1
|
Li W, Zhang S, Fan W, Fu X, Zhang D, Wen L. Abnormal changes in neuropsychological function, brain structure and cerebral perfusion in patients with unruptured intracranial aneurysms. Front Neurol 2024; 15:1463156. [PMID: 39440250 PMCID: PMC11495264 DOI: 10.3389/fneur.2024.1463156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024] Open
Abstract
Background Patients with unruptured intracranial aneurysms (UIAs) often experience emotional changes and cognitive impairments. However, the specific mechanisms underlying these impairments are still not fully understood. Methods In the present study, voxel-based morphometry (VBM) and surface-based morphometry (SBM) were employed to investigate structural alterations in 49 patients diagnosed with UIAs compared with 50 healthy controls. Additionally, this study aimed to analyze the correlations among cortical morphological indices, cerebral blood perfusion values and neuropsychological test results. Results Compared with control group, UIA patients exhibited increased gray matter volume in the right anterior orbitofrontal cortex and decreased gray matter volume in the left thalamus pulvinar and hippocampus. Furthermore, the fractal dimension was lower in the right postcentral gyrus and entorhinal cortex. The cerebral perfusion values in the abnormal brain regions demonstrated a downward trend, which was associated with a reduction in gray matter volume in the left thalamus pulvinar and hippocampus, elevated anxiety levels and impaired executive function. Conclusion UIA patients are prone to cognitive impairment and emotional dysregulation, which are accompanied by subtle changes in local gray matter volume and decreases in fractal dimension and cerebral blood flow. These findings provide new insights into the potential mechanisms underlying the cognitive impairment observed in UIA patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Wen
- Xinqiao Hospital, Chongqing, China
| |
Collapse
|
2
|
Rader L, Reineberg AE, Petre B, Wager TD, Friedman NP. Familial effects account for association between chronic pain and past month smoking. Eur J Pain 2024; 28:1144-1155. [PMID: 38318651 PMCID: PMC11269048 DOI: 10.1002/ejp.2247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Smoking is associated with chronic pain, but it is not established whether smoking causes pain or if the link is due to familial effects. One proposed mechanism is that smoking strengthens maladaptive cortico-striatal connectivity, which contributes to pain chronification. We leveraged a twin design to assess direct effects of smoking on pain controlling for familial confounds, and whether cortico-striatal connectivity mediates this association. METHODS In a population-based sample of 692 twins (age = 28.83 years), we assessed past-month smoking frequency (n = 132 used in the past month), presence and severity of a current pain episode (n = 179 yes), and resting-state functional connectivity of the nucleus accumbens and medial prefrontal cortex (NAc-mPFC). RESULTS Smoking was significantly associated with pain, but the association was not significantly mediated by NAc-mPFC connectivity. In a co-twin control model, smoking predicted which families had more pain but could not distinguish pain between family members. Pain risk was 43% due to additive genetic (A) and 57% due to non-shared environmental (E) influences. Past-month smoking frequency was 71% genetic and 29% non-shared environmental. Smoking and pain significantly correlated phenotypically (r = 0.21, p = 0.001) and genetically (rg = 0.51, p < 0.001), but not environmentally (re = -0.18, p = 0.339). CONCLUSIONS Pain and smoking are associated; however, the association appears to reflect shared familial risk factors, such as genetic risk, rather than being causal in nature. The connectivity strength of the reward pathway was not related to concurrent pain and smoking in this sample. SIGNIFICANCE Smoking does not appear to directly cause chronic pain; rather, there may be shared biopsychosocial risk factors, including genetic influences, that explain their association. These findings can be integrated into future research to identify shared biological pathways of both chronic pain and smoking behaviours as a way to conceptualize pain chronification.
Collapse
Affiliation(s)
- L Rader
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
| | - A E Reineberg
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
| | - B Petre
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - T D Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - N P Friedman
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, USA
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
3
|
Courtney KE, Baca R, Thompson C, Andrade G, Doran N, Jacobson A, Liu TT, Jacobus J. The effects of nicotine use during adolescence and young adulthood on gray matter cerebral blood flow estimates. Brain Imaging Behav 2024; 18:34-43. [PMID: 37851272 PMCID: PMC10844445 DOI: 10.1007/s11682-023-00810-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Nicotine and tobacco product (NTP) use remains prevalent in adolescence/young adulthood. The effects of NTPs on markers of brain health during this vulnerable neurodevelopmental period remain largely unknown. This report investigates associations between NTP use and gray matter cerebral blood flow (CBF) in adolescents/young adults. Adolescent/young adult (16-22 years-old) nicotine users (NTP; N = 99; 40 women) and non-users (non-NTP; N = 95; 56 women) underwent neuroimaging sessions including anatomical and optimized pseudo-continuous arterial spin labeling scans. Groups were compared on whole-brain gray matter CBF estimates and their relation to age and sex at birth. Follow-up analyses assessed correlations between identified CBF clusters and NTP recency and dependence measures. Controlling for age and sex, the NTP vs. non-NTP contrast revealed a single cluster that survived thresholding which included portions of bilateral precuneus (voxel-wise alpha < 0.001, cluster-wise alpha < 0.05; ≥7 contiguous voxels). An interaction between NTP group contrast and age was observed in two clusters including regions of the left posterior cingulate (PCC)/lingual gyrus and right anterior cingulate cortex (ACC): non-NTP exhibited positive correlations between CBF and age in these clusters, whereas NTP exhibited negative correlations between CBF and age. Lower CBF from these three clusters correlated with urine cotinine (rs=-0.21 - - 0.16; ps < 0.04) and nicotine dependence severity (rs=-0.16 - - 0.13; ps < 0.07). This is the first investigation of gray matter CBF in adolescent/young adult users of NTPs. The results are consistent with literature on adults showing age- and nicotine-related declines in CBF and identify the precuneus/PCC and ACC as potential key regions subserving the development of nicotine dependence.
Collapse
Affiliation(s)
- Kelly E Courtney
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA, 92093, USA
| | - Rachel Baca
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA, 92093, USA
| | - Courtney Thompson
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA, 92093, USA
| | - Gianna Andrade
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA, 92093, USA
| | - Neal Doran
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA, 92093, USA
- Veterans Affairs San Diego Healthcare System, La Jolla, CA, USA
| | - Aaron Jacobson
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Thomas T Liu
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Joanna Jacobus
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, MC 0405, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Brown AA, Cofresí R, Froeliger B. Associations Between the Wisconsin Inventory of Smoking Dependence Motives and Regional Brain Volumes in Adult Smokers. Nicotine Tob Res 2023; 25:1882-1890. [PMID: 37338201 PMCID: PMC10664077 DOI: 10.1093/ntr/ntad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
INTRODUCTION The Wisconsin Inventory of Smoking Dependence Motives (WISDM-68) is a 68-item questionnaire to assess nicotine dependence as a multifactorial construct based on 13 theoretically derived smoking motives. Chronic smoking is associated with structural changes in brain regions implicated in the maintenance of smoking behavior; however, associations between brain morphometry and the various reinforcing components of smoking behavior remain unexamined. The present study investigated the potential association between smoking dependence motives and regional brain volumes in a cohort of 254 adult smokers. AIMS AND METHODS The WISDM-68 was administered to participants at the baseline session. Structural magnetic resonance brain imaging (MRI) data from 254 adult smokers (Mage = 42.7 ± 11.4) with moderate to severe nicotine dependence (MFTND = 5.4 ± 2.0) smoking for at least 2 years (Myears = 24.3 ± 11.8) were collected and analyzed with Freesurfer. RESULTS Vertex-wise cluster analysis revealed that high scores on the WISDM-68 composite, secondary dependence motives (SDM) composite, and multiple SDM subscales were associated with lower cortical volume in the right lateral prefrontal cortex (cluster-wise p's < .035). Analysis of subcortical volumes (ie, nucleus accumbens, amygdala, caudate, and pallidum) revealed several significant associations with WISDM-68 subscales, dependence severity (Fagerström Test for Nicotine Dependence), and overall exposure (pack-years). No significant associations between cortical volume and other nicotine dependence measures or pack-years were observed. CONCLUSIONS Results suggest that smoking motives may play a larger role in cortical abnormalities than addiction severity and smoking exposure per se, whereas subcortical volumes are associated with smoking motives, addiction severity, and smoking exposure. IMPLICATIONS The present study reports novel associations between the various reinforcing components of smoking behavior assessed by the WISDM-68 and regional brain volumes. Results suggest that the underlying emotional, cognitive, and sensory processes that drive non-compulsive smoking behaviors may play a larger role in gray matter abnormalities of smokers than smoking exposure or addiction severity.
Collapse
Affiliation(s)
- Alexander A Brown
- Department of Psychiatry, University of Missouri, Columbia, MO, USA
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
- Cognitive Neuroscience Systems Core Facility, University of Missouri, Columbia, MO, USA
| | - Roberto Cofresí
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
- Cognitive Neuroscience Systems Core Facility, University of Missouri, Columbia, MO, USA
| | - Brett Froeliger
- Department of Psychiatry, University of Missouri, Columbia, MO, USA
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
- Cognitive Neuroscience Systems Core Facility, University of Missouri, Columbia, MO, USA
| |
Collapse
|
5
|
Buford KN, Snidow CR, Curiel TG, Dark HE, Purcell JB, Grey DK, Mrug S, Knight DC. Hippocampal and amygdala volumes vary with residential proximity to toxicants at Birmingham, Alabama's 35th Avenue Superfund site. Behav Neurosci 2023; 137:330-338. [PMID: 37471045 PMCID: PMC10528239 DOI: 10.1037/bne0000564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Exposure to environmental toxicants have serious implications for the general health and well-being of children, particularly during pivotal neurodevelopmental stages. The Environmental Protection Agency's (EPA) Superfund program has identified several areas (Superfund sites) across the United States with high levels of environmental toxicants, which affect the health of many residents in nearby communities. Exposure to these environmental toxicants has been linked to changes in the structure and function of the brain. However, limited research has investigated the relationship between the proximity of childhood homes to a Superfund site and the development of subcortical structures like the hippocampus and amygdala. The present study investigated the hippocampal and amygdala volumes of young adults in relation to the proximity of their childhood homes to Birmingham, Alabama's 35th Avenue Superfund site. Forty participants who either lived within or adjacent to the Superfund site (Proximal group; n = 20) or who lived elsewhere in the greater Birmingham metropolitan area (Distal group; n = 20) were included in this study. Both groups were matched on age, sex, race, and years of education. Magnetic resonance imaging (MRI) was used to compare the gray matter volume of the hippocampus and amygdala between groups. Differences in bilateral hippocampal and left amygdala volumes were observed. Specifically, hippocampal and amygdala volumes were greater in the Proximal than Distal group. These findings suggest that the proximity of children's homes to environmental toxicants may impact the development of the hippocampus and amygdala. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Kristen N. Buford
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL
| | - Carly R. Snidow
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL
| | - Tasha G. Curiel
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL
| | - Heather E. Dark
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL
| | - Juliann B. Purcell
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL
| | - Devon K. Grey
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL
| | - Sylvie Mrug
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL
| | - David C. Knight
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
6
|
Chen X, Cook R, Filbey FM, Nguyen H, McColl R, Jeon-Slaughter H. Sex Difference in Cigarette-Smoking Status and Its Association with Brain Volumes Using Large-Scale Community-Representative Data. Brain Sci 2023; 13:1164. [PMID: 37626520 PMCID: PMC10452722 DOI: 10.3390/brainsci13081164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Cigarette smoking is believed to accelerate age-related neurodegeneration. Despite significant sex differences in both smoking behaviors and brain structures, the active literature is equivocal in parsing out a sex difference in smoking-associated brain structural changes. OBJECTIVE The current study examined subcortical and lateral ventricle gray matter (GM) volume differences among smokers, active, past, and never-smokers, stratified by sex. METHODS The current study data included 1959 Dallas Heart Study (DHS) participants with valid brain imaging data. Stratified by gender, multiple-group comparisons of three cigarette-smoking groups were conducted to test whether there is any cigarette-smoking group differences in GM volumes of the selected regions of interest (ROIs). RESULTS The largest subcortical GM volumetric loss and enlargement of the lateral ventricle were observed among past smokers for both females and males. However, these observed group differences in GM volumetric changes were statistically significant only among males after adjusting for age and intracranial volumes. CONCLUSIONS The study findings suggest a sex difference in lifetime-smoking-associated GM volumetric changes, even after controlling for aging and intracranial volumes.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Statistics and Data Science, Southern Methodist University, Dallas, TX 75205, USA; (X.C.); (H.N.)
| | - Riley Cook
- VA North Texas Health Care Service, Dallas, TX 75216, USA;
| | - Francesca M. Filbey
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Hang Nguyen
- Department of Statistics and Data Science, Southern Methodist University, Dallas, TX 75205, USA; (X.C.); (H.N.)
| | - Roderick McColl
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Haekyung Jeon-Slaughter
- VA North Texas Health Care Service, Dallas, TX 75216, USA;
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
7
|
Li J, Tan Z, Yi X, Fu Y, Zhu L, Zeng F, Han Z, Ren Z, Zhang Y, Chen BT. Association of brain morphology and phenotypic profile in patients with unruptured intracranial aneurysm. Front Aging Neurosci 2023; 15:1202699. [PMID: 37434739 PMCID: PMC10330710 DOI: 10.3389/fnagi.2023.1202699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Studies have found a varying degree of cognitive, psychosocial, and functional impairments in patients with unruptured intracranial aneurysms (UIAs), whereas the neural correlates underlying these impairments remain unknown. Methods To examine the brain morphological alterations and white matter lesions in patients with UIA, we performed a range of structural analyses to examine the brain morphological alterations in patients with UIA compared with healthy controls (HCs). Twenty-one patients with UIA and 23 HCs were prospectively enrolled into this study. Study assessment consisted of a brain magnetic resonance imaging (MRI) scan with high-resolution T1-weighted and T2-weighted imaging data, a Montreal Cognitive Assessment (MoCA), and laboratory tests including blood inflammatory markers and serum lipids. Brain MRI data were processed for cortical thickness, local gyrification index (LGI), volume and shape of subcortical nuclei, and white matter lesions. Results Compared to the HCs, patients with UIA showed no significant differences in cortical thickness but decreased LGI values in the right posterior cingulate cortex, retrosplenial cortex, cuneus, and lingual gyrus. In addition, decreased LGI values correlated with decreased MoCA score (r = 0.498, p = 0.021) and increased white matter lesion scores (r = -0.497, p = 0.022). The LGI values were correlated with laboratory values such as inflammatory markers and serum lipids. Patients with UIA also showed significant regional atrophy in bilateral thalami as compared to the HCs. Moreover, the LGI values were significantly correlated with thalamic volume in the HCs (r = 0.4728, p = 0.0227) but not in the patients with UIA (r = 0.11, p = 0.6350). Discussion The decreased cortical gyrification, increased white matter lesions, and regional thalamic atrophy in patients with UIA might be potential neural correlates of cognitive changes in UIA.
Collapse
Affiliation(s)
- Jianyu Li
- Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Huzhou, China
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zeming Tan
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
| | - Xiaoping Yi
- Department of Radiology, Xiangya Hospital Central South University, Changsha, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital Central South University, Changsha, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
| | - Yan Fu
- Department of Radiology, Xiangya Hospital Central South University, Changsha, China
| | - Liping Zhu
- Department of Radiology, Xiangya Hospital Central South University, Changsha, China
| | - Feiyue Zeng
- Department of Radiology, Xiangya Hospital Central South University, Changsha, China
| | - Zaide Han
- Department of Radiology, Xiangya Hospital Central South University, Changsha, China
| | - Zhanbing Ren
- Department of Physical Education, Shenzhen University, Shenzhen, China
| | - Yuanchao Zhang
- Yangtze Delta Region Institute, University of Electronic Science and Technology of China, Huzhou, China
- School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bihong T. Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
8
|
Abarkan M, Fois GR, Vouillac-Mendoza C, Ahmed SH, Guillem K. Altered neuronal activity in the ventromedial prefrontal cortex drives nicotine intake escalation. Neuropsychopharmacology 2023; 48:887-896. [PMID: 36042320 PMCID: PMC10156690 DOI: 10.1038/s41386-022-01428-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/08/2022]
Abstract
Nicotine addiction develops after prolonged drug use and escalation of drug intake. However, because of difficulties in demonstrating escalation of nicotine use in rats, its underlying neuroadaptations still remain poorly understood. Here we report that access to unusually high doses of nicotine (i.e., from 30 µg to 240 µg/kg/injection) for self-administration precipitated a rapid and robust escalation of nicotine intake and increased the motivation for the drug in rats. This nicotine intake escalation also induced long-lasting changes in vmPFC neuronal activity both before and during nicotine self-administration. Specifically, after escalation of nicotine intake, basal vmPFC neuronal activity increased above pre-escalation and control activity levels, while ongoing nicotine self-administration restored these neuronal changes. Finally, simulation of the restoring effects of nicotine with in vivo optogenetic inhibition of vmPFC neurons caused a selective de-escalation of nicotine self-administration.
Collapse
Affiliation(s)
- Myriam Abarkan
- Université de Bordeaux, CNRS, Chimie et Biologie des Membranes et Nano-objets, UMR, 5248, Pessac, France
| | - Giulia R Fois
- Université de Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | | | - Serge H Ahmed
- Université de Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Karine Guillem
- Université de Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France.
| |
Collapse
|
9
|
Linli Z, Rolls ET, Zhao W, Kang J, Feng J, Guo S. Smoking is associated with lower brain volume and cognitive differences: A large population analysis based on the UK Biobank. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110698. [PMID: 36528239 DOI: 10.1016/j.pnpbp.2022.110698] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
The evidence about the association of smoking with both brain structure and cognitive functions remains inconsistent. Using structural magnetic resonance imaging from the UK Biobank (n = 33,293), we examined the relationships between smoking status, dosage, and abstinence with total and 166 regional brain gray matter volumes (GMV). The relationships between the smoking parameters with cognitive function, and whether this relationship was mediated by brain structure, were then investigated. Smoking was associated with lower total and regional GMV, with the extent depending on the frequency of smoking and on whether smoking had ceased: active regular smokers had the lowest GMV (Cohen's d = -0.362), and former light smokers had a slightly smaller GMV (Cohen's d = -0.060). The smaller GMV in smokers was most evident in the thalamus. Higher lifetime exposure (i.e., pack-years) was associated with lower total GMV (β = -311.84, p = 8.35 × 10-36). In those who ceased smoking, the duration of abstinence was associated with a larger total GMV (β = 139.57, p = 2.36 × 10-08). It was further found that reduced cognitive function was associated with smoker parameters and that the associations were partially mediated by brain structure. This is the largest scale investigation we know of smoking and brain structure, and these results are likely to be robust. The findings are of associations between brain structure and smoking, and in the future, it will be important to assess whether brain structure influences smoking status, or whether smoking influences brain structure, or both.
Collapse
Affiliation(s)
- Zeqiang Linli
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, PR China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha, PR China; School of Mathematics and Statistics, Guangdong University of Foreign Studies, Guangzhou, PR China.
| | - Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry, UK
| | - Wei Zhao
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, PR China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha, PR China
| | - Jujiao Kang
- Centre for Computational Systems Biology, Fudan University, Shanghai, PR China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry, UK; Centre for Computational Systems Biology, Fudan University, Shanghai, PR China.
| | - Shuixia Guo
- MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha, PR China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha, PR China.
| |
Collapse
|
10
|
Yang L, Du Y, Yang W, Liu J. Machine learning with neuroimaging biomarkers: Application in the diagnosis and prediction of drug addiction. Addict Biol 2023; 28:e13267. [PMID: 36692873 DOI: 10.1111/adb.13267] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/19/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023]
Abstract
Drug abuse is a serious problem worldwide. Owing to intermittent intake of certain substances and the early inconspicuous clinical symptoms, this brings huge challenges for timely diagnosing addiction status and preventing substance use disorders (SUDs). As a non-invasive technique, neuroimaging can capture neurobiological signatures of abnormality in multiple brain regions caused by drug consumption in each clinical stage, like parenchymal morphology alteration as well as aberrant functional activity and connectivity of cerebral areas, making it realizable to diagnosis, prediction and even preemptive therapy of addiction. Machine learning (ML) algorithms primarily used for classification have been extensively applied in analysing medical imaging datasets. Significant neurobiological characteristics employed and revealed by classifiers were used to diagnose addictive states and predict initiation and vulnerability to drug usage, treatment abstinence, relapse and resilience of addicts and the risk of SUD. In this review, we summarize application of ML methods in neuroimaging focusing on addicts' diagnosis of clinical status and risk prediction and elucidate the discriminative neurobiological features from brain electrophysiological, morphological and functional perspectives that contribute most to the classifier, finally highlighting the auxiliary role of ML in addiction treatment.
Collapse
Affiliation(s)
- Longtao Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yanyao Du
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenhan Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China.,Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China.,Department of Radiology Quality Control Center in Hunan Province, Changsha, China
| |
Collapse
|
11
|
Logtenberg E, Overbeek MF, Pasman JA, Abdellaoui A, Luijten M, van Holst RJ, Vink JM, Denys D, Medland SE, Verweij KJH, Treur JL. Investigating the causal nature of the relationship of subcortical brain volume with smoking and alcohol use. Br J Psychiatry 2022; 221:377-385. [PMID: 35049464 DOI: 10.1192/bjp.2021.81] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Structural variation in subcortical brain regions has been linked to substance use, including the most commonly used substances nicotine and alcohol. Pre-existing differences in subcortical brain volume may affect smoking and alcohol use, but there is also evidence that smoking and alcohol use can lead to structural changes. AIMS We assess the causal nature of the complex relationship of subcortical brain volume with smoking and alcohol use, using bi-directional Mendelian randomisation. METHOD Mendelian randomisation uses genetic variants predictive of a certain 'exposure' as instrumental variables to test causal effects on an 'outcome'. Because of random assortment at meiosis, genetic variants should not be associated with confounders, allowing less biased causal inference. We used summary-level data of genome-wide association studies of subcortical brain volumes (nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen and thalamus; n = 50 290) and smoking and alcohol use (smoking initiation, n = 848 460; cigarettes per day, n = 216 590; smoking cessation, n = 378 249; alcoholic drinks per week, n = 630 154; alcohol dependence, n = 46 568). The main analysis, inverse-variance weighted regression, was verified by a wide range of sensitivity methods. RESULTS There was strong evidence that liability to alcohol dependence decreased amygdala and hippocampal volume, and smoking more cigarettes per day decreased hippocampal volume. From subcortical brain volumes to substance use, there was no or weak evidence for causal effects. CONCLUSIONS Our findings suggest that heavy alcohol use and smoking can causally reduce subcortical brain volume. This adds to accumulating evidence that alcohol and smoking affect the brain, and likely mental health, warranting more recognition in public health efforts.
Collapse
Affiliation(s)
- Emma Logtenberg
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Martin F Overbeek
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Joëlle A Pasman
- Behavioural Science Institute, Radboud University Nijmegen, The Netherlands
| | - Abdel Abdellaoui
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Maartje Luijten
- Behavioural Science Institute, Radboud University Nijmegen, The Netherlands
| | - Ruth J van Holst
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jacqueline M Vink
- Behavioural Science Institute, Radboud University Nijmegen, The Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Sarah E Medland
- Psychiatric Genetics Group, QIMR Berghofer Medical Research Institute, Australia
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| | - Jorien L Treur
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, The Netherlands
| |
Collapse
|
12
|
Wang C, Zhou C, Guo T, Huang P, Xu X, Zhang M. Association between cigarette smoking and Parkinson’s disease: a neuroimaging study. Ther Adv Neurol Disord 2022; 15:17562864221092566. [PMID: 35464739 PMCID: PMC9019319 DOI: 10.1177/17562864221092566] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Mounting evidence has revealed an inverse association between cigarette smoking and the risk of Parkinson’s disease (PD). Meanwhile, cigarette smoking has been found to be associated with cognitive impairment in PD patients. However, the neural mechanisms of the association between cigarette smoking and PD are not fully understood. Objective: The aim of this study is to explore the neural mechanisms of the association between cigarette smoking and PD. Methods: A total of 129 PD patients and 69 controls were recruited from the Parkinson’s Progression Markers Initiative (PPMI) cohort, including 39 PD patients with regular smoking history (PD-S), 90 PD patients without regular smoking history (PD-NS), 26 healthy controls with regular smoking history (HC-S), and 43 healthy controls without regular smoking history (HC-NS). Striatal dopamine transporter (DAT) binding and gray matter (GM) volume of the whole brain were compared among the four groups. Results: PD patients showed significantly reduced striatal DAT binding compared with healthy controls, and HC-S showed significantly reduced striatal DAT binding compared with HC-NS. Moreover, smoking and PD showed a significant interaction effect in the left medial prefrontal cortex (mPFC). PD-S showed reduced GM volume in the left mPFC compared with PD-NS. Conclusion: The degeneration of dopaminergic neurons in PD results in a substantial reduction of the DAT and dopamine levels. Nicotine may act as a stimulant to inhibit the action of striatal DAT, increasing dopamine levels in the synaptic gap. The inverse alteration of dopamine levels between PD and nicotine addiction may be the reason for the inverse association between smoking and the risk of PD. In addition, the mPFC atrophy in PD-S may be associated with cognitive impairment.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou 310009, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Liang HJ, Ernst T, Cunningham E, Chang L. Contributions of chronic tobacco smoking to HIV-associated brain atrophy and cognitive deficits. AIDS 2022; 36:513-524. [PMID: 34860196 PMCID: PMC8881356 DOI: 10.1097/qad.0000000000003138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Tobacco smoking is linked to cognitive deficits and greater white matter (WM) abnormalities in people with HIV disease (PWH). Whether tobacco smoking additionally contributes to brain atrophy in PWH is unknown and was evaluated in this study. DESIGN We used a 2 × 2 design that included 83 PWH (43 nonsmokers, 40 smokers) and 171 HIV-seronegative (SN, 106 nonsmokers, 65 smokers) participants and assessed their brain structure and cognitive function. METHODS Selected subcortical volumes, voxel-wise cortical volumes and thickness, and total WM volume were analyzed using FreeSurfer. Independent and interactive effects of HIV and smoking were evaluated with two-way analysis of covariance on cognitive domain Z-scores and morphometric measures on T1-weighted MRI. RESULTS Regardless of smoking status, relative to SN, PWH had smaller brain volumes [basal ganglia, thalami, hippocampi, subcortical gray matter (GM) and cerebral WM volumes (P = 0.002-0.042)], steeper age-related declines in the right superior-parietal (interaction: P < 0.001) volumes, and poorer attention/working memory and learning (P = 0.016-0.027). Regardless of HIV serostatus, smokers tended to have smaller hippocampi than nonsmokers (-0.6%, P = 0.055). PWH smokers had the smallest total and regional subcortical GM and cortical WM volume and poorest cognitive performance. CONCLUSIONS Tobacco smoking additionally contributed to brain atrophy and cognitive deficits in PWH. The greater brain atrophy in PWH smokers may be due to greater neuronal damage or myelin loss in various brain regions, leading to their poor cognitive performance. Therefore, tobacco smoking may exacerbate or increase the risk for HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Hua-Jun Liang
- Department of Diagnostic Radiology and Nuclear Medicine,
University of Maryland School of Medicine, Baltimore, MD, USA
| | - Thomas Ernst
- Department of Diagnostic Radiology and Nuclear Medicine,
University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of
Medicine, Baltimore, MD, USA
| | - Eric Cunningham
- Department of Diagnostic Radiology and Nuclear Medicine,
University of Maryland School of Medicine, Baltimore, MD, USA
| | - Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine,
University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of
Medicine, Baltimore, MD, USA
- Department of Neurology, University of Maryland School of
Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Chen Y, Chaudhary S, Wang W, Li CSR. Gray matter volumes of the insula and anterior cingulate cortex and their dysfunctional roles in cigarette smoking. ADDICTION NEUROSCIENCE 2022; 1:100003. [PMID: 37220533 PMCID: PMC10201991 DOI: 10.1016/j.addicn.2021.100003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The salience network, including the insula and anterior cingulate cortex (ACC), has been implicated in nicotine addiction. Structural imaging studies have reported diminished insula and ACC gray matter volumes (GMVs) in smokers as compared to nonsmokers. However, it remains unclear how insula and ACC GMVs may relate to years of smoking, addiction severity, or behavioral traits known to dispose individuals to smoking. Here, with a dataset curated from the Human Connectome Project and voxel-based morphometry, we replicated the findings of smaller GMVs of the insula and medial prefrontal cortex, including the dorsal ACC and supplementary motor area (dACC/SMA), in (70 heavy < 209 light < 209 never) smokers matched in age, sex, and average daily num ber of drinks. The GMVs of the insula or dACC/SMA were not significantly correlated with years of smoking or Fagerstrom Test for Nicotine Dependence (FTND) scores. Heavy relative to never smokers demonstrated higher externalizing and internalizing scores, as evaluated by the NIH Emotion. In heavy smokers, the dACC/SMA but not insula GMV was positively correlated with both externalizing and internalizing scores. The findings together confirm volumetric changes in the salience network in heavy smokers and suggest potentially distinct dysfunctional roles of the insula and dACC/SMA in chronic smoking.
Collapse
Affiliation(s)
- Yu Chen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Wuyi Wang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| |
Collapse
|
15
|
Kirschner M, Hodzic-Santor B, Antoniades M, Nenadic I, Kircher T, Krug A, Meller T, Grotegerd D, Fornito A, Arnatkeviciute A, Bellgrove MA, Tiego J, Dannlowski U, Koch K, Hülsmann C, Kugel H, Enneking V, Klug M, Leehr EJ, Böhnlein J, Gruber M, Mehler D, DeRosse P, Moyett A, Baune BT, Green M, Quidé Y, Pantelis C, Chan R, Wang Y, Ettinger U, Debbané M, Derome M, Gaser C, Besteher B, Diederen K, Spencer TJ, Fletcher P, Rössler W, Smigielski L, Kumari V, Premkumar P, Park HRP, Wiebels K, Lemmers-Jansen I, Gilleen J, Allen P, Kozhuharova P, Marsman JB, Lebedeva I, Tomyshev A, Mukhorina A, Kaiser S, Fett AK, Sommer I, Schuite-Koops S, Paquola C, Larivière S, Bernhardt B, Dagher A, Grant P, van Erp TGM, Turner JA, Thompson PM, Aleman A, Modinos G. Cortical and subcortical neuroanatomical signatures of schizotypy in 3004 individuals assessed in a worldwide ENIGMA study. Mol Psychiatry 2022; 27:1167-1176. [PMID: 34707236 PMCID: PMC9054674 DOI: 10.1038/s41380-021-01359-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 02/04/2023]
Abstract
Neuroanatomical abnormalities have been reported along a continuum from at-risk stages, including high schizotypy, to early and chronic psychosis. However, a comprehensive neuroanatomical mapping of schizotypy remains to be established. The authors conducted the first large-scale meta-analyses of cortical and subcortical morphometric patterns of schizotypy in healthy individuals, and compared these patterns with neuroanatomical abnormalities observed in major psychiatric disorders. The sample comprised 3004 unmedicated healthy individuals (12-68 years, 46.5% male) from 29 cohorts of the worldwide ENIGMA Schizotypy working group. Cortical and subcortical effect size maps with schizotypy scores were generated using standardized methods. Pattern similarities were assessed between the schizotypy-related cortical and subcortical maps and effect size maps from comparisons of schizophrenia (SZ), bipolar disorder (BD) and major depression (MDD) patients with controls. Thicker right medial orbitofrontal/ventromedial prefrontal cortex (mOFC/vmPFC) was associated with higher schizotypy scores (r = 0.067, pFDR = 0.02). The cortical thickness profile in schizotypy was positively correlated with cortical abnormalities in SZ (r = 0.285, pspin = 0.024), but not BD (r = 0.166, pspin = 0.205) or MDD (r = -0.274, pspin = 0.073). The schizotypy-related subcortical volume pattern was negatively correlated with subcortical abnormalities in SZ (rho = -0.690, pspin = 0.006), BD (rho = -0.672, pspin = 0.009), and MDD (rho = -0.692, pspin = 0.004). Comprehensive mapping of schizotypy-related brain morphometry in the general population revealed a significant relationship between higher schizotypy and thicker mOFC/vmPFC, in the absence of confounding effects due to antipsychotic medication or disease chronicity. The cortical pattern similarity between schizotypy and schizophrenia yields new insights into a dimensional neurobiological continuity across the extended psychosis phenotype.
Collapse
Affiliation(s)
- Matthias Kirschner
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada ,grid.7400.30000 0004 1937 0650Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Benazir Hodzic-Santor
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Mathilde Antoniades
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK
| | - Igor Nenadic
- grid.10253.350000 0004 1936 9756University of Marburg, Marburg, Germany
| | - Tilo Kircher
- grid.10253.350000 0004 1936 9756University of Marburg, Marburg, Germany
| | - Axel Krug
- grid.10253.350000 0004 1936 9756University of Marburg, Marburg, Germany ,grid.10388.320000 0001 2240 3300Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Tina Meller
- grid.10253.350000 0004 1936 9756University of Marburg, Marburg, Germany
| | - Dominik Grotegerd
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Alex Fornito
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC Australia
| | - Aurina Arnatkeviciute
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC Australia
| | - Mark A. Bellgrove
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC Australia
| | - Jeggan Tiego
- grid.1002.30000 0004 1936 7857Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging, Monash University, Melbourne, VIC Australia
| | - Udo Dannlowski
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Katharina Koch
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Carina Hülsmann
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Harald Kugel
- grid.5949.10000 0001 2172 9288University Clinic for Radiology, University of Münster, Münster, Germany
| | - Verena Enneking
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Melissa Klug
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J. Leehr
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Joscha Böhnlein
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Marius Gruber
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - David Mehler
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany
| | - Pamela DeRosse
- grid.416477.70000 0001 2168 3646Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY USA ,grid.250903.d0000 0000 9566 0634The Feinstein Institutes for Medical Research, Center for Psychiatric Neuroscience, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY USA
| | - Ashley Moyett
- grid.416477.70000 0001 2168 3646Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY USA
| | - Bernhard T. Baune
- grid.5949.10000 0001 2172 9288Department of Psychiatry, University of Münster, Münster, Germany ,grid.1008.90000 0001 2179 088XDepartment of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, VIC Australia
| | - Melissa Green
- grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales (UNSW), Sydney, NSW Australia ,grid.250407.40000 0000 8900 8842Neuroscience Research Australia (NeuRA), Randwick, NSW Australia
| | - Yann Quidé
- grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales (UNSW), Sydney, NSW Australia ,grid.250407.40000 0000 8900 8842Neuroscience Research Australia (NeuRA), Randwick, NSW Australia
| | - Christos Pantelis
- grid.1008.90000 0001 2179 088XMelbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, VIC Australia
| | - Raymond Chan
- grid.9227.e0000000119573309Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- grid.9227.e0000000119573309Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Ulrich Ettinger
- grid.10388.320000 0001 2240 3300University of Bonn, Bonn, Germany
| | - Martin Debbané
- grid.8591.50000 0001 2322 4988University of Geneva, Geneva, Switzerland
| | - Melodie Derome
- grid.8591.50000 0001 2322 4988University of Geneva, Geneva, Switzerland
| | - Christian Gaser
- grid.275559.90000 0000 8517 6224Jena University Hospital, Jena, Germany
| | - Bianca Besteher
- grid.275559.90000 0000 8517 6224Jena University Hospital, Jena, Germany
| | - Kelly Diederen
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK
| | - Tom J. Spencer
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK
| | - Paul Fletcher
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Wulf Rössler
- grid.412004.30000 0004 0478 9977Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland ,grid.6363.00000 0001 2218 4662Department of Psychiatry and Psychotherapy, Charité University Medicine, Berlin, Germany ,grid.11899.380000 0004 1937 0722Institute of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lukasz Smigielski
- grid.412004.30000 0004 0478 9977Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Veena Kumari
- grid.7728.a0000 0001 0724 6933Brunel University London, Uxbridge, UK
| | - Preethi Premkumar
- grid.7728.a0000 0001 0724 6933Brunel University London, Uxbridge, UK
| | - Haeme R. P. Park
- grid.9654.e0000 0004 0372 3343School of Psychology, University of Auckland, Auckland, New Zealand
| | - Kristina Wiebels
- grid.9654.e0000 0004 0372 3343School of Psychology, University of Auckland, Auckland, New Zealand
| | | | - James Gilleen
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK ,grid.35349.380000 0001 0468 7274University of Roehampton, London, UK
| | - Paul Allen
- grid.35349.380000 0001 0468 7274University of Roehampton, London, UK
| | - Petya Kozhuharova
- grid.35349.380000 0001 0468 7274University of Roehampton, London, UK
| | - Jan-Bernard Marsman
- grid.4830.f0000 0004 0407 1981Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Irina Lebedeva
- grid.466467.10000 0004 0627 319XMental Health Research Center, Moscow, Russian Federation
| | - Alexander Tomyshev
- grid.466467.10000 0004 0627 319XMental Health Research Center, Moscow, Russian Federation
| | - Anna Mukhorina
- grid.466467.10000 0004 0627 319XMental Health Research Center, Moscow, Russian Federation
| | - Stefan Kaiser
- grid.150338.c0000 0001 0721 9812Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| | - Anne-Kathrin Fett
- grid.13097.3c0000 0001 2322 6764Department of Psychosis Studies, King’s College London, London, UK ,grid.28577.3f0000 0004 1936 8497City, University London, London, UK
| | - Iris Sommer
- grid.4830.f0000 0004 0407 1981Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sanne Schuite-Koops
- grid.4830.f0000 0004 0407 1981Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Casey Paquola
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Sara Larivière
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Boris Bernhardt
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Alain Dagher
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC Canada
| | - Phillip Grant
- grid.440934.e0000 0004 0593 1824Fresenius University of Applied Sciences, Frankfurt am Main, Germany
| | - Theo G. M. van Erp
- grid.266093.80000 0001 0668 7243Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA USA ,grid.266093.80000 0001 0668 7243Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA USA
| | - Jessica A. Turner
- grid.256304.60000 0004 1936 7400Imaging Genetics and Neuroinformatics Lab, Georgia State University, Atlanta, GA USA
| | - Paul M. Thompson
- grid.42505.360000 0001 2156 6853Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA USA
| | - André Aleman
- grid.4830.f0000 0004 0407 1981Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Gemma Modinos
- Department of Psychosis Studies, King's College London, London, UK. .,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
| |
Collapse
|
16
|
Ceceli AO, Bradberry CW, Goldstein RZ. The neurobiology of drug addiction: cross-species insights into the dysfunction and recovery of the prefrontal cortex. Neuropsychopharmacology 2022; 47:276-291. [PMID: 34408275 PMCID: PMC8617203 DOI: 10.1038/s41386-021-01153-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023]
Abstract
A growing preclinical and clinical body of work on the effects of chronic drug use and drug addiction has extended the scope of inquiry from the putative reward-related subcortical mechanisms to higher-order executive functions as regulated by the prefrontal cortex. Here we review the neuroimaging evidence in humans and non-human primates to demonstrate the involvement of the prefrontal cortex in emotional, cognitive, and behavioral alterations in drug addiction, with particular attention to the impaired response inhibition and salience attribution (iRISA) framework. In support of iRISA, functional and structural neuroimaging studies document a role for the prefrontal cortex in assigning excessive salience to drug over non-drug-related processes with concomitant lapses in self-control, and deficits in reward-related decision-making and insight into illness. Importantly, converging insights from human and non-human primate studies suggest a causal relationship between drug addiction and prefrontal insult, indicating that chronic drug use causes the prefrontal cortex damage that underlies iRISA while changes with abstinence and recovery with treatment suggest plasticity of these same brain regions and functions. We further dissect the overlapping and distinct characteristics of drug classes, potential biomarkers that inform vulnerability and resilience, and advancements in cutting-edge psychological and neuromodulatory treatment strategies, providing a comprehensive landscape of the human and non-human primate drug addiction literature as it relates to the prefrontal cortex.
Collapse
Affiliation(s)
- Ahmet O Ceceli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
17
|
Ottino-González J, Uhlmann A, Hahn S, Cao Z, Cupertino RB, Schwab N, Allgaier N, Alia-Klein N, Ekhtiari H, Fouche JP, Goldstein RZ, Li CSR, Lochner C, London ED, Luijten M, Masjoodi S, Momenan R, Oghabian MA, Roos A, Stein DJ, Stein EA, Veltman DJ, Verdejo-García A, Zhang S, Zhao M, Zhong N, Jahanshad N, Thompson PM, Conrod P, Mackey S, Garavan H. White matter microstructure differences in individuals with dependence on cocaine, methamphetamine, and nicotine: Findings from the ENIGMA-Addiction working group. Drug Alcohol Depend 2022; 230:109185. [PMID: 34861493 PMCID: PMC8952409 DOI: 10.1016/j.drugalcdep.2021.109185] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/27/2021] [Accepted: 11/14/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Nicotine and illicit stimulants are very addictive substances. Although associations between grey matter and dependence on stimulants have been frequently reported, white matter correlates have received less attention. METHODS Eleven international sites ascribed to the ENIGMA-Addiction consortium contributed data from individuals with dependence on cocaine (n = 147), methamphetamine (n = 132) and nicotine (n = 189), as well as non-dependent controls (n = 333). We compared the fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) of 20 bilateral tracts. Also, we compared the performance of various machine learning algorithms in deriving brain-based classifications on stimulant dependence. RESULTS The cocaine and methamphetamine groups had lower regional FA and higher RD in several association, commissural, and projection white matter tracts. The methamphetamine dependent group additionally showed lower regional AD. The nicotine group had lower FA and higher RD limited to the anterior limb of the internal capsule. The best performing machine learning algorithm was the support vector machine (SVM). The SVM successfully classified individuals with dependence on cocaine (AUC = 0.70, p < 0.001) and methamphetamine (AUC = 0.71, p < 0.001) relative to non-dependent controls. Classifications related to nicotine dependence proved modest (AUC = 0.62, p = 0.014). CONCLUSIONS Stimulant dependence was related to FA disturbances within tracts consistent with a role in addiction. The multivariate pattern of white matter differences proved sufficient to identify individuals with stimulant dependence, particularly for cocaine and methamphetamine.
Collapse
Affiliation(s)
- Jonatan Ottino-González
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States.
| | - Anne Uhlmann
- Department of Child & Adolescent Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Sage Hahn
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Zhipeng Cao
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Renata B Cupertino
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Nathan Schwab
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Nicholas Allgaier
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Nelly Alia-Klein
- Department of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - Hamed Ekhtiari
- Institute for Cognitive Sciences Studies, University of Tehran, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Jean-Paul Fouche
- SA MRC Genomics and Brain Disorders Unit, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Rita Z Goldstein
- Department of Psychiatry & Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States
| | - Christine Lochner
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa
| | - Edythe D London
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, California, United States
| | - Maartje Luijten
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Sadegh Masjoodi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Momenan
- Clinical Neuroimaging Research Core, National Institutes on Alcohol Abuse & Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Mohammad Ali Oghabian
- Neuroimaging & Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Annerine Roos
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry, Stellenbosch University, Stellenbosch, South Africa; SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Elliot A Stein
- Neuroimaging Research Branch, Intramural Research Program, National Institute of Drug Abuse, Baltimore, Maryland, United States
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC - location VUMC, Amsterdam, the Netherlands
| | - Antonio Verdejo-García
- School of Psychological Sciences & Turner Institute for Brain & Mental Health, Monash University, Melbourne, Australia
| | - Sheng Zhang
- Department of Psychiatry, Yale University, New Haven, Connecticut, United States
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Neda Jahanshad
- Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, San Diego, California, United States
| | - Paul M Thompson
- Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, San Diego, California, United States
| | - Patricia Conrod
- Department of Psychiatry, Université de Montreal, Montreal, Quebec, Canada
| | - Scott Mackey
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, Vermont, United States
| |
Collapse
|
18
|
Sanjari Moghaddam H, Mobarak Abadi M, Dolatshahi M, Bayani Ershadi S, Abbasi-Feijani F, Rezaei S, Cattarinussi G, Aarabi MH. Effects of Prenatal Methamphetamine Exposure on the Developing Human Brain: A Systematic Review of Neuroimaging Studies. ACS Chem Neurosci 2021; 12:2729-2748. [PMID: 34297546 PMCID: PMC8763371 DOI: 10.1021/acschemneuro.1c00213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
![]()
Methamphetamine
(MA) can cross the placenta in pregnant women and
cause placental abruption and developmental alterations in offspring.
Previous studies have found prenatal MA exposure effects on the social
and cognitive performance of children. Recent studies reported some
alterations in structural and functional magnetic resonance imaging
(MRI) of prenatal MA-exposed offspring. In this study, we aimed to
investigate the effect of prenatal MA exposure on brain development
using recently published structural, metabolic, and functional MRI
studies. According to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines, we searched PubMed
and SCOPUS databases for articles that used each brain imaging modality
in prenatal MA-exposed children. Seventeen studies were included in
this study. We investigated brain imaging alterations using 17 articles
with four different modalities, including structural MRI, diffusion
tensor imaging (DTI), magnetic resonance spectroscopy (MRS), and functional
MRI (fMRI). The participants’ age range was from infancy to
15 years. Our findings demonstrated that prenatal MA exposure is associated
with macrostructural, microstructural, metabolic, and functional deficits
in both cortical and subcortical areas. However, the most affected
regions were the striatum, frontal lobe, thalamus and the limbic system,
and white matter (WM) fibers connecting these regions. The findings
from our study might have valuable implications for targeted treatment
of neurocognitive and behavioral deficits in children with prenatal
MA exposure. Even so, our results should be interpreted cautiously
due to the heterogeneity of the included studies in terms of study
populations and methods of analysis.
Collapse
Affiliation(s)
| | | | - Mahsa Dolatshahi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Sahar Rezaei
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Giulia Cattarinussi
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, 35131 Padova, Italy
| | - Mohammad Hadi Aarabi
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, 35131 Padova, Italy
| |
Collapse
|
19
|
Kokubun K, Pineda JCD, Yamakawa Y. Unhealthy lifestyles and brain condition: Examining the relations of BMI, living alone, alcohol intake, short sleep, smoking, and lack of exercise with gray matter volume. PLoS One 2021; 16:e0255285. [PMID: 34329345 PMCID: PMC8323871 DOI: 10.1371/journal.pone.0255285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 07/13/2021] [Indexed: 11/19/2022] Open
Abstract
Unhealthy lifestyles are damaging to the brain. Previous studies have indicated that body mass index (BMI), alcohol intake, short sleep, smoking, and lack of exercise are negatively associated with gray matter volume (GMV). Living alone has also been found to be related to GMV through lowered subjective happiness. However, to our knowledge, no GMV study has dealt with these unhealthy lifestyles simultaneously. By our analyses based on 142 healthy Japanese participants, BMI, alcohol intake, living alone, and short sleep were negatively associated with the gray-matter brain healthcare quotient (GM-BHQ), an MRI-based normalized GMV, after controlling for age, sex, and facility, not only individually but also when they were entered into a single regression model. Moreover, there were small but significant differences in the proportion of the variance for GM-BHQ explained by variables in a regression model (measured by R squared) between when these unhealthy variables were entered in an equation at the same time and when they were entered separately, with the former larger than the latter. However, smoking and lack of exercise were not significantly associated with GM-BHQ. Results indicate that some kinds of unhealthy lifestyles are somewhat harmful on their own, but may become more noxious to brain condition if practiced simultaneously, although its difference may not be large. To our knowledge, this study is the first to show that overlapping unhealthy lifestyles affects the brains of healthy adults.
Collapse
Affiliation(s)
- Keisuke Kokubun
- Open Innovation Institute, Kyoto University, Kyoto, Japan
- Smart-Aging Research Center, Tohoku University, Sendai, Japan
| | | | - Yoshinori Yamakawa
- Open Innovation Institute, Kyoto University, Kyoto, Japan
- ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), Chiyoda, Tokyo, Japan
- Institute of Innovative Research, Tokyo Institute of Technology, Meguro, Tokyo, Japan
- Office for Academic and Industrial Innovation, Kobe University, Kobe, Japan
- Brain Impact, Kyoto, Japan
| |
Collapse
|
20
|
Rice AO. Alzheimer's Disease and Oral-Systemic Health: Bidirectional Care Integration Improving Outcomes. FRONTIERS IN ORAL HEALTH 2021; 2:674329. [PMID: 35048018 PMCID: PMC8757752 DOI: 10.3389/froh.2021.674329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022] Open
Abstract
Dentistry is an effective healthcare field that can impact Alzheimer's disease through prevention and education. Every day dental providers use an arsenal of assessment protocols directly coinciding with modifiable Alzheimer's risk factors. An innovative way to help in the prevention of Alzheimer's disease is to utilize oral health professionals who reach the public in ways other health care providers may not. Bidirectional care integration is needed to stifle many systemic diseases and Alzheimer's disease is no different. Ultimately with collaborative care the patient reaps the benefits. Alzheimer's is associated with many etiologies and pathophysiological processes. These include cardiovascular health, smoking, sleep, inflammatory pathogens, and diabetes. In the United States, dental providers assess each of these factors daily and can be instrumental in educating patients on the influence of these factors for dementia prevention. Globally, by 2025, the number of people with Alzheimer's disease is expected to rise by at least 14%. Such increases will strain local and national health care systems, but for the US if Medicare were expanded to include dental services, many older adults could be spared needless suffering. The goal of this perspective article is to highlight existing practices being used in the field of dentistry that can easily be adapted to educate patients in preventive care and treat risk factors. It is the duty of healthcare professionals to explore all opportunities to stem the advance of this disease and by integrating oral and systemic health into transdisciplinary science, health care and policy may do just that.
Collapse
Affiliation(s)
- Anne O. Rice
- Oral Systemic Seminars, Conroe, TX, United States
| |
Collapse
|
21
|
Kunas SL, Hilbert K, Yang Y, Richter J, Hamm A, Wittmann A, Ströhle A, Pfleiderer B, Herrmann MJ, Lang T, Lotze M, Deckert J, Arolt V, Wittchen HU, Straube B, Kircher T, Gerlach AL, Lueken U. The modulating impact of cigarette smoking on brain structure in panic disorder: a voxel-based morphometry study. Soc Cogn Affect Neurosci 2021; 15:849-859. [PMID: 32734299 PMCID: PMC7543937 DOI: 10.1093/scan/nsaa103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/17/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
Cigarette smoking increases the likelihood of developing anxiety disorders, among them panic disorder (PD). While brain structures altered by smoking partly overlap with morphological changes identified in PD, the modulating impact of smoking as a potential confounder on structural alterations in PD has not yet been addressed. In total, 143 PD patients (71 smokers) and 178 healthy controls (62 smokers) participated in a multicenter magnetic resonance imaging (MRI) study. T1-weighted images were used to examine brain structural alterations using voxel-based morphometry in a priori defined regions of the defensive system network. PD was associated with gray matter volume reductions in the amygdala and hippocampus. This difference was driven by non-smokers and absent in smoking subjects. Bilateral amygdala volumes were reduced with increasing health burden (neither PD nor smoking > either PD or smoking > both PD and smoking). As smoking can narrow or diminish commonly observed structural abnormalities in PD, the effect of smoking should be considered in MRI studies focusing on patients with pathological forms of fear and anxiety. Future studies are needed to determine if smoking may increase the risk for subsequent psychopathology via brain functional or structural alterations.
Collapse
Affiliation(s)
- Stefanie L Kunas
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin 10117, Germany.,Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Kevin Hilbert
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Yunbo Yang
- Department of Psychiatry and Psychotherapy and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg 35037, Germany
| | - Jan Richter
- Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald 17489, Germany
| | - Alfons Hamm
- Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald 17489, Germany
| | - André Wittmann
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Andreas Ströhle
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Bettina Pfleiderer
- Department of Clinical Radiology, University of Münster, Münster 48149, Germany
| | - Martin J Herrmann
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, University of Würzburg, Würzburg 97080, Germany
| | - Thomas Lang
- Christoph-Dornier-Foundation for Clinical Psychology, Bremen 28359, Germany.,Department of Psychiatry and Psychotherapy, University of Hamburg, Hamburg 20146, Germany
| | - Martin Lotze
- Functional Imaging Unit, Institute for Diagnostic Radiology and Neuroradiology, University of Greifswald, Greifswald 17489, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, University of Würzburg, Würzburg 97080, Germany
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster 48149, Germany
| | - Hans-Ulrich Wittchen
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden 01069, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg 35037, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg 35037, Germany
| | - Alexander L Gerlach
- Department of Psychiatry and Psychotherapy and Center for Mind Brain and Behavior (CMBB), Philipps-University Marburg, Marburg 35037, Germany
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
22
|
Klugah-Brown B, Jiang C, Agoalikum E, Zhou X, Zou L, Yu Q, Becker B, Biswal B. Common abnormality of gray matter integrity in substance use disorder and obsessive-compulsive disorder: A comparative voxel-based meta-analysis. Hum Brain Mapp 2021; 42:3871-3886. [PMID: 34105832 PMCID: PMC8288096 DOI: 10.1002/hbm.25471] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/28/2022] Open
Abstract
The objective of the current study is to determine robust transdiagnostic brain structural markers for compulsivity by capitalizing on the increasing number of case‐control studies examining gray matter volume (GMV) alterations in substance use disorders (SUD) and obsessive‐compulsive disorder (OCD). Voxel‐based meta‐analysis within the individual disorders and conjunction analysis were employed to reveal common GMV alterations between SUDs and OCD. Meta‐analytic coordinates and signed brain volumetric maps determining directed (reduced/increased) GMV alterations between the disorder groups and controls served as the primary outcome. The separate meta‐analysis demonstrated that SUD and OCD patients exhibited widespread GMV reductions in frontocortical regions including prefrontal, cingulate, and insular. Conjunction analysis revealed that the left inferior frontal gyrus (IFG) consistently exhibited decreased GMV across all disorders. Functional characterization suggests that the IFG represents a core hub in the cognitive control network and exhibits bidirectional (Granger) causal interactions with the striatum. Only OCD showed increased GMV in the dorsal striatum with higher changes being associated with more severe OCD symptomatology. Together the findings demonstrate robustly decreased GMV across the disorders in the left IFG, suggesting a transdiagnostic brain structural marker. The functional characterization as a key hub in the cognitive control network and casual interactions with the striatum suggest that deficits in inhibitory control mechanisms may promote compulsivity and loss of control that characterize both disorders.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chenyang Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Elijah Agoalikum
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xinqi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Liye Zou
- Exercise & Mental Health Laboratory, School of Psychology, Shenzhen University, Shenzhen, China
| | - Qian Yu
- Exercise & Mental Health Laboratory, School of Psychology, Shenzhen University, Shenzhen, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
23
|
Lin F, Han X, Wang Y, Ding W, Sun Y, Zhou Y, Lei H. Sex-specific effects of cigarette smoking on caudate and amygdala volume and resting-state functional connectivity. Brain Imaging Behav 2021; 15:1-13. [PMID: 31898088 DOI: 10.1007/s11682-019-00227-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent studies have demonstrated sex-specific differences in etiology, course and brain dysfunction that are associated with cigarette smoking. However, little is known about sex-specific differences in subcortical structure and function. In this study, structural and resting-state functional magnetic resonance imaging (fMRI) data were collected from 60 cigarette smokers (25 females) and 67 nonsmokers (28 females). The structural MRI was applied to identify deficits in sex-specific subcortical volume. Using resting-state fMRI, sex-related alterations in resting-state functional connectivity (rsFC) were investigated in subcortical nuclei with volume deficits as seed regions. Compared to nonsmokers, male but not female smokers demonstrated a significantly smaller volume in the left caudate, while female but not male smokers showed a smaller volume in the right amygdala. Resting-state FC analysis revealed that male but not female smokers had increased rsFC between the left caudate and the left prefrontal cortex but decreased rsFC within the bilateral caudate and between the right amygdala and right orbitofrontal cortex (OFC). Furthermore, the right amygdala volume was negatively correlated with the impulsivity score in female but not male smokers. The rsFC of the right amygdala-OFC circuit was negatively associated with the craving score in male but not female smokers. These findings indicate that cigarette smoking may have differential effects on the caudate and amygdala volumes as well as rsFC between men and women, contributing to our knowledge of sex-specific effects of nicotine addiction. Such sex-specific differences in subcortical structure and function may provide a methodological framework for the development of sex-specific relapse prevention therapies.
Collapse
Affiliation(s)
- Fuchun Lin
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xu Han
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yao Wang
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Weina Ding
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yawen Sun
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yan Zhou
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Hao Lei
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Hernandez Mejia M, Wade NE, Baca R, Diaz VG, Jacobus J. The Influence of Cannabis and Nicotine Co-use on Neuromaturation: A Systematic Review of Adolescent and Young Adult Studies. Biol Psychiatry 2021; 89:162-171. [PMID: 33334432 PMCID: PMC7749265 DOI: 10.1016/j.biopsych.2020.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/13/2022]
Abstract
Accumulating evidence suggests that the use of cannabis and nicotine and tobacco-related products (NTPs) during the adolescent years has harmful effects on the developing brain. Yet, few studies have focused on the developing brain as it relates to the co-administration of cannabis and NTPs, despite the high prevalence rates of co-use in adolescence. This review aims to synthesize the existing literature on neurocognitive, structural neuroimaging, and functional neuroimaging outcomes associated with cannabis and NTP co-use. A systematic search of peer-reviewed articles resulted in a pool of 1107 articles. Inclusion criteria were 1) data-based study; 2) age range of 13 to 35 years or, for preclinical studies, nonadult subjects; 3) cannabis and NTP group jointly considered; and 4) neurocognitive, structural neuroimaging, or functional neuroimaging as an outcome measure. Twelve studies met inclusion criteria. Consistent with the literature, cannabis and nicotine were found to have independent effects on cognition. The available research on the co-use of cannabis and NTPs demonstrates a potential nicotine-related masking effect on cognitive deficits associated with cannabis use, yet there is little research on co-use and associations with neuroimaging indices. In neuroimaging studies, there is preliminary evidence for hippocampal volume differences in co-users and a lack of evidence for co-use differences related to nucleus accumbens activity during reward processing. Notably, no structural neuroimaging studies were found to examine the combined effects of nicotine and cannabis in adolescent-only populations. Further research, including longitudinal studies, is warranted to investigate the influence of cannabis and NTP co-use on maturation.
Collapse
Affiliation(s)
- Margie Hernandez Mejia
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, San Diego, California; Department of Psychiatry, University of California San Diego, San Diego, California
| | - Natasha E Wade
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Rachel Baca
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Vanessa G Diaz
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Joanna Jacobus
- Department of Psychiatry, University of California San Diego, San Diego, California.
| |
Collapse
|
25
|
Conti AA, Baldacchino AM. Neuroanatomical Correlates of Impulsive Choices and Risky Decision Making in Young Chronic Tobacco Smokers: A Voxel-Based Morphometry Study. Front Psychiatry 2021; 12:708925. [PMID: 34526922 PMCID: PMC8435625 DOI: 10.3389/fpsyt.2021.708925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction: Impairments in the multifaceted neuropsychological construct of cognitive impulsivity are a main feature of chronic tobacco smokers. According to the literature, these cognitive impairments are relevant for the initiation and maintenance of the smoking behavior. However, the neuroanatomical correlates of cognitive impulsivity in chronic smokers remain under-investigated. Methods: A sample of 28 chronic smokers (mean age = 28 years) not affected by polysubstance dependence and 24 matched non-smoker controls was recruited. Voxel Based Morphometry (VBM) was employed to assess Gray Matter (GM) volume differences between smokers and non-smokers. The relationships between GM volume and behavioral manifestations of impulsive choices (5 trial adjusting delay discounting task, ADT-5) and risky decision making (Cambridge Gambling Task, CGT) were also investigated. Results: VBM results revealed GM volume reductions in cortical and striatal brain regions of chronic smokers compared to non-smokers. Additionally, smokers showed heightened impulsive choices (p < 0.01, Cohen's f = 0.50) and a riskier decision- making process (p < 0.01, Cohen's f = 0.40) compared to non-smokers. GM volume reductions in the left Anterior Cingulate Cortex (ACC) correlated with impaired impulsive and risky choices, while GM volume reductions in the left Ventrolateral Prefrontal Cortex (VLPFC) and Caudate correlated with heightened impulsive choices. Reduced GM volume in the left VLPFC correlated with younger age at smoking initiation (mean = 16 years). Conclusion: Smokers displayed significant GM volume reductions and related cognitive impulsivity impairments compared to non-smoker individuals. Longitudinal studies would be required to assess whether these impairments underline neurocognitive endophenotypes or if they are a consequence of tobacco exposure on the adolescent brain.
Collapse
Affiliation(s)
- Aldo Alberto Conti
- Division of Population and Behavioral Science, University of St. Andrews School of Medicine, St. Andrews, United Kingdom
| | - Alexander Mario Baldacchino
- Division of Population and Behavioral Science, University of St. Andrews School of Medicine, St. Andrews, United Kingdom
| |
Collapse
|
26
|
Wei S, Wang D, Wei G, Wang J, Zhou H, Xu H, Xia L, Tian Y, Dai Q, Zhu R, Wang W, Chen D, Xiu M, Wang L, Zhang XY. Association of cigarette smoking with cognitive impairment in male patients with chronic schizophrenia. Psychopharmacology (Berl) 2020; 237:3409-3416. [PMID: 32757027 DOI: 10.1007/s00213-020-05621-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/27/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Previous studies have shown that patients with schizophrenia have higher smoking rates and worse cognitive function than healthy controls. However, there is no consistent conclusion about the relationship between smoking and cognitive impairment. OBJECTIVES The main purpose of this study was to explore the effects of smoking on cognitive function by using MATRICS Cognitive Consensus Battery (MCCB) in Chinese male patients with schizophrenia. METHODS There were 164 patients with chronic schizophrenia and 82 healthy controls. All subjects were interviewed about smoking status. The cognitive function was assessed by MCCB and Stroop tests. The Positive and Negative Syndrome Scale (PANSS) was used to assess the clinical symptoms of the patients. RESULTS Compared with healthy controls, patients had lower MCCB scores in all of its domain scores (all p < 0.05). In the patients, the scores of spatial span test (42.3 ± 11.6), digital sequence test (42.9 ± 10.6), and Hopkins Verbal Learning Test (42.2 ± 10.1) were lower in smokers than those in nonsmokers (all p < 0.05, effect size: 0.28-0.45). Logistic regression analysis showed that the smoking status of the patients was correlated with digital sequence score (p < 0.05, OR = 1.072, 95%CI: 1.013-1.134). Multivariate regression analysis showed that the spatial span total score (β = - 0.26, t = - 2.74, p < 0.001) was associated with the duration of smoking in patients with schizophrenia. CONCLUSIONS Our findings show that smoking patients with chronic schizophrenia exhibit more severe cognitive impairment than nonsmoking patients, especially in working memory and executive function.
Collapse
Affiliation(s)
- Shuochi Wei
- Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Dongmei Wang
- Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Gaoxia Wei
- Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Jiesi Wang
- Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Huixia Zhou
- Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Hang Xu
- Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Luyao Xia
- Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Yang Tian
- Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Qilong Dai
- Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Rongrong Zhu
- Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Wenjia Wang
- Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Dachun Chen
- Beijing HuiLongGuan Hospital, Beijing, China
| | - Meihong Xiu
- Beijing HuiLongGuan Hospital, Beijing, China
| | - Li Wang
- Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China
| | - Xiang Yang Zhang
- Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
27
|
Chang L, Liang H, Kandel SR, He JJ. Independent and Combined Effects of Nicotine or Chronic Tobacco Smoking and HIV on the Brain: A Review of Preclinical and Clinical Studies. J Neuroimmune Pharmacol 2020; 15:658-693. [PMID: 33108618 DOI: 10.1007/s11481-020-09963-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Tobacco smoking is highly prevalent among HIV-infected individuals. Chronic smokers with HIV showed greater cognitive deficits and impulsivity, and had more psychopathological symptoms and greater neuroinflammation than HIV non-smokers or smokers without HIV infection. However, preclinical studies that evaluated the combined effects of HIV-infection and tobacco smoking are scare. The preclinical models typically used cell cultures or animal models that involved specific HIV viral proteins or the administration of nicotine to rodents. These preclinical models consistently demonstrated that nicotine had neuroprotective and anti-inflammatory effects, leading to cognitive enhancement. Although the major addictive ingredient in tobacco smoking is nicotine, chronic smoking does not lead to improved cognitive function in humans. Therefore, preclinical studies designed to unravel the interactive effects of chronic tobacco smoking and HIV infection are needed. In this review, we summarized the preclinical studies that demonstrated the neuroprotective effects of nicotine, the neurotoxic effects of the HIV viral proteins, and the scant literature on nicotine or tobacco smoke in HIV transgenic rat models. We also reviewed the clinical studies that evaluated the neurotoxic effects of tobacco smoking, HIV infection and their combined effects on the brain, including studies that evaluated the cognitive and behavioral assessments, as well as neuroimaging measures. Lastly, we compared the different approaches between preclinical and clinical studies, identified some gaps and proposed some future directions. Graphical abstract Independent and combined effects of HIV and tobacco/nicotine. Left top and bottom panels: Both clinical studies of HIV infected persons and preclinical studies using viral proteins in vitro or in vivo in animal models showed that HIV infection could lead to neurotoxicity and neuroinflammation. Right top and bottom panels: While clinical studies of tobacco smoking consistently showed deleterious effects of smoking, clinical and preclinical studies that used nicotine show mild cognitive enhancement, neuroprotective and possibly anti-inflammatory effects. In the developing brain, however, nicotine is neurotoxic. Middle overlapping panels: Clinical studies of persons with HIV who were smokers typically showed additive deleterious effects of HIV and tobacco smoking. However, in the preclinical studies, when nicotine was administered to the HIV-1 Tg rats, the neurotoxic effects of HIV were attenuated, but tobacco smoke worsened the inflammatory cascade.
Collapse
Affiliation(s)
- Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA.
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| | - Huajun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 670 W. Baltimore Street, HSF III, Baltimore, MD, 21201, USA
| | - Suresh R Kandel
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Chicago Medical School, Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, 3333 Green Bay Road, Basic Science Building 2.300, North Chicago, IL, 60064, USA.
| |
Collapse
|
28
|
Couvy-Duchesne B, Strike LT, Zhang F, Holtz Y, Zheng Z, Kemper KE, Yengo L, Colliot O, Wright MJ, Wray NR, Yang J, Visscher PM. A unified framework for association and prediction from vertex-wise grey-matter structure. Hum Brain Mapp 2020; 41:4062-4076. [PMID: 32687259 PMCID: PMC7469763 DOI: 10.1002/hbm.25109] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/11/2020] [Accepted: 06/14/2020] [Indexed: 01/29/2023] Open
Abstract
The recent availability of large‐scale neuroimaging cohorts facilitates deeper characterisation of the relationship between phenotypic and brain architecture variation in humans. Here, we investigate the association (previously coined morphometricity) of a phenotype with all 652,283 vertex‐wise measures of cortical and subcortical morphology in a large data set from the UK Biobank (UKB; N = 9,497 for discovery, N = 4,323 for replication) and the Human Connectome Project (N = 1,110). We used a linear mixed model with the brain measures of individuals fitted as random effects with covariance relationships estimated from the imaging data. We tested 167 behavioural, cognitive, psychiatric or lifestyle phenotypes and found significant morphometricity for 58 phenotypes (spanning substance use, blood assay results, education or income level, diet, depression, and cognition domains), 23 of which replicated in the UKB replication set or the HCP. We then extended the model for a bivariate analysis to estimate grey‐matter correlation between phenotypes, which revealed that body size (i.e., height, weight, BMI, waist and hip circumference, body fat percentage) could account for a substantial proportion of the morphometricity (confirmed using a conditional analysis), providing possible insight into previous MRI case–control results for psychiatric disorders where case status is associated with body mass index. Our LMM framework also allowed to predict some of the associated phenotypes from the vertex‐wise measures, in two independent samples. Finally, we demonstrated additional new applications of our approach (a) region of interest (ROI) analysis that retain the vertex‐wise complexity; (b) comparison of the information retained by different MRI processings.
Collapse
Affiliation(s)
- Baptiste Couvy-Duchesne
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Lachlan T Strike
- Queensland Brain Institute, the University of Queensland, St Lucia, Queensland, Australia
| | - Futao Zhang
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Yan Holtz
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia.,Queensland Brain Institute, the University of Queensland, St Lucia, Queensland, Australia
| | - Zhili Zheng
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia.,Institute for Advanced Research, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kathryn E Kemper
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Loic Yengo
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Olivier Colliot
- ARAMIS, Inria, Paris, France.,ARAMIS, Paris Brain Institute, Paris, France.,ARAMIS, Inserm, Paris, France.,ARAMIS, CNRS, Paris, France.,ARAMIS, Sorbonne University, Paris, France
| | - Margaret J Wright
- Queensland Brain Institute, the University of Queensland, St Lucia, Queensland, Australia.,Centre for Advanced Imaging, the University of Queensland, St Lucia, Queensland, Australia
| | - Naomi R Wray
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia.,Queensland Brain Institute, the University of Queensland, St Lucia, Queensland, Australia
| | - Jian Yang
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia.,Institute for Advanced Research, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peter M Visscher
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia.,Queensland Brain Institute, the University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
29
|
Wang C, Wang S, Shen Z, Qian W, Jiaerken Y, Luo X, Li K, Zeng Q, Gu Q, Yang Y, Huang P, Zhang M. Increased thalamic volume and decreased thalamo-precuneus functional connectivity are associated with smoking relapse. Neuroimage Clin 2020; 28:102451. [PMID: 33022581 PMCID: PMC7548987 DOI: 10.1016/j.nicl.2020.102451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/03/2022]
Abstract
The thalamus, with the highest density of nicotinic acetylcholine receptor (nAChR) in the brain, plays a central role in thalamo-cortical circuits that are implicated in nicotine addiction. However, little is known about whether the thalamo-cortical circuits are potentially predictive of smoking relapse. In the current study, a total of 125 participants (84 treatment-seeking male smokers and 41 age-matched male nonsmokers) were recruited. Structural and functional magnetic resonance images (MRI) were acquired from all participants. After a 12-week smoking cessation treatment with varenicline, the smokers were then divided into relapsers (n = 54) and nonrelapsers (n = 30). Then, we compared thalamic volume and seed-based thalamo-cortical resting state functional connectivity (rsFC) prior to the cessation treatment among relapsers, nonrelapsers and nonsmokers to investigate the associations between thalamic structure/function and smoking relapse. Increased thalamic volume was detected in smokers relative to nonsmokers, and in relapsers relative to nonrelapsers, especially on the left side. Moreover, decreased left thalamo-precuneus rsFC was detected in relapsers relative to nonrelapsers. Additionally, a logistic regression analysis showed that the thalamic volume and thalamo-precuneus rsFC predicted smoking relapse with an accuracy of 75.7%. These novel findings indicate that increased thalamic volume and decreased thalamo-precuneus rsFC are associated with smoking relapse, and these thalamic measures may be used to predict treatment efficacy of nicotine addiction and serve as a potential biomarker for personalized medicine.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhujing Shen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Qian
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Quanquan Gu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
30
|
Yang Z, Zhang Y, Cheng J, Zheng R. Meta-analysis of brain gray matter changes in chronic smokers. Eur J Radiol 2020; 132:109300. [PMID: 33010686 DOI: 10.1016/j.ejrad.2020.109300] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Previous studies based on voxel-based morphometry (VBM) had revealed brain gray matter (GM) changes in chronic smokers relative to nonsmokers. However, not all studies reported entirely consistent findings, or even opposite. The aim of this study was to conduct a quantitative meta-analysis of VBM studies of chronic smokers. METHOD A systematic database search was conducted in PubMed and Web of Knowledge from January 1, 2000 to January 31, 2020 to identify eligible VBM studies. Meta-analysis was performed with the Seed-based d Mapping software package to compare alternations between chronic cigarette smokers and nonsmokers. In addition, meta-regression analysis were performed to examine the influences of cigarette per day, smoking history and FTND. RESULTS A total of 17 VBM studies including 905 smokers and 1344 nonsmokers met the inclusion criteria. The results of this meta-analysis showed that the chronic smokers showed a robust GM volume decrease in bilateral prefrontal cortex and left insular and a GM increase in the right lingual cortex and left occipital cortex. Moreover, meta-regression analysis showed that cigarette per day, smoking history and FTND were partly associated with GM changes in chronic smokers. CONCLUSIONS This meta-analysis indicated that chronic cigarette smokers had significant and robust brain GM alternations compared with nonsmokers. Longitudinal studies should be performed in the future to explore whether these brain regions could be used as potential therapeutic neuro-target for nicotine dependence.
Collapse
Affiliation(s)
- Zhengui Yang
- First Affiliated Hospital of Zhengzhou University 450002, Zhengzhou, China
| | - Yong Zhang
- First Affiliated Hospital of Zhengzhou University 450002, Zhengzhou, China.
| | - Jingliang Cheng
- First Affiliated Hospital of Zhengzhou University 450002, Zhengzhou, China
| | - Ruiping Zheng
- First Affiliated Hospital of Zhengzhou University 450002, Zhengzhou, China
| |
Collapse
|
31
|
Cortical atrophy mediates the accumulating effects of vascular risk factors on cognitive decline in the Alzheimer's disease spectrum. Aging (Albany NY) 2020; 12:15058-15076. [PMID: 32726298 PMCID: PMC7425455 DOI: 10.18632/aging.103573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/13/2020] [Indexed: 12/17/2022]
Abstract
There are increasing concerns regarding the association of vascular risk factors (VRFs) and cognitive decline in the Alzheimer's disease (AD) spectrum. Currently, we investigated whether the accumulating effects of VRFs influenced gray matter volumes and subsequently led to cognitive decline in the AD spectrum. Mediation analysis was used to explore the association among VRFs, cortical atrophy, and cognition in the AD spectrum. 123 AD spectrum were recruited and VRF scores were constructed. Multivariate linear regression analysis revealed that higher VRF scores were correlated with lower Mini-Mental State Examination scores and higher Alzheimer's Disease Assessment Scale-Cognitive Subscale scores, indicating higher VRF scores lead to severer cognitive decline in the AD spectrum. In addition, subjects with higher VRF scores suffered severe cortical atrophy, especially in medial prefrontal cortex and medial temporal lobe. More importantly, common circuits of VRFs- and cognitive decline associated with gray matter atrophy were identified. Further, using mediation analysis, we demonstrated that cortical atrophy regions significantly mediated the relationship between VRF scores and cognitive decline in the AD spectrum. These findings highlight the importance of accumulating risk in the vascular contribution to AD spectrum, and targeting VRFs may provide new strategies for the therapeutic and prevention of AD.
Collapse
|
32
|
Durazzo TC, Meyerhoff DJ. Cigarette smoking history is associated with poorer recovery in multiple neurocognitive domains following treatment for an alcohol use disorder. Alcohol 2020; 85:135-143. [PMID: 31923562 PMCID: PMC8751294 DOI: 10.1016/j.alcohol.2019.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 12/17/2022]
Abstract
Cigarette smoking is associated with neurocognitive dysfunction in various populations, including those seeking treatment for an alcohol use disorder (AUD). This study compared the rate and extent of recovery on measures of processing speed, executive functions, general intelligence, visuospatial skills and working memory in treatment-seeking alcohol dependent individuals (ALC) who were never-smokers (nvsALC), former-smoker (fsALC), and active smokers (asALC), over approximately 8 months of abstinence from alcohol. Methods: ALC participants were evaluated at approximately 1 month of abstinence (AP1; n = 132) and reassessed after 8 months of sobriety (AP2; n = 54). Never-smoking controls (CON; n = 33) completed a baseline and follow-up (n = 19) assessment approximately 9 months later. Domains evaluated were executive functions, general intelligence, processing speed, visuospatial skills and working memory; a domain composite was formed from the arithmetic average of the foregoing domains. nvsALC showed greater improvement than fsALC, asALC and CON on most domains over the AP1-AP2 interval. fsALC demonstrated greater recovery than asALC on all domains except visuospatial skills; fsALC also showed greater improvements than CON on general intelligence, working memory and domain composite. asALC did not show significant improvement on any domain over the AP1-AP2 interval. At 8 months of abstinence, asALC were inferior to CON and nvsALC on multiple domains, fsALC performed worse than nvsALC on several domains, but nvsALC were not different from CON on any domain. Our results provide robust evidence that smoking status influenced the rate and extent of neurocognitive recovery between 1 and 8 months of abstinence in this ALC cohort. Chronic smoking in AUD likely contributes to the considerable heterogeneity observed in neurocognitive recovery during extended abstinence. The findings provide additional strong support for the benefits of smoking cessation and the increasing clinical movement to offer smoking cessation resources concurrent with treatment for AUD.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Mental Illness Research and Education Clinical Centers, VA Palo Alto Health Care System, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicinecisco, San Francisco, CA, USA.
| | - Dieter J Meyerhoff
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco VA Medical Center, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
33
|
Wang H, Sun Y, Lan F, Liu Y. Altered brain network topology related to working memory in internet addiction. J Behav Addict 2020; 9:325-338. [PMID: 32644933 PMCID: PMC8939409 DOI: 10.1556/2006.2020.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/28/2020] [Accepted: 04/15/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND AND AIMS The working memory (WM) ability of internet addicts and the topology underlying the WM processing in internet addiction (IA) are poorly understood. In this study, we employed a graph theoretical framework to characterize the topological properties of the IA brain network in the source cortical space during WM task. METHODS A sample of 24 subjects with IA and 23 matched healthy controls (HCs) performed visual 2-back task. Exact Low Resolution Electromagnetic Tomography was adopted to project the pre-processed EEG signals into source space. Subsequently, Lagged phase synchronization was calculated between all pairs of Brodmann areas, the graph theoretical approaches were then employed to estimate the brain topological properties of all participants during the WM task. RESULTS We found better WM behavioral performance in IA subjects compared with the HCs. Moreover, compared to the HC group, more integrated and hierarchical brain network was revealed in the IA subjects in alpha band. And altered regional centrality was mainly resided in frontal and limbic lobes. In addition, significant relationships between the IA severity and the significant altered graph indices were found. CONCLUSIONS In conclusion, these findings provide evidence to support the notion that altered topological configuration may underline changed WM function observed in IA.
Collapse
Affiliation(s)
- Hongxia Wang
- School of Psychology, Liaoning Normal University, Da Lian, 116029, China,Department of Psychology, Renmin University of China, Beijing, 100872, China
| | - Yan Sun
- School of Psychology, Liaoning Normal University, Da Lian, 116029, China,Corresponding author’s e-mail:
| | - Fan Lan
- School of Psychology, Liaoning Normal University, Da Lian, 116029, China
| | - Yan Liu
- School of Psychology, Liaoning Normal University, Da Lian, 116029, China
| |
Collapse
|
34
|
Liang H, Tang WK, Chu WCW, Ernst T, Chen R, Chang L. Striatal and white matter volumes in chronic ketamine users with or without recent regular stimulant use. Drug Alcohol Depend 2020; 213:108063. [PMID: 32498030 PMCID: PMC7686125 DOI: 10.1016/j.drugalcdep.2020.108063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Previous studies found enlarged striatum and white matter in those with stimulants use disorders. Whether primarily ketamine users (Primarily-K) and ketamine users who co-used stimulants and other substances (K+PolyS) have abnormal brain volumes is unknown. This study aims to evaluate possible brain structural abnormalities, cognitive function and depressive symptoms, between Primarily-K and K+PolyS users. METHODS Striatal and white matter volumes were automatically segmented in 39 Primarily-K users, 41 K+PolyS users and 46 non-drug users (ND). Cognitive performance in 7 neurocognitive domains and depressive symptoms were also evaluated. RESULTS Ketamine users had larger caudates than ND-controls (Right: 1-way-ANCOVA-p=0.035; K+PolyS vs. ND, p=0.030; Linear trend for K+PolyS>Primarily-K>ND, p=0.011; Left: 1-way-ANCOVA-p=0.047, Primarily-K vs. ND p=0.051) and larger total white matter (1-way ANCOVA-p=0.009, Poly+K vs. Primarily-K, p=0.05; Poly+K vs. ND p=0.011; Linear trend for K+PolyS>Primarily-K >ND, p=0.004). Across all ketamine users, they performed poorer on Arithmetic, learning and memory tasks, and were more depressed than Non-users (p<0.001 to p=0.001). Greater lifetime ketamine usage correlated with more depressive symptoms (r=0.27, p=0.008). Larger white matter correlated with better learning across all participants (r=0.21, p=0.019), while larger right caudate correlated with lower depression scores in ketamine users (r=-0.28, p=0.013). CONCLUSION Ketamine users had larger caudates and total white matter than ND-controls. The even larger white matter in K+PolyS users suggests additive effects from co-use of ketamine and stimulants. However, across the ketamine users, since greater volumes were associated with better learning and less depressive symptom, the enlarged caudates and white matter might represent a compensatory response.
Collapse
Affiliation(s)
- Huajun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Wai Kwong Tang
- Department of Psychiatry, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Winnie CW Chu
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Thomas Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201 USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21201 USA
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine,University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21201, USA; Department of Neurology University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
35
|
Thayer RE, Hansen NS, Prashad S, Karoly HC, Filbey FM, Bryan AD, Feldstein Ewing SW. Recent tobacco use has widespread associations with adolescent white matter microstructure. Addict Behav 2020; 101:106152. [PMID: 31639638 DOI: 10.1016/j.addbeh.2019.106152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/01/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022]
Abstract
IMPORTANCE Given the prevalence of alcohol, cannabis, and tobacco use during adolescence, it is important to explore the relative relationship of these three substances with brain structure. OBJECTIVE To determine associations between recent alcohol, cannabis, and tobacco use and white and gray matter in a large sample of adolescents. DESIGN, SETTING, AND PARTICIPANTS MRI data were collected in N = 200 adolescents ages 14-18 (M = 15.82 years; 67% male; 61% Hispanic/Latino). On average, during the past month, participants reported consuming 2.05 drinks per 1.01 drinking day, 0.64 g per 6.98 cannabis use days, and 2.49 cigarettes per 12.32 smoking days. MAIN OUTCOMES AND MEASURES General linear models were utilized to examine past 30-day average quantities of alcohol, cannabis, and tobacco use, age, sex, and sex by substance interactions in skeletonized white matter (fractional anisotropy and axial, radial, and mean diffusivity) and voxel-based morphometry of gray matter (volume/density). RESULTS Tobacco use was negatively associated with white matter integrity (radial and mean diffusivity) with peak effects in inferior and superior longitudinal fasciculi. Cannabis use was negatively associated with white matter integrity (axial diffusivity) in a small cluster in the left superior longitudinal fasciculus. No associations were observed between recent alcohol use and white or gray matter overall, but interactions showed significant negative associations between alcohol use and white matter in females. CONCLUSIONS AND RELEVANCE It is important to note that recent tobacco use, particularly given the popularity of e-tobacco/vaping in this age group, had widespread associations with brain structure in this sample of adolescents.
Collapse
|
36
|
Cardenas VA, Hough CM, Durazzo TC, Meyerhoff DJ. Cerebellar Morphometry and Cognition in the Context of Chronic Alcohol Consumption and Cigarette Smoking. Alcohol Clin Exp Res 2020; 44:102-113. [PMID: 31730240 PMCID: PMC6980879 DOI: 10.1111/acer.14222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cerebellar atrophy (especially involving the superior-anterior cerebellar vermis) is among the most salient and clinically significant effects of chronic hazardous alcohol consumption on brain structure. Smaller cerebellar volumes are also associated with chronic cigarette smoking. The present study investigated effects of both chronic alcohol consumption and cigarette smoking on cerebellar structure and its relation to performance on select cognitive/behavioral tasks. METHODS Using T1-weighted Magnetic Resonance Images (MRIs), the Cerebellar Analysis Tool Kit segmented the cerebellum into bilateral hemispheres and 3 vermis parcels from 4 participant groups: smoking (s) and nonsmoking (ns) abstinent alcohol-dependent treatment seekers (ALC) and controls (CON) (i.e., sALC, nsALC, sCON, and nsCON). Cognitive and behavioral data were also obtained. RESULTS We found detrimental effects of chronic drinking on all cerebellar structural measures in ALC participants, with largest reductions seen in vermis areas. Furthermore, both smoking groups had smaller volumes of cerebellar hemispheres but not vermis areas compared to their nonsmoking counterparts. In exploratory analyses, smaller cerebellar volumes were related to lower measures of intelligence. In sCON, but not sALC, greater smoking severity was related to smaller cerebellar volume and smaller superior-anterior vermis area. In sALC, greater abstinence duration was associated with larger cerebellar and superior-anterior vermis areas, suggesting some recovery with abstinence. CONCLUSIONS Our results show that both smoking and alcohol status are associated with smaller cerebellar structural measurements, with vermal areas more vulnerable to chronic alcohol consumption and less affected by chronic smoking. These morphometric cerebellar deficits were also associated with lower intelligence and related to duration of abstinence in sALC only.
Collapse
Affiliation(s)
- Valerie A. Cardenas
- Center for Imaging of Neurodegenerative Diseases (CIND),
San Francisco VA Medical Center, San Francisco, CA, USA
| | - Christina M. Hough
- Center for Imaging of Neurodegenerative Diseases (CIND),
San Francisco VA Medical Center, San Francisco, CA, USA
- Department of Psychiatry, UCSF Weill Institute for
Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Psychology, University of California, Los
Angeles, Los Angeles, CA
| | - Timothy C. Durazzo
- VA Palo Alto Health Care System, Mental Illness Research
and Education Clinical Centers, Sierra-Pacific War Related Illness and Injury Study
Center, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford
University School of Medicine, Stanford, CA, USA
| | - Dieter J. Meyerhoff
- Center for Imaging of Neurodegenerative Diseases (CIND),
San Francisco VA Medical Center, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University
of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
37
|
Lin F, Wu G, Zhu L, Lei H. Region-Specific Changes of Insular Cortical Thickness in Heavy Smokers. Front Hum Neurosci 2019; 13:265. [PMID: 31417384 PMCID: PMC6685069 DOI: 10.3389/fnhum.2019.00265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/16/2019] [Indexed: 11/13/2022] Open
Abstract
Insula plays an essential role in maintaining the addiction to cigarette smoking and smoking-related alterations on the insular volume and density have been reported in smokers. However, less is known about the effects of chronic cigarette smoking on the insular cortical thickness. In this study, we explored the region-specific changes of insular cortical thickness in heavy smokers and their relations with smoking-related variables. 37 heavy smokers (29 males, mean age 47.19 ± 7.22 years) and 37 non-smoking healthy controls (29 males, mean age 46.95 ± 8.45 years) participated in the study. Subregional insular cortical thickness was evaluated and compared between the two groups. Correlation analysis was performed to investigate relationships between the insular cortical thickness and clinical characteristics in heavy smokers. There was no statistical difference on the cortical thickness in the left insula (p = 0.536) between the two groups while heavy smokers had a slightly thinner cortical thickness in the right insula (p = 0.048). In addition, heavy smokers showed a greater cortical thinning in the anterior (p = 0.0084) and superior (p = 0.0054) segment of the circular sulcus of the right insula as well as the inferior (p = 0.012) segment of the circular sulcus of the left insula. Moreover, the cortical thickness of the superior segment of the circular sulcus of the left insula was correlated negatively with nicotine severity (r = −0.423; p = 0.009) and the longer cigarette exposure was associated with the cortical thinning in the long insular gyrus and central sulcus of the right insula (r = −0.475; p = 0.003). Our findings indicate that chronic cigarette use is associated with region-specific insular thinning, which has the potential to improve our understanding of the specific roles of insular subregions in nicotine addiction.
Collapse
Affiliation(s)
- Fuchun Lin
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangyao Wu
- Department of Radiology, Zhongnan Hospital, Wuhan University, Wuhan, China.,Department of Medical Imaging, Shenzhen University General Hospital, Medical College of Shenzhen University, Shenzhen, China
| | - Ling Zhu
- Department of Radiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hao Lei
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
38
|
Yu D, Yuan K, Cheng J, Guan Y, Li Y, Bi Y, Zhai J, Luo L, Liu B, Xue T, Lu X. Reduced Thalamus Volume May Reflect Nicotine Severity in Young Male Smokers. Nicotine Tob Res 2019. [PMID: 28651369 DOI: 10.1093/ntr/ntx146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Introduction Nicotine acts as an agonist at presynaptic nicotinic acetylcholine receptors and to facilitate synaptic release of several neurotransmitters including dopamine and glutamate. The thalamus has the highest density of nicotinic acetylcholine receptors in the brain, which may make this area more vulnerable to the addictive effects of nicotine. However, the volume of thalamus abnormalities and the association with smoking behaviors in young smokers remains unknown. Methods Thirty-six young male smokers and 36 age-, gender- and education-matched nonsmokers participated in the current study. The nicotine dependence severity and cumulative effect were assessed with the Fagerström test for nicotine dependence (FTND) and pack-years. We used subcortical volume analyses method in FreeSurfer to investigate the thalamus volume differences between young smokers and nonsmokers. Correlation analysis was used to investigate the relationship between thalamus volume and smoking behaviors (pack-years and FTND) in young smokers. Results and Conclusions Relative to nonsmokers, the young smokers showed reduced volume of bilateral thalamus. In addition, the left thalamus volume was correlated with FTND in young smokers. It is hoped that our findings can shed new insights into the neurobiology of young smokers. Implications In this article, we investigated the changes of thalamus volume in young male smokers compared with nonsmokers. Reduced left thalamus volume was correlated with FTND in young smokers, which may reflect nicotine severity in young male smokers.
Collapse
Affiliation(s)
- Dahua Yu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Kai Yuan
- Life Sciences Research Center, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jiadong Cheng
- Life Sciences Research Center, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yanyan Guan
- Life Sciences Research Center, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yangding Li
- Guangxi Key Laboratory of Multi-source Information Mining and Security, Guangxi Normal University, Guilin, Guangxi, China
| | - Yanzhi Bi
- Life Sciences Research Center, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Jinquan Zhai
- Department of Medical Imaging, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Lin Luo
- Department of Medical Imaging, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Bo Liu
- Department of Medical Imaging, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Ting Xue
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Xiaoqi Lu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| |
Collapse
|
39
|
Ibrahim C, Rubin-Kahana DS, Pushparaj A, Musiol M, Blumberger DM, Daskalakis ZJ, Zangen A, Le Foll B. The Insula: A Brain Stimulation Target for the Treatment of Addiction. Front Pharmacol 2019; 10:720. [PMID: 31312138 PMCID: PMC6614510 DOI: 10.3389/fphar.2019.00720] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Substance use disorders (SUDs) are a growing public health concern with only a limited number of approved treatments. However, even approved treatments are subject to limited efficacy with high long-term relapse rates. Current treatment approaches are typically a combination of pharmacotherapies and behavioral counselling. Growing evidence and technological advances suggest the potential of brain stimulation techniques for the treatment of SUDs. There are three main brain stimulation techniques that are outlined in this review: transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS). The insula, a region of the cerebral cortex, is known to be involved in critical aspects underlying SUDs, such as interoception, decision making, anxiety, pain perception, cognition, mood, threat recognition, and conscious urges. This review focuses on both the preclinical and clinical evidence demonstrating the role of the insula in addiction, thereby demonstrating its promise as a target for brain stimulation. Future research should evaluate the optimal parameters for brain stimulation of the insula, through the use of relevant biomarkers and clinical outcomes for SUDs.
Collapse
Affiliation(s)
- Christine Ibrahim
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Dafna S. Rubin-Kahana
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Abhiram Pushparaj
- Qunuba Sciences, Toronto, ON, Canada
- Ironstone Product Development, Toronto, ON, Canada
| | | | - Daniel M. Blumberger
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J. Daskalakis
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Abraham Zangen
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Addictions Division, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Alcohol Research and Treatment Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
40
|
Huang AS, Mitchell JA, Haber SN, Alia-Klein N, Goldstein RZ. The thalamus in drug addiction: from rodents to humans. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0028. [PMID: 29352027 DOI: 10.1098/rstb.2017.0028] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
Impairments in response inhibition and salience attribution (iRISA) have been proposed to underlie the clinical symptoms of drug addiction as mediated by cortico-striatal-thalamo-cortical networks. The bulk of evidence supporting the iRISA model comes from neuroimaging research that has focused on cortical and striatal influences with less emphasis on the role of the thalamus. Here, we highlight the importance of the thalamus in drug addiction, focusing on animal literature findings on thalamic nuclei in the context of drug-seeking, structural and functional changes of the thalamus as measured by imaging studies in human drug addiction, particularly during drug cue and non-drug reward processing, and response inhibition tasks. Findings from the animal literature suggest that the paraventricular nucleus of the thalamus, the lateral habenula and the mediodorsal nucleus may be involved in the reinstatement, extinction and expression of drug-seeking behaviours. In support of the iRISA model, the human addiction imaging literature demonstrates enhanced thalamus activation when reacting to drug cues and reduced thalamus activation during response inhibition. This pattern of response was further associated with the severity of, and relapse in, drug addiction. Future animal studies could widen their field of focus by investigating the specific role(s) of different thalamic nuclei in different phases of the addiction cycle. Similarly, future human imaging studies should aim to specifically delineate the structure and function of different thalamic nuclei, for example, through the application of advanced imaging protocols at higher magnetic fields (7 Tesla).This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Anna S Huang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Suzanne N Haber
- Department of Pharmacology and Physiology, School of Medicine, University of Rochester, Rochester, NY, USA
| | - Nelly Alia-Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
41
|
Shen Z, Huang P, Wang C, Qian W, Luo X, Gu Q, Chen H, Wang H, Yang Y, Zhang M. Interactions between monoamine oxidase A rs1137070 and smoking on brain structure and function in male smokers. Eur J Neurosci 2018; 50:2201-2210. [PMID: 30456877 DOI: 10.1111/ejn.14282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 11/28/2022]
Abstract
The monoamine oxidase A (MAOA) enzyme metabolizes monoamine neurotransmitters such as dopamine, serotonin and norepinephrine, and its genetic polymorphism (rs1137070) influences its activity level and is associated with smoking behaviors. However, the underlying neural mechanisms of the gene × environment interactions remain largely unknown. In this study, we aimed to explore the interactive effects of the rs1137070 and cigarette smoking on gray matter volume (GMV) and functional connectivity strength (FCS). A total of 81 smokers and 42 nonsmokers were enrolled in the present study. Voxel-based morphometry analysis showed a significant rs1137070 genotype × smoking effect on the GMV of the left orbitofrontal cortex (OFC), such that individuals with risk allele had greater GMV among nonsmokers but not smokers. Meanwhile, rs1137070 variant and nicotine dependence interactively altered the FCS of the right hippocampus, the left inferior parietal lobule (IPL), the left dorsolateral prefrontal cortex and bilateral OFC. In addition, the FCS in the left IPL was correlated with smoking initiation and smoking years in smokers with the risk allele. These findings suggest that MAOA rs1137070 contributes to the susceptibility to nicotine dependence through its influence on brain circuits involved in reward and attention, and interacts with smoking in the progression.
Collapse
Affiliation(s)
- Zhujing Shen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Peiyu Huang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Chao Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Wei Qian
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Xiao Luo
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Quanquan Gu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China
| | - Hongjuan Wang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
42
|
Kaag AM, Schulte MHJ, Jansen JM, van Wingen G, Homberg J, van den Brink W, Wiers RW, Schmaal L, Goudriaan AE, Reneman L. The relation between gray matter volume and the use of alcohol, tobacco, cocaine and cannabis in male polysubstance users. Drug Alcohol Depend 2018; 187:186-194. [PMID: 29679913 DOI: 10.1016/j.drugalcdep.2018.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/12/2018] [Accepted: 03/06/2018] [Indexed: 02/03/2023]
Abstract
BACKGROUND Neuroimaging studies have demonstrated gray matter (GM) volume abnormalities in substance users. While the majority of substance users are polysubstance users, very little is known about the relation between GM volume abnormalities and polysubstance use. METHODS In this study we assessed the relation between GM volume, and the use of alcohol, tobacco, cocaine and cannabis as well as the total number of substances used, in a sample of 169 males: 15 non-substance users, 89 moderate drinkers, 27 moderate drinkers who also smoke tobacco, 13 moderate drinkers who also smoke tobacco and use cocaine, 10 heavy drinkers who smoke tobacco and use cocaine and 15 heavy drinkers who smoke tobacco, cannabis and use cocaine. RESULTS Regression analyses showed that there was a negative relation between the number of substances used and volume of the dorsal medial prefrontal cortex (mPFC) and the ventral mPFC. Without controlling for the use of other substances, the volume of the dorsal mPFC was negatively associated with the use of alcohol, tobacco, and cocaine. After controlling for the use of other substances, a negative relation was found between tobacco and cocaine and volume of the thalami and ventrolateral PFC, respectively. CONCLUSION These findings indicate that mPFC alterations may not be substance-specific, but rather related to the number of substances used, whereas, thalamic and ventrolateral PFC pathology is specifically associated with tobacco and cocaine use, respectively. These findings are important, as the differential alterations in GM volume may underlie different cognitive deficits associated with substance use disorders.
Collapse
Affiliation(s)
- A M Kaag
- Addiction, Development and Psychopathology (ADAPT) Lab, Department of Psychology, University of Amsterdam, The Netherlands; Department of Anatomy and Neurosciences, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Medical Center, The Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, The Netherlands.
| | - M H J Schulte
- Addiction, Development and Psychopathology (ADAPT) Lab, Department of Psychology, University of Amsterdam, The Netherlands; Departement of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Academic Medical Centre, Amsterdam, The Netherlands
| | - J M Jansen
- Departement of Psychiatry, Amsterdam Neuroscience, Academic Medical Centre, Amsterdam, The Netherlands; Leiden University, Faculty of Law, Institute for Criminal Law & Criminology, Leiden, The Netherlands
| | - G van Wingen
- Amsterdam Brain and Cognition, University of Amsterdam, The Netherlands; Departement of Psychiatry, Amsterdam Neuroscience, Academic Medical Centre, Amsterdam, The Netherlands
| | - J Homberg
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Medical Centre, Nijmegen, The Netherlands
| | - W van den Brink
- Departement of Psychiatry, Amsterdam Neuroscience, Academic Medical Centre, Amsterdam, The Netherlands
| | - R W Wiers
- Addiction, Development and Psychopathology (ADAPT) Lab, Department of Psychology, University of Amsterdam, The Netherlands; Amsterdam Brain and Cognition, University of Amsterdam, The Netherlands
| | - L Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia; Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - A E Goudriaan
- Amsterdam Brain and Cognition, University of Amsterdam, The Netherlands; Departement of Psychiatry, Amsterdam Neuroscience, Academic Medical Centre, Amsterdam, The Netherlands
| | - L Reneman
- Amsterdam Brain and Cognition, University of Amsterdam, The Netherlands; Departement of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Academic Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Gillespie NA, Neale MC, Bates TC, Eyler LT, Fennema-Notestine C, Vassileva J, Lyons MJ, Prom-Wormley EC, McMahon KL, Thompson PM, de Zubicaray G, Hickie IB, McGrath JJ, Strike LT, Rentería ME, Panizzon MS, Martin NG, Franz CE, Kremen WS, Wright MJ. Testing associations between cannabis use and subcortical volumes in two large population-based samples. Addiction 2018; 113:10.1111/add.14252. [PMID: 29691937 PMCID: PMC6200645 DOI: 10.1111/add.14252] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/26/2017] [Accepted: 04/06/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Disentangling the putative impact of cannabis on brain morphology from other comorbid substance use is critical. After controlling for the effects of nicotine, alcohol and multi-substance use, this study aimed to determine whether frequent cannabis use is associated with significantly smaller subcortical grey matter volumes. DESIGN Exploratory analyses using mixed linear models, one per region of interest (ROI), were performed whereby individual differences in volume (outcome) at seven subcortical ROIs were regressed onto cannabis and comorbid substance use (predictors). SETTING Two large population-based twin samples from the United States and Australia. PARTICIPANTS A total of 622 young Australian adults [66% female; μage = 25.9, standard deviation SD) = 3.6] and 474 middle-aged US males (μage = 56.1SD = 2.6 ) of predominately Anglo-Saxon ancestry with complete substance use and imaging data. Subjects with a history of stroke or traumatic brain injury were excluded. MEASUREMENTS Magnetic resonance imaging (MRI) and volumetric segmentation methods were used to estimate volume in seven subcortical ROIs: thalamus, caudate nucleus, putamen, pallidum, hippocampus, amygdala and nucleus accumbens. Substance use measurements included maximum nicotine and alcohol use, total life-time multi-substance use, maximum cannabis use in the young adults and regular cannabis use in the middle-aged males. FINDINGS After correcting for multiple testing (P = 0.007), cannabis use was unrelated to any subcortical ROI. However, maximum nicotine use was associated with significantly smaller thalamus volumes in middle-aged males. CONCLUSIONS In exploratory analyses based on young adult and middle-aged samples, normal variation in cannabis use is unrelated statistically to individual differences in brain morphology as measured by subcortical volume.
Collapse
Affiliation(s)
- Nathan A. Gillespie
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, VA, USA
- QIMR Berghofer Medical Research Institute, QLD, Australia
| | - Michael C. Neale
- Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, VA, USA
| | | | - Lisa T. Eyler
- Desert-Pacific Mental Illness Research, Education, and Clinical Center, VA San Diego Healthcare System, CA, USA
- Department of Psychiatry, University of California San Diego, CA, USA
| | | | - Jasmin Vassileva
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, VA, USA
| | - Michael J. Lyons
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | | | - Katie L. McMahon
- Centre for Advanced Imaging, The University of Queensland, QLD, Australia
| | - Paul M. Thompson
- Centre for Advanced Imaging, The University of Queensland, QLD, Australia
| | - Greig de Zubicaray
- School of Psychology, The University of Queensland, QLD, Australia
- Faculty of Health and Institute of Biomedical Innovation, Queensland University of Technology
| | - Ian B. Hickie
- Brain and Mind Research Institute, University of Sydney, NSW, Australia
| | - John J. McGrath
- Queensland Brain Institute, The University of Queensland, QLD, Australia
| | - Lachlan T. Strike
- QIMR Berghofer Medical Research Institute, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, QLD, Australia
- School of Psychology, The University of Queensland, QLD, Australia
| | | | | | | | - Carol E. Franz
- Department of Psychiatry, University of California San Diego, CA, USA
| | - William S. Kremen
- Department of Psychiatry, University of California San Diego, CA, USA
| | - Margaret J. Wright
- QIMR Berghofer Medical Research Institute, QLD, Australia
- Centre for Advanced Imaging, The University of Queensland, QLD, Australia
| |
Collapse
|
44
|
Altered function but not structure of the amygdala in nicotine-dependent individuals. Neuropsychologia 2017; 107:102-107. [PMID: 29104080 DOI: 10.1016/j.neuropsychologia.2017.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 11/22/2022]
Abstract
Tobacco use disorder is frequently comorbid with emotional disorders, each exerting reciprocal influence on the other. As an important hub for emotional processing, amygdala may also play a critical role in tobacco addiction. Therefore, we aimed to investigate the volume and spontaneous activity of the amygdala in nicotine-dependent individuals and their relationships with cigarette use. A total of 84 smokers (aged 22-54 years) and 41 nonsmokers (aged 26-56 years) were enrolled in the present study. 3D-T1 weighted images and resting-state fMRI images were acquired from all participants. We used ROI-wise volume, fractional amplitude of low frequency fluctuation (fALFF) and resting-state functional connectivity (FC) to assess structural and functional changes of the amygdala in the smokers. There was no significant difference between smokers and nonsmokers on amygdala volume (p > 0.05). When compared to nonsmokers, increased fALFF in the right amygdala was observed in smokers (p = 0.024). In addition, increased FC between the left amygdala and the right precuneus and decreased FC between the right amygdala and the right orbitofrontal cortex (OFC) was found in smokers. In smokers, these amygdala measures did not correlate with any measures of cigarette use. The results revealed that the amygdala function but not volume was affected in nicotine addiction. When considering the fALFF and FC results, we propose that the OFC top-down control may regulate the amygdala activity in nicotine addicts. The pattern of amygdala-based FC in smokers revealed in our study may provide new information about the brain circuitry of tobacco dependence.
Collapse
|
45
|
Li Y, Dong H, Li F, Wang G, Zhou W, Yu R, Zhang L. Microstructures in striato-thalamo-orbitofrontal circuit in methamphetamine users. Acta Radiol 2017; 58:1378-1385. [PMID: 28181466 DOI: 10.1177/0284185117692170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Striato-thalamo-orbitofrontal (STO) circuit plays a key role in the development of drug addiction. Few studies have investigated its microstructural abnormalities in methamphetamine (MA) users. Purpose To evaluate the microstructural changes and relevant clinical relevance of the STO circuit in MA users using diffusion tensor imaging (DTI). Material and Methods Twenty-eight MA users and 28 age-matched normal volunteers were enrolled. 3T magnetic resonance imaging (MRI) was employed to obtain structural T1-weighted (T1W) imaging and diffusion-tensor imaging (DTI) data. Freesurfer software was used for automated segmentation of the bilateral nucleus accumbens (NAc), thalami, and orbitofrontal cortex (OFC). Four DTI measures maps, fractional anisotropy (FA), mean diffusivity (MD), axial diffusion (AD), and radial diffusion (RD) were generated and non-linearly co-registered to structural space. Comparisons of DTI measures of the STO circuit were carried out between MA and controls using repeated measures analysis of variance. Correlation analyses were performed between STO circuit DTI measures and clinical characteristics. Results The MA group had significant FA reduction in the bilateral NAc, OFC, and right thalamus ( P < 0.05). Lower left OFC FA and right NAc FA/AD were associated with longer duration of MA use. Lower right OFC FA was associated with younger age at first MA use. Higher FA and lower MD/RD in the thalamus, as well as higher left OFC RD, were associated with increased psychiatric symptoms. Conclusion The STO circuit has reduced microstructural integrity in MA users. Microstructural changes in the thalamus may compensate for dysfunction in functionally connected cortices, which needs further investigation.
Collapse
Affiliation(s)
- Yadi Li
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, PR China
| | - Haibo Dong
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, PR China
| | - Feng Li
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, PR China
| | - Gaoyan Wang
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, PR China
| | - Wenhua Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, PR China
| | - Rongbin Yu
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, PR China
| | - Lingjun Zhang
- College of Science & Technology, Ningbo University, Ningbo, PR China
| |
Collapse
|
46
|
Lower Fractional Anisotropy in the Gray Matter of Amygdala-Hippocampus-Nucleus Accumbens Circuit in Methamphetamine Users: an In Vivo Diffusion Tensor Imaging Study. Neurotox Res 2017; 33:801-811. [PMID: 29038922 DOI: 10.1007/s12640-017-9828-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 10/01/2017] [Accepted: 10/06/2017] [Indexed: 10/18/2022]
Abstract
The basolateral amygdala (BLA), hippocampal ventral subiculum, and nucleus accumbens (NAc) comprise the amygdala-hippocampus-NAc (AHN) circuit, which is implicated in drug seeking and reward. The goal of this study was to evaluate microstructural changes and relevant clinical features of the AHN circuit gray matter (GM) in methamphetamine (MA) users using diffusion tensor imaging (DTI). Thirty MA users and 30 age-matched normal volunteers underwent 3-T MR imaging to obtain structural T1-weighted images and DTI data. Freesurfer software was used to automatically segment the NAc and subiculum. A Jülich probability map was employed to parcellate the BLA. Fractional anisotropy (FA) and mean diffusivity (MD) maps were generated and non-linearly coregistered to structural space. DTI measures of the AHN circuit GM were compared between MA users and controls using repeated measures analysis of variance. Correlation analyses were performed between DTI measures and clinical characteristics. Anatomical correlations between the NAc and BLA/subiculum in both groups were assessed using correlation analyses. The MA group had significant lower FA in the bilateral BLA, subiculum, and NAc. Higher total MA dose corresponded with lower FA in all three structures. Hamilton Anxiety Rating Scale scores negatively correlated with the right subiculum FA. Lower left BLA FA was associated with higher thinking disorder and hostile-suspicion factor scores. Left BLA FA was significantly associated with bilateral NAc FA in MA users. Those findings provided neuroimaging evidence of MA-induced microstructural impairment in the AHN circuit GM. Enhanced anatomical correlations between the left BLA and bilateral NAc may be part of the mechanism of MA intake relapse and for development of psychosis.
Collapse
|
47
|
Durazzo TC, Meyerhoff DJ, Yoder KK, Murray DE. Cigarette smoking is associated with amplified age-related volume loss in subcortical brain regions. Drug Alcohol Depend 2017; 177. [PMID: 28622625 PMCID: PMC6602081 DOI: 10.1016/j.drugalcdep.2017.04.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Magnetic resonance imaging studies of cigarette smoking-related effects on human brain structure have primarily employed voxel-based morphometry, and the most consistently reported finding was smaller volumes or lower density in anterior frontal regions and the insula. Much less is known about the effects of smoking on subcortical regions. We compared smokers and non-smokers on regional subcortical volumes, and predicted that smokers demonstrate greater age-related volume loss across subcortical regions than non-smokers. METHODS Non-smokers (n=43) and smokers (n=40), 22-70 years of age, completed a 4T MRI study. Bilateral total subcortical lobar white matter (WM) and subcortical nuclei volumes were quantitated via FreeSurfer. In smokers, associations between smoking severity measures and subcortical volumes were examined. RESULTS Smokers demonstrated greater age-related volume loss than non-smokers in the bilateral subcortical lobar WM, thalamus, and cerebellar cortex, as well as in the corpus callosum and subdivisions. In smokers, higher pack-years were associated with smaller volumes of the bilateral amygdala, nucleus accumbens, total corpus callosum and subcortical WM. CONCLUSIONS Results provide novel evidence that chronic smoking in adults is associated with accelerated age-related volume loss in subcortical WM and GM nuclei. Greater cigarette quantity/exposure was related to smaller volumes in regions that also showed greater age-related volume loss in smokers. Findings suggest smoking adversely affected the structural integrity of subcortical brain regions with increasing age and exposure. The greater age-related volume loss in smokers may have implications for cortical-subcortical structural and/or functional connectivity, and response to available smoking cessation interventions.
Collapse
Affiliation(s)
- Timothy C. Durazzo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, United States,Mental Illness Research and Education Clinical Centers and Sierra-Pacific War Related Illness and Injury Study Center, VA Palo Alto Health Care System, United States,Corresponding author at: War Related Illness and Injury Study Centers, Mental Illness Research and Education Clinical Centers (151Y), VA Palo Alto Health Care System, 3801 Miranda Ave., Palo Alto, CA 94304, United States., , (T.C. Durazzo)
| | - Dieter J. Meyerhoff
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States,Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center, United States
| | - Karmen K. Yoder
- Indiana University Center for Neuroimaging, Department of Radiology and Imaging Sciences, Indiana University School of Medicine, United States
| | - Donna E. Murray
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States,Center for Imaging of Neurodegenerative Diseases, San Francisco VA Medical Center, United States
| |
Collapse
|
48
|
Affiliation(s)
- Patricia Boksa
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Que., Canada
| |
Collapse
|
49
|
Vňuková M, Ptáček R, Raboch J, Stefano GB. Decreased Central Nervous System Grey Matter Volume (GMV) in Smokers Affects Cognitive Abilities: A Systematic Review. Med Sci Monit 2017; 23:1907-1915. [PMID: 28426638 PMCID: PMC5407177 DOI: 10.12659/msm.901870] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Although cigarette smoking is a leading cause of preventable mortality, tobacco is consumed by approximately 22% of the adult population worldwide. Smoking is also a risk factor for cardiovascular disease, affects brain processing, and is a recognized risk factor for Alzheimer disease (AD). Tobacco toxins (e.g., nicotine at high levels) inhaled in smoke may cause disorders resulting in preclinical brain changes. Researchers suggest that there are differences in brain volume between smokers and non-smokers. This review examines these differences in brain grey matter volume (GMV). In March/April 2015, MedLine, Embase, and PsycINFO were searched using the terms: "grey matter" AND "voxel-based" AND "smoking" AND "cigarette". The 4 studies analyzed found brain GMV decreases in smokers compared to non-smokers. Furthermore, sex-specific differences were found; while the thalamus and cerebellum were affected in both sexes, decreased GMV in the olfactory gyrus was found only in male smokers. Age-group differences were also found, and these may suggest pre-existing abnormalities that lead to nicotine dependence in younger individuals. Only 1 study found a positive correlation between number of pack-years smoked and GMV. Smoking decreases GMV in most brain areas. This decrease may be responsible for the cognitive impairment and difficulties with emotional regulation found in smokers compared with non-smokers.
Collapse
Affiliation(s)
- Martina Vňuková
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Radek Ptáček
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| | - George B Stefano
- Department of Psychiatry, First Faculty of Medicine Charles University in Prague and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
50
|
Froeliger B, McConnell PA, Bell S, Sweitzer M, Kozink RV, Eichberg C, Hallyburton M, Kaiser N, Gray KM, McClernon FJ. Association Between Baseline Corticothalamic-Mediated Inhibitory Control and Smoking Relapse Vulnerability. JAMA Psychiatry 2017; 74:379-386. [PMID: 28249070 PMCID: PMC5562280 DOI: 10.1001/jamapsychiatry.2017.0017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
IMPORTANCE Tobacco use disorder is associated with dysregulated neurocognitive function in the right inferior frontal gyrus (IFG)-one node in a corticothalamic inhibitory control (IC) network. OBJECTIVE To examine associations between IC neural circuitry structure and function and lapse/relapse vulnerability in 2 independent studies of adult smokers. DESIGN, SETTING, AND PARTICIPANTS In study 1, treatment-seeking smokers (n = 81) completed an IC task during functional magnetic resonance imaging (fMRI) before making a quit attempt and then were followed up for 10 weeks after their quit date. In study 2, a separate group of smokers (n = 26) performed the same IC task during fMRI, followed by completing a laboratory-based smoking relapse analog task. Study 1 was performed at Duke University Medical Center between 2008 and 2012; study 2 was conducted at the Medical University of South Carolina between 2013 and 2016. MAIN OUTCOMES AND MEASURES Associations between corticothalamic-mediated IC, gray-matter volume, and smoking lapse/relapse. RESULTS Of the 81 study participants in study 1 (cessation study), 45 were women (56%), with mean (SD) age, 38.4 (10.2) years. In study 1, smoking relapse was associated with less gray-matter volume (F1,74 = 28.32; familywise error P threshold = 0.03), greater IC task-related blood oxygenation level-dependent (BOLD) response in the right IFG (F1,78 = 14.87) and thalamus (F1,78 = 14.97) (P < .05), and weaker corticothalamic task-based functional connectivity (tbFC) (F1,77 = 5.87; P = .02). Of the 26 participants in study 2 (laboratory study), 15 were women (58%), with mean (SD) age, 34.9 (10.3). Similar to study 1, in study 2, greater IC-BOLD response in the right IFG (t23 = -2.49; β = -0.47; P = .02), and weaker corticothalamic tbFC (t22 = 5.62; β = 0.79; P < .001) were associated with smoking sooner during the smoking relapse-analog task. In both studies, corticothalamic tbFC mediated the association between IC performance and smoking outcomes. CONCLUSIONS AND RELEVANCE In these 2 studies, baseline differences in corticothalamic circuitry function were associated with mediated IC and smoking relapse vulnerability. These findings warrant further examination of interventions for augmenting corticothalamic neurotransmission and enhancing IC during the course of tobacco use disorder treatment.
Collapse
Affiliation(s)
- Brett Froeliger
- Department of Neuroscience, Medical University of South Carolina, Charleston2Department of Psychiatry, Medical University of South Carolina, Charleston3Hollings Cancer Center, Medical University of South Carolina, Charleston4Center for Biomedical Imaging, Medical University of South Carolina, Charleston
| | | | - Spencer Bell
- Department of Neuroscience, Medical University of South Carolina, Charleston
| | - Maggie Sweitzer
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Rachel V. Kozink
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Christie Eichberg
- Department of Neuroscience, Medical University of South Carolina, Charleston
| | - Matt Hallyburton
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Nicole Kaiser
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Kevin M. Gray
- Department of Psychiatry, Medical University of South Carolina, Charleston
| | - F. Joseph McClernon
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina6Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|