and the subsequent influence of later mental health has become more evident. Scientific breakthroughs have elucidated two mechanisms behind long-term nutrient effects on the brain, including the existence of critical periods for certain nutrients during brain development and nutrient-driven epigenetic modifications of chromatin. While multiple nutrients and nutritional conditions have the potential to modify brain development, iron can serve as a paradigm to understand both mechanisms. New horizons in nutritional medicine include leveraging the mechanistic knowledge of nutrient-brain interactions to propose novel nutritional approaches that protect the developing brain through better timing of nutrient delivery and potential reversal of negative epigenetic marks. The main challenge in the field is detecting whether a change in nutritional status truly affects the brain's development and performance in human subjects. To that end, a strong case can be made to develop and utilise bioindicators of a nutrient's effect on the developing brain instead of relying exclusively on biomarkers of the nutrient's status.
Collapse
|
27
|
Choline Supplementation Modifies the Effects of Developmental Alcohol Exposure on Immune Responses in Adult Rats. Nutrients 2022; 14:nu14142868. [PMID: 35889826 PMCID: PMC9316525 DOI: 10.3390/nu14142868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Prenatal alcohol exposure can disrupt the development of numerous systems, including the immune system. Indeed, alterations in cytokine levels may contribute to the neuropathological, behavioral, and cognitive problems, and other adverse outcomes observed in individuals with fetal alcohol spectrum disorders. Importantly, supplementation with the essential nutrient choline can improve performance in hippocampal-dependent behaviors; thus, the present study examined the effects of choline on plasma and hippocampal cytokines in adult rats exposed to ethanol in early development. From postnatal day (PD) 4–9 (third trimester equivalent), pups received ethanol (5.25 g/kg/day) or Sham intubations. Subjects were treated with choline chloride (100 mg/kg/day) or saline from PD10–30. On PD60, plasma and hippocampal tissue was collected before and after an immune challenge (lipopolysaccharide (LPS); 50 ug/kg). Prior to the immune challenge, ethanol-exposed subjects showed an overall increase in hippocampal pro-inflammatory cytokines, an effect mitigated by choline supplementation. In contrast, in the plasma, choline reduced LPS-related increases in pro-inflammatory markers, particularly in ethanol-exposed subjects. Thus, early choline supplementation may modify both brain and peripheral inflammation. These results suggest that early choline can mitigate some long-term effects of ethanol exposure on hippocampal inflammation, which may contribute to improved hippocampal function, and could also influence peripheral immune responses that may impact overall health.
Collapse
|
28
|
Grafe EL, Wade MMM, Hodson CE, Thomas JD, Christie BR. Postnatal Choline Supplementation Rescues Deficits in Synaptic Plasticity Following Prenatal Ethanol Exposure. Nutrients 2022; 14:2004. [PMID: 35631142 PMCID: PMC9146219 DOI: 10.3390/nu14102004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/06/2023] Open
Abstract
Prenatal ethanol exposure (PNEE) is a leading cause of neurodevelopmental impairments, yet treatments for individuals with PNEE are limited. Importantly, postnatal supplementation with the essential nutrient choline can attenuate some adverse effects of PNEE on cognitive development; however, the mechanisms of action for choline supplementation remain unclear. This study used an animal model to determine if choline supplementation could restore hippocampal synaptic plasticity that is normally impaired by prenatal alcohol. Throughout gestation, pregnant Sprague Dawley rats were fed an ethanol liquid diet (35.5% ethanol-derived calories). Offspring were injected with choline chloride (100 mg/kg/day) from postnatal days (PD) 10-30, and then used for in vitro electrophysiology experiments as juveniles (PD 31-35). High-frequency conditioning stimuli were used to induce long-term potentiation (LTP) in the medial perforant path input to the dentate gyrus of the hippocampus. PNEE altered synaptic transmission in female offspring by increasing excitability, an effect that was mitigated with choline supplementation. In contrast, PNEE juvenile males had decreased LTP compared to controls, and this was rescued by choline supplementation. These data demonstrate sex-specific changes in plasticity following PNEE, and provide evidence that choline-related improvements in cognitive functioning may be due to its positive impact on hippocampal synaptic physiology.
Collapse
Affiliation(s)
- Erin L. Grafe
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (E.L.G.); (M.M.M.W.); (C.E.H.); (B.R.C.)
| | - Mira M. M. Wade
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (E.L.G.); (M.M.M.W.); (C.E.H.); (B.R.C.)
| | - Claire E. Hodson
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (E.L.G.); (M.M.M.W.); (C.E.H.); (B.R.C.)
| | - Jennifer D. Thomas
- Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Brian R. Christie
- Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada; (E.L.G.); (M.M.M.W.); (C.E.H.); (B.R.C.)
| |
Collapse
|
29
|
Abstract
This article is part of a Festschrift commemorating the 50th anniversary of the National Institute on Alcohol Abuse and Alcoholism (NIAAA). Established in 1970, first as part of the National Institute of Mental Health and later as an independent institute of the National Institutes of Health, NIAAA today is the world’s largest funding agency for alcohol research. In addition to its own intramural research program, NIAAA supports the entire spectrum of innovative basic, translational, and clinical research to advance the diagnosis, prevention, and treatment of alcohol use disorder and alcohol-related problems. To celebrate the anniversary, NIAAA hosted a 2-day symposium, “Alcohol Across the Lifespan: 50 Years of Evidence-Based Diagnosis, Prevention, and Treatment Research,” devoted to key topics within the field of alcohol research. This article is based on Dr. Charness’ presentation at the event. NIAAA Director George F. Koob, Ph.D., serves as editor of the Festschrift.
Collapse
Affiliation(s)
- Michael E Charness
- VA Boston Healthcare System, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts. Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
30
|
Carter RC, Senekal M, Duggan CP, Dodge NC, Meintjes EM, Molteno CD, Jacobson JL, Jacobson SW. Gestational weight gain and dietary energy, iron, and choline intake predict severity of fetal alcohol growth restriction in a prospective birth cohort. Am J Clin Nutr 2022; 116:460-469. [PMID: 35441212 PMCID: PMC9348980 DOI: 10.1093/ajcn/nqac101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Animal models have demonstrated that maternal nutrition can alter fetal vulnerability to prenatal alcohol exposure (PAE). Few human studies have examined the role of nutrition in fetal alcohol spectrum disorders (FASD). OBJECTIVES Our objectives were to examine whether fetal vulnerability to PAE-related growth restriction is modified by: 1) rate of gestational weight gain; or prenatal dietary intakes of 2) energy, 3) iron, or 4) choline. METHODS In a prospective longitudinal birth cohort in Cape Town, South Africa, 118 heavy-drinking and 71 abstaining/light-drinking pregnant women were weighed and interviewed regarding demographics, alcohol, cigarette/other drug use, and diet at prenatal visits. Infant length, weight, and head circumference were measured at 2 wk and 12 mo postpartum. RESULTS Heavy-drinking mothers reported a binge pattern of drinking [Mean = 129 mL (∼7.2 drinks)/occasion on 1.3 d/wk). Rate of gestational weight gain and average daily dietary energy, iron, and choline intakes were similar between heavy-drinking women and controls. In regression models adjusting for maternal age, socioeconomic status, cigarette use, and weeks gestation at delivery, PAE [ounces (30 mL) absolute alcohol per day] was related to smaller 2-wk length and head circumference and 12-mo length, weight, and head circumference z-scores (β = -0.43 to -0.67; all P values <0.05). In stratified analyses for each maternal nutritional measure (inadequate compared with adequate weight gain; tertiles for dietary energy, iron, and choline intakes), PAE-related growth restriction was more severe in women with poorer nutrition, with effect modification seen by weight gain, energy, iron, and/or choline for several anthropometric outcomes. CONCLUSIONS Gestational weight gain and dietary intakes of energy, choline, and iron appeared to modify fetal vulnerability to PAE-related growth restriction. These findings suggest a need for screening programs for pregnant women at higher risk of having a child with FASD to identify alcohol-using women who could benefit from nutritional interventions.
Collapse
Affiliation(s)
| | - Marjanne Senekal
- Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Christopher P Duggan
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - Neil C Dodge
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ernesta M Meintjes
- Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Christopher D Molteno
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Boston, MA, USA,Departments of Nutrition and Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA,Department of Psychiatry and Mental Health, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| | - Joseph L Jacobson
- Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sandra W Jacobson
- Department of Human Biology, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa,Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA,Department of Psychiatry and Mental Health, University of Cape Town Faculty of Health Sciences, Cape Town, South Africa
| |
Collapse
|
31
|
Prenatal and Postnatal Choline Supplementation in Fetal Alcohol Spectrum Disorder. Nutrients 2022; 14:nu14030688. [PMID: 35277047 PMCID: PMC8837993 DOI: 10.3390/nu14030688] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is common and represents a significant public health burden, yet very few interventions have been tested in FASD. Cognitive deficits are core features of FASD, ranging from broad intellectual impairment to selective problems in attention, executive functioning, memory, visual–perceptual/motor skills, social cognition, and academics. One potential intervention for the cognitive impairments associated with FASD is the essential nutrient choline, which is known to have numerous direct effects on brain and cognition in both typical and atypical development. We provide a summary of the literature supporting the use of choline as a neurodevelopmental intervention in those affected by prenatal alcohol. We first discuss how alcohol interferes with normal brain development. We then provide a comprehensive overview of the nutrient choline and discuss its role in typical brain development and its application in the optimization of brain development following early insult. Next, we review the preclinical literature that provides evidence of choline’s potential as an intervention following alcohol exposure. Then, we review a handful of existing human studies of choline supplementation in FASD. Lastly, we conclude with a review of practical considerations in choline supplementation, including dose, formulation, and feasibility in children.
Collapse
|
32
|
Ornoy A, Weinstein-Fudim L, Becker M. SAMe, Choline, and Valproic Acid as Possible Epigenetic Drugs: Their Effects in Pregnancy with a Special Emphasis on Animal Studies. Pharmaceuticals (Basel) 2022; 15:192. [PMID: 35215304 PMCID: PMC8879727 DOI: 10.3390/ph15020192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/29/2022] Open
Abstract
In this review, we discuss the functions and main effects on pregnancy outcomes of three agents that have the ability to induce epigenetic modifications: valproic acid (VPA), a well-known teratogen that is a histone deacetylase inhibitor; S-adenosylmethionine (SAMe), the most effective methyl donor; and choline, an important micronutrient involved in the one methyl group cycle and in the synthesis of SAMe. Our aim was to describe the possible effects of these compounds when administered during pregnancy on the developing embryo and fetus or, if administered postnatally, their effects on the developing child. These substances are able to modify gene expression and possibly alleviate neurobehavioral changes in disturbances that have epigenetic origins, such as autism spectrum disorder (ASD), depression, Rett syndrome, and fetal alcohol spectrum disorder (FASD). Valproic acid and SAMe are antagonistic epigenetic modulators whether administered in utero or postnatally. However, VPA is a major human teratogen and, whenever possible, should not be used by pregnant women. Most currently relevant data come from experimental animal studies that aimed to explore the possibility of using these substances as epigenetic modifiers and possible therapeutic agents. In experimental animals, each of these substances was able to alleviate the severity of several well-known diseases by inducing changes in the expression of affected genes or by other yet unknown mechanisms. We believe that additional studies are needed to further explore the possibility of using these substances, and similar compounds, for the treatment of "epigenetic human diseases".
Collapse
Affiliation(s)
- Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel;
| | - Liza Weinstein-Fudim
- Department of Medical Neurobiology, Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel;
| | - Maria Becker
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| |
Collapse
|
33
|
Gutherz OR, Deyssenroth M, Li Q, Hao K, Jacobson JL, Chen J, Jacobson SW, Carter RC. Potential roles of imprinted genes in the teratogenic effects of alcohol on the placenta, somatic growth, and the developing brain. Exp Neurol 2021; 347:113919. [PMID: 34752786 DOI: 10.1016/j.expneurol.2021.113919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
Despite several decades of research and prevention efforts, fetal alcohol spectrum disorders (FASD) remain the most common preventable cause of neurodevelopmental disabilities worldwide. Animal and human studies have implicated fetal alcohol-induced alterations in epigenetic programming as a chief mechanism in FASD. Several studies have demonstrated fetal alcohol-related alterations in methylation and expression of imprinted genes in placental, brain, and embryonic tissue. Imprinted genes are epigenetically regulated in a parent-of-origin-specific manner, in which only the maternal or paternal allele is expressed, and the other allele is silenced. The chief functions of imprinted genes are in placental development, somatic growth, and neurobehavior-three domains characteristically affected in FASD. In this review, we summarize the growing body of literature characterizing prenatal alcohol-related alterations in imprinted gene methylation and/or expression and discuss potential mechanistic roles for these alterations in the teratogenic effects of prenatal alcohol exposure. Future research is needed to examine potential physiologic mechanisms by which alterations in imprinted genes disrupt development in FASD, which may, in turn, elucidate novel targets for intervention. Furthermore, mechanistic alterations in imprinted gene expression and/or methylation in FASD may inform screening assays that identify individuals with FASD neurobehavioral deficits who may benefit from early interventions.
Collapse
Affiliation(s)
- Olivia R Gutherz
- Institute of Human Nutrition, Columbia University Medical Center, United States of America
| | - Maya Deyssenroth
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, United States of America
| | - Qian Li
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Ke Hao
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, United States of America; Department of Human Biology, University of Cape Town Faculty of Health Sciences, South Africa
| | - Jia Chen
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, United States of America; Department of Human Biology, University of Cape Town Faculty of Health Sciences, South Africa
| | - R Colin Carter
- Institute of Human Nutrition, Columbia University Medical Center, United States of America; Departments of Emergency Medicine and Pediatrics, Columbia University Medical Center, United States of America.
| |
Collapse
|
34
|
Thomas JD. Choline supplementation as an intervention for fetal alcohol spectrum disorders: A commentary. Alcohol Clin Exp Res 2021; 45:2465-2467. [PMID: 34716714 DOI: 10.1111/acer.14732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022]
Affiliation(s)
- Jennifer D Thomas
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA, USA
| |
Collapse
|
35
|
Kwan STC, Ricketts DK, Presswood BH, Smith SM, Mooney SM. Prenatal choline supplementation during mouse pregnancy has differential effects in alcohol-exposed fetal organs. Alcohol Clin Exp Res 2021; 45:2471-2484. [PMID: 34697823 DOI: 10.1111/acer.14730] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) are preventable adverse outcomes consequent to prenatal alcohol exposure. Supplemental choline confers neuroprotection to the alcohol-exposed offspring, but its actions outside the brain are unclear. We previously reported that prenatal exposure of mice to 4.5 g/kg of alcohol decreased placental weight in females only, but decreased body weight and liver-to-body weight ratio and increased brain-to-body weight ratio in both sexes. Here we test the hypotheses that a lower alcohol dose will elicit similar outcomes, and that concurrent choline treatment will mitigate these outcomes. METHODS Pregnant C57BL/6J mice were gavaged with alcohol (3 g/kg; Alc) or maltodextrin (MD) from embryonic day (E) 8.5-17.5. Some also received a subcutaneous injection of 100 mg/kg choline chloride (Alc + Cho, MD + Cho). Outcomes were evaluated on E17.5. RESULTS Alc dams had lower gestational weight gain than MD; this was normalized by choline. In males, Alc decreased placental weight whereas choline increased placental efficiency, and Alc + Cho (vs. MD) tended to further reduce placental weight and increase efficiency. Despite no significant alcohol effects on these measures, choline increased fetal body weight but not brain weight, thus reducing brain-to-body weight ratio in both sexes. This ratio was also lower in the Alc + Cho (vs. MD) fetuses. Alc reduced liver weight and the liver-to-body weight ratio; choline did not improve these. Placental weight and efficiency correlated with litter size, whereas placental efficiency correlated with fetal morphometric measurements. CONCLUSIONS Choline prevents an alcohol-induced reduction in gestational weight gain and fetal body weight and corrects fetal brain sparing, consistent with clinical findings of improvements in alcohol-exposed children born to mothers receiving choline supplementation. Importantly, we show that choline enhances placental efficiency in the alcohol-exposed offspring but does not normalize fetal liver growth. Our findings support choline supplementation during pregnancy to mitigate the severity of FASD and emphasize the need to examine choline's actions in different organ systems.
Collapse
Affiliation(s)
- Sze Ting Cecilia Kwan
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Dane K Ricketts
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Brandon H Presswood
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA
| | - Susan M Smith
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA.,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sandra M Mooney
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA.,Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|