1
|
Li C, Li Y, Sun Q, Abdurehim A, Xu J, Xie J, Zhang Y. Taste and its receptors in human physiology: A comprehensive look. FOOD FRONTIERS 2024; 5:1512-1533. [DOI: 10.1002/fft2.407] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
AbstractIncreasing evidence shows that food has significance beyond traditional perception (providing nutrition and energy) in maintaining normal life activities. It is indicated that the sense of taste plays a crucial part in regulating human life activities. Taste is one of the basic physiological sensations in mammals, and it is the fundamental guarantee for them to perceive, select, and ingest nutrients in order to survive. With the advances in electrophysiology, molecular biology, and structural biology, studies on the intracellular and extracellular transduction mechanisms of taste have made great progress and gradually revealed the indispensable role of taste receptors in the regulation and maintenance of normal physiological activities. Up to now, how food regulates life activities through the taste pathway remains unclear. Thus, this review comprehensively and systematically summarizes the current study about the sense of taste, the function of taste receptors, the taste–structure relationship of gustatory molecules, the cross‐talking between distinctive tastes, and the role of the gut–organ axis in the realization of taste. Moreover, we also provide forward‐looking perspectives on taste research to afford a scientific basis for revealing the scientific connotation of taste receptors regulating body health.
Collapse
Affiliation(s)
- Chao Li
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin China
| | - Yaxin Li
- Department of Pathology and Laboratory Medicine Weill Cornell Medicine New York City New York USA
| | - Qing Sun
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin China
| | - Aliya Abdurehim
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin China
| | - Jiawen Xu
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin China
| | - Junbo Xie
- School of Chinese Materia Medica Tianjin University of Traditional Chinese Medicine Tianjin China
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine Tianjin China
| | - Yanqing Zhang
- Biotechnology & Food Science College Tianjin University of Commerce Tianjin China
| |
Collapse
|
2
|
Pfabigan DM, Frogner ER, Schéle E, Thorsby PM, Skålhegg BS, Dickson SL, Sailer U. Ghrelin is related to lower brain reward activation during touch. Psychophysiology 2024; 61:e14443. [PMID: 37737514 DOI: 10.1111/psyp.14443] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/19/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
The gut hormone ghrelin drives food motivation and increases food intake, but it is also involved in the anticipation of and response to rewards other than food. This pre-registered study investigated how naturally varying ghrelin concentrations affect the processing of touch as a social reward in humans. Sixty-seven volunteers received slow caressing touch (so-called CT-targeted touch) as a social reward and control touch on their shins during 3T functional imaging on two test days. On one occasion, participants were fasted, and on another, they received a meal. On each occasion, plasma ghrelin was measured at three time points. All touch was rated as more pleasant after the meal, but there was no association between ghrelin concentrations and pleasantness. CT-targeted touch was rated as the most pleasant and activated somatosensory and reward networks (whole brain). A region-of-interest in the right medial orbitofrontal cortex (mOFC) showed lower activation during all touches, the higher the ghrelin concentrations were. During CT-targeted touch, a larger satiety response (ghrelin decrease after the meal) was associated with higher mOFC activation, and this mOFC activation was associated with higher experienced pleasantness. Overall, higher ghrelin concentrations appear to be related to a lower reward value for touch. Ghrelin may reduce the value of social stimuli, such as touch, to promote food search and intake in a state of low energy. This suggests that the role of ghrelin goes beyond assigning value to food reward.
Collapse
Affiliation(s)
- D M Pfabigan
- Department of Behavioural Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| | - E R Frogner
- Department of Behavioural Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - E Schéle
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - P M Thorsby
- Hormone Laboratory, Department of Medical Biochemistry and Biochemical Endocrinology and Metabolism Research Group, Oslo University Hospital, Oslo, Norway
| | - B S Skålhegg
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - S L Dickson
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - U Sailer
- Department of Behavioural Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Sailer U, Riva F, Lieberz J, Campbell-Meiklejohn D, Scheele D, Pfabigan DM. Hungry for compliments? Ghrelin is not associated with neural responses to social rewards or their pleasantness. Front Psychiatry 2023; 14:1104305. [PMID: 37077276 PMCID: PMC10106620 DOI: 10.3389/fpsyt.2023.1104305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/08/2023] [Indexed: 04/21/2023] Open
Abstract
The stomach-derived hormone ghrelin motivates food search and stimulates food consumption, with highest plasma concentrations before a meal and lowest shortly after. However, ghrelin also appears to affect the value of non-food rewards such as interaction with rat conspecifics, and monetary rewards in humans. The present pre-registered study investigated how nutritional state and ghrelin concentrations are related to the subjective and neural responses to social and non-social rewards. In a cross-over feed-and-fast design, 67 healthy volunteers (20 women) underwent functional magnetic resonance imaging (fMRI) in a hungry state and after a meal with repeated plasma ghrelin measurements. In task 1, participants received social rewards in the form of approving expert feedback, or non-social computer reward. In task 2, participants rated the pleasantness of compliments and neutral statements. Nutritional state and ghrelin concentrations did not affect the response to social reward in task 1. In contrast, ventromedial prefrontal cortical activation to non-social rewards was reduced when the meal strongly suppressed ghrelin. In task 2, fasting increased activation in the right ventral striatum during all statements, but ghrelin concentrations were neither associated with brain activation nor with experienced pleasantness. Complementary Bayesian analyses provided moderate evidence for a lack of correlation between ghrelin concentrations and behavioral and neural responses to social rewards, but moderate evidence for an association between ghrelin and non-social rewards. This suggests that ghrelin's influence may be restricted to non-social rewards. Social rewards implemented via social recognition and affirmation may be too abstract and complex to be susceptible to ghrelin's influence. In contrast, the non-social reward was associated with the expectation of a material object that was handed out after the experiment. This may indicate that ghrelin might be involved in anticipatory rather than consummatory phases of reward.
Collapse
Affiliation(s)
- Uta Sailer
- Department of Behavioural Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- *Correspondence: Uta Sailer,
| | - Federica Riva
- Department of Behavioural Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jana Lieberz
- Research Section Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | | | - Dirk Scheele
- Department of Social Neuroscience, Faculty of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Daniela M. Pfabigan
- Department of Behavioural Medicine, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Biological and Medical Psychology, Faculty of Psychology, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Peris-Sampedro F, Le May MV, Stoltenborg I, Schéle E, Dickson SL. A skeleton in the cupboard in ghrelin research: Where are the skinny dwarfs? J Neuroendocrinol 2021; 33:e13025. [PMID: 34427011 DOI: 10.1111/jne.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/09/2021] [Accepted: 08/05/2021] [Indexed: 12/15/2022]
Abstract
Based on studies delivering ghrelin or ghrelin receptor agonists, we have learned a great deal about the importance of the brain ghrelin signalling system for a wide range of physiological processes that include feeding behaviours, growth hormone secretion and glucose homeostasis. Because these processes can be considered as essential to life, the question arises as to why mouse models of depleted ghrelin signalling are not all skinny dwarfs with a host of behavioural and metabolic problems. Here, we provide a systematic detailed review of the phenotype of mice with deficient ghrelin signalling to help better understand the relevance and importance of the brain ghrelin signalling system, with a particular emphasis on those questions that remain unanswered.
Collapse
Affiliation(s)
- Fiona Peris-Sampedro
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Marie V Le May
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Iris Stoltenborg
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Schéle
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Alleviation of silver nanoparticle-induced sexual behavior and testicular parameters dysfunction in male mice by yttrium oxide nanoparticles. Toxicol Rep 2021; 8:1121-1130. [PMID: 34141599 PMCID: PMC8188060 DOI: 10.1016/j.toxrep.2021.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Exposure to silver nanoparticles decreased the weight of the reproductive organs, sexual behavior, oxidative defense parameters, sperm count and their motility in male mice. In addition, serum testosterone, apoptotic germ cells and testicular histology were also disrupted due to silver nanoparticles. Yttrium oxide nanoparticles have protective effects on sexual behavior and spermatotoxicity induced by silver nanoparticles in male mice. The toxicity of silver nanoparticles altered testicular functions that were effectively ameliorated by yttrium oxide nanoparticles.
Silver nanoparticles (Ag-NPs) can easily cross through the blood-testis barrier and encourage reproductive dysfunction. This study investigated the protective effects of yttrium oxide nanoparticles (YO-NPs) on sexual behavior and spermatotoxicity induced by Ag-NPs in male mice. Twenty-four male mice were separated into four groups and injected intraperitoneally once a week as the following: group I (Ag-NPs at the dose of 40 mg/kg), group II (YO-NPs at the dose of 40 mg/kg), group III (Ag + YO NPs at the doses of 40 mg/kg, each) and group IV (control; distilled water). After 35 days of the injections, the sexual behavior, oxidative parameters in testis, sperm parameters, serum testosterone, apoptotic germ cells and testicular histology were evaluated. Our findings showed that Ag-NPs decreased the weight of the reproductive organs, sexual behavior, oxidative defense parameters, sperm count and motility of male mice. In addition, the apoptotic cells in testicular cross-sections and TBARS level increased after Ag-NPs exposure when compared to other groups. However, the YO-NPs had protective effects in the studied parameters of testicles and minimized the Ag-NPs toxicity in male mice. In conclusion, the results revealed that the toxicity of Ag-NPS altered testicular functions in male mice that were effectively ameliorated by YO-NPs.
Collapse
|
6
|
Contribution of growth hormone secretagogue receptor (GHSR) signaling in the ventral tegmental area (VTA) to the regulation of social motivation in male mice. Transl Psychiatry 2021; 11:230. [PMID: 33879778 PMCID: PMC8058340 DOI: 10.1038/s41398-021-01350-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/19/2021] [Accepted: 03/30/2021] [Indexed: 01/22/2023] Open
Abstract
Most psychiatric disorders are characterized by deficits in the ability to interact socially with others. Ghrelin, a hormone normally associated with the regulation of glucose utilization and appetite, is also implicated in the modulation of motivated behaviors including those associated with food and sex rewards. Here we hypothesized that deficits in ghrelin receptor (growth hormone secretagogue receptor; GHSR) signaling are also associated with deficits in social motivation in male mice. To test this hypothesis, we compared social motivation in male mice lacking GHSR or mice treated with the GHSR antagonist JMV2959 with that of WT or vehicle-treated mice. GHSR signaling in dopamine cells of the ventral tegmental area (VTA) has been implicated in the control of sexual behavior, thus we further hypothesized that GHSR signaling in the VTA is important for social motivation. Thus, we conducted studies where we delivered JMV2959 to block GHSR in the VTA of mice, and studies where we rescued the expression of GHSR in the VTA of GHSR knockout (KO) mice. Mice lacking GHSR or injected with JMV2959 peripherally for 3 consecutive days displayed lower social motivation as reflected by a longer latency to approach a novel conspecific and shorter interaction time compared to WT or vehicle-treated controls. Furthermore, intra-VTA infusion of JMV2959 resulted in longer latencies to approach a novel conspecific, whereas GHSR KO mice with partial rescue of the GHSR showed decreased latencies to begin a novel social interaction. Together, these data suggest that GHSR in the VTA facilitate social approach in male mice, and GHSR-signaling deficits within the VTA result in reduced motivation to interact socially.
Collapse
|
7
|
Vestlund J, Jerlhag E. The glucagon-like peptide-1 receptor agonist, exendin-4, reduces sexual interaction behaviors in a brain site-specific manner in sexually naïve male mice. Horm Behav 2020; 124:104778. [PMID: 32450068 DOI: 10.1016/j.yhbeh.2020.104778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 01/26/2023]
Abstract
Besides reducing food intake and controlling energy balance, glucagon-like peptide-1 (GLP-1) suppresses the reinforcing properties of palatable foods and addictive drugs. This reduction in reward involves activation of GLP-1 receptors (GLP-1R) within areas processing natural and artificial rewards, including the laterodorsal tegmental area (LDTg), ventral tegmental area (VTA) and nucleus accumbens (NAc) shell. These areas are part of a neurocircuitry mediating reward from addictive drugs and natural rewards including sexual behaviors. The male sexual encounter with a female includes three different stages: a pre-sexual interaction phase with social behaviors, which is followed by a sexual interaction phase with mounting and intromission of the female, and ends with a post-sexual interaction phase characterized by self-grooming behaviors. Albeit GLP-1 modulates reward, the influence of GLP-1R activation on sexual interaction is unknown. Thus, we infused the GLP-1R agonist, exendin-4 (Ex4), into sub-regions of the reward neurocircuitry in sexually naïve male mice and recorded their novel interaction with an estrus female. We found that Ex4 into the LDTg, posterior VTA or NAc shell reduces pre-sexual interaction behaviors and activation of GLP-1R in the LDTg or posterior VTA decreases sexual interaction behaviors. Contrarily, Ex4 infusion into anterior VTA does not influence these behaviors. Furthermore, self-grooming behaviors are not influenced by activation of GLP-1R in the aforementioned areas. These data highlight that activation of GLP-1R in reward-related areas reduces different aspects of the sexual interaction chain and further supports a role of the GLP-1R in social behaviors.
Collapse
Affiliation(s)
- Jesper Vestlund
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
8
|
Glucagon-like peptide-1 receptors and sexual behaviors in male mice. Psychoneuroendocrinology 2020; 117:104687. [PMID: 32388229 DOI: 10.1016/j.psyneuen.2020.104687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/20/2020] [Accepted: 04/11/2020] [Indexed: 01/02/2023]
Abstract
The gut-brain peptide glucagon-like peptide-1 (GLP-1) reduces reward from palatable food and drugs of abuse. Recent rodent studies show that activation of GLP-1 receptors (GLP-1R) within the nucleus of the solitary tract (NTS) not only suppresses the motivation and intake of palatable food, but also reduces alcohol-related behaviors. As reward induced by addictive drugs and sexual behaviors involve similar neurocircuits, we hypothesized that activation of GLP-1R suppresses sexual behavior in sexually naïve male mice. We initially identified that systemic administration of the GLP-1R agonist, exendin-4 (Ex4), decreased the frequency and duration of mounting behaviors, but did not alter the preference for females or female bedding. Thereafter infusion of Ex4 into the NTS decreased various behaviors of the sexual interaction chain, namely social, mounting and self-grooming behaviors. In male mice tested in the sexual interaction test, NTS-Ex4 increased dopamine turnover and enhanced serotonin levels in the nucleus accumbens (NAc). In addition, these mice displayed higher corticosterone, but not testosterone, levels in plasma. Finally, GLP-1R antagonist, exendin-3 (9-39) amide (Ex9), infused into the NTS differentially altered the ability of systemic-Ex4 to suppress the various behaviors of the sexual interaction chain, indicating that GLP-1R within the NTS is one of many sub-regions contributing to the GLP-1 dependent sexual behavior link. In these mice NTS-Ex9 partly blocked the systemic-Ex4 enhancement of corticosterone levels. Collectively, these data highlight that activation of GLP-1R, specifically those in the NTS, reduces sexual interaction behaviors in sexually naïve male mice and further provide a link between NTS-GLP-1R activation and reward-related behaviors.
Collapse
|
9
|
Schéle E, Pfabigan DM, Simrén J, Sailer U, Dickson SL. Ghrelin Induces Place Preference for Social Interaction in the Larger Peer of a Male Rat Pair. Neuroscience 2020; 447:148-154. [PMID: 32032669 DOI: 10.1016/j.neuroscience.2020.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/08/2019] [Accepted: 01/14/2020] [Indexed: 01/02/2023]
Abstract
Social interaction is important for survival in most social species including humans. To ensure social activities, individuals experience reward from social interaction, generating a powerfully reinforcing process. Here we hypothesized that reward from social interaction in a juvenile male rat pair may be enhanced by ghrelin, a circulating hormone that has been shown to enhance reward from other natural (e.g. food, sex) as well as artificial reinforcers (e.g. alcohol and other drugs of abuse). To this end, we assessed the impact of ghrelin and a ghrelin antagonist on preference for a chamber previously paired to the presence of a social partner in a conditioned place preference paradigm. We found that ghrelin increased and a ghrelin antagonist decreased preference for social interaction, but only in the heavier partner in a social pair. In addition, we found that administered ghrelin induced a positive association between preference for social interaction and body weight difference within socially interacting pairs, where larger ghrelin treated rats preferred social interaction, whereas smaller ghrelin treated rats avoided it, which raises the question if ghrelin could have a role in implementing social hierarchies in rats. In summary, we conclude that ghrelin signaling increases the reward from social interaction in a manner that reflects the degree of divergence in body weight between the social pair.
Collapse
Affiliation(s)
- Erik Schéle
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniela M Pfabigan
- Department of Behavioural Sciences in Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, Postboks 1111 Blindern, 0317 Oslo, Norway
| | - Joel Simrén
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Uta Sailer
- Department of Behavioural Sciences in Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, Postboks 1111 Blindern, 0317 Oslo, Norway
| | - Suzanne L Dickson
- Institute for Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
10
|
Akalu Y, Molla MD, Dessie G, Ayelign B. Physiological Effect of Ghrelin on Body Systems. Int J Endocrinol 2020; 2020:1385138. [PMID: 32565790 PMCID: PMC7267865 DOI: 10.1155/2020/1385138] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Ghrelin is a relatively novel multifaceted hormone that has been found to exert a plethora of physiological effects. In this review, we found/confirmed that ghrelin has effect on all body systems. It induces appetite; promotes the use of carbohydrates as a source of fuel while sparing fat; inhibits lipid oxidation and promotes lipogenesis; stimulates the gastric acid secretion and motility; improves cardiac performance; decreases blood pressure; and protects the kidneys, heart, and brain. Ghrelin is important for learning, memory, cognition, reward, sleep, taste sensation, olfaction, and sniffing. It has sympatholytic, analgesic, antimicrobial, antifibrotic, and osteogenic effects. Moreover, ghrelin makes the skeletal muscle more excitable and stimulates its regeneration following injury; delays puberty; promotes fetal lung development; decreases thyroid hormone and testosterone; stimulates release of growth hormone, prolactin, glucagon, adrenocorticotropic hormone, cortisol, vasopressin, and oxytocin; inhibits insulin release; and promotes wound healing. Ghrelin protects the body by different mechanisms including inhibition of unwanted inflammation and induction of autophagy. Having a clear understanding of the ghrelin effect in each system has therapeutic implications. Future studies are necessary to elucidate the molecular mechanisms of ghrelin actions as well as its application as a GHSR agonist to treat most common diseases in each system without any paradoxical outcomes on the other systems.
Collapse
Affiliation(s)
- Yonas Akalu
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Gashaw Dessie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
11
|
Vestlund J, Kalafateli AL, Studer E, Westberg L, Jerlhag E. Neuromedin U induces self-grooming in socially-stimulated mice. Neuropharmacology 2019; 162:107818. [PMID: 31647973 DOI: 10.1016/j.neuropharm.2019.107818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/17/2019] [Accepted: 10/18/2019] [Indexed: 11/19/2022]
Abstract
Emerging evidence suggest that appetite-regulating peptides modulate social behaviors. We here investigate whether the anorexigenic peptide neuromedin U (NMU) modulates sexual behavior in male mice. However, instead of modulating sexual behaviors, NMU administered into the third ventricle increased self-grooming behavior. In addition, NMU-treatment increased self-grooming behavior when exposed to other mice or olfactory social-cues, but not when exposed to non-social environments. As the neuropeptide oxytocin is released during social investigation and exogenous oxytocin induces self-grooming, its role in NMU-induced self-grooming behavior was investigated. In line with our hypothesis, the oxytocin receptor antagonist inhibited NMU-induced self-grooming behavior in mice exposed to olfactory social-cues. Moreover, dopamine in the mesocorticolimbic system is known to be a key regulator of self-grooming behavior. In line with this, we proved that infusion of NMU into nucleus accumbens increased self-grooming behavior in mice confronted with an olfactory social-cue and that this behavior was inhibited by antagonism of dopamine D2, but not D1/D5, receptors. Moreover repeated NMU treatment enhanced ex vivo dopamine levels and decreased the expression of dopamine D2 receptors in nucleus accumbens in socially housed mice. On the other hand, the olfactory stimuli-dependent NMU-induced self-grooming was not affected by a corticotrophin-releasing hormone antagonist, and NMU-treatment did not influence repetitive behaviors in the marble burying test. In conclusion, our results suggest that NMU treatment and, social cues - potentially triggering oxytocin release - together induce excessive grooming behavior in male mice. The mesolimbic dopamine system, including accumbal dopamine D2 receptors, was identified as a crucial downstream mechanism.
Collapse
Affiliation(s)
- Jesper Vestlund
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Aimilia Lydia Kalafateli
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Studer
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lars Westberg
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Institute of Neuroscience and Physiology, Department of Pharmacology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
12
|
Vestlund J, Bergquist F, Eckernäs D, Licheri V, Adermark L, Jerlhag E. Ghrelin signalling within the rat nucleus accumbens and skilled reach foraging. Psychoneuroendocrinology 2019; 106:183-194. [PMID: 30999229 DOI: 10.1016/j.psyneuen.2019.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 04/06/2019] [Indexed: 01/23/2023]
Abstract
Motivation alters behaviour in a complex manner and nucleus accumbens (NAc) shell has been implied as a key structure regulating such behaviour. Recent studies show that acute ghrelin signalling enhances motivation when assessed in a simple motor task. The aim of the present study was to define the role of ghrelin signalling on motivation in a more complex motor behaviour. Rats were tested in the Montoya staircase, an animal model of skilled reach foraging assessed by the number of sucrose pellets consumed. Electrophysiological recordings were conducted to explore the neurophysiological correlates of ghrelin signalling. The initial electrophysiological results displayed that ex vivo administration of ghrelin increased NAc shell output in brain slices from drug- and training-naïve rats. In rats with an acquired skilled reach performance, acute as well as repeated treatment with a ghrelin receptor (GHSR-1 A) antagonist (JMV2959) decreased the number of sucrose pellets consumed. Moreover, infusion of JMV2959 into NAc shell reduced this consumption. Sub-chronic, during ten days, JMV2959 treatment during training on the Montoya staircase reduced the number of pellets consumed, whereas ghrelin improved this behaviour. In addition, field potential and whole cell recordings were conducted in NAc shell of rats that had been treated with ghrelin or GHSR-1 A antagonist during training on the Montoya staircase. Sub-chronic administration of ghrelin during motor-skill learning selectively increased the frequency of inhibitory transmission in the NAc shell, resulting in a net suppression of accumbal output. Collectively these data suggest that ghrelin signalling in NAc shell enhances skilled reached foraging tentatively by increasing the motivation.
Collapse
Affiliation(s)
- Jesper Vestlund
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Filip Bergquist
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel Eckernäs
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Valentina Licheri
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Louise Adermark
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
13
|
Vestlund J, Winsa-Jörnulf J, Hovey D, Lundström S, Lichtenstein P, Anckarsäter H, Studer E, Suchankova P, Westberg L, Jerlhag E. Ghrelin and aggressive behaviours-Evidence from preclinical and human genetic studies. Psychoneuroendocrinology 2019; 104:80-88. [PMID: 30818255 DOI: 10.1016/j.psyneuen.2019.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 01/06/2023]
Abstract
Aggressive behaviour is of crucial importance in the defence for limited resources including food and mates and involves central serotonin as well as dopamine signalling. As ghrelin modulates food intake and sexual behaviour we initially investigated the hypothesis that central ghrelin signalling regulates aggressive behaviour in the resident intruder paradigm in male mice. Moreover, interaction between ghrelin signalling and serotonergic, noradrenergic as well as dopaminergic neurotransmission in aggression was investigated. The relevance of ghrelin for human aggression per se as well as for aggression induced by alcohol was evaluated in a human genetic association study comprising young men (n = 784) from the normal population assessed for anti-social behaviours. The present study demonstrates that central ghrelin infusion, but not ghrelin administered systemically, increases aggression. Moreover aggressive behaviour is decreased by pharmacological suppression of the growth hormone secretagogue receptor-1 A (GHSR-1A) by JMV2959. As indicated by the ex vivo biochemical data serotonin, rather than dopamine or noradrenaline, in amygdala may have central roles for the ability of JMV2959 to reduce aggression. This link between central serotonin, GHSR-1A and aggression is further substantiated by the behavioural data showing that JMV2959 cannot decrease aggression following depletion of central serotonin signalling. The genetic association study demonstrates that males carrying the Leu72Leu genotype of the pre-pro-ghrelin gene and displaying hazardous alcohol use are more aggressive when compared to the group carrying the Met-allele. Collectively, this contributes to the identification of central ghrelin pathway as an important modulator in the onset of aggressive behaviours in male mice.
Collapse
Affiliation(s)
- Jesper Vestlund
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Julia Winsa-Jörnulf
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Daniel Hovey
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Lundström
- Institute of Neuroscience and Physiology, Gillberg Neuropsychiatry Centre, University of Gothenburg, Sweden
| | - Paul Lichtenstein
- Karolinska Institutet, Department of Medical Epidemiology and Biostatistics, Stockholm, Sweden
| | - Henrik Anckarsäter
- Institute of Neuroscience and Physiology, Centre of Ethics, Law and Mental Health (CELAM), University of Gothenburg, Sweden
| | - Erik Studer
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Petra Suchankova
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
14
|
Hoxha E, Marcinnò A, Montarolo F, Masante L, Balbo I, Ravera F, Laezza F, Tempia F. Emerging roles of Fgf14 in behavioral control. Behav Brain Res 2018; 356:257-265. [PMID: 30189289 PMCID: PMC10082543 DOI: 10.1016/j.bbr.2018.08.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 01/19/2023]
Abstract
Sexual disturbances, and aggressivity are a major social problem. However, the molecular mechanisms involved in the control of these behaviors are largely unknown. FGF14, which is an intracellular protein controlling neuronal excitability and synaptic transmission, has been implied in neurologic and psychiatric disorders. Mice with Fgf14 deletion show blunted responses to drugs of abuse. By behavioral tests we show that male Fgf14 knockout mice have a marked reduction of several behaviors including aggressivity and sexual behavior. Other behaviors driven by spontaneous initiative like burying novel objects and spontaneous digging and climbing are also reduced in Fgf14 knockout mice. These deficits cannot be attributed to a generalized decrease of activity levels, because in the open field test Fgf14 knockout mice have the same spontaneous locomotion as wild types and increased rearing. Our results show that Fgf14 is important to preserve a set of behaviors and suggest that fine tuning of neuronal function by Fgf14 is an important mechanism of control for such behaviors.
Collapse
Affiliation(s)
- Eriola Hoxha
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, Italy; Department of Neuroscience, University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| | - Andrea Marcinnò
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, Italy.
| | - Francesca Montarolo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, Italy.
| | - Linda Masante
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, Italy.
| | - Ilaria Balbo
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, Italy; Department of Neuroscience, University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| | - Francesco Ravera
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, Italy; Department of Neuroscience, University of Torino, Corso Raffaello 30, 10125, Torino, Italy.
| | - Fernanda Laezza
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Filippo Tempia
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, Italy; Department of Neuroscience, University of Torino, Corso Raffaello 30, 10125, Torino, Italy; National Neuroscience Institute (Italy), Corso Massimo D'Azeglio 52, 10126 Torino, Italy.
| |
Collapse
|
15
|
Farokhnia M, Lee MR, Farinelli LA, Ramchandani VA, Akhlaghi F, Leggio L. Pharmacological manipulation of the ghrelin system and alcohol hangover symptoms in heavy drinking individuals: Is there a link? Pharmacol Biochem Behav 2018; 172:39-49. [PMID: 30030128 DOI: 10.1016/j.pbb.2018.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/23/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022]
Abstract
Ghrelin, an orexigenic peptide synthesized in the stomach, is a key player in the gut-brain axis. In addition to its role in regulating food intake and energy homeostasis, ghrelin has been shown to modulate alcohol-related behaviors. Alcohol consumption frequently results in hangover, an underexplored phenomenon with considerable medical, psychological, and socioeconomic consequences. While the pathophysiology of hangover is not clear, contributions of mechanisms such as alcohol-induced metabolic/endocrine changes, inflammatory/immune response, oxidative stress, and gut dysbiosis have been reported. Interestingly, these mechanisms considerably overlap with ghrelin's physiological functions. Here, we investigated whether pharmacological manipulation of the ghrelin system may affect alcohol hangover symptoms. Data were obtained from two placebo-controlled laboratory studies. The first study tested the effects of intravenous (IV) ghrelin and consisted of two experiments: a progressive-ratio IV alcohol self-administration (IV-ASA) and a fixed-dose IV alcohol clamp. The second study tested the effects of an oral ghrelin receptor inverse agonist (PF-5190457) and included a fixed-dose oral alcohol administration experiment. Alcohol hangover data were collected the morning after each alcohol administration experiment using the Acute Hangover Scale (AHS). IV ghrelin, compared to placebo, significantly reduced alcohol hangover after IV-ASA (p = 0.04) and alcohol clamp (p = 0.04); PF-5190457 had no significant effect on AHS scores. Females reported significantly higher hangover symptoms than males following the IV-ASA experiment (p = 0.04), but no gender × drug condition (ghrelin vs. placebo) effect was found. AHS total scores were positively correlated with peak subjective responses, including 'stimulation' (p = 0.08), 'sedation' (p = 0.009), 'feel high' (p = 0.05), and 'feel intoxicated' (p = 0.03) during the IV-ASA. IV ghrelin blunted the positive association between alcohol sedation and hangover as shown by trend-level drug × sedation effect (p = 0.08). This is the first study showing that exogenous ghrelin administration, but not ghrelin receptor inverse agonism, affects hangover symptoms. Future research should investigate the potential mechanism(s) underlying this effect.
Collapse
Affiliation(s)
- Mehdi Farokhnia
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Mary R Lee
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Lisa A Farinelli
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| | - Vijay A Ramchandani
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA; Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
16
|
Hyland L, Rosenbaum S, Edwards A, Palacios D, Graham MD, Pfaus JG, Woodside B, Abizaid A. Central ghrelin receptor stimulation modulates sex motivation in male rats in a site dependent manner. Horm Behav 2018; 97:56-66. [PMID: 29080670 DOI: 10.1016/j.yhbeh.2017.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/28/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Ghrelin, a hormone produced primarily by the stomach, has been associated with motivational processes that include reward-seeking behaviors. In male laboratory mice, elevation of ghrelin levels enhances some aspects of sexual motivation and behavior, whereas in other experiments with male mice, rats, and other species, ghrelin treatment or food deprivation decreases sexual motivation and/or behavior. The present tested the hypothesis that stimulation of ghrelin receptors in different brain regions have opposite effects on male sexual motivation and behavior. To do this we examined appetitive and consummatory sex behaviors of male rats with a truncated ghrelin receptor (FHH-GHSRm1/Mcwi), and that of their WT (FHH) littermates. We also examined the effects of ghrelin or the ghrelin antagonist D-Lys-GHRP6 delivered into the VTA or the MPOA on appetitive and consummatory sex behaviors in male Long Evans rats. Results demonstrate that rats with a truncated ghrelin receptor, or rats that are food deprived, show deficits in anticipatory sex. Furthermore, although ghrelin does not further stimulate sex anticipation in rats when infused into the VTA, intra-VTA infusions of D-Lys-GHRP6 into the VTA further decreases in sex anticipation in food deprived rats. In contrast, ghrelin delivery into the mPOA decreased sex anticipation compared to saline or D-Lys-GHRP6 infused rats. Overall, these data suggest that ghrelin receptor signalling is important for full expression of appetitive sex behaviors. Within the VTA, ghrelin may act to enhance sex motivation, while acting on the mPOA to decrease sex motivation and promote foraging.
Collapse
Affiliation(s)
- Lindsay Hyland
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | | | - Alexander Edwards
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Daniel Palacios
- Centre for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | - M Dean Graham
- Centre for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | - James G Pfaus
- Centre for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | - Barbara Woodside
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada; Centre for Studies in Behavioral Neurobiology, Concordia University, Montreal, Quebec, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
17
|
The GHR-R antagonist JMV 2959 neither induces malaise nor alters the malaise property of LiCl in the adult male rat. Physiol Behav 2017; 183:46-48. [PMID: 29056353 DOI: 10.1016/j.physbeh.2017.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/16/2017] [Accepted: 10/16/2017] [Indexed: 10/18/2022]
Abstract
The orexigenic peptide ghrelin (GHR) interacts with ghrelin receptors (GHR-Rs) to modulate brain reinforcement and feeding circuits. Pharmacological inactivation of GHR-Rs via administration of the drug JMV 2959 attenuates the rewarding/reinforcing effects of several drugs of abuse including alcohol, morphine, amphetamine and nicotine. One view of these results is that inactivation of GHR-Rs taps into brain reinforcement/feeding circuits acted upon by drugs of abuse. An alternate explanation is that JMV 2959 may induce malaise, which in turn may limit reinforcement as well as food ingestion. This is a variable of interest given that nicotine alone can induce malaise which may be enhanced by JMV 2959. In the present study, we assessed the capacity of JMV 2959 to produce malaise using a conditioned taste aversion (CTA) task. Adult male rats were allowed to consume a 0.1% sodium saccharin solution and then injected IP with either vehicle, 0.4mg/kg nicotine, 3mg/kg JMV 2959, a combination of 0.4mg/kg nicotine and 3mg/kg JMV 2959, or 32mg/kg lithium chloride (a positive control known to support induction of CTA). Lithium chloride produced a robust avoidance of the saccharin solution in subsequent 2 bottle (water and saccharin) tests, whereas JMV 2959 alone did not induce CTA. The combination of JMV 2959 and nicotine induced a moderate degree of CTA that was similar to that produced by nicotine alone. These results suggest that JMV 2959 is unlikely to limit either reinforcement or food ingestion via induction of malaise.
Collapse
|
18
|
Sominsky L, Hodgson DM, McLaughlin EA, Smith R, Wall HM, Spencer SJ. Linking Stress and Infertility: A Novel Role for Ghrelin. Endocr Rev 2017; 38:432-467. [PMID: 28938425 DOI: 10.1210/er.2016-1133] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Infertility affects a remarkable one in four couples in developing countries. Psychological stress is a ubiquitous facet of life, and although stress affects us all at some point, prolonged or unmanageable stress may become harmful for some individuals, negatively impacting on their health, including fertility. For instance, women who struggle to conceive are twice as likely to suffer from emotional distress than fertile women. Assisted reproductive technology treatments place an additional physical, emotional, and financial burden of stress, particularly on women, who are often exposed to invasive techniques associated with treatment. Stress-reduction interventions can reduce negative affect and in some cases to improve in vitro fertilization outcomes. Although it has been well-established that stress negatively affects fertility in animal models, human research remains inconsistent due to individual differences and methodological flaws. Attempts to isolate single causal links between stress and infertility have not yet been successful due to their multifaceted etiologies. In this review, we will discuss the current literature in the field of stress-induced reproductive dysfunction based on animal and human models, and introduce a recently unexplored link between stress and infertility, the gut-derived hormone, ghrelin. We also present evidence from recent seminal studies demonstrating that ghrelin has a principal role in the stress response and reward processing, as well as in regulating reproductive function, and that these roles are tightly interlinked. Collectively, these data support the hypothesis that stress may negatively impact upon fertility at least in part by stimulating a dysregulation in ghrelin signaling.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - Deborah M Hodgson
- School of Psychology, Faculty of Science and IT, The University of Newcastle, New South Wales 2308, Australia
| | - Eileen A McLaughlin
- School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand.,School of Environmental & Life Sciences, Faculty of Science and IT, The University of Newcastle, New South Wales 2308, Australia
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Lookout Road, New Lambton Heights, New South Wales 2305, Australia.,Priority Research Centre in Reproductive Science, The University of Newcastle, New South Wales 2308, Australia
| | - Hannah M Wall
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| |
Collapse
|
19
|
Zallar LJ, Farokhnia M, Tunstall BJ, Vendruscolo LF, Leggio L. The Role of the Ghrelin System in Drug Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:89-119. [PMID: 29056157 DOI: 10.1016/bs.irn.2017.08.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past years, a significant volume of research has implicated the appetitive hormone ghrelin in the mechanisms underlying drug use and addiction. From a neuroscientific standpoint, ghrelin modulates both reward and stress pathways, two key drivers of substance use behaviors. Previous investigations support a connection between the ghrelin system and alcohol, stimulants, and tobacco use in both animals and humans, while the research on opioids and cannabis is scarce. In general, upregulation of the ghrelin system seems to enhance craving for drugs as well as substances use. On the other hand, acute and chronic exposure to drugs of abuse influences the ghrelin system at different levels. This chapter summarizes the literature on the relationship between the ghrelin system and substance-related behaviors. We also review recent work investigating the ghrelin system as a potential pharmacological target for treating substance use disorders and discuss the need for additional research.
Collapse
Affiliation(s)
- Lia J Zallar
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States; Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Mehdi Farokhnia
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States
| | - Brendan J Tunstall
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Leandro F Vendruscolo
- Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States; Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States.
| |
Collapse
|
20
|
Gholami M, Ahmadi SAY, Abaszadeh A, Khaki A. Protective effects of melatonin and ghrelin on spermatogenesis: A narrative review of the literature. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.5.265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
21
|
Park BY, Wilson G, Berger J, Christman M, Reina B, Bishop F, Klam WP, Doan AP. Is Internet Pornography Causing Sexual Dysfunctions? A Review with Clinical Reports. Behav Sci (Basel) 2016; 6:E17. [PMID: 27527226 PMCID: PMC5039517 DOI: 10.3390/bs6030017] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 01/07/2023] Open
Abstract
Traditional factors that once explained men's sexual difficulties appear insufficient to account for the sharp rise in erectile dysfunction, delayed ejaculation, decreased sexual satisfaction, and diminished libido during partnered sex in men under 40. This review (1) considers data from multiple domains, e.g., clinical, biological (addiction/urology), psychological (sexual conditioning), sociological; and (2) presents a series of clinical reports, all with the aim of proposing a possible direction for future research of this phenomenon. Alterations to the brain's motivational system are explored as a possible etiology underlying pornography-related sexual dysfunctions. This review also considers evidence that Internet pornography's unique properties (limitless novelty, potential for easy escalation to more extreme material, video format, etc.) may be potent enough to condition sexual arousal to aspects of Internet pornography use that do not readily transition to real-life partners, such that sex with desired partners may not register as meeting expectations and arousal declines. Clinical reports suggest that terminating Internet pornography use is sometimes sufficient to reverse negative effects, underscoring the need for extensive investigation using methodologies that have subjects remove the variable of Internet pornography use. In the interim, a simple diagnostic protocol for assessing patients with porn-induced sexual dysfunction is put forth.
Collapse
Affiliation(s)
- Brian Y Park
- Flight Surgeon, Fleet Logistics Support Squadron 40, Norfolk, VA 34800 Bob Wilson Drive, San Diego, CA 92592, USA.
| | - Gary Wilson
- The Reward Foundation, 5 Rose Street, Edinburgh EH2 2PR, Scotland, UK.
| | - Jonathan Berger
- Department of Urology, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92592, USA.
| | - Matthew Christman
- Department of Urology, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92592, USA.
| | - Bryn Reina
- Department of Mental Health, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92592, USA.
| | - Frank Bishop
- Department of Ophthalmology, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92592, USA.
| | - Warren P Klam
- Department of Mental Health, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92592, USA.
| | - Andrew P Doan
- Department of Mental Health, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92592, USA.
- Department of Ophthalmology, Naval Medical Center San Diego, 34800 Bob Wilson Drive, San Diego, CA 92592, USA.
| |
Collapse
|