1
|
Mackowiak B, Haggerty DL, Lehner T, Lin YH, Fu Y, Lu H, Pawlosky RJ, Ren T, Seo W, Feng D, Zhang L, Lovinger DM, Gao B. Peripheral alcohol metabolism dictates ethanol consumption and drinking microstructure in mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:970-984. [PMID: 40114621 PMCID: PMC12097942 DOI: 10.1111/acer.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Ethanol metabolism is intimately linked with the physiological and behavioral aspects of ethanol consumption. Ethanol is mainly oxidized by alcohol dehydrogenase (ADH) to acetaldehyde and further to acetate via aldehyde dehydrogenases (ALDHs). Understanding how ethanol and its metabolites work together to initiate and drive continued ethanol consumption is crucial for identifying interventions for alcohol use disorder (AUD). Therefore, the goal of our study was to determine how ADH1, which is mainly peripherally expressed and metabolizes >90% of ingested ethanol, modulates ethanol metabolite distribution and downstream behaviors. METHODS Ethanol consumption in drinking-in-the-dark (DID) and two-bottle choice (2BC) drinking paradigms, ethanol metabolite concentrations, and lickometry were assessed after ADH1 inhibition and/or in Adh1-knockout (Adh1 KO) mice. RESULTS We found that Adh1 KO mice of both sexes exhibited decreased ethanol consumption and preference compared with wild-type (WT) mice in DID and 2BC. ADH1 inhibitor fomepizole (4-MP) also significantly decreased normal and sweetened ethanol consumption in DID studies. Measurement of ethanol and its metabolites revealed that ethanol was increased at 1 h but not 15 min, peripheral acetaldehyde was slightly decreased at both timepoints, and ethanol-induced increases in acetate were abolished after ethanol administration in Adh1 KO mice compared with controls. Similarly, ethanol accumulation as a function of consumption was 2-fold higher in Adh1 KO or 4-MP-treated mice compared with controls. We then used lickometry to determine how this perturbation in ethanol metabolism affects drinking microstructure. Adh1 KO mice consume most of their ethanol in the first 30 min, like WT mice, but display altered temporal shifts in drinking behaviors and do not form normal bout structures, resulting in lower ethanol consumption. CONCLUSIONS Our study demonstrates that ADH1-mediated ethanol metabolism is a key determinant of ethanol consumption, highlighting a fundamental knowledge gap regarding how ethanol and its metabolites drive ethanol consumption.
Collapse
Affiliation(s)
- Bryan Mackowiak
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - David L. Haggerty
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Taylor Lehner
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yu-Hong Lin
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hongkun Lu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert J. Pawlosky
- Office of the Scientific Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tianyi Ren
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wonhyo Seo
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Cao P, Chao X, Ni HM, Ding WX. An Update on Animal Models of Alcohol-Associated Liver Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00032-X. [PMID: 39884572 DOI: 10.1016/j.ajpath.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 02/01/2025]
Abstract
Alcohol-associated liver disease (ALD) is a significant global health concern and a leading cause of liver disease-related deaths. However, the treatment options are limited due to the lack of animal models that accurately replicate ALD pathogenesis. An ideal ALD animal model should have pathological characteristics similar to those of human ALD, with a clear pathological process and ease of drug intervention. Over the years, researchers have focused on developing ideal ALD preclinical animal models by testing various methods, such as ad libitum drinking water with ethanol, acute, single large doses of ethanol gavage, multiple alcohol gavages in a short period, the Lieber-DeCarli liquid diet feeding model, the intragastric infusion model, and the Gao-binge model. With the increasing occurrence of obesity and metabolic dysfunction-associated steatotic liver disease, a new category of metabolic and alcohol-associated liver disease (MetALD) is also emerging. Studies have investigated the combined effects of a high-fat diet combined with binge alcohol or drinking water containing ethanol to mimic MetALD. In addition to mice, other species such as rats, guinea pigs, zebrafish, and non-human primates have also been tested to establish ALD preclinical models. This review aims to summarize current animal ALD models, particularly the emerging MetALD models, with the hope of providing a valuable reference for establishing more effective animal models in ALD studies in the future.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas; Department of Internal Medicine, Division of Gastroenterology, Hepatology & Mobility, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
3
|
Winardi K, Mach J, McKay MJ, Molloy MP, Mitchell SJ, MacArthur MR, McKenzie C, Le Couteur DG, Hilmer SN. Chronic polypharmacy, monotherapy, and deprescribing: Understanding complex effects on the hepatic proteome of aging mice. Aging Cell 2025; 24:e14357. [PMID: 39462793 PMCID: PMC11709111 DOI: 10.1111/acel.14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/09/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Polypharmacy (use of ≥5 concurrent medications) is highly prevalent among older adults to manage chronic diseases and is linked to adverse geriatric outcomes, including physical and cognitive functional impairments, falls, frailty, hospitalization, and mortality. Deprescribing (withdrawal) is a potential strategy to manage polypharmacy. The broad molecular changes by which polypharmacy causes harm and deprescribing may be beneficial are unknown and unfeasible to study rigorously in tissue from geriatric patients. Therefore, in a randomized controlled trial, we administered therapeutic doses of commonly used chronic medications (oxycodone, oxybutynin, citalopram, simvastatin, or metoprolol) as monotherapy or concurrently (polypharmacy) from middle-age (12 months) to old-age (26 months) to male C57BL/6J (B6) mice and deprescribed (gradually withdrew) treatments in a subset from age 21 months. We compared drug-related hepatic effects by applying proteomics along with transcriptomics and histology. We found that monotherapy effects on hepatic proteomics were limited but significant changes were seen with polypharmacy (93% unique to polypharmacy). Polypharmacy altered the hepatic expression of proteins involved in immunity, and in drug, cholesterol, and amino acid metabolism, accompanied by higher serum drug levels than monotherapies. Deprescribing not only reversed some effects but also caused irreversible and novel changes in the hepatic proteome. Furthermore, our study identified several hepatic protein co-expressed modules that are associated with clinically relevant adverse geriatric outcomes, such as mobility, frailty, and activities of daily living. This study highlights the complex molecular changes following aging, chronic polypharmacy, and deprescribing. Further exploration of these mechanistic pathways may inform management of polypharmacy and deprescribing in older adults.
Collapse
Affiliation(s)
- Kevin Winardi
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and HealthThe University of Sydney and the Northern Sydney Local Health DistrictSydneyNew South WalesAustralia
| | - John Mach
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and HealthThe University of Sydney and the Northern Sydney Local Health DistrictSydneyNew South WalesAustralia
| | - Matthew J. McKay
- Bowel Cancer and Biomarker Laboratory, School of Medical Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | - Mark P. Molloy
- Bowel Cancer and Biomarker Laboratory, School of Medical Science, Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia
| | | | | | - Catriona McKenzie
- Department of Tissue Pathology and Diagnostic OncologyRoyal Prince Alfred HospitalSydneyNew South WalesAustralia
- Sydney Medical SchoolUniversity of SydneySydneyNew South WalesAustralia
| | - David G. Le Couteur
- Charles Perkins CentreUniversity of SydneySydneyNew South WalesAustralia
- ANZAC Research InstituteUniversity of Sydney and Concord HospitalConcordNew South WalesAustralia
- Centre for Education and Research on Ageing, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Sarah N. Hilmer
- Laboratory of Ageing and Pharmacology, Kolling Institute, Faculty of Medicine and HealthThe University of Sydney and the Northern Sydney Local Health DistrictSydneyNew South WalesAustralia
| |
Collapse
|
4
|
Choi S, Ofosu-Boateng M, Kim S, Nnamani DO, Mah'moud M, Neequaye P, Gebreyesus LH, Twum E, Gonzalez FJ, Yue Cui J, Gyamfi MA. Molecular targets of PXR-dependent ethanol-induced hepatotoxicity in female mice. Biochem Pharmacol 2024; 228:116416. [PMID: 38986717 PMCID: PMC11410527 DOI: 10.1016/j.bcp.2024.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
The pregnane X receptor (PXR, NR1I2), a xenobiotic-sensing nuclear receptor signaling potentiates ethanol (EtOH)-induced hepatotoxicity in male mice, however, how PXR signaling modulates EtOH-induced hepatotoxicity in female mice is unknown. Wild type (WT) and Pxr-null mice received 5 % EtOH-containing diets or paired-fed control diets for 8 weeks followed by assessment of liver injury, EtOH elimination rates, histology, and changes in gene and protein expression; microarray and bioinformatic analyses were also employed to identify PXR targets in chronic EtOH-induced hepatotoxicity. In WT females, EtOH ingestion significantly increased serum ethanol and alanine aminotransferase (ALT) levels, hepatic Pxr mRNA, constitutive androstane receptor activation, Cyp2b10 mRNA and protein, oxidative stress, endoplasmic stress (phospho-elF2α) and pro-apoptotic (Bax) protein expression. Unexpectedly, EtOH-fed female Pxr-null mice displayed increased EtOH elimination and elevated levels of hepatic acetaldehyde detoxifying aldehyde dehydrogenase 1a1 (Aldh1a1) mRNA and protein, EtOH-metabolizing alcohol dehydrogenase 1 (ADH1), and lipid suppressing microsomal triglyceride transport protein (MTP) protein, aldo-keto reductase 1b7 (Akr1b7) and Cyp2a5 mRNA, but suppressed CYP2B10 protein levels, with evidence of protection against chronic EtOH-induced oxidative stress and hepatotoxicity. While liver injury was not different between the two WT sexes, female sex may suppress EtOH-induced macrovesicular steatosis in the liver. Several genes and pathways important in retinol and steroid hormone biosynthesis, chemical carcinogenesis, and arachidonic acid metabolism were upregulated by EtOH in a PXR-dependent manner in both sexes. Together, these data establish that female Pxr-null mice are resistant to chronic EtOH-induced hepatotoxicity and unravel the PXR-dependent and -independent mechanisms that contribute to EtOH-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sora Choi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Malvin Ofosu-Boateng
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163 USA
| | - Sarah Kim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Daniel O Nnamani
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163 USA
| | - Mia Mah'moud
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Prince Neequaye
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Lidya H Gebreyesus
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163 USA
| | - Elizabeth Twum
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163 USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Building 37, Room 3106, Bethesda, MD 20892, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Maxwell A Gyamfi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA; Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163 USA.
| |
Collapse
|
5
|
Meng X, Wang L, Du YC, Cheng D, Zeng T. PPARβ/δ as a promising molecular drug target for liver diseases: A focused review. Clin Res Hepatol Gastroenterol 2024; 48:102343. [PMID: 38641250 DOI: 10.1016/j.clinre.2024.102343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Various liver diseases pose great threats to humans. Although the etiologies of these liver diseases are quite diverse, they share similar pathologic phenotypes and molecular mechanisms such as oxidative stress, lipid and glucose metabolism disturbance, hepatic Kupffer cell (KC) proinflammatory polarization and inflammation, insulin resistance, and hepatic stellate cell (HSC) activation and proliferation. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is expressed in various types of liver cells with relatively higher expression in KCs and HSCs. Accumulating evidence has revealed the versatile functions of PPARβ/δ such as controlling lipid homeostasis, inhibiting inflammation, regulating glucose metabolism, and restoring insulin sensitivity, suggesting that PPARβ/δ may serve as a potential molecular drug target for various liver diseases. This article aims to provide a concise review of the structure, expression pattern and biological functions of PPARβ/δ in the liver and its roles in various liver diseases, and to discuss potential future research perspectives.
Collapse
Affiliation(s)
- Xin Meng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lin Wang
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yan-Chao Du
- Jinan Institute for Product Quality Inspection, Jinan, Shandong 250102, China
| | - Dong Cheng
- Department of Health Test and Detection, Shandong Center for Disease Control and Prevention, Jinan, Shandong 250014, China.
| | - Tao Zeng
- Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
6
|
Liu J, Malekoltojari A, Asokakumar A, Chow V, Li L, Li H, Grimaldi M, Dang N, Campbell J, Barrett H, Sun J, Navarre W, Wilson D, Wang H, Mani S, Balaguer P, Anakk S, Peng H, Krause HM. Diindoles produced from commensal microbiota metabolites function as endogenous CAR/Nr1i3 ligands. Nat Commun 2024; 15:2563. [PMID: 38519460 PMCID: PMC10960024 DOI: 10.1038/s41467-024-46559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
Numerous studies have demonstrated the correlation between human gut bacteria and host physiology, mediated primarily via nuclear receptors (NRs). Despite this body of work, the systematic identification and characterization of microbe-derived ligands that regulate NRs remain a considerable challenge. In this study, we discover a series of diindole molecules produced from commensal bacteria metabolites that act as specific agonists for the orphan constitutive androstane receptor (CAR). Using various biophysical analyses we show that their nanomolar affinities are comparable to those of synthetic CAR agonists, and that they can activate both rodent and human CAR orthologues, which established synthetic agonists cannot. We also find that the diindoles, diindolylmethane (DIM) and diindolylethane (DIE) selectively up-regulate bona fide CAR target genes in primary human hepatocytes and mouse liver without causing significant side effects. These findings provide new insights into the complex interplay between the gut microbiome and host physiology, as well as new tools for disease treatment.
Collapse
Affiliation(s)
- Jiabao Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Ainaz Malekoltojari
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Anjana Asokakumar
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Vimanda Chow
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Hao Li
- Department of Molecular Pharmacology; Department of Genetics; Department of Medicine; Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, Inserm, U1194, France
| | - Nathanlown Dang
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jhenielle Campbell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - William Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Derek Wilson
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Sridhar Mani
- Department of Molecular Pharmacology; Department of Genetics; Department of Medicine; Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, Inserm, U1194, France
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- School of the Environment, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| | - Henry M Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|