1
|
Klausen MK, Kuzey T, Pedersen JN, Justesen SK, Rasmussen L, Knorr UB, Mason G, Ekstrøm CT, Holst JJ, Koob G, Benveniste H, Volkow ND, Knudsen GM, Vilsbøll T, Fink-Jensen A. Does semaglutide reduce alcohol intake in Danish patients with alcohol use disorder and comorbid obesity? Trial protocol of a randomised, double-blinded, placebo-controlled clinical trial (the SEMALCO trial). BMJ Open 2025; 15:e086454. [PMID: 39779270 PMCID: PMC11749217 DOI: 10.1136/bmjopen-2024-086454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Alcohol use disorder (AUD) is a massive burden for the individual, relatives and society. Despite this, the treatment gap is wide compared with other mental health disorders. Treatment options are sparse, with only three Food and Drug Administration (FDA)-approved pharmacotherapies. Glucagon-like peptide-1 (GLP-1) receptor agonists have shown promising effects in reducing alcohol consumption in preclinical experiments, and clinical trials are in high demand to investigate these potentially beneficial effects in patients diagnosed with AUD. METHODS AND ANALYSIS The effects of the once-weekly GLP-1 receptor agonist semaglutide will be investigated in a 26-week, randomised, placebo-controlled, double-blinded clinical trial. 108 patients diagnosed with AUD and comorbid obesity (body mass index (BMI)≥30 kg/m2)) will be randomised to treatment with either semaglutide or placebo in combination with cognitive behavioural therapy. A subgroup of the patients will have structural, functional and neurochemical brain imaging performed at baseline and after 26 weeks of treatment. The primary endpoint is the reduction in heavy drinking days, defined as days with excess consumption of 48/60 g of alcohol per day (women and men, respectively). Secondary endpoints include changes from baseline to week 26 in alcohol consumption, smoking status, quality of life, fibrosis-4 score, plasma concentration of phosphatidylethanol, brain gamma-aminobutyric acid (GABA) levels, alcohol cue reactivity, functional connectivity and white matter tract integrity. STATUS Recruitment started in June 2023. ETHICS AND DISSEMINATION The study is approved by the Ethics Committee of the Capital Region of Denmark, the Danish Board of Health and the Danish Data Protection Agency. All patients will sign the written consent form before being included in the trial. Results will be disseminated through peer-reviewed publications and conference presentations. After the results are published, all de-identified data will be available in the Mendeley database. TRIAL REGISTRATION NUMBER NCT05895643.
Collapse
Affiliation(s)
- Mette Kruse Klausen
- Mental health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Frederiksberg, Denmark
| | - Tugba Kuzey
- Mental health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Frederiksberg, Denmark
| | - Julie Niemann Pedersen
- Mental health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Frederiksberg, Denmark
| | - Signe Keller Justesen
- Mental health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Frederiksberg, Denmark
| | - Line Rasmussen
- Mental health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Frederiksberg, Denmark
| | - Ulla B Knorr
- Mental health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Graeme Mason
- Department of Radiology and Biomedical Imaging, Psychiatry, and Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Claus Thorn Ekstrøm
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - George Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | | | - Nora D Volkow
- The National Institute on Drug abuse, National Institutes of Health, Bethesda, MD, USA
| | - Gitte M Knudsen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Tina Vilsbøll
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Centre Copenhagen, University of Copenhagen, Herlev, Denmark
| | - Anders Fink-Jensen
- Mental health Centre Copenhagen, Mental Health Services in the Capital Region of Denmark, Frederiksberg, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Amohashemi E, Reisi P, Alaei H. The role of NMDA glutamate receptors in the lateral habenula on morphine-induced conditioned place preference in rats. Synapse 2023. [PMID: 37122079 DOI: 10.1002/syn.22273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 05/02/2023]
Abstract
The lateral habenula (LHb) has received special attention due to its role in modulating motivated behavior, stress response, and rewarding and aversive stimuli through monoamine transmission. In the present study, the involvement of the N-methyl-d-aspartate (NMDA) receptors of the LHb in the expression and acquisition phases of morphine-induced conditioned place preference (CPP) was studied in male rats. Bilateral injections of agonist/antagonist (MK-801) of NMDA receptor were performed during the conditioning sessions of the acquisition phase. In other separate groups, drugs were also injected into the LHb before the test session during the expression phase of CPP. A 5-day CPP bias paradigm was used to study the effect of injections of NMDA and MK-801 into the LHb on morphine reward-related behavior. Different doses of NMDA plus morphine reduced the CPP score during the acquisition phase, whereas MK-801 significantly increased conditioning scores during the acquisition phase of CPP. The injection of agonists and antagonists of NMDA receptors in LHb had no significant effect on CPP scores and locomotion during the expression phase of CPP, whereas the motor activity in the acquisition phase was affected by the drugs. The reduction effect of NMDA on the CPP scores during the acquisition phase was blocked by pretreatment with MK-801. Our findings also suggest that NMDA receptors in the LHb may be involved in the acquisition phase of morphine-induced CPP.
Collapse
Affiliation(s)
- Elahe Amohashemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parham Reisi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hojjatallah Alaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Nentwig TB, Vaughan DT, Braunscheidel KM, Browning BD, Woodward JJ, Chandler LJ. The lateral habenula is not required for ethanol dependence-induced escalation of drinking. Neuropsychopharmacology 2022; 47:2123-2131. [PMID: 35717465 PMCID: PMC9556754 DOI: 10.1038/s41386-022-01357-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022]
Abstract
The lateral habenula (LHb) is an epithalamic nuclei that has been shown to signal the aversive properties of ethanol. The present study tested the hypothesis that activity of the LHb is required for the acquisition and/or expression of dependence-induced escalation of ethanol drinking and somatic withdrawal symptoms. Male Sprague-Dawley rats completed 4 weeks of baseline drinking under a standard intermittent access two-bottle choice (2BC) paradigm before undergoing 2 weeks of daily chronic intermittent ethanol (CIE) via vapor inhalation. Following this CIE exposure period, rats resumed 2BC drinking to assess dependence-induced changes in voluntary ethanol consumption. CIE exposed rats exhibited a significant increase in ethanol drinking that was associated with high levels of blood alcohol and a reduction in somatic symptoms of ethanol withdrawal. However, despite robust cFos activation in the LHb during ethanol withdrawal, chemogenetic inhibition of the LHb did not alter either ethanol consumption or somatic signs of ethanol withdrawal. Consistent with this observation, ablating LHb outputs via electrolytic lesions of the fasciculus retroflexus (FR) did not alter the acquisition of somatic withdrawal symptoms or escalation of ethanol drinking in CIE-exposed rats. The LHb controls activity of the rostromedial tegmental nucleus (RMTg), a midbrain nucleus activated by aversive experiences including ethanol withdrawal. During ethanol withdrawal, both FR lesioned and sham control rats exhibited similar cFos activation in the RMTg, suggesting that RMTg activation during ethanol withdrawal does not require LHb input. These data suggest that, at least in male rats, the LHb is not necessary for the acquisition or expression of escalation of ethanol consumption or expression of somatic symptoms of ethanol withdrawal. Overall, our findings provide evidence that the LHb is dispensable for some of the negative consequences of ethanol withdrawal.
Collapse
Affiliation(s)
- Todd B Nentwig
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Dylan T Vaughan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin M Braunscheidel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Neuroscience Mount Sinai, New York, NY, USA
| | - Brittney D Browning
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
4
|
Pierucci M, Delicata F, Colangeli R, Marino Gammazza A, Pitruzzella A, Casarrubea M, De Deurwaerdère P, Di Giovanni G. Nicotine modulation of the lateral habenula/ventral tegmental area circuit dynamics: An electrophysiological study in rats. Neuropharmacology 2022; 202:108859. [PMID: 34710468 DOI: 10.1016/j.neuropharm.2021.108859] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022]
Abstract
Nicotine, the addictive component of tobacco, has bivalent rewarding and aversive properties. Recently, the lateral habenula (LHb), a structure that controls ventral tegmental area (VTA) dopamine (DA) function, has attracted attention as it is potentially involved in the aversive properties of drugs of abuse. Hitherto, the LHb-modulation of nicotine-induced VTA neuronal activity in vivo is unknown. Using standard single-extracellular recording in anesthetized rats, we observed that intravenous administration of nicotine hydrogen tartrate (25-800 μg/kg i.v.) caused a dose-dependent increase in the basal firing rate of the LHb neurons of nicotine-naïve rats. This effect underwent complete desensitization in chronic nicotine (6 mg/kg/day for 14 days)-treated animals. As previously reported, acute nicotine induced an increase in the VTA DA neuronal firing rate. Interestingly, only neurons located medially (mVTA) but not laterally (latVTA) within the VTA were responsive to acute nicotine. This pattern of activation was reversed by chronic nicotine exposure which produced the selective increase of latVTA neuronal activity. Acute lesion of the LHb, similarly to chronic nicotine treatment, reversed the pattern of DA cell activation induced by acute nicotine increasing latVTA but not mVTA neuronal activity. Our evidence indicates that LHb plays an important role in mediating the effects of acute and chronic nicotine within the VTA by activating distinct subregional responses of DA neurons. The LHb/VTA modulation might be part of the neural substrate of nicotine aversive properties. By silencing the LHb chronic nicotine could shift the balance of motivational states toward the reward.
Collapse
Affiliation(s)
- Massimo Pierucci
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.
| | - Francis Delicata
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Roberto Colangeli
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Antonella Marino Gammazza
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnosis BIND, University of Palermo, Palermo, Italy
| | - Alessandro Pitruzzella
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnosis BIND, University of Palermo, Palermo, Italy
| | - Maurizio Casarrubea
- Laboratory of Behavioral Physiology, Human Physiology Section Giuseppe Pagano, Department of Biomedicine, Neuroscience and Advanced Diagnosis BIND, University of Palermo, Palermo, Italy
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique Unité Mixte de Recherche, 5287, Bordeaux Cedex, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
5
|
Carlson HN, Christensen BA, Pratt WE. Stimulation of mu opioid, but not GABAergic, receptors of the lateral habenula alters free feeding in rats. Neurosci Lett 2021; 771:136417. [PMID: 34954115 DOI: 10.1016/j.neulet.2021.136417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 01/24/2023]
Abstract
Overconsumption, or eating beyond the point of homeostasis, is a key feature in the development of obesity. Although people are consuming beyond the point of homeostasis, they are not consuming constantly or indefinitely. Thus, there is likely a mechanism that acts to terminate periods of food intake at some point beyond satiation and prior to aversion, or the negative effects of extreme excess (nausea, bloating, etc.). The purpose of the present study was to assess the lateral habenula as a candidate region for such a mechanism, due to its connectivity to midbrain reward circuitry, sensitivity to metabolic signaling, and pronounced role in drug-related motivated behaviors. Two groups of male Sprague-Dawley rats were surgically implanted with bilateral guide cannula targeting the LHb. Rats were then habituated to feeding chambers, wherein locomotion and food intake were monitored throughout a two-hour session. One experimental group was tested in the presence of rat chow; the second group was instead given access to a sweetened fat diet. Each subject separately received a 0.2 μL vehicle (0.9% saline solution) and baclofen-muscimol (50 ng/0.2 μL of each drug dissolved in 0.9% saline) injection. Additionally, on a third injection day, each rat received an injection of mu-opioid agonist DAMGO (0.1 μg/0.2 μL) prior to placement in the chamber. LHb inactivation did not result in significant alterations in feeding behavior, but produced a consistent increase in locomotor activity in both experimental groups. Mu-opioid receptor stimulation increased feeding on standard chow, but decreased intake of the sweetened-fat diet. Although LHb inactivation did not increase feeding as predicted, the novel finding that mu opioid receptor stimulation decreased feeding on a highly palatable diet, but increased intake of rat chow, highlights a differential role for the LHb in regulating hedonic consummatory behavior.
Collapse
Affiliation(s)
| | | | - Wayne E Pratt
- Department of Psychology, Wake Forest University, USA.
| |
Collapse
|
6
|
Zuo W, Zuo Q, Wu L, Mei Q, Shah M, Zheng J, Li D, Xu Y, Ye JH. Roles of corticotropin-releasing factor signaling in the lateral habenula in anxiety-like and alcohol drinking behaviors in male rats. Neurobiol Stress 2021; 15:100395. [PMID: 34568522 PMCID: PMC8449174 DOI: 10.1016/j.ynstr.2021.100395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022] Open
Abstract
Corticotropin-releasing factor (CRF) signaling in the mesocorticolimbic system is known to modulate anxiety-like behavior and alcohol consumption, behaviors that also have been associated with the hyper-glutamatergic state of the lateral habenula (LHb) neurons in rats. However, the role of CRF signaling in the LHb on the glutamate transmission, anxiety-like behaviors and alcohol consumption is unknown. Here, we used male rats that had been consuming alcohol for three months to address this gap in the literature. First, using electrophysiological techniques, we evaluated CRF's effects on the glutamate transmission in LHb neurons in brain slices. CRF facilitated glutamate transmission. The facilitation was greater in neurons of alcohol-withdrawing rats than in those of naïve rats. The facilitation was mimicked by the activation of CRF receptor 1 (CRF1R) but attenuated by the activation of CRF receptor 2 (CRF2R). This facilitation was mediated by upregulating CRF1R-protein kinase A signaling. Conversely, protein kinase C blockade attenuated CRF's facilitation in neurons of naïve rats but promoted it in neurons of alcohol-withdrawing rats. Next, using site-direct pharmacology, we evaluated the role of CRF signaling in the LHb on anxiety-like behaviors and alcohol consumption. Intra-LHb inhibition of CRF1R or activation of CRF2R ameliorated the anxiety-like behaviors in alcohol-withdrawing rats and reduced their alcohol intake when drinking was resumed. These observations provide the first direct behavioral pharmacological and cellular evidence that CRF signaling in the LHb modulates glutamate transmission, anxiety-like behaviors and alcohol consumption, and that adaptation occurs in CRF signaling in the LHb after chronic alcohol consumption. CRF regulates glutamate transmission in the lateral habenula of male rats. CRF1R blockage or CRF2R activation in the LHb reduces anxiety in male rats. CRF1R blockage/CRF2R activation in the LHb reduces alcohol consumption in male rats. Acute ethanol facilitates LHb glutamate transmission involving CRF signaling.
Collapse
Affiliation(s)
- Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Qikang Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Liangzhi Wu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Qinghua Mei
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Manan Shah
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Jiayi Zheng
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Ding Li
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Ying Xu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| |
Collapse
|
7
|
Exploring the Role of Orexinergic Neurons in Parkinson's Disease. Neurotox Res 2021; 39:2141-2153. [PMID: 34495449 DOI: 10.1007/s12640-021-00411-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting about 2% of the population. A neuropeptide, orexin, is linked with sleep abnormalities in the parkinsonian patient. This study aimed to review the changes in the orexinergic system in parkinsonian subjects and the effects of orexin. A number of search techniques were used and presumed during the search, including cloud databank searches of PubMed and Medline using title words, keywords, and MeSH terms. PD is characterised by motor dysfunctions (postural instability, rigidity, tremor) and cognitive disorders, sleep-wake abnormalities grouped under non-motor disorders. The Orexinergic system found in the hypothalamus is linked with autonomic function, neuroprotection, learning and memory, and the sleep-wake cycle. Prepro-orexin, a precursor peptide (130 amino acids), gives rise to orexins (Orx-A and Orx-B). Serum orexin level measurement is vital for evaluating several neurological disorders (Alzheimer's disease, Huntington's disease, and PD). Orexinergic neurons are activated by hypoglycemia and ghrelin, while they are restrained by food consumption and leptin. Orexinergic system dysfunctioning was found to be linked with non-motor symptoms (sleep abnormalities) in PD. Orexinergic neuron's behaviour may be either inhibitory or excitatory depending on the environment in which they are present. As well, orexin antagonists are found to improve the abnormal sleep pattern. Since the orexinergic system plays a role in several psychological and neurological disorders, therefore, these disorders can be managed by targeting this system.
Collapse
|
8
|
Acetaldehyde Excitation of Lateral Habenular Neurons via Multiple Cellular Mechanisms. J Neurosci 2021; 41:7532-7545. [PMID: 34326141 DOI: 10.1523/jneurosci.2913-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 06/26/2021] [Accepted: 07/25/2021] [Indexed: 11/21/2022] Open
Abstract
Acetaldehyde (ACD), the first metabolite of ethanol, is implicated in several of ethanol's actions, including the reinforcing and aversive effects. The neuronal mechanisms underlying ACD's aversive effect, however, are poorly understood. The lateral habenula (LHb), a regulator of midbrain monoaminergic centers, is activated by negative valence events. Although the LHb has been linked to the aversive responses of several abused drugs, including ethanol, little is known about ACD. We, therefore, assessed ACD's action on LHb neurons in rats. The results showed that intraperitoneal injection of ACD increased cFos protein expression within the LHb and that intra-LHb infusion of ACD induced conditioned place aversion in male rats. Furthermore, electrophysiological recording in brain slices of male and female rats showed that bath application of ACD facilitated spontaneous firing and glutamatergic transmission. This effect of ACD was potentiated by an aldehyde dehydrogenase (ALDH) inhibitor, disulfiram (DS), but attenuated by the antagonists of dopamine (DA) receptor (DAR) subtype 1 (SCH23390) and subtype 2 (raclopride), and partly abolished by the pretreatment of DA or DA reuptake blocker (GBR12935; GBR). Moreover, application of ACD initiated a depolarizing inward current (I ACD) and enhanced the hyperpolarizing-activated currents in LHb neurons. Bath application of Rp-cAMPs, a selective cAMP-PKA inhibitor, attenuated ACD-induced potentiation of EPSCs and I ACD Finally, bath application of ZD7288, a selective blocker of hyperpolarization-activated cyclic nucleotide-gated channels, attenuated ACD-induced potentiation of firing, EPSCs, and I ACD These results show that ACD exerts its aversive property by exciting LHb neurons via multiple cellular mechanisms, and new treatments targeting the LHb may be beneficial for alcoholism.SIGNIFICANCE STATEMENT Acetaldehyde (ACD) has been considered aversive peripherally and rewarding centrally. However, whether ACD has a central aversive property is unclear. Here, we report that ACD excites the lateral habenula (LHb), a brain region associated with aversion and negative valence, through multiple cellular and molecular mechanisms. Intra-LHb ACD produces significant conditioned place aversion. These results suggest that ACD's actions on the LHb neurons might contribute to its central aversive property and new treatments targeting the LHb may be beneficial for alcoholism.
Collapse
|
9
|
Fu R, Tang Y, Li W, Ren Z, Li D, Zheng J, Zuo W, Chen X, Zuo QK, Tam KL, Zou Y, Bachmann T, Bekker A, Ye JH. Endocannabinoid signaling in the lateral habenula regulates pain and alcohol consumption. Transl Psychiatry 2021; 11:220. [PMID: 33854035 PMCID: PMC8046806 DOI: 10.1038/s41398-021-01337-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 03/10/2021] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
Hyperalgesia, which often occurs in people suffering from alcohol use disorder, may drive excessive drinking and relapse. Emerging evidence suggests that the lateral habenula (LHb) may play a significant role in this condition. Previous research suggests that endocannabinoid signaling (eCBs) is involved in drug addiction and pain, and that the LHb contains core components of the eCBs machinery. We report here our findings in rats subjected to chronic ethanol vapor exposure. We detected a substantial increase in endocannabinoid-related genes, including Mgll and Daglb mRNA levels, as well as monoacylglycerol lipase (MAGL) protein levels, as well as a decrease in Cnr1 mRNA and type-1 cannabinoid receptor (CB1R) protein levels, in the LHb of ethanol-exposed rats. Also, rats withdrawing from ethanol exposure displayed hypersensitivity to mechanical and thermal nociceptive stimuli. Conversely, intra-LHb injection of the MAGL inhibitor JZL184, the fatty acid amide hydrolase inhibitor URB597, or the CB1R agonist WIN55,212-2 produced an analgesic effect, regardless of ethanol or air exposure history, implying that alcohol exposure does not change eCB pain responses. Intra-LHb infusion of the CB1R inverse agonist rimonabant eliminated the analgesic effect of these chemicals. Rimonabant alone elicited hyperalgesia in the air-, but not ethanol-exposed animals. Moreover, intra-LHb JZL184, URB597, or WIN55,212-2 reduced ethanol consumption in both homecages and operant chambers in rats exposed to ethanol vapor but not air. These findings suggest that LHb eCBs play a pivotal role in nociception and facilitating LHb eCBs may attenuate pain in drinkers.
Collapse
Affiliation(s)
- Rao Fu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ying Tang
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Zhiheng Ren
- Department of Anatomy, School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ding Li
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jiayi Zheng
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Xuejun Chen
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Qi Kang Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Kelsey L Tam
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Yucong Zou
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Thomas Bachmann
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
10
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
The Emerging Role of LHb CaMKII in the Comorbidity of Depressive and Alcohol Use Disorders. Int J Mol Sci 2020; 21:ijms21218123. [PMID: 33143210 PMCID: PMC7663385 DOI: 10.3390/ijms21218123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 01/05/2023] Open
Abstract
Depressive disorders and alcohol use disorders are widespread among the general population and are significant public health and economic burdens. Alcohol use disorders often co-occur with other psychiatric conditions and this dual diagnosis is called comorbidity. Depressive disorders invariably contribute to the development and worsening of alcohol use disorders, and vice versa. The mechanisms underlying these disorders and their comorbidities remain unclear. Recently, interest in the lateral habenula, a small epithalamic brain structure, has increased because it becomes hyperactive in depression and alcohol use disorders, and can inhibit dopamine and serotonin neurons in the midbrain reward center, the hypofunction of which is believed to be a critical contributor to the etiology of depressive disorders and alcohol use disorders as well as their comorbidities. Additionally, calcium/calmodulin-dependent protein kinase II (CaMKII) in the lateral habenula has emerged as a critical player in the etiology of these comorbidities. This review analyzes the interplay of CaMKII signaling in the lateral habenula associated with depressive disorders and alcohol use disorders, in addition to the often-comorbid nature of these disorders. Although most of the CaMKII signaling pathway's core components have been discovered, much remains to be learned about the biochemical events that propagate and link between depression and alcohol abuse. As the field rapidly advances, it is expected that further understanding of the pathology involved will allow for targeted treatments.
Collapse
|
12
|
Hu H, Cui Y, Yang Y. Circuits and functions of the lateral habenula in health and in disease. Nat Rev Neurosci 2020; 21:277-295. [PMID: 32269316 DOI: 10.1038/s41583-020-0292-4] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2020] [Indexed: 12/14/2022]
Abstract
The past decade has witnessed exponentially growing interest in the lateral habenula (LHb) owing to new discoveries relating to its critical role in regulating negatively motivated behaviour and its implication in major depression. The LHb, sometimes referred to as the brain's 'antireward centre', receives inputs from diverse limbic forebrain and basal ganglia structures, and targets essentially all midbrain neuromodulatory systems, including the noradrenergic, serotonergic and dopaminergic systems. Its unique anatomical position enables the LHb to act as a hub that integrates value-based, sensory and experience-dependent information to regulate various motivational, cognitive and motor processes. Dysfunction of the LHb may contribute to the pathophysiology of several psychiatric disorders, especially major depression. Recently, exciting progress has been made in identifying the molecular and cellular mechanisms in the LHb that underlie negative emotional state in animal models of drug withdrawal and major depression. A future challenge is to translate these advances into effective clinical treatments.
Collapse
Affiliation(s)
- Hailan Hu
- Department of Psychiatry of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, Mental Health Center, Zhejiang University, Hangzhou, China. .,Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China. .,Fountain-Valley Institute for Life Sciences, Guangzhou, China.
| | - Yihui Cui
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| | - Yan Yang
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou, China
| |
Collapse
|
13
|
Elevation of Transient Receptor Potential Vanilloid 1 Function in the Lateral Habenula Mediates Aversive Behaviors in Alcohol-withdrawn Rats. Anesthesiology 2020; 130:592-608. [PMID: 30676422 DOI: 10.1097/aln.0000000000002615] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC Chronic alcohol use and withdrawal leads to increased pain perception, anxiety, and depression. These aberrant behaviors are accompanied by increased excitatory glutamatergic transmission to, and activity of, the lateral habenula neurons.Vanilloid type 1, or TRPV1, channels are expressed in the habenula and they facilitate glutamatergic transmission. Whether TRPV1 channel plays a role in habenula hyperactivity is not clear. WHAT THIS ARTICLE TELLS US THAT IS NEW Glutamatergic transmission in the lateral habenula was inhibited by TRPV1 channel antagonists. In vivo, local administration of TRPV1 antagonists into the lateral habenula attenuated hyperalgesia, anxiety, and relapse-like drinking in rats who chronically consumed alcohol.The data suggest that enhanced TRPV1 channel function during withdrawal may contribute to aberrant behavior that promotes relapse alcohol consumption. BACKGROUND Recent rat studies indicate that alcohol withdrawal can trigger a negative emotional state including anxiety- and depression-like behaviors and hyperalgesia, as well as elevated glutamatergic transmission and activity in lateral habenula neurons. TRPV1, a vanilloid receptor expressed in the habenula, is involved in pain, alcohol dependence, and glutamatergic transmission. The authors therefore hypothesized that TRPV1 contributes to the changes in both the behavioral phenotypes and the habenula activity in alcohol-withdrawn rats. METHODS Adult male Long-Evans rats (n = 110 and 280 for electrophysiology and behaviors, respectively), randomly assigned into the alcohol and water (Naïve) groups, were trained to consume either alcohol or water-only using an intermittent-access procedure. Slice electrophysiology was used to measure spontaneous excitatory postsynaptic currents and firing of lateral habenula neurons. The primary outcome was the change in alcohol-related behaviors and lateral habenula activity induced by pharmacologic manipulation of TRPV1 activity. RESULTS The basal frequency of spontaneous excitatory postsynaptic currents and firing of lateral habenula neurons in alcohol-withdrawn rats was significantly increased. The TRPV1 antagonist capsazepine (10 µM) induced a stronger inhibition on spontaneous excitatory postsynaptic currents (mean ± SD; by 26.1 ± 27.9% [n = 11] vs. 6.7 ± 18.6% [n = 17], P = 0.027) and firing (by 23.4 ± 17.6% [n = 9] vs. 11.9 ± 16.3% [n = 12], P = 0.025) in Withdrawn rats than Naive rats. By contrast, the TRPV1 agonist capsaicin (3 μM) produced a weaker potentiation in Withdrawn than Naïve rats (spontaneous excitatory postsynaptic currents: by 203.6 ± 124.7% [n = 20] vs. 415.2 ± 424.3% [n = 15], P < 0.001; firing: 38.1 ± 14.7% [n = 11] vs. 73.9 ± 41.9% [n = 11], P < 0.001). Conversely, capsaicin's actions in Naïve but not in Withdrawn rats were significantly attenuated by the pretreatment of TRPV1 endogenous agonist N-Oleoyldopamine. In Withdrawn rats, intra-habenula infusion of TRPV1 antagonists attenuated hyperalgesia and anxiety-like behaviors, decreased alcohol consumption upon resuming drinking, and elicited a conditioned place preference. CONCLUSIONS Enhanced TRPV1 function may contribute to increased glutamatergic transmission and activity of lateral habenula neurons, resulting in the aberrant behaviors during ethanol withdrawal.
Collapse
|
14
|
Bahi A, Dreyer JL. Environmental enrichment decreases chronic psychosocial stress-impaired extinction and reinstatement of ethanol conditioned place preference in C57BL/6 male mice. Psychopharmacology (Berl) 2020; 237:707-721. [PMID: 31786650 DOI: 10.1007/s00213-019-05408-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022]
Abstract
RATIONALE During the last few decades, alcohol use disorders (AUD) have reached an epidemic prevalence, yet social influences on alcoholism have not been fully addressed. Several factors can modulate alcohol intake. On one hand, stress can reinforce ethanol-induced behaviors and be an important component in AUD and alcoholism. On the other hand, environmental enrichment (EE) has a neuroprotective role and prevents the development of excessive ethanol intake in rodents. However, studies showing the role of EE in chronic psychosocial stress-impaired ethanol-conditioned rewards are nonexistent. AIM The purpose of the current study is to explore the potential protective role of EE on extinction and reinstatement of ethanol-conditioned place preference (EtOH-CPP) following chronic psychosocial stress. METHODS In the first experiment and after the EtOH-CPP test, the mice were subjected to 15 days of chronic stress, then housed in a standard (SE) or enriched environment (EE) while EtOH-CPP extinction was achieved by repeated exposure to the CPP chambers without ethanol injection. In the second experiment and after the EtOH-CPP test, extinction was achieved as described above. Mice were then exposed to chronic stress for 2 weeks before being housed in a SE or EE. EtOH-CPP reinstatement was induced by a single exposure to the conditioning chambers. RESULTS As expected, stress exposure increased anxiety-like behavior and reduced weight gain. More importantly, we found that EE significantly shortened chronic stress-delayed extinction and decreased the reinstatement of EtOH-CPP. CONCLUSION These results support the hypothesis that EE reduces the impact of alcohol-associated environmental stimuli, and hence it may be a general intervention for reducing cue-elicited craving and relapse in humans.
Collapse
Affiliation(s)
- Amine Bahi
- College of Medicine, Ajman University, Ajman, UAE. .,Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE.
| | - Jean-Luc Dreyer
- Division of Biochemistry, Department of Medicine, University of Fribourg, 1700, Fribourg, Switzerland
| |
Collapse
|
15
|
Fu R, Mei Q, Shiwalkar N, Zuo W, Zhang H, Gregor D, Patel S, Ye JH. Anxiety during alcohol withdrawal involves 5-HT2C receptors and M-channels in the lateral habenula. Neuropharmacology 2019; 163:107863. [PMID: 31778691 DOI: 10.1016/j.neuropharm.2019.107863] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/21/2019] [Accepted: 11/23/2019] [Indexed: 01/09/2023]
Abstract
Anxiety disorders often co-occur with alcohol use disorders, but the mechanisms underlying this comorbidity remain elusive. Previously, we reported that rats withdrawn from chronic alcohol consumption (Post-EtOH rats) exhibited robust anxiety-like behaviors (AB), which were accompanied by neuronal hyperexcitability, and the downregulation of M-type potassium channels (M-channels) in the lateral habenula (LHb); and that serotonin (5-HT) stimulated LHb neurons via type 2C receptors (5-HT2CRs). Also, 5-HT2CR activation is known to inhibit M-current in mouse hypothalamic neurons. The present study investigated whether LHb 5-HT2CRs and M-channels contribute to AB in adult male Long-Evans rats. We used the intermittent-access to 20% ethanol two-bottle free-choice drinking paradigm to induce dependence. We measured AB with the elevated plus-maze, open-field, and marble-burying tests at 24 h withdrawal. We found that intra-LHb infusion of SB242084, a selective 5-HT2CR antagonist alleviated AB and reduced the elevated c-Fos expression in the LHb of Post-EtOH rats. By contrast, intra-LHb infusion of the selective 5-HT2CR agonist WAY161503 induced AB and increased c-Fos expression in the LHb in alcohol-naive but not Post-EtOH rats. Also, intra-LHb SB242084 significantly reduced self-administration of alcohol intake in the operant chambers. Furthermore, both 5-HT2CR protein levels and 5-HIAA/5-HT ratio was increased in the LHb of Post-EtOH rats. Finally, intra-LHb SB242084 increased LHb KCNQ2/3 membrane protein expression in Post-EtOH rats. Collectively, these results suggest that enhanced LHb 5-HT2CR signaling that interacted with M-channels triggers AB in Post-EtOH rats and that 5-HT2CRs may be a promising target for treating comorbid anxiety disorders in alcoholics.
Collapse
Affiliation(s)
- Rao Fu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Qinghua Mei
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Nimisha Shiwalkar
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Haifeng Zhang
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Danielle Gregor
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Shivani Patel
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
16
|
Li W, Zuo W, Wu W, Zuo QK, Fu R, Wu L, Zhang H, Ndukwe M, Ye JH. Activation of glycine receptors in the lateral habenula rescues anxiety- and depression-like behaviors associated with alcohol withdrawal and reduces alcohol intake in rats. Neuropharmacology 2019; 157:107688. [PMID: 31254534 PMCID: PMC6677595 DOI: 10.1016/j.neuropharm.2019.107688] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 01/03/2023]
Abstract
The lateral habenula (LHb) is activated by a range of aversive states including those related to alcohol withdrawal and has glycine receptors (GlyRs), a sensitive target of alcohol. However, whether GlyRs in the LHb contribute to alcohol-related behaviors is unknown. Here, we report that rats experiencing withdrawal from chronic alcohol consumption showed higher anxiety and sensitivity to stress compared to their alcohol-naïve counterparts. Intra-LHb injection of glycine attenuated these aberrant behaviors and reduced alcohol intake upon alcohol re-access. Glycine's effect was blocked by strychnine, a GlyR antagonist, indicating that it was mediated by strychnine-sensitive GlyRs. Conversely, intra-LHb strychnine elicited anxiety- and depression-like behaviors in Naïve rats but not in withdrawal rats. Additionally, both the frequency and the amplitude of the spontaneous IPSCs were lower in LHb neurons in slices of withdrawal rats compared to naïve rats. Also, there were sporadic strychnine-sensitive synaptic events in some LHb neurons. Bath perfusion of strychnine induced a depolarizing inward current and increased action potential firings in LHb neurons. By contrast, bath perfusion of glycine or sarcosine, a glycine transporter subtype 1 inhibitor, inhibited LHb activity. Collectively, these data reveal that LHb neurons are under the tonic glycine inhibition both in physiological and pathological conditions. Activation of GlyRs reverses LHb hyperactivity, alleviates aberrant behaviors, and reduces alcohol intake, thus highlighting the GlyRs in the LHb as a potential therapeutic target for alcohol-use disorders.
Collapse
Affiliation(s)
- Wenting Li
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Wei Wu
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Qi Kang Zuo
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Rao Fu
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Liangzhi Wu
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Haifeng Zhang
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Michael Ndukwe
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, & Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA.
| |
Collapse
|
17
|
Zuo W, Wu L, Mei Q, Zuo Q, Zhou Z, Fu R, Li W, Wu W, Matthew L, Ye JH. Adaptation in 5-HT 2 receptors-CaMKII signaling in lateral habenula underlies increased nociceptive-sensitivity in ethanol-withdrawn rats. Neuropharmacology 2019; 158:107747. [PMID: 31445991 DOI: 10.1016/j.neuropharm.2019.107747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/23/2019] [Accepted: 08/21/2019] [Indexed: 01/06/2023]
Abstract
Alcoholics often experience hyperalgesia, especially during abstinence, yet the underlying cellular and molecular bases are unclear. Recent evidence suggests that 5-HT type 2 receptors (5-HT2Rs) at glutamatergic synapses on lateral habenula (LHb) neurons may play a critical role. We, therefore, measured paw withdrawal responses to thermal and mechanical stimuli, and alcohol intake in a rat model of intermittent drinking paradigm, as well as spontaneous glutamatergic transmission (sEPSCs), and firing of LHb neurons in brain slices. Here, we report that nociceptive sensitivity was higher in rats at 24 h withdrawal from chronic alcohol consumption than that of alcohol-naive counterparts. The basal frequency of sEPSCs and firings was higher in slices of withdrawn rats than that of Naïve rats, and 5-HT2R antagonists attenuated the enhancement. Also, an acute ethanol-induced increase of sEPSCs and firings was smaller in withdrawal than in Naïve rats; it was attenuated by 5-HT2R antagonists but mimicked by 5-HT2R agonists. Importantly, intra-LHb infusion of 5-HT2R agonists increased nociceptive sensitivity in Naïve rats, while antagonists or 5-HT reuptake blocker decreased nociceptive sensitivity and alcohol intake in withdrawn rats. Additionally, KN-62, a CaMKII inhibitor, attenuated the enhancement of EPSCs and firing induced by acute alcohol and by 5-HT2R agonist. Furthermore, intra-LHb KN-62 reduced nociceptive sensitivity and alcohol intake. Quantitative real-time PCR assay detected mRNA of 5-HT2A and 2C in the LHb. Thus adaptation in 5-HT2R-CaMKII signaling pathway contributes to the hyper-glutamatergic state, the hyperactivity of LHb neurons as well as the higher nociceptive sensitivity in rats withdrawn from chronic alcohol consumption.
Collapse
Affiliation(s)
- Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Liangzhi Wu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Qinghua Mei
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Qikang Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Zhongyang Zhou
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Rao Fu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Wenting Li
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Wei Wu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Leberer Matthew
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, USA.
| |
Collapse
|
18
|
Bosse KE, Ghoddoussi F, Eapen AT, Charlton JL, Susick LL, Desai K, Berkowitz BA, Perrine SA, Conti AC. Calcium/calmodulin-stimulated adenylyl cyclases 1 and 8 regulate reward-related brain activity and ethanol consumption. Brain Imaging Behav 2019; 13:396-407. [PMID: 29594872 PMCID: PMC6202255 DOI: 10.1007/s11682-018-9856-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Evidence suggests a predictive link between elevated basal activity within reward-related networks (e.g., cortico-basal ganglia-thalamic networks) and vulnerability for alcoholism. Both calcium channel function and cyclic adenosine monophosphate (cAMP)/protein kinase A-mediated signaling are critical modulators of reward neurocircuitry and reward-related behaviors. Calcium/calmodulin-stimulated adenylyl cyclases (AC) 1 and 8 are sensitive to activity-dependent increases in intracellular calcium and catalyze cAMP production. Therefore, we hypothesized AC1 and 8 regulate brain activity in reward regions of the cortico-basal ganglia-thalamic circuit and that this regulatory influence predicts voluntary ethanol drinking responses. This hypothesis was evaluated by manganese-enhanced magnetic resonance imaging and chronic, intermittent ethanol access procedures. Ethanol-naïve mice with genetic deletion of both AC1 and 8 (DKO mice) exhibited bilateral reductions in baseline activity within cortico-basal ganglia-thalamic regions associated with reward processing compared to wild-type controls (WT, C57BL/6 mice). Significant activity changes were not evident in regions either outside of the cortico-basal ganglia-thalamic network or within the network that are not associated with reward processing. Parallel studies demonstrated that reward network hypoactivity in DKO mice predicted a significant attenuation in consumption and preference levels to escalating ethanol concentrations (12, 20 and 30%) compared to WT mice, an effect that was maintained over extended access (14 sessions) to 20% ethanol. Summarizing, these data support a contribution of AC1 and 8 in cortico-basal ganglia-thalamic activity and the predictive value of this regulatory influence on ethanol drinking behavior, which merits the future evaluation of calcium-stimulated ACs in the neural processes that engender vulnerability to maladaptive alcohol drinking.
Collapse
Affiliation(s)
- Kelly E Bosse
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Farhad Ghoddoussi
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ajay T Eapen
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jennifer L Charlton
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Laura L Susick
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kirt Desai
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alana C Conti
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI, USA.
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Neurosurgery, Wayne State University, 4646 John R St., Detroit, MI, 48201, USA.
| |
Collapse
|
19
|
Fu R, Zuo W, Shiwalkar N, Mei Q, Fan Q, Chen X, Li J, Bekker A, Ye JH. Alcohol withdrawal drives depressive behaviors by activating neurons in the rostromedial tegmental nucleus. Neuropsychopharmacology 2019; 44:1464-1475. [PMID: 30928995 PMCID: PMC6784902 DOI: 10.1038/s41386-019-0378-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/18/2019] [Accepted: 03/24/2019] [Indexed: 01/01/2023]
Abstract
Rostromedial tegmental nucleus (RMTg) GABA neurons exert a primary inhibitory drive onto midbrain dopamine neurons and are excited by a variety of aversive stimuli. There is, however, little evidence that the RMTg-ventral tegmental area (VTA)-nucleus accumbens shell (Acb) circuit plays a role in the aversive consequences of alcohol withdrawal. This study was performed in adult male Long-Evans rats at 48-h withdrawal from chronic alcohol drinking in the intermittent schedule. These rats displayed clear anhedonia and depression-like behaviors, as measured with the sucrose preference, and forced swimming tests. These aberrant behaviors were accompanied by a substantial increase in cFos expression in the VTA-projecting RMTg neurons, identified by a combination of immunohistochemistry and retrograde-tracing techniques. Pharmacological or chemogenetic inhibition of RMTg neurons mitigated the anhedonia and depression-like behaviors. Ex vivo electrophysiological data showed that chemogenetic inactivation of RMTg neurons reduced GABA release and accelerated spontaneous firings of VTA dopamine neurons. Finally, using a functional hemispheric disconnection procedure, we demonstrated that inhibition of unilateral RMTg, when combined with activation of D1 and D2 dopamine receptors in the contralateral (but not ipsilateral) Acb, mitigated the anhedonia and depression-like behaviors in alcohol-withdrawal rats. These data show that the integrity in the RMTg-VTA-Acb pathway in a single hemisphere is sufficient to elicit depression-like behavior during ethanol-withdrawal. Overall, the present results reveal that the RMTg-VTA-Acb pathway plays a crucial role in the depression-like behavior in animals undergoing alcohol withdrawal, further advocating the RMTg as a potential therapeutic target for alcoholism.
Collapse
Affiliation(s)
- Rao Fu
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Nimisha Shiwalkar
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Qinghua Mei
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Qing Fan
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Xuejun Chen
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Jing Li
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Ave, Newark, NJ, 07103, USA.
| |
Collapse
|
20
|
Donaire R, Morón I, Blanco S, Villatoro A, Gámiz F, Papini MR, Torres C. Lateral habenula lesions disrupt appetitive extinction, but do not affect voluntary alcohol consumption. Neurosci Lett 2019; 703:184-190. [PMID: 30928477 DOI: 10.1016/j.neulet.2019.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/14/2019] [Accepted: 03/25/2019] [Indexed: 12/25/2022]
Abstract
This study analyzed the effects of LHb lesions on appetitive extinction and alcohol consumption. Eighteen male Wistar rats received neurochemical lesions of the LHb (quinolinic acid) and 12 received a vehicle infusion (PBS). In a runway instrumental task, rats received acquisition (12 pellets/trial, 6 trials/session, 10 sessions) and extinction training (5 sessions). In a consummatory task, rats had daily access to 32% sucrose (5 min, 10 sessions) followed by access to water (5 sessions). Then, animals received 2 h preference tests with escalating alcohol concentrations (2%-24%), followed by two 24 h preference tests with 24% alcohol. Relative to Shams, LHb lesions delayed extinction, as indicated by lower response latencies (instrumental task) and higher fluid consumption (consummatory task). LHb lesions did not affect alcohol consumption regardless of alcohol concentration or test duration. The LHb modulates appetitive extinction and needs to be considered as part of the brain circuit underlying reward loss.
Collapse
Affiliation(s)
- Rocio Donaire
- Department of Psychology, University of Jaén, 23071, Spain
| | - Ignacio Morón
- Department of Psychobiology, Research Center for Mind, Brain, and Behavior (CIMCYC), University of Granada, Spain
| | - Santos Blanco
- Department of Experimental Biology, University of Jaén, Spain
| | | | - Fernando Gámiz
- Department of Psychobiology, Biomedic Research Center (CIBM), Neuroscience Institute "Federico Olóriz", University of Granada, Spain
| | - Mauricio R Papini
- Department of Psychology, Texas Christian University, Fort Worth, USA
| | - Carmen Torres
- Department of Psychology, University of Jaén, 23071, Spain.
| |
Collapse
|
21
|
Kang S, Li J, Zuo W, Chen P, Gregor D, Fu R, Han X, Bekker A, Ye JH. Downregulation of M-channels in lateral habenula mediates hyperalgesia during alcohol withdrawal in rats. Sci Rep 2019; 9:2714. [PMID: 30804373 PMCID: PMC6389965 DOI: 10.1038/s41598-018-38393-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 12/21/2018] [Indexed: 01/21/2023] Open
Abstract
Hyperalgesia often occurs in alcoholics, especially during abstinence, yet the underlying mechanisms remain elusive. The lateral habenula (LHb) has been implicated in the pathophysiology of pain and alcohol use disorders. Suppression of m-type potassium channels (M-channels) has been found to contribute to the hyperactivity of LHb neurons of rats withdrawn from chronic alcohol administration. Here, we provided evidence that LHb M-channels may contribute to hyperalgesia. Compared to alcohol naïve counterparts, in male Long-Evans rats at 24-hours withdrawal from alcohol administration under the intermittent access paradigm for eight weeks, hyperalgesia was evident (as measured by paw withdrawal latencies in the Hargreaves Test), which was accompanied with higher basal activities of LHb neurons in brain slices, and lower M-channel protein expression. Inhibition of LHb neurons by chemogenetics, or pharmacological activation of M-channels, as well as overexpression of M-channels' subunit KCNQ3, relieved hyperalgesia and decreased relapse-like alcohol consumption. In contrast, chemogenetic activation of LHb neurons induced hyperalgesia in alcohol-naive rats. These data reveal a central role for the LHb in hyperalgesia during alcohol withdrawal, which may be due in part to the suppression of M-channels and, thus, highlights M-channels in the LHb as a potential therapeutic target for hyperalgesia in alcoholics.
Collapse
Affiliation(s)
- Seungwoo Kang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Jing Li
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Pei Chen
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Danielle Gregor
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Rao Fu
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Xiao Han
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Alex Bekker
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA. .,Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.
| |
Collapse
|
22
|
Campbell EJ, Flanagan JPM, Walker LC, Hill MKRI, Marchant NJ, Lawrence AJ. Anterior Insular Cortex is Critical for the Propensity to Relapse Following Punishment-Imposed Abstinence of Alcohol Seeking. J Neurosci 2019; 39:1077-1087. [PMID: 30509960 PMCID: PMC6363928 DOI: 10.1523/jneurosci.1596-18.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/15/2018] [Accepted: 11/04/2018] [Indexed: 11/21/2022] Open
Abstract
Humans with alcohol use disorder typically abstain because of the negative consequences associated with excessive drinking, and exposure to contexts previously associated with alcohol use can trigger relapse. We used a rat model that captures a characteristic of this human condition: namely voluntary abstinence from alcohol use because of contingent punishment. There is substantial variability in the propensity to relapse following extended periods of abstinence, and this is a critical feature preventing the successful treatment of alcohol use disorder. Here we examined relapse following acute or prolonged abstinence. In male alcohol preferring P rats, we found an increased propensity to relapse in Context B, the punishment context after prolonged abstinence. Next, we found that neither alcohol intake history nor the motivational strength of alcohol predicted the propensity to relapse. We next examined the putative circuitry of context-induced relapse to alcohol seeking following prolonged abstinence using Fos as a marker of neuronal activation. The anterior insular cortex (AI) was the only brain region examined where Fos expression correlated with alcohol seeking behavior in Context B after prolonged abstinence. Finally, we used local infusion of GABAA and GABAB receptor agonists (muscimol + baclofen) to show a causal role of the AI in context-induced relapse in Context B, the punishment context after prolonged abstinence. Our results show that there is substantial individual variability in the propensity to relapse in the punishment-associated context after prolonged abstinence, and this is mediated by activity in the AI.SIGNIFICANCE STATEMENT A key feature of alcohol use disorder is that sufferers show an enduring propensity to relapse throughout their lifetime. Relapse typically occurs despite the knowledge of adverse consequences including health complications or relationship breakdowns. Here we use a recently developed rodent model that recapitulates this behavior. After an extended period of abstinence, relapse propensity is markedly increased in the "adverse consequence" environment, akin to humans with alcohol use disorder relapsing in the face of adversity. From a circuitry perspective, we demonstrate a causal role of the anterior insular cortex in relapse to alcohol seeking after extended abstinence following punishment imposed voluntary cessation of alcohol use.
Collapse
Affiliation(s)
- Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia,
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia, and
| | - Jeremy P M Flanagan
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia, and
| | - Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia, and
| | - Mitchell K R I Hill
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia, and
| | - Nathan J Marchant
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia, and
- Department of Anatomy and Neurosciences, VU University Medical Center, Amsterdam, 1081 HZ, The Netherlands
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria 3052, Australia,
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia, and
| |
Collapse
|
23
|
Graziane NM, Neumann PA, Dong Y. A Focus on Reward Prediction and the Lateral Habenula: Functional Alterations and the Behavioral Outcomes Induced by Drugs of Abuse. Front Synaptic Neurosci 2018; 10:12. [PMID: 29896097 PMCID: PMC5987018 DOI: 10.3389/fnsyn.2018.00012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022] Open
Abstract
The lateral habenula (LHb) regulates reward learning and controls the updating of reward-related information. Drugs of abuse have the capacity to hijack the cellular and neurocircuit mechanisms mediating reward learning, forming non-adaptable, compulsive behaviors geared toward obtaining illicit substances. Here, we discuss current findings demonstrating how drugs of abuse alter intrinsic and synaptic LHb neuronal function. Additionally, we discuss evidence for how drug-induced LHb alterations may affect the ability to predict reward, potentially facilitating an addiction-like state. Altogether, we combine ex vivo and in vivo results for an overview of how drugs of abuse alter LHb function and how these functional alterations affect the ability to learn and update behavioral responses to hedonic external stimuli.
Collapse
Affiliation(s)
- Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Peter A Neumann
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Yan Dong
- Departments of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
24
|
Fu R, Mei Q, Zuo W, Li J, Gregor D, Bekker A, Ye J. Low-dose ethanol excites lateral habenula neurons projecting to VTA, RMTg, and raphe. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2017; 9:217-230. [PMID: 29348799 PMCID: PMC5770519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
It is unclear how social drinking can contribute to the development of addiction in susceptible individuals. However, alcohol's aversive properties are a well-known factor contributing to its abuse. The lateral habenula (LHb) is a key brain structure responding to various aversive stimuli, including those related to alcohol. We recently reported that ethanol at 10 mM or less that can be achieved by social drinking activates many LHb neurons and drives aversive conditioning. The current study sought to identify LHb circuits that are activated by a low-dose of ethanol using immunohistochemistry and anatomic tracing techniques on adult Sprague-Dawley rats. We showed here that an intraperitoneal injection of ethanol (0.25 g/kg), resulting in a blood ethanol concentration of 5.6 mM, significantly increased the number of cFos immunoreactive (IR) neurons in the LHb. Most of the ethanol-activated cFos-IR LHb neurons expressed vGluT2 (vesicular glutamate transporters 2, a marker of a glutamatergic phenotype). These LHb neurons projected to the ventral tegmental area (VTA), rostromedial tegmental nucleus (RMTg), and dorsal raphe. Moreover, injections of the anterograde tracer AAV-CaMKIIa-eGFP into the lateral hypothalamus produced a significant amount of labeled fibers with vGluT2 positive terminals on the ethanol-activated LHb cells. These results indicate that the LHb neurons stimulated by a low-dose of ethanol project to the VTA, RMTg, and dorsal raphe, and receive excitatory projections from the lateral hypothalamus. These neurocircuits may play a crucial role in mediating the initial aversive effects produced by a low-dose of ethanol.
Collapse
Affiliation(s)
- Rao Fu
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical SchoolNewark, New Jersey 07103, USA
| | - Qinghua Mei
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical SchoolNewark, New Jersey 07103, USA
- Department of Pharmacy, Guangdong Second Provincial General HospitalGuangzhou 510317, China
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical SchoolNewark, New Jersey 07103, USA
| | - Jing Li
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical SchoolNewark, New Jersey 07103, USA
| | - Danielle Gregor
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical SchoolNewark, New Jersey 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical SchoolNewark, New Jersey 07103, USA
| | - Jianghong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical SchoolNewark, New Jersey 07103, USA
| |
Collapse
|
25
|
Kang S, Li J, Bekker A, Ye JH. Rescue of glutamate transport in the lateral habenula alleviates depression- and anxiety-like behaviors in ethanol-withdrawn rats. Neuropharmacology 2017; 129:47-56. [PMID: 29128307 DOI: 10.1016/j.neuropharm.2017.11.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
Abstract
Alcoholism and psychiatric disorders like depression and anxiety are often comorbid. Although the mechanisms underlying this comorbidity are unclear, emerging evidence suggests that maladaptation of the glial glutamate transporter GLT-1 may play a role. Findings from animal and human studies have linked aversive states, including those related to drugs of abuse and depression, to aberrant activity in the lateral habenula (LHb). The relationship between GLT-1 maladaptation, LHb activity, and abnormal behaviors related to alcohol withdrawal, however, remains unknown. Here we show that dihydrokainic acid (DHK), a GLT-1 blocker, potentiated glutamatergic transmission to LHb neurons in slices from ethanol naïve rats; this potentiation, though, was not observed in slices from rats withdrawn from repeated in vivo ethanol administration, suggesting reduced GLT-1 function. Furthermore, GLT-1 protein expression was reduced in the LHb of withdrawn rats. This reduction was restored by systemic administration of ceftriaxone, a β-lactam antibiotic known to increase GLT-1 expression. Systemic ceftriaxone treatment also normalized the hyperactivity of LHb neurons in slices from withdrawn rats, which was reversed by bath-applied DHK. Finally, systemic administration of ceftriaxone alleviated depression- and anxiety-like behaviors, which was fully blocked by intra-LHb administrations of DHK, suggesting that GLT-1's function in the LHb is critical. These findings highlight the significant role of LHb astrocytic GLT-1 in the hyperactivity of LHb neurons, and in depressive- and anxiety-like behaviors during ethanol withdrawal. Thus, GLT-1 in the LHb could serve as a therapeutic target for psychiatric disorders comorbid with ethanol withdrawal.
Collapse
Affiliation(s)
- Seungwoo Kang
- Department of Anesthesiology, Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jing Li
- Department of Anesthesiology, Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Alex Bekker
- Department of Anesthesiology, Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
26
|
Zahm DS, Root DH. Review of the cytology and connections of the lateral habenula, an avatar of adaptive behaving. Pharmacol Biochem Behav 2017; 162:3-21. [PMID: 28647565 PMCID: PMC5659881 DOI: 10.1016/j.pbb.2017.06.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/02/2017] [Accepted: 06/13/2017] [Indexed: 12/21/2022]
Abstract
The cytology and connections of the lateral habenula (LHb) are reviewed. The habenula is first introduced, after which the cytology of the LHb is discussed mainly with reference to cell types, general topography and descriptions of subnuclei. An overview of LHb afferent connections is given followed by some details about the projections to LHb from a number of structures. An overview of lateral habenula efferent connections is given followed by some details about the projections from LHb to a number of structures. In considering the afferent and efferent connections of the LHb some attention is given to the relative validity of regarding it as a bi-partite structure featuring 'limbic' and 'pallidal' parts. The paper ends with some concluding remarks about the relative place of the LHb in adaptive behaving.
Collapse
Affiliation(s)
- Daniel S Zahm
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd., Saint Louis, MO 63104, United States.
| | - David H Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, United States.
| |
Collapse
|
27
|
A little rein on addiction. Semin Cell Dev Biol 2017; 78:120-129. [PMID: 28986065 DOI: 10.1016/j.semcdb.2017.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 10/18/2022]
Abstract
Rewarding and aversive experiences influence emotions, motivate specific behaviors, and modify future action in animals. Multiple conserved vertebrate neural circuits have been discovered that act in a species-specific manner to reinforce behaviors that are rewarding, while attenuating those with an adverse outcome. A growing body of research now suggests that malfunction of the same circuits is an underlying cause for many human disorders and mental ailments. The habenula (Latin for "little rein") complex, an epithalamic structure that regulates midbrain monoaminergic activity has emerged in recent years as one such region in the vertebrate brain that modulates behavior. Its dysfunction, on the other hand, is implicated in a spectrum of psychiatric disorders in humans such as schizophrenia, depression and addiction. Here, I review the progress in identification of potential mechanisms involving the habenula in addiction.
Collapse
|
28
|
Fore S, Palumbo F, Pelgrims R, Yaksi E. Information processing in the vertebrate habenula. Semin Cell Dev Biol 2017; 78:130-139. [PMID: 28797836 DOI: 10.1016/j.semcdb.2017.08.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/12/2017] [Accepted: 08/05/2017] [Indexed: 10/19/2022]
Abstract
The habenula is a brain region that has gained increasing popularity over the recent years due to its role in processing value-related and experience-dependent information with a strong link to depression, addiction, sleep and social interactions. This small diencephalic nucleus is proposed to act as a multimodal hub or a switchboard, where inputs from different brain regions converge. These diverse inputs to the habenula carry information about the sensory world and the animal's internal state, such as reward expectation or mood. However, it is not clear how these diverse habenular inputs interact with each other and how such interactions contribute to the function of habenular circuits in regulating behavioral responses in various tasks and contexts. In this review, we aim to discuss how information processing in habenular circuits, can contribute to specific behavioral programs that are attributed to the habenula.
Collapse
Affiliation(s)
- Stephanie Fore
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, Norwegian Brain Centre, 7491 Trondheim, Norway
| | - Fabrizio Palumbo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, Norwegian Brain Centre, 7491 Trondheim, Norway
| | - Robbrecht Pelgrims
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, Norwegian Brain Centre, 7491 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Olav Kyrres Gate 9, Norwegian Brain Centre, 7491 Trondheim, Norway.
| |
Collapse
|
29
|
Kang S, Li J, Zuo W, Fu R, Gregor D, Krnjevic K, Bekker A, Ye JH. Ethanol Withdrawal Drives Anxiety-Related Behaviors by Reducing M-type Potassium Channel Activity in the Lateral Habenula. Neuropsychopharmacology 2017; 42:1813-1824. [PMID: 28387223 PMCID: PMC5520788 DOI: 10.1038/npp.2017.68] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/17/2017] [Accepted: 03/26/2017] [Indexed: 02/04/2023]
Abstract
Alcohol use disorders (AUDs) and anxiety disorders (ADs) are often seen concurrently, but their underlying cellular basis is unclear. For unclear reasons, the lateral habenula (LHb), a key brain region involved in the pathophysiology of ADs, becomes hyperactive after ethanol withdrawal. M-type K+ channels (M-channels), important regulators of neuronal activity, are abundant in the LHb, yet little is known about their role in AUDs and associated ADs. We report here that in rats at 24 h withdrawal from systemic ethanol administration (either by intraperitoneal injection, 2 g/kg, twice/day, for 7 days; or intermittent drinking 20% ethanol in a two-bottle free choice protocol for 8 weeks), the basal firing rate and the excitability of LHb neurons in brain slices was higher, whereas the amplitude of medium afterhyperpolarization and M-type K+ currents were smaller, when compared to ethanol naive rats. Concordantly, M-channel blocker (XE991)-induced increase in the spontaneous firing rate in LHb neurons was smaller. The protein expression of M-channel subunits, KCNQ2/3 in the LHb was also smaller. Moreover, anxiety levels (tested in open field, marble burying, and elevated plus maze) were higher, which were alleviated by LHb inhibition either chemogenetically or by local infusion of the M-channel opener, retigabine. Intra-LHb infusion of retigabine also reduced ethanol consumption and preference. These findings reveal an important role of LHb M-channels in the expression of AUDs and ADs, and suggest that the M-channels could be a potential therapeutic target for alcoholics.
Collapse
Affiliation(s)
- Seungwoo Kang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jing Li
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Rao Fu
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Danielle Gregor
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | | | - Alex Bekker
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Pharmacology, Physiology, and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA,Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ, 07103, USA, Tel: 973 972 1866, Fax: 973 972 0582, E-mail:
| |
Collapse
|
30
|
Sheth C, Furlong TM, Keefe KA, Taha SA. The lateral hypothalamus to lateral habenula projection, but not the ventral pallidum to lateral habenula projection, regulates voluntary ethanol consumption. Behav Brain Res 2017; 328:195-208. [PMID: 28432009 PMCID: PMC5500222 DOI: 10.1016/j.bbr.2017.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/23/2017] [Accepted: 04/17/2017] [Indexed: 11/26/2022]
Abstract
The lateral habenula (LHb) is an epithalamic brain region implicated in aversive processing via negative modulation of midbrain dopamine (DA) and serotonin (5-HT) systems. Given the role of the LHb in inhibiting DA and 5-HT systems, it is thought to be involved in various psychiatric pathologies, including drug addiction. In support, it has been shown that LHb plays a critical role in cocaine- and ethanol-related behaviors, most likely by mediating drug-induced aversive conditioning. In our previous work, we showed that LHb lesions increased voluntary ethanol consumption and operant ethanol self-administration and blocked yohimbine-induced reinstatement of ethanol self-administration. LHb lesions also attenuated ethanol-induced conditioned taste aversion suggesting that a mechanism for the increased intake of ethanol may be reduced aversion learning. However, whether afferents to the LHb are required for mediating effects of the LHb on these behaviors remained to be investigated. Our present results show that lesioning the fiber bundle carrying afferent inputs to the LHb, the stria medullaris (SM), increases voluntary ethanol consumption, suggesting that afferent structures projecting to the LHb are important for mediating ethanol-directed behaviors. We then chose two afferent structures as the focus of our investigation. We specifically studied the role of the inputs from the lateral hypothalamus (LH) and ventral pallidum (VP) to the LHb in ethanol-directed behaviors. Our results show that the LH-LHb projection is necessary for regulating voluntary ethanol consumption. These results are an important first step towards understanding the functional role of afferents to LHb with regard to ethanol consumption.
Collapse
Affiliation(s)
- Chandni Sheth
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112-5820, USA.
| | - Teri M Furlong
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112-5820, USA
| | - Kristen A Keefe
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112-5820, USA
| | - Sharif A Taha
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112-5820, USA
| |
Collapse
|
31
|
Shah A, Zuo W, Kang S, Li J, Fu R, Zhang H, Bekker A, Ye JH. The lateral habenula and alcohol: Role of glutamate and M-type potassium channels. Pharmacol Biochem Behav 2017. [PMID: 28624587 DOI: 10.1016/j.pbb.2017.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alcohol use disorder (AUD) or alcoholism is a chronic relapsing disorder. Our knowledge of alcoholism hinges on our understanding of its effects on the brain. This review will center on the effects of alcohol in the lateral habenula (LHb), an epithalamic structure that connects the forebrain with the midbrain and encodes aversive signaling. Like many addictive drugs, alcohol has both rewarding and aversive properties. While alcohol's euphoric property is believed to be important for the initiation of drinking, increasing evidence suggests that alcohol's negative affect plays a critical role in excessive drinking and alcohol dependence. During withdrawal and abstinence, alcoholics often experience anxiety and depressions, both of which have been implicated in relapse drinking. This review focuses on the recent accumulation of knowledge about the effects of acute and chronic alcohol exposure on the activity of and synaptic transmissions on LHb neurons, as well as the effects of manipulation of LHb function on alcohol consumption and related behaviors. Recent evidence highlights a critical role for the LHb in AUD and related psychiatric ailments. Multidisciplinary work in animals collectively suggests that LHb function and activity, including M-type potassium channels and glutamatergic transmission are altered by acute and repeated chronic alcohol exposure. We will also discuss how functional, pharmacological, and chemogenetic manipulation of the LHb affects ethanol drinking and psychiatric disorders occurring in animals withdrawn from chronic alcohol exposure. Conceivable mechanisms behind these effects and their potential as targets for therapies will also be discussed.
Collapse
Affiliation(s)
- Avi Shah
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Seungwoo Kang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Jing Li
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Rao Fu
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Haifeng Zhang
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; Department of Pharmacology, Physiology and Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA.
| |
Collapse
|
32
|
Cui C, Koob GF. Titrating Tipsy Targets: The Neurobiology of Low-Dose Alcohol. Trends Pharmacol Sci 2017; 38:556-568. [PMID: 28372826 DOI: 10.1016/j.tips.2017.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/04/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022]
Abstract
Limited attention has been given to our understanding of how the brain responds to low-dose alcohol (ethanol) and what molecular and cellular targets mediate these effects. Even at concentrations lower than 10mM (0.046 g% blood alcohol concentration, BAC), below the legal driving limit in the USA (BAC 0.08 g%), alcohol impacts brain function and behavior. Understanding what molecular and cellular targets mediate the initial effects of alcohol and subsequent neuroplasticity could provide a better understanding of vulnerability or resilience to developing alcohol use disorders. We review here what is known about the neurobiology of low-dose alcohol, provide insights into potential molecular targets, and discuss future directions and challenges in further defining targets of low-dose alcohol at the molecular, cellular, and circuitry levels.
Collapse
Affiliation(s)
- Changhai Cui
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - George F Koob
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
McGinn MA, Paulsen RI, Itoga CA, Farooq MA, Reppel JE, Edwards KN, Whitaker AM, Gilpin NW, Edwards S. Withdrawal from Chronic Nicotine Exposure Produces Region-Specific Tolerance to Alcohol-Stimulated GluA1 Phosphorylation. Alcohol Clin Exp Res 2016; 40:2537-2547. [PMID: 27796078 DOI: 10.1111/acer.13258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/26/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Nicotine use increases alcohol drinking, suggesting that the combination of these drugs may produce synergistic effects in activating reward circuitry. Alternatively, use of either of these drugs may facilitate the development of cross-tolerance to the other to promote intake escalation. METHODS In this study, adult male Wistar rats were chronically exposed to room air or chronic, intermittent nicotine vapor, which has been shown to produce symptoms of nicotine dependence as evidenced by elevated nicotine self-administration and a host of somatic and motivational withdrawal symptoms. We examined regional neuroadaptations in nicotine-experienced versus nonexperienced animals, focusing on changes in phosphorylation of the AMPA glutamate channel subunit GluA1 in reward-related brain regions as excitatory neuroadaptations are heavily implicated in both alcohol and nicotine addiction. RESULTS During withdrawal, nicotine exposure and alcohol challenge (1 g/kg) interactively produced neuroadaptations in GluA1 phosphorylation in a brain region-dependent manner. Alcohol robustly increased protein kinase A-mediated phosphorylation of GluA1 at serine 845 in multiple regions. However, this neuroadaptation was largely absent in 3 areas (dorsomedial prefrontal cortex, dorsal striatum, and central amygdala) in nicotine-experienced animals. This interactive effect suggests a molecular tolerance to alcohol-stimulated phosphorylation of GluA1 in the context of nicotine dependence. CONCLUSIONS Nicotine may modify the rewarding or reinforcing effects of alcohol by altering glutamate signaling in a region-specific manner, thereby leading to increased drinking in heavy smokers.
Collapse
Affiliation(s)
- M Adrienne McGinn
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Rod I Paulsen
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Christy A Itoga
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Muhammad A Farooq
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jonathan E Reppel
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Kimberly N Edwards
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Annie M Whitaker
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Nicholas W Gilpin
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Scott Edwards
- Department of Physiology, Alcohol & Drug Abuse Center of Excellence, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
34
|
Zuo W, Xiao C, Gao M, Hopf FW, Krnjević K, McIntosh JM, Fu R, Wu J, Bekker A, Ye JH. Nicotine regulates activity of lateral habenula neurons via presynaptic and postsynaptic mechanisms. Sci Rep 2016; 6:32937. [PMID: 27596561 PMCID: PMC5011770 DOI: 10.1038/srep32937] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/12/2016] [Indexed: 11/09/2022] Open
Abstract
There is much interest in brain regions that drive nicotine intake in smokers. Interestingly, both the rewarding and aversive effects of nicotine are probably critical for sustaining nicotine addiction. The medial and lateral habenular (LHb) nuclei play important roles in processing aversion, and recent work has focused on the critical involvement of the LHb in encoding and responding to aversive stimuli. Several neurotransmitter systems are implicated in nicotine’s actions, but very little is known about how nicotinic acetylcholine receptors (nAChRs) regulate LHb activity. Here we report in brain slices that activation of nAChRs depolarizes LHb cells and robustly increases firing, and also potentiates glutamate release in LHb. These effects were blocked by selective antagonists of α6-containing (α6*) nAChRs, and were absent in α6*-nAChR knockout mice. In addition, nicotine activates GABAergic inputs to LHb via α4β2-nAChRs, at lower concentrations but with more rapid desensitization relative to α6*-nAChRs. These results demonstrate the existence of diverse functional nAChR subtypes at presynaptic and postsynaptic sites in LHb, through which nicotine could facilitate or inhibit LHb neuronal activity and thus contribute to nicotine aversion or reward.
Collapse
Affiliation(s)
- Wanhong Zuo
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Cheng Xiao
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Ming Gao
- Divisions of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - F Woodward Hopf
- Department of Neurology, University of California at San Francisco, CA, USA
| | | | - J Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center and Departments of Psychiatry and Biology, University of Utah, Salt Lake City, UT, USA
| | - Rao Fu
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Jie Wu
- Divisions of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Alex Bekker
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
35
|
Fu R, Chen X, Zuo W, Li J, Kang S, Zhou LH, Siegel A, Bekker A, Ye JH. Ablation of μ opioid receptor-expressing GABA neurons in rostromedial tegmental nucleus increases ethanol consumption and regulates ethanol-related behaviors. Neuropharmacology 2016; 107:58-67. [PMID: 26921770 PMCID: PMC4912850 DOI: 10.1016/j.neuropharm.2016.02.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 01/02/2023]
Abstract
There has been increasing interest in the rostromedial tegmental nucleus (RMTg), given its potential regulatory role in many aversion-related behaviors. The RMTg contains mostly GABAergic neurons, sends a dense inhibitory projection to dopamine neurons in the midbrain, and is rich with μ-opioid receptors (MOR). Like most addictive drugs, ethanol has both aversive and rewarding properties. However, the cellular mechanisms underlying the effects of ethanol, particularly the aversive effect that limits its intake are not well understood. Recent studies have linked aversion with synaptic inhibition of dopamine neurons in the ventral tegmental area. To determine a potential role that the RMTg plays in the effect of ethanol, in this study, we employed a neurotoxin, dermorphin-saporin (DS), to lesion RMTg neurons prior to assessing ethanol-related behaviors. Rats were infused with DS bilaterally into the RMTg. This manipulation substantially increased the intake and preference for ethanol but not sucrose. It also reduced the number of neurons with MOR and glutamic acid decarboxylase 67 immunoreactivity within the RMTg. These changes did not occur after intra-RMTg infusion of blank saporin or vehicle. Importantly, intra-RMTg DS infusion significantly enhanced expression of conditioned place preference induced by ethanol (2 g/kg, i.p.), and slowed the extinction process. These results suggest that MOR-expressing GABAergic neurons in the RMTg contribute significantly to the regulation of ethanol consumption and related behaviors.
Collapse
Affiliation(s)
- Rao Fu
- Departments of Anesthesiology, Pharmacology and Physiology, (RF, XC, WZ, JL, SK, AB JHY), Psychiatry (AS) Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Xing Chen
- Departments of Anesthesiology, Pharmacology and Physiology, (RF, XC, WZ, JL, SK, AB JHY), Psychiatry (AS) Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Wanhong Zuo
- Departments of Anesthesiology, Pharmacology and Physiology, (RF, XC, WZ, JL, SK, AB JHY), Psychiatry (AS) Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Jing Li
- Departments of Anesthesiology, Pharmacology and Physiology, (RF, XC, WZ, JL, SK, AB JHY), Psychiatry (AS) Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Seungwoo Kang
- Departments of Anesthesiology, Pharmacology and Physiology, (RF, XC, WZ, JL, SK, AB JHY), Psychiatry (AS) Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Li-Hua Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China, (LHZ)
| | - Allan Siegel
- Departments of Anesthesiology, Pharmacology and Physiology, (RF, XC, WZ, JL, SK, AB JHY), Psychiatry (AS) Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Alex Bekker
- Departments of Anesthesiology, Pharmacology and Physiology, (RF, XC, WZ, JL, SK, AB JHY), Psychiatry (AS) Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Jiang-Hong Ye
- Departments of Anesthesiology, Pharmacology and Physiology, (RF, XC, WZ, JL, SK, AB JHY), Psychiatry (AS) Rutgers-New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
36
|
Glover EJ, McDougle MJ, Siegel GS, Jhou TC, Chandler LJ. Role for the Rostromedial Tegmental Nucleus in Signaling the Aversive Properties of Alcohol. Alcohol Clin Exp Res 2016; 40:1651-61. [PMID: 27388762 DOI: 10.1111/acer.13140] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 05/27/2016] [Indexed: 01/15/2023]
Abstract
BACKGROUND While the rewarding effects of alcohol contribute significantly to its addictive potential, it is becoming increasingly appreciated that alcohol's aversive properties also play an important role in the propensity to drink. Despite this, the neurobiological mechanism for alcohol's aversive actions is not well understood. The rostromedial tegmental nucleus (RMTg) was recently characterized for its involvement in aversive signaling and has been shown to encode the aversive properties of cocaine, yet its involvement in alcohol's aversive actions have not been elucidated. METHODS Adult male and female Long-Evans rats underwent conditioned taste aversion (CTA) procedures where exposure to a novel saccharin solution was paired with intraperitoneal administration of saline, lithium chloride (LiCl), or ethanol (EtOH). Control rats underwent the same paradigm except that drug and saccharin exposure were explicitly unpaired. Saccharin consumption was measured on test day in the absence of drug administration, and rats were sacrificed 90 to 105 minutes following access to saccharin. Brains were subsequently harvested and processed for cFos immunohistochemistry. The number of cFos-labeled neurons was counted in the RMTg and the lateral habenula (LHb)-a region that sends prominent glutamatergic input to the RMTg. RESULTS In rats that received paired drug and saccharin exposure, EtOH and LiCl induced significant CTA compared to saline to a similar degree in males and females. Both EtOH- and LiCl-induced CTA significantly enhanced cFos expression in the RMTg and LHb but not the hippocampus. Similar to behavioral measures, no significant effect of sex on CTA-induced cFos expression was observed. cFos expression in both the RMTg and LHb was significantly correlated with CTA magnitude with greater cFos being associated with more pronounced CTA. In addition, cFos expression in the RMTg was positively correlated with LHb cFos. CONCLUSIONS These data suggest that the RMTg and LHb are involved in the expression of CTA and are consistent with previous work implicating the RMTg in aversive signaling. Furthermore, increased cFos expression in the RMTg following EtOH-induced CTA suggests that this region plays a role in signaling alcohol's aversive properties.
Collapse
Affiliation(s)
- Elizabeth J Glover
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.,Center for Drug & Alcohol Programs, Medical University of South Carolina, Charleston, South Carolina
| | - Molly J McDougle
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.,Center for Drug & Alcohol Programs, Medical University of South Carolina, Charleston, South Carolina
| | - Griffin S Siegel
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.,Center for Drug & Alcohol Programs, Medical University of South Carolina, Charleston, South Carolina
| | - Thomas C Jhou
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina.,Center for Drug & Alcohol Programs, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
37
|
Li J, Zuo W, Fu R, Xie G, Kaur A, Bekker A, Ye JH. High Frequency Electrical Stimulation of Lateral Habenula Reduces Voluntary Ethanol Consumption in Rats. Int J Neuropsychopharmacol 2016; 19:pyw050. [PMID: 27234303 PMCID: PMC5091825 DOI: 10.1093/ijnp/pyw050] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/08/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Development of new strategies that can effectively prevent and/or treat alcohol use disorders is of paramount importance, because the currently available treatments are inadequate. Increasing evidence indicates that the lateral habenula (LHb) plays an important role in aversion, drug abuse, and depression. In light of the success of high-frequency stimulation (HFS) of the LHb in improving helplessness behavior in rodents, we assessed the effects of LHb HFS on ethanol-drinking behavior in rats. METHODS We trained rats to drink ethanol under an intermittent access two-bottle choice procedure. We used c-Fos immunohistochemistry and electrophysiological approaches to examine LHb activity. We applied a HFS protocol that has proven effective for reducing helplessness behavior in rats via a bipolar electrode implanted into the LHb. RESULTS c-Fos protein expression and the frequency of both spontaneous action potential firings and spontaneous excitatory postsynaptic currents were higher in LHb neurons of ethanol-withdrawn rats compared to their ethanol-naïve counterparts. HFS to the LHb produced long-term reduction of intake and preference for ethanol, without altering locomotor activity. Conversely, low-frequency electrical stimulation to the LHb or HFS applied to the nearby nucleus did not affect drinking behavior. CONCLUSIONS Our results suggest that withdrawal from chronic ethanol exposure increases glutamate release and the activity of LHb neurons, and that functional inhibition of the LHb via HFS reduces ethanol consumption. Thus, LHb HFS could be a potential new therapeutic option for alcoholics.
Collapse
|
38
|
Xie G, Zuo W, Wu L, Li W, Wu W, Bekker A, Ye JH. Serotonin modulates glutamatergic transmission to neurons in the lateral habenula. Sci Rep 2016; 6:23798. [PMID: 27033153 PMCID: PMC4817146 DOI: 10.1038/srep23798] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/07/2016] [Indexed: 01/04/2023] Open
Abstract
The lateral habenula (LHb) is bilaterally connected with serotoninergic raphe nuclei, and expresses high density of serotonin receptors. However, actions of serotonin on the excitatory synaptic transmission to LHb neurons have not been thoroughly investigated. The LHb contains two anatomically and functionally distinct regions: lateral (LHbl) and medial (LHbm) divisions. We compared serotonin’s effects on glutamatergic transmission across the LHb in rat brains. Serotonin bi-directionally and differentially modulated glutamatergic transmission. Serotonin inhibited glutamatergic transmission in higher percentage of LHbl neurons but potentiated in higher percentage of LHbm neurons. Magnitude of potentiation was greater in LHbm than in LHbl. Type 2 and 3 serotonin receptor antagonists attenuated serotonin’s potentiation. The serotonin reuptake blocker, and the type 2 and 3 receptor agonists facilitated glutamatergic transmission in both LHbl and LHbm neurons. Thus, serotonin via activating its type 2, 3 receptors, increased glutamate release at nerve terminals in some LHb neurons. Our data demonstrated that serotonin affects both LHbm and LHbl. Serotonin might play an important role in processing information between the LHb and its downstream-targeted structures during decision-making. It may also contribute to a homeostatic balance underlying the neural circuitry between the LHb and raphe nuclei.
Collapse
Affiliation(s)
- Guiqin Xie
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Liangzhi Wu
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Wenting Li
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Wei Wu
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Alex Bekker
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
39
|
Fu R, Zuo W, Gregor D, Li J, Grech D, Ye JH. Pharmacological Manipulation of the Rostromedial Tegmental Nucleus Changes Voluntary and Operant Ethanol Self-Administration in Rats. Alcohol Clin Exp Res 2016; 40:572-82. [PMID: 26876382 PMCID: PMC4775316 DOI: 10.1111/acer.12974] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/23/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND The aversive properties of ethanol (EtOH) that limit its intake are poorly understood. There is an increasing interest in the role of the rostromedial tegmental nucleus (RMTg), because it encodes aversion signals and inhibits motivated behaviors. It is also a major source of inhibitory GABAergic inputs to the midbrain dopamine neurons. Up to this time, the role of the RMTg in EtOH-drinking behaviors has not been well explored. METHODS Male Long-Evans rats were trained either to drink EtOH under the intermittent 2-bottle-choice protocol or to self-administer EtOH in operant chambers under fixed-ratio-3 schedules. Changes in drinking behaviors induced by the bilateral infusion into the RMTg of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), an agonist of AMPA-type glutamate receptors, or muscimol, an agonist of GABAA receptors, were measured. RESULTS Consumption and preference for EtOH, numbers of active lever pressing, and head entrance to the EtOH port were all significantly decreased upon activation of the RMTg by the infusion of AMPA, but were increased upon inhibition of the RMTg by the infusion of muscimol. By contrast, intra-RMTg infusion of these agents did not change sucrose consumption. CONCLUSIONS These data show for the first time that EtOH-drinking and EtOH-seeking behaviors of rats changed inversely with RMTg function, supporting the idea that the RMTg plays a crucial role in EtOH-drinking behaviors.
Collapse
Affiliation(s)
- Rao Fu
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Wanhong Zuo
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Danielle Gregor
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Jing Li
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Dennis Grech
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
40
|
Sheth C, Furlong TM, Keefe KA, Taha SA. Lesion of the rostromedial tegmental nucleus increases voluntary ethanol consumption and accelerates extinction of ethanol-induced conditioned taste aversion. Psychopharmacology (Berl) 2016; 233:3737-3749. [PMID: 27549757 PMCID: PMC5063894 DOI: 10.1007/s00213-016-4406-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/07/2016] [Indexed: 01/06/2023]
Abstract
RATIONALE Ethanol has rewarding and aversive properties, and the balance of these properties influences voluntary ethanol consumption. Preclinical and clinical evidence show that the aversive properties of ethanol limit intake. The neural circuits underlying ethanol-induced aversion learning are not fully understood. We have previously shown that the lateral habenula (LHb), a region critical for aversive conditioning, plays an important role in ethanol-directed behaviors. However, the neurocircuitry through which LHb exerts its actions is unknown. OBJECTIVE In the present study, we investigate a role for the rostromedial tegmental nucleus (RMTg), a major LHb projection target, in regulating ethanol-directed behaviors. METHODS Rats received either sham or RMTg lesions and were studied during voluntary ethanol consumption; operant ethanol self-administration, extinction, and yohimbine-induced reinstatement of ethanol-seeking; and ethanol-induced conditioned taste aversion (CTA). RESULTS RMTg lesions increased voluntary ethanol consumption and accelerated extinction of ethanol-induced CTA. CONCLUSIONS The RMTg plays an important role in regulating voluntary ethanol consumption, possibly by mediating ethanol-induced aversive conditioning.
Collapse
Affiliation(s)
- Chandni Sheth
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112-5820, USA.
| | - Teri M. Furlong
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112-5820 USA
| | - Kristen A. Keefe
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112-5820 USA
| | - Sharif A. Taha
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112-5820 USA
| |
Collapse
|
41
|
Zuo W, Zhang Y, Xie G, Gregor D, Bekker A, Ye JH. Serotonin stimulates lateral habenula via activation of the post-synaptic serotonin 2/3 receptors and transient receptor potential channels. Neuropharmacology 2015; 101:449-59. [PMID: 26471419 DOI: 10.1016/j.neuropharm.2015.10.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/23/2015] [Accepted: 10/07/2015] [Indexed: 11/19/2022]
Abstract
There is growing interest on the role of the lateral habenula (LHb) in depression, because it closely and bilaterally connects with the serotoninergic raphe nuclei. The LHb sends glutamate efferents to the raphe nuclei, while it receives serotoninergic afferents, and expresses a high density of serotonin (5-HT) receptors. Recent studies suggest that 5-HT receptors exist both in the presynaptic and postsynaptic sites of LHb neurons, and activation of these receptors may have different effects on the activity of LHb neurons. The current study focused on the effect of 5-HT on the postsynaptic membrane. We found that 5-HT initiated a depolarizing inward current (I((5-HTi))) and accelerated spontaneous firing in ∼80% of LHb neurons in rat brain slices. I((5-HTi)) was also induced by the 5-HT uptake blocker citalopram, indicating activity of endogenous 5-HT. I((5-HTi)) was diminished by 5-HT(2/3) receptor antagonists (ritanserin, SB-200646 or ondansetron), and activated by the selective 5-HT(2/3) agonists 1-(3-Chlorophenyl) piperazine hydrochloride or 1-(3-Chlorophenyl) biguanide hydrochloride. Furthermore, I((5-HTi)) was attenuated by 2-Aminoethyl diphenylborinate, a blocker of transient receptor potential channels, and an IP3 receptor inhibitor, indicating the involvement of transient receptor potential channels. These results demonstrate that the reciprocal connection between the LHb and the 5-HT system highlights a key role for 5-HT stimulation of LHb neurons that may be important in the pathogenesis of depression.
Collapse
Affiliation(s)
- Wanhong Zuo
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Yong Zhang
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Guiqin Xie
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Danielle Gregor
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Alex Bekker
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology and Physiology, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|