1
|
Bansal V, McCurry KL, Lisinski J, Kim DY, Goyal S, Wang JM, Lee J, Brown VM, LaConte SM, Casas B, Chiu PH. Reinforcement learning processes as forecasters of depression remission. J Affect Disord 2025; 368:829-837. [PMID: 39271064 PMCID: PMC11573115 DOI: 10.1016/j.jad.2024.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Aspects of reinforcement learning have been associated with specific depression symptoms and may inform the course of depressive illness. METHODS We applied support vector machines to investigate whether blood‑oxygen-level dependent (BOLD) responses linked with neural prediction error (nPE) and neural expected value (nEV) from a probabilistic learning task could forecast depression remission. We investigated whether predictions were moderated by treatment use or symptoms. Participants included 55 individuals (n = 39 female) with a depression diagnosis at baseline; 36 of these individuals completed standard cognitive behavioral therapy and 19 were followed during naturalistic course of illness. All participants were assessed for depression diagnosis at a follow-up visit. RESULTS Both nPE and nEV classifiers forecasted remission significantly better than null classifiers. The nEV classifier performed significantly better than the nPE classifier. We found no main or interaction effects of treatment status on nPE or nEV accuracy. We found a significant interaction between nPE-forecasted remission status and anhedonia, but not for negative affect or anxious arousal, when controlling for nEV-forecasted remission status. LIMITATIONS Our sample size, while comparable to that of other studies, limits options for maximizing and evaluating model performance. We addressed this with two standard methods for optimizing model performance (90:10 train and test scheme and bootstrapped sampling). CONCLUSIONS Results support nEV and nPE as relevant biobehavioral signals for understanding depression outcome independent of treatment status, with nEV being stronger than nPE as a predictor of remission. Reinforcement learning variables may be useful components of an individualized medicine framework for depression healthcare.
Collapse
Affiliation(s)
- Vansh Bansal
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States of America; Department of Psychology, Virginia Tech, Blacksburg, VA, United States of America
| | - Katherine L McCurry
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States of America
| | - Jonathan Lisinski
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States of America
| | - Dong-Youl Kim
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States of America
| | - Shivani Goyal
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States of America; Department of Psychology, Virginia Tech, Blacksburg, VA, United States of America
| | - John M Wang
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States of America
| | - Jacob Lee
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States of America
| | - Vanessa M Brown
- Department of Psychology, Emory University, Atlanta, GA, United States of America
| | - Stephen M LaConte
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States of America; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America; Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, United States of America
| | - Brooks Casas
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States of America; Department of Psychology, Virginia Tech, Blacksburg, VA, United States of America; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States of America; Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, United States of America
| | - Pearl H Chiu
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States of America; Department of Psychology, Virginia Tech, Blacksburg, VA, United States of America; Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Virginia Tech, Roanoke, VA, United States of America.
| |
Collapse
|
2
|
Nestor LJ, Vei Lim T, Robbins TW, Ersche KD. Reduced brain connectivity underlying value-based choices and outcomes in stimulant use disorder. Neuroimage Clin 2024; 44:103676. [PMID: 39357470 PMCID: PMC11474215 DOI: 10.1016/j.nicl.2024.103676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Patients with stimulant use disorder (SUD) show impairments when making value-based choices that are associated with disruptions in neural processing across brain networks. Making optimal choices requires learning from outcomes to update knowledge and further optimise ongoing behaviour. The optimal functioning of neural systems that underpin the ability to make favourable choices is an essential component for life functioning, and successful recovery in patients with SUD. Therefore, we sought to investigate the neural processes that underpin value-based choices in SUD patients. We hypothesise that patients with SUD have reduced functional connectivity while making financial choices during a probabilistic reinforcement learning task. METHODS We investigated connectivity associated with loss and reward value-based choices and their outcomes in patients with SUD and healthy control participants during a pharmacological magnetic resonance imaging study. Participants received a single dose of a dopamine receptor agonist, pramipexole, and a dopamine receptor antagonist, amisulpride, in a randomised, double-blind, placebo-controlled, balanced, crossover design. Functional task-related connectivity was analysed taking a whole brain connectomics approach to identify networks that are differentially modulated by dopaminergic receptor functioning. RESULTS SUD patients showed widespread reductions in connectivity during both reward and loss value-based choices and outcomes, which were negatively correlated with the duration of stimulant drug use. Disturbances to functional brain connectivity in SUD patients during task performance were not modulated acutely by either amisulpride or pramipexole. CONCLUSIONS Reductions in brain connectivity, particularly when making value-based choices and processing outcomes, may underlie learning impairments in SUD patients. Given that acute dopaminergic modulation did not improve brain connectivity impairments in SUD patients, it is likely that alternative treatments are needed.
Collapse
Affiliation(s)
- Liam J Nestor
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - Tsen Vei Lim
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom; Department of Systems Neuroscience, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
3
|
Kwon M, Choi H, Park H, Ahn WY, Jung YC. Neural correlates of model-based behavior in internet gaming disorder and alcohol use disorder. J Behav Addict 2024; 13:236-249. [PMID: 38460004 PMCID: PMC10988400 DOI: 10.1556/2006.2024.00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/26/2023] [Accepted: 02/08/2024] [Indexed: 03/11/2024] Open
Abstract
Background An imbalance between model-based and model-free decision-making systems is a common feature in addictive disorders. However, little is known about whether similar decision-making deficits appear in internet gaming disorder (IGD). This study compared neurocognitive features associated with model-based and model-free systems in IGD and alcohol use disorder (AUD). Method Participants diagnosed with IGD (n = 22) and AUD (n = 22), and healthy controls (n = 30) performed the two-stage task inside the functional magnetic resonance imaging (fMRI) scanner. We used computational modeling and hierarchical Bayesian analysis to provide a mechanistic account of their choice behavior. Then, we performed a model-based fMRI analysis and functional connectivity analysis to identify neural correlates of the decision-making processes in each group. Results The computational modeling results showed similar levels of model-based behavior in the IGD and AUD groups. However, we observed distinct neural correlates of the model-based reward prediction error (RPE) between the two groups. The IGD group exhibited insula-specific activation associated with model-based RPE, while the AUD group showed prefrontal activation, particularly in the orbitofrontal cortex and superior frontal gyrus. Furthermore, individuals with IGD demonstrated hyper-connectivity between the insula and brain regions in the salience network in the context of model-based RPE. Discussion and Conclusions The findings suggest potential differences in the neurobiological mechanisms underlying model-based behavior in IGD and AUD, albeit shared cognitive features observed in computational modeling analysis. As the first neuroimaging study to compare IGD and AUD in terms of the model-based system, this study provides novel insights into distinct decision-making processes in IGD.
Collapse
Affiliation(s)
- Mina Kwon
- Department of Psychology, Seoul National University, Seoul, South Korea
| | - Hangnyoung Choi
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Harhim Park
- Department of Psychology, Seoul National University, Seoul, South Korea
| | - Woo-Young Ahn
- Department of Psychology, Seoul National University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
- AI Institute, Seoul National University, Seoul, South Korea
| | - Young-Chul Jung
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, South Korea
| |
Collapse
|
4
|
Di Carlo F, Vicinelli MC, Pettorruso M, De Risio L, Migliara G, Baccolini V, Trioni J, Grant JE, Dell'Osso B, Martinotti G. Connected minds in disconnected bodies: Exploring the role of interoceptive sensibility and alexithymia in problematic use of the internet. Compr Psychiatry 2024; 129:152446. [PMID: 38159504 DOI: 10.1016/j.comppsych.2023.152446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
INTRODUCTION The ever-increasing prominence of the internet and digital technology in our society requires a deeper examination of how these developments alter perception of our bodies and emotions. One such consequence is the emergence of Problematic Use of the Internet (PUI) - an array of compulsive or addictive behaviors mediated by the web that detrimentally affect an individual's functioning. This suggests that some people may be shifting their consciousness from the physical realm to the digital world. The objective of this study was to investigate how shortcomings in interoception (the sensibility to bodily signals) and alexithymia (an inability to identify and express emotions) might contribute to PUI. METHODS The Internet Addiction Test (IAT), the Toronto Alexithymia Scale (TAS-20), and the Multidimensional Assessment of Interoceptive Awareness (MAIA) were used to assess a sample of 1076 adolescents and young adults aged between 16 and 26 years via an online survey. Data analysis was based on t-test, correlations and multivariate regression. RESULTS 26.8% (n = 288) of participants met the criteria for moderate PUI. Individuals with PUI displayed higher levels of alexithymia (p < 0.001) and diminished abilities in certain aspects of interoceptive sensibility, including placing trust in their own bodily signals (p = 0.006), not responding excessively to uncomfortable sensations with worry (p < 0.001), and not denying them (p = 0.006). Multivariate modelling revealed associations between PUI and the following factors: having a boyfriend/girlfriend (aOR = 5.70), substance use (aOR = 1.78), difficulty in identifying feelings (aOR = 1.09), externally oriented thinking (aOR = 1.05), low disposition in perceiving body sensations (aOR = 0.25), tendency to become distracted (aOR = 0.82) or excessively worried (aOR = 0.11) in the face of pain. Furthermore, the analysis indicated how these aspects of body perception may be interrelated, either enhancing or reducing the risk of PUI when examined individually, collectively, or in combination. CONCLUSIONS This study underlines the potential connection between difficulties in the mind-body interaction and the development of PUI. It suggests a bidirectional relationship between excessive digital device use and distorted bodily interoceptive processes in PUI, reinforcing the notion that individuals struggling with emotion identification and expression may be more prone to excessive internet usage. To further comprehend the relevance of these constructs in PUI, it is necessary to conduct more targeted investigations and longitudinal studies.
Collapse
Affiliation(s)
- Francesco Di Carlo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Chieti, Italy
| | - Maria Chiara Vicinelli
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Chieti, Italy
| | - Mauro Pettorruso
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Chieti, Italy.
| | - Luisa De Risio
- Department of Mental Health and Addiction, ASL Roma 5, Rome, Italy
| | - Giuseppe Migliara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Valentina Baccolini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Jacopo Trioni
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Chieti, Italy
| | - Jon E Grant
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences Luigi Sacco and Aldo Ravelli Center for Neurotechnology and Brain Therapeutic, University of Milan, Milan, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti, Chieti, Italy; Department of Pharmacy, Pharmacology and Clinical Science, University of Hertfordshire, Hatfield, UK
| |
Collapse
|
5
|
Cushnie AK, Tang W, Heilbronner SR. Connecting Circuits with Networks in Addiction Neuroscience: A Salience Network Perspective. Int J Mol Sci 2023; 24:9083. [PMID: 37240428 PMCID: PMC10219092 DOI: 10.3390/ijms24109083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Human neuroimaging has demonstrated the existence of large-scale functional networks in the cerebral cortex consisting of topographically distant brain regions with functionally correlated activity. The salience network (SN), which is involved in detecting salient stimuli and mediating inter-network communication, is a crucial functional network that is disrupted in addiction. Individuals with addiction display dysfunctional structural and functional connectivity of the SN. Furthermore, while there is a growing body of evidence regarding the SN, addiction, and the relationship between the two, there are still many unknowns, and there are fundamental limitations to human neuroimaging studies. At the same time, advances in molecular and systems neuroscience techniques allow researchers to manipulate neural circuits in nonhuman animals with increasing precision. Here, we describe attempts to translate human functional networks to nonhuman animals to uncover circuit-level mechanisms. To do this, we review the structural and functional connections of the salience network and its homology across species. We then describe the existing literature in which circuit-specific perturbation of the SN sheds light on how functional cortical networks operate, both within and outside the context of addiction. Finally, we highlight key outstanding opportunities for mechanistic studies of the SN.
Collapse
Affiliation(s)
- Adriana K. Cushnie
- Department of Neuroscience, University of Minnesota Twin Cities, 2-164 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA;
| | - Wei Tang
- Department of Computer Science, Indiana University Bloomington, Bloomington, IN 47408, USA
| | - Sarah R. Heilbronner
- Department of Neuroscience, University of Minnesota Twin Cities, 2-164 Jackson Hall, 321 Church St. SE, Minneapolis, MN 55455, USA;
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Liebenow B, Jones R, DiMarco E, Trattner JD, Humphries J, Sands LP, Spry KP, Johnson CK, Farkas EB, Jiang A, Kishida KT. Computational reinforcement learning, reward (and punishment), and dopamine in psychiatric disorders. Front Psychiatry 2022; 13:886297. [PMID: 36339844 PMCID: PMC9630918 DOI: 10.3389/fpsyt.2022.886297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
In the DSM-5, psychiatric diagnoses are made based on self-reported symptoms and clinician-identified signs. Though helpful in choosing potential interventions based on the available regimens, this conceptualization of psychiatric diseases can limit basic science investigation into their underlying causes. The reward prediction error (RPE) hypothesis of dopamine neuron function posits that phasic dopamine signals encode the difference between the rewards a person expects and experiences. The computational framework from which this hypothesis was derived, temporal difference reinforcement learning (TDRL), is largely focused on reward processing rather than punishment learning. Many psychiatric disorders are characterized by aberrant behaviors, expectations, reward processing, and hypothesized dopaminergic signaling, but also characterized by suffering and the inability to change one's behavior despite negative consequences. In this review, we provide an overview of the RPE theory of phasic dopamine neuron activity and review the gains that have been made through the use of computational reinforcement learning theory as a framework for understanding changes in reward processing. The relative dearth of explicit accounts of punishment learning in computational reinforcement learning theory and its application in neuroscience is highlighted as a significant gap in current computational psychiatric research. Four disorders comprise the main focus of this review: two disorders of traditionally hypothesized hyperdopaminergic function, addiction and schizophrenia, followed by two disorders of traditionally hypothesized hypodopaminergic function, depression and post-traumatic stress disorder (PTSD). Insights gained from a reward processing based reinforcement learning framework about underlying dopaminergic mechanisms and the role of punishment learning (when available) are explored in each disorder. Concluding remarks focus on the future directions required to characterize neuropsychiatric disorders with a hypothesized cause of underlying dopaminergic transmission.
Collapse
Affiliation(s)
- Brittany Liebenow
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Rachel Jones
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Emily DiMarco
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Jonathan D. Trattner
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Joseph Humphries
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - L. Paul Sands
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kasey P. Spry
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Christina K. Johnson
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Evelyn B. Farkas
- Georgia State University Undergraduate Neuroscience Institute, Atlanta, GA, United States
| | - Angela Jiang
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Kenneth T. Kishida
- Neuroscience Graduate Program, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Neurosurgery, Wake Forest University School of Medicine, Winston-Salem, NC, United States
- Department of Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
7
|
Gibson BC, Claus ED, Sanguinetti J, Witkiewitz K, Clark VP. A review of functional brain differences predicting relapse in substance use disorder: Actionable targets for new methods of noninvasive brain stimulation. Neurosci Biobehav Rev 2022; 141:104821. [PMID: 35970417 DOI: 10.1016/j.neubiorev.2022.104821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies have identified a variety of brain regions whose activity predicts substance use (i.e., relapse) in patients with substance use disorder (SUD), suggesting that malfunctioning brain networks may exacerbate relapse. However, this knowledge has not yet led to a marked improvement in treatment outcomes. Noninvasive brain stimulation (NIBS) has shown some potential for treating SUDs, and a new generation of NIBS technologies offers the possibility of selectively altering activity in both superficial and deep brain structures implicated in SUDs. The goal of the current review was to identify deeper brain structures involved in relapse to SUD and give an account of innovative methods of NIBS that might be used to target them. Included studies measured fMRI in currently abstinent SUD patients and tracked treatment outcomes, and fMRI results were organized with the framework of the Addictions Neuroclinical Assessment (ANA). Four brain structures were consistently implicated: the anterior and posterior cingulate cortices, ventral striatum and insula. These four deeper brain structures may be appropriate future targets for the treatment of SUD using these innovative NIBS technologies.
Collapse
Affiliation(s)
- Benjamin C Gibson
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Eric D Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jay Sanguinetti
- The Center for Consciousness Studies, University of Arizona, Tucson, AZ 85719, USA
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA.
| |
Collapse
|
8
|
Temporally dynamic neural correlates of drug cue reactivity, response inhibition, and methamphetamine-related response inhibition in people with methamphetamine use disorder. Sci Rep 2022; 12:3567. [PMID: 35246553 PMCID: PMC8897423 DOI: 10.1038/s41598-022-05619-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/11/2022] [Indexed: 11/14/2022] Open
Abstract
Cue-induced drug craving and disinhibition are two essential components of continued drug use and relapse in substance use disorders. While these phenomena develop and interact across time, the temporal dynamics of their underlying neural activity remain under-investigated. To explore these dynamics, an analysis of time-varying activation was applied to fMRI data from 62 men with methamphetamine use disorder in their first weeks of recovery in an abstinence-based treatment program. Using a mixed block-event, factorial cue-reactivity/Go-NoGo task and a sliding window across the task duration, dynamically-activated regions were identified in three linear mixed effects models (LMEs). Habituation to drug cues across time was observed in the superior temporal gyri, amygdalae, left hippocampus, and right precuneus, while response inhibition was associated with the sensitization of temporally-dynamic activations across many regions of the inhibitory frontoparietal network. Methamphetamine-related response inhibition was associated with temporally-dynamic activity in the parahippocampal gyri and right precuneus (corrected p-value < 0.001), which show a declining cue-reactivity contrast and an increasing response inhibition contrast. Overall, the declining craving-related activations (habituation) and increasing inhibition-associated activations (sensitization) during the task duration suggest the gradual recruitment of response inhibitory processes and a concurrent habituation to drug cues in areas with temporally-dynamic methamphetamine-related response inhibition. Furthermore, temporally dynamic cue-reactivity and response inhibition were correlated with behavioral and clinical measures such as the severity of methamphetamine use and craving, impulsivity and inhibitory task performance. This exploratory study demonstrates the time-variance of the neural activations undergirding cue-reactivity, response inhibition, and response inhibition during exposure to drug cues, and suggests a method to assess this dynamic interplay. Analyses that can capture temporal fluctuations in the neural substrates of drug cue-reactivity and response inhibition may prove useful for biomarker development by revealing the rate and pattern of sensitization and habituation processes, and may inform mixed cue-exposure intervention paradigms which could promote habituation to drug cues and sensitization in inhibitory control regions.
Collapse
|
9
|
Bischoff-Grethe A, Ellis RJ, Tapert SF, Paulus MP, Grant I. Prior Methamphetamine Use Disorder History Does Not Impair Interoceptive Processing of Soft Touch in HIV Infection. Viruses 2021; 13:v13122476. [PMID: 34960745 PMCID: PMC8705776 DOI: 10.3390/v13122476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction: Interoception, defined as the sense of the internal state of one’s body, helps motivate goal-directed behavior. Prior work has shown that methamphetamine (METH) use disorder is associated with altered interoception, and that this may contribute to risky behavior. As people with HIV (PWH) may also experience disrupted bodily sensations (e.g., neuropathy), an important question is whether PWH with a history of METH use disorder might exhibit greater impairment of interoceptive processing. Methods: Eighty-three participants stratified by HIV infection and a past history of methamphetamine use disorder experienced a soft touch paradigm that included slow brush strokes on the left forearm and palm during blood-oxygen level-dependent functional MRI acquisition. To assess differences in interoception and reward, voxelwise analyses were constrained to the insula, a hub for the evaluation of interoceptive cues, and the striatum, which is engaged in reward processing. Results: Overall, individuals with a history of METH use disorder had an attenuated neural response to pleasant touch in both the insula and striatum. Longer abstinence was associated with greater neural response to touch in the insula, suggesting some improvement in responsivity. However, only PWH with no METH use disorder history had lower brain activation in the insula relative to non-using seronegative controls. Conclusions: Our findings suggest that while METH use disorder history and HIV infection independently disrupt the neural processes associated with interoception, PWH with METH use disorder histories do not show significant differences relative to non-using seronegative controls. These findings suggest that the effects of HIV infection and past methamphetamine use might not be additive with respect to interoceptive processing impairment.
Collapse
Affiliation(s)
- Amanda Bischoff-Grethe
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, MC 0738 La Jolla, San Diego, CA 92093, USA; (S.F.T.); (I.G.)
- Correspondence:
| | - Ronald J. Ellis
- Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093, USA;
| | - Susan F. Tapert
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, MC 0738 La Jolla, San Diego, CA 92093, USA; (S.F.T.); (I.G.)
| | | | - Igor Grant
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, MC 0738 La Jolla, San Diego, CA 92093, USA; (S.F.T.); (I.G.)
| | | |
Collapse
|
10
|
Becker B. Neurocognition in stimulant addiction: reply to Robbins (2021). PSYCHORADIOLOGY 2021; 1:91-93. [PMID: 38665360 PMCID: PMC10917236 DOI: 10.1093/psyrad/kkab010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 04/28/2024]
Affiliation(s)
- Benjamin Becker
- University of Electronic Science and Technology of China, School of Life Science and Technology, China
| |
Collapse
|
11
|
Girven KS, Aroni S, Navarrete J, Marino RAM, McKeon PN, Cheer JF, Sparta DR. Glutamatergic input from the insula to the ventral bed nucleus of the stria terminalis controls reward-related behavior. Addict Biol 2021; 26:e12961. [PMID: 32820590 PMCID: PMC8651178 DOI: 10.1111/adb.12961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022]
Abstract
Individuals suffering from substance use disorder often experience relapse events that are attributed to drug craving. Insular cortex (IC) function is implicated in processing drug-predictive cues and is thought to be a critical substrate for drug craving, but the downstream neural circuit effectors of the IC that mediate reward processing are poorly described. Here, we uncover the functional connectivity of an IC projection to the ventral bed nucleus of the stria terminalis (vBNST), a portion of the extended amygdala that has been previously shown to modulate dopaminergic activity within the ventral tegmental area (VTA), and investigate the role of this pathway in reward-related behaviors. We utilized ex vivo slice electrophysiology and in vivo optogenetics to examine the functional connectivity of the IC-vBNST projection and bidirectionally control IC-vBNST terminals in various reward-related behavioral paradigms. We hypothesized that the IC recruits mesolimbic dopamine signaling by activating VTA-projecting, vBNST neurons. Using slice electrophysiology, we found that the IC sends a glutamatergic projection onto vBNST-VTA neurons. Photoactivation of IC-vBNST terminals was sufficient to reinforce behavior in a dopamine-dependent manner. Moreover, silencing the IC-vBNST projection was aversive and resulted in anxiety-like behavior without affecting food consumption. This work provides a potential mechanism by which the IC processes exteroceptive triggers that are predictive of reward.
Collapse
Affiliation(s)
- Kasey S. Girven
- Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sonia Aroni
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jovana Navarrete
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rosa A. M. Marino
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Paige N. McKeon
- Program in Molecular Medicine, University of Maryland Baltimore, Baltimore, MD 21201, USA
| | - Joseph F. Cheer
- Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dennis R. Sparta
- Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Campbell EJ, Lawrence AJ. It's more than just interoception: The insular cortex involvement in alcohol use disorder. J Neurochem 2021; 157:1644-1651. [PMID: 33486788 DOI: 10.1111/jnc.15310] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/24/2022]
Abstract
Understanding brain structures and circuits impacted by alcohol use disorder is critical for improving our future prevention techniques and treatment options. A brain region that has recently gained traction for its involvement in substance use disorder is the insular cortex. This brain region is multi-functional and spatially complex, resulting in a relative lack of understanding of the involvement of the insular cortex in alcohol use disorder. Here we discuss the role of the insular cortex in alcohol use disorder, particularly during periods of abstinence and in response to alcohol and alcohol-related cues and contexts. We also discuss a broader role of the insular in alcohol-associated risky decision making and impulse control. Finally, we canvas potential challenges associated with targeting the insular cortex to treat individuals with alcohol use disorder.
Collapse
Affiliation(s)
- Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Vic, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|
13
|
Maldonado R, Calvé P, García-Blanco A, Domingo-Rodriguez L, Senabre E, Martín-García E. Vulnerability to addiction. Neuropharmacology 2021; 186:108466. [PMID: 33482225 DOI: 10.1016/j.neuropharm.2021.108466] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/03/2020] [Accepted: 01/14/2021] [Indexed: 12/22/2022]
Abstract
Addiction is a chronic brain disease that has dramatic health and socioeconomic consequences worldwide. Multiple approaches have been used for decades to clarify the neurobiological basis of this disease and to identify novel potential treatments. This review summarizes the main brain networks involved in the vulnerability to addiction and specific innovative technological approaches to investigate these neural circuits. First, the evolution of the definition of addiction across the Diagnostic and Statistical Manual of Mental Disorders (DSM) is revised. We next discuss several innovative experimental techniques that, combined with behavioral approaches, have allowed recent critical advances in understanding the neural circuits involved in addiction, including DREADDs, calcium imaging, and electrophysiology. All these techniques have been used to investigate specific neural circuits involved in vulnerability to addiction and have been extremely useful to clarify the neurobiological basis of each specific component of the addictive process. These novel tools targeting specific brain regions are of great interest to further understand the different aspects of this complex disease. This article is part of the special issue on 'Vulnerabilities to Substance Abuse.'.
Collapse
Affiliation(s)
- R Maldonado
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain; Hospital Del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - P Calvé
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - A García-Blanco
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - L Domingo-Rodriguez
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - E Senabre
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - E Martín-García
- Laboratory of Neuropharmacology-Neurophar, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
14
|
Rakesh D, Lv J, Zalesky A, Allen NB, Lubman DI, Yücel M, Whittle S. Altered resting functional connectivity patterns associated with problematic substance use and substance use disorders during adolescence. J Affect Disord 2021; 279:599-608. [PMID: 33190110 DOI: 10.1016/j.jad.2020.10.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/02/2020] [Accepted: 10/25/2020] [Indexed: 11/18/2022]
Abstract
BACKGROUND Adolescence is typified by increasing rates of substance use and the development of substance use disorders (SUD). Aberrant connectivity between cortical regions involved in executive control, and subcortical regions has been suggested to be associated with SUD and problematic substance use among adolescents. Few studies, however, have investigated system-level or whole-brain functional connectivity (FC) in order to test this hypothesis. METHODS In a sample of 114 adolescents (mean age = 17.62 years, SD = 1.23, 61F) from the community, the present study used resting-state functional magnetic resonance imaging and independent component analysis to study executive control-subcortical network (ECN-SCN) coupling in adolescent SUD (n=18) and problematic substance use (n=34). In addition, whole-brain FC analyses were also conducted. RESULTS Problematic substance use, but not SUD, was associated with increased negative ECN-SCN coupling (p = 0.026). The whole-brain FC analysis showed insula-associated hypoconnectivity in the SUD group (p = 0.037), which was negatively correlated with frequency of substance use. CONCLUSIONS Findings implicate different neural circuitry underlying adolescent SUD versus problematic use. Greater negative coupling between the SCN and ECN in adolescents with problematic substance use could underlie risk for future development of SUD or other mental health problems. Although we cannot infer directionality, hypoconnectivity within the insula in adolescents with SUD may indicate addiction-related alterations in interoceptive awareness or impairments in decision-making.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia.
| | - Jinglei Lv
- School of Biomedical Engineering, The University of Sydney, Camperdown, NSW, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia; Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| | - Nicholas B Allen
- Department of Psychology, The University of Oregon, Eugene, OR, USA
| | - Dan I Lubman
- Department of Psychology, The University of Oregon, Eugene, OR, USA; Eastern Health Clinical School, Monash University, Victoria, Australia; Turning Point, Eastern Health, Victoria, Australia
| | - Murat Yücel
- BrainPark, The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Australia
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia; BrainPark, The Turner Institute for Brain and Mental Health, School of Psychological Sciences and Monash Biomedical Imaging Facility, Monash University, Australia.
| |
Collapse
|
15
|
Luo YX, Huang D, Guo C, Ma YY. Limited versus extended cocaine intravenous self-administration: Behavioral effects and electrophysiological changes in insular cortex. CNS Neurosci Ther 2020; 27:196-205. [PMID: 33118700 PMCID: PMC7816201 DOI: 10.1111/cns.13469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/19/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
Aims Limited vs extended drug exposure has been proposed as one of the key factors in determining the risk of relapse, which is the primary characteristic of addiction behaviors. The current studies were designed to explore the related behavioral effects and neuronal alterations in the insular cortex (IC), an important brain region involved in addiction. Methods Experiments started with rats at the age of 35 days, a typical adolescent stage when initial drug exposure occurs often in humans. The drug‐seeking/taking behaviors, and membrane properties and intrinsic excitability of IC pyramidal neurons were measured on withdrawal day (WD) 1 and WD 45‐48 after limited vs extended cocaine intravenous self‐administration (IVSA). Results We found higher cocaine‐taking behaviors at the late withdrawal period after limited vs extended cocaine IVSA. We also found minor but significant effects of limited but not extended cocaine exposure on the kinetics and amplitude of action potentials on WD 45, in IC pyramidal neurons. Conclusion Our results indicate potential high risks of relapse in young rats with limited but not extended drug exposure, although the adaptations detected in the IC may not be sufficient to explain the neural changes of higher drug‐taking behaviors induced by limited cocaine IVSA.
Collapse
Affiliation(s)
- Yi-Xiao Luo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Psychology, Behavioral Neuroscience Program, State University of New York, Binghamton, NY, USA
| | - Donald Huang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Changyong Guo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Psychology, Behavioral Neuroscience Program, State University of New York, Binghamton, NY, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
16
|
Luo YX, Galaj E, Ma YY. Differential alterations of insular cortex excitability after adolescent or adult chronic intermittent ethanol administration in male rats. J Neurosci Res 2020; 99:649-661. [PMID: 33094531 DOI: 10.1002/jnr.24737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 12/31/2022]
Abstract
Adolescent alcohol drinking, primarily in the form of binge-drinking episodes, is a serious public health concern. Binge drinking in laboratory animals has been modeled by a procedure involving chronic intermittent ethanol (CIE) administration, as compared with chronic intermittent water (CIW). The prolonged effects of adolescent binge alcohol exposure in adults, such as high risk of developing alcohol use disorder, are severe but available treatments in the clinic are limited. One reason is the lack of sufficient understanding about the associated neuronal alterations. The involvement of the insular cortex, particularly the anterior agranular insula (AAI), has emerged as a critical region to explain neuronal mechanisms of substance abuse. This study was designed to evaluate the functional output of the AAI by measuring the intrinsic excitability of pyramidal neurons from male rats 2 or 21 days after adolescent or adult CIE treatment. Decreases in intrinsic excitability in AAI pyramidal neurons were detected 21 days, relative to 2 days, after adolescent CIE. Interestingly, the decreased intrinsic excitability in the AAI pyramidal neurons was observed 2 days after adult CIE, compared to adult CIW, but no difference was found between 2 versus 21 days after adult CIE. These data indicate that, although the AAI is influenced within a limited period after adult but not adolescent CIE, neuronal alterations in AAI are affected during the prolonged period of withdrawal from adolescent but not adult CIE. This may explain the prolonged vulnerability to mental disorders of subjects with an alcohol binge history during their adolescent stage.
Collapse
Affiliation(s)
- Yi-Xiao Luo
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Psychology, Behavioral Neuroscience Program, State University of New York, Binghamton, NY, USA
| | - Ewa Galaj
- Department of Psychology, Behavioral Neuroscience Program, State University of New York, Binghamton, NY, USA
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Psychology, Behavioral Neuroscience Program, State University of New York, Binghamton, NY, USA.,Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
17
|
Paulus MP, Stewart JL. Neurobiology, Clinical Presentation, and Treatment of Methamphetamine Use Disorder: A Review. JAMA Psychiatry 2020; 77:959-966. [PMID: 32267484 PMCID: PMC8098650 DOI: 10.1001/jamapsychiatry.2020.0246] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPORTANCE The prevalence of and mortality associated with methamphetamine use has doubled during the past 10 years. There is evidence suggesting that methamphetamine use disorder could be the next substance use crisis in the United States and possibly worldwide. OBSERVATION The neurobiology of methamphetamine use disorder extends beyond the acute effect of the drug as a monoaminergic modulator and includes intracellular pathways focused on oxidative stress, neurotoxic and excitotoxic effects, and neuroinflammation. Similarly, the clinical picture extends beyond the acute psychostimulatory symptoms to include complex cardiovascular and cerebrovascular signs and symptoms that need to be identified by the clinician. Although there are no pharmacologic treatments for methamphetamine use disorder, cognitive behavioral therapy, behavioral activation, and contingency management show modest effectiveness. CONCLUSIONS AND RELEVANCE There is a need to better understand the complex neurobiology of methamphetamine use disorder and to develop interventions aimed at novel biological targets. Parsing the disorder into different processes (eg, craving or mood-associated alterations) and targeting the neural systems and biological pathways underlying these processes may lead to greater success in identifying disease-modifying interventions. Finally, mental health professionals need to be trained in recognizing early cardiovascular and cerebrovascular warning signs to mitigate the mortality associated with methamphetamine use disorder.
Collapse
Affiliation(s)
- Martin P. Paulus
- Scientific Director and President Laureate Institute for Brain Research 6655 S Yale Ave, Tulsa, OK 74136-3326,Department of Community Medicine, University of Tulsa, Tulsa OK 74104
| | - Jennifer L. Stewart
- Scientific Director and President Laureate Institute for Brain Research 6655 S Yale Ave, Tulsa, OK 74136-3326,Department of Community Medicine, University of Tulsa, Tulsa OK 74104
| |
Collapse
|
18
|
Nestor LJ, Suckling J, Ersche KD, Murphy A, McGonigle J, Orban C, Paterson LM, Reed L, Taylor E, Flechais R, Smith D, Bullmore ET, Elliott R, Deakin B, Rabiner I, Hughes AL, Sahakian BJ, Robbins TW, Nutt DJ. Disturbances across whole brain networks during reward anticipation in an abstinent addiction population. NEUROIMAGE-CLINICAL 2020; 27:102297. [PMID: 32505119 PMCID: PMC7270610 DOI: 10.1016/j.nicl.2020.102297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/24/2020] [Accepted: 05/10/2020] [Indexed: 12/21/2022]
Abstract
Analytical methods can capture key features of whole brain networks in addiction. We compared reward network connectivity in addiction (ADD) and control (CON) groups. The ADD group showed disruptions in global network connectivity. Global network measures may be more sensitive than traditional voxel-wise analyses.
The prevalent spatial distribution of abnormalities reported in cognitive fMRI studies in addiction suggests there are extensive disruptions across whole brain networks. Studies using resting state have reported disruptions in network connectivity in addiction, but these studies have not revealed characteristics of network functioning during critical psychological processes that are disrupted in addiction populations. Analytic methods that can capture key features of whole brain networks during psychological processes may be more sensitive in revealing additional and widespread neural disturbances in addiction, that are the provisions for relapse risk, and targets for medication development. The current study compared a substance addiction (ADD; n = 83) group in extended abstinence with a control (CON; n = 68) group on functional MRI (voxel-wise activation) and global network (connectivity) measures related to reward anticipation on a monetary incentive delay task. In the absence of group differences on MID performance, the ADD group showed reduced activation predominantly across temporal and visual regions, but not across the striatum. The ADD group also showed disruptions in global network connectivity (lower clustering coefficient and higher characteristic path length), and significantly less connectivity across a sub-network comprising frontal, temporal, limbic and striatal nodes. These results show that an addiction group in extended abstinence exhibit localised disruptions in brain activation, but more extensive disturbances in functional connectivity across whole brain networks. We propose that measures of global network functioning may be more sensitive in highlighting latent and more widespread neural disruptions during critical psychological processes in addiction and other psychiatric disorders.
Collapse
Affiliation(s)
- Liam J Nestor
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom; Department of Psychiatry, University of Cambridge, United Kingdom
| | - John Suckling
- Department of Psychiatry, University of Cambridge, United Kingdom
| | - Karen D Ersche
- Department of Psychiatry, University of Cambridge, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - Anna Murphy
- Neuroscience and Psychiatry Unit, University of Manchester, United Kingdom
| | - John McGonigle
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | - Csaba Orban
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | - Louise M Paterson
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | - Laurence Reed
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | - Eleanor Taylor
- Neuroscience and Psychiatry Unit, University of Manchester, United Kingdom
| | - Remy Flechais
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | - Dana Smith
- Department of Psychiatry, University of Cambridge, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | | | - Rebecca Elliott
- Neuroscience and Psychiatry Unit, University of Manchester, United Kingdom
| | - Bill Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, United Kingdom
| | - Ilan Rabiner
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anne-Lingford Hughes
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | | | - Trevor W Robbins
- Department of Psychiatry, University of Cambridge, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - David J Nutt
- Neuropsychopharmacology Unit, Centre for Psychiatry, Imperial College London, United Kingdom
| | | |
Collapse
|
19
|
May AC, Aupperle RL, Stewart JL. Dark Times: The Role of Negative Reinforcement in Methamphetamine Addiction. Front Psychiatry 2020; 11:114. [PMID: 32256392 PMCID: PMC7090143 DOI: 10.3389/fpsyt.2020.00114] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/10/2020] [Indexed: 12/01/2022] Open
Abstract
Methamphetamine use is associated with substantial adverse outcomes including poor mental and physical health, financial difficulties, and societal costs. Despite deleterious long-term consequences associated with methamphetamine, many people use drugs for short-term reduction of unpleasant physical or emotional sensations. By removing these aversive states, drug use behaviors are negatively reinforced. Abstinence from methamphetamine can then result in a return to previous aversive emotional states linked to withdrawal and craving, often contributing to an increased likelihood for relapse. This negative reinforcement cycle is hypothesized to be a motivating and maintaining factor for addiction. Thus, this review highlights the current evidence for negative reinforcement mechanisms in methamphetamine use disorder by integrating studies of subjective experience, behavior, functional magnetic resonance imaging, positron emission tomography, and event-related potentials and examining the efficacy of treatments targeting aspects of negative reinforcement. Overall, the literature demonstrates that individuals who use methamphetamine have diminished cognitive control and process emotions, loss of reward, and interoceptive information differently than non-using individuals. These differences are reflected in behavioral and subjective experiments as well as brain-based experiments which report significant differences in various frontal regions, insula, anterior cingulate cortex, and striatum. Together, the results suggest methamphetamine users have an altered experience of negative outcomes, difficulties employing effective emotion regulation, and difficulty engaging in adaptive or goal-directed decision-making. Suggestions for future research to improve our understanding of how negative reinforcement contributes to methamphetamine addiction and to develop effective interventions are provided.
Collapse
Affiliation(s)
- April C. May
- Joint Doctoral Program in Clinical Psychology, San Diego State University and University of California, San Diego, San Diego, CA, United States
| | - Robin L. Aupperle
- Laureate Institute for Brain Research, Tulsa, OK, United States
- Department of Community Medicine, University of Tulsa, Tulsa, OK, United States
| | - Jennifer L. Stewart
- Laureate Institute for Brain Research, Tulsa, OK, United States
- Department of Community Medicine, University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
20
|
Bickel WK, Athamneh LN, Snider SE, Craft WH, DeHart WB, Kaplan BA, Basso JC. Reinforcer Pathology: Implications for Substance Abuse Intervention. Curr Top Behav Neurosci 2020; 47:139-162. [PMID: 32462615 DOI: 10.1007/7854_2020_145] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rate at which individuals discount future rewards (i.e., discounting rate) is strongly associated with their propensity for substance abuse as well as myriad other negative health behaviors. An excessive preference for immediately available rewards suggests a shortened time horizon in which immediate rewards are overvalued and future, potentially negative consequences are undervalued. This review outlines Reinforcer Pathology Theory (i.e., the interaction between excessive preference for immediately available rewards and the overvaluation of a particular commodity that offers brief, intense reinforcement), its neurobiological/behavioral underpinnings, and its implications for treating substance use disorders. In doing so, the current review provides an overview of a variety of ways in which interventions have been used to manipulate aspects of reinforcer pathology in an individual, including narrative theory, framing manipulations, and neuromodulation (e.g., working memory training, TMS) which may serve as promising avenues for the modulation of the temporal window and/or valuation of reinforcers.
Collapse
Affiliation(s)
- Warren K Bickel
- Addiction Recovery Research Center, Fralin Biomedical Research Institute, Roanoke, VA, USA. .,Center for Transformative Research on Health Behaviors, Fralin Biomedical Research Institute, Roanoke, VA, USA.
| | - Liqa N Athamneh
- Addiction Recovery Research Center, Fralin Biomedical Research Institute, Roanoke, VA, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sarah E Snider
- Addiction Recovery Research Center, Fralin Biomedical Research Institute, Roanoke, VA, USA
| | - William H Craft
- Addiction Recovery Research Center, Fralin Biomedical Research Institute, Roanoke, VA, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - William B DeHart
- Addiction Recovery Research Center, Fralin Biomedical Research Institute, Roanoke, VA, USA
| | - Brent A Kaplan
- Addiction Recovery Research Center, Fralin Biomedical Research Institute, Roanoke, VA, USA
| | - Julia C Basso
- Addiction Recovery Research Center, Fralin Biomedical Research Institute, Roanoke, VA, USA
| |
Collapse
|
21
|
Stewart JL, May AC, Paulus MP. Bouncing back: Brain rehabilitation amid opioid and stimulant epidemics. NEUROIMAGE-CLINICAL 2019; 24:102068. [PMID: 31795056 PMCID: PMC6978215 DOI: 10.1016/j.nicl.2019.102068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/20/2019] [Accepted: 11/03/2019] [Indexed: 12/18/2022]
Abstract
Frontoparietal event related potentials predict/track recovery. Frontostriatal functional magnetic resonance imaging signals predict/track recovery. Transcranial magnetic left prefrontal stimulation reduces craving and drug use.
Recent methamphetamine and opioid use epidemics are a major public health concern. Chronic stimulant and opioid use are characterized by significant psychosocial, physical and mental health costs, repeated relapse, and heightened risk of early death. Neuroimaging research highlights deficits in brain processes and circuitry that are linked to responsivity to drug cues over natural rewards as well as suboptimal goal-directed decision-making. Despite the need for interventions, little is known about (1) how the brain changes with prolonged abstinence or as a function of various treatments; and (2) how symptoms change as a result of neuromodulation. This review focuses on the question: What do we know about changes in brain function during recovery from opioids and stimulants such as methamphetamine and cocaine? We provide a detailed overview and critique of published research employing a wide array of neuroimaging methods – functional and structural magnetic resonance imaging, electroencephalography, event-related potentials, diffusion tensor imaging, and multiple brain stimulation technologies along with neurofeedback – to track or induce changes in drug craving, abstinence, and treatment success in stimulant and opioid users. Despite the surge of methamphetamine and opioid use in recent years, most of the research on neuroimaging techniques for recovery focuses on cocaine use. This review highlights two main findings: (1) interventions can lead to improvements in brain function, particularly in frontal regions implicated in goal-directed behavior and cognitive control, paired with reduced drug urges/craving; and (2) the targeting of striatal mechanisms implicated in drug reward may not be as cost-effective as prefrontal mechanisms, given that deep brain stimulation methods require surgery and months of intervention to produce effects. Overall, more studies are needed to replicate and confirm findings, particularly for individuals with opioid and methamphetamine use disorders.
Collapse
Affiliation(s)
- Jennifer L Stewart
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Community Medicine, University of Tulsa, Tulsa, OK, United States.
| | - April C May
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, United States
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, United States; Department of Community Medicine, University of Tulsa, Tulsa, OK, United States
| |
Collapse
|
22
|
Ibrahim C, Rubin-Kahana DS, Pushparaj A, Musiol M, Blumberger DM, Daskalakis ZJ, Zangen A, Le Foll B. The Insula: A Brain Stimulation Target for the Treatment of Addiction. Front Pharmacol 2019; 10:720. [PMID: 31312138 PMCID: PMC6614510 DOI: 10.3389/fphar.2019.00720] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/05/2019] [Indexed: 12/15/2022] Open
Abstract
Substance use disorders (SUDs) are a growing public health concern with only a limited number of approved treatments. However, even approved treatments are subject to limited efficacy with high long-term relapse rates. Current treatment approaches are typically a combination of pharmacotherapies and behavioral counselling. Growing evidence and technological advances suggest the potential of brain stimulation techniques for the treatment of SUDs. There are three main brain stimulation techniques that are outlined in this review: transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and deep brain stimulation (DBS). The insula, a region of the cerebral cortex, is known to be involved in critical aspects underlying SUDs, such as interoception, decision making, anxiety, pain perception, cognition, mood, threat recognition, and conscious urges. This review focuses on both the preclinical and clinical evidence demonstrating the role of the insula in addiction, thereby demonstrating its promise as a target for brain stimulation. Future research should evaluate the optimal parameters for brain stimulation of the insula, through the use of relevant biomarkers and clinical outcomes for SUDs.
Collapse
Affiliation(s)
- Christine Ibrahim
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Dafna S. Rubin-Kahana
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Abhiram Pushparaj
- Qunuba Sciences, Toronto, ON, Canada
- Ironstone Product Development, Toronto, ON, Canada
| | | | - Daniel M. Blumberger
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Zafiris J. Daskalakis
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Abraham Zangen
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Addictions Division, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Alcohol Research and Treatment Clinic, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Groman SM, Massi B, Mathias SR, Lee D, Taylor JR. Model-Free and Model-Based Influences in Addiction-Related Behaviors. Biol Psychiatry 2019; 85:936-945. [PMID: 30737015 PMCID: PMC6534429 DOI: 10.1016/j.biopsych.2018.12.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Disruptions in the decision-making processes that guide action selection are a core feature of many psychiatric disorders, including addiction. Decision making is influenced by the goal-directed and habitual systems that can be computationally characterized using model-based and model-free reinforcement learning algorithms, respectively. Recent evidence suggests an imbalance in the influence of these reinforcement learning systems on behavior in individuals with substance dependence, but it is unknown whether these disruptions are a manifestation of chronic drug use and/or are a preexisting risk factor for addiction. METHODS We trained adult male rats on a multistage decision-making task to quantify model-free and model-based processes before and after self-administration of methamphetamine or saline. RESULTS Individual differences in model-free, but not model-based, learning prior to any drug use predicted subsequent methamphetamine self-administration; rats with lower model-free behavior took more methamphetamine than rats with higher model-free behavior. This relationship was selective to model-free updating following a rewarded, but not unrewarded, choice. Both model-free and model-based learning were reduced in rats following methamphetamine self-administration, which was due to a decrement in the ability of rats to use unrewarded outcomes appropriately. Moreover, the magnitude of drug-induced disruptions in model-free learning was not correlated with disruptions in model-based behavior, indicating that drug self-administration independently altered both reinforcement learning strategies. CONCLUSIONS These findings provide direct evidence that model-free and model-based learning mechanisms are involved in select aspects of addiction vulnerability and pathology, and they provide a unique behavioral platform for conducting systems-level analyses of decision making in preclinical models of mental illness.
Collapse
Affiliation(s)
- Stephanie M. Groman
- Department of Psychiatry, Yale University,Correspondence to be direct to: Stephanie M. Groman, Ph.D. (); Jane R. Taylor, Ph.D. (), 34 Park Street, New Haven CT 06515
| | - Bart Massi
- Department of Neuroscience, Yale University
| | | | - Daeyeol Lee
- Department of Psychiatry, Yale University,Department of Neuroscience, Yale University,Department of Psychology, Yale University
| | - Jane R. Taylor
- Department of Psychiatry, Yale University,Department of Psychology, Yale University,Correspondence to be direct to: Stephanie M. Groman, Ph.D. (); Jane R. Taylor, Ph.D. (), 34 Park Street, New Haven CT 06515
| |
Collapse
|
24
|
Zhao Y, Ge Y, Zheng ZL. Brain Imaging-Guided Analysis Reveals DNA Methylation Profiles Correlated with Insular Surface Area and Alcohol Use Disorder. Alcohol Clin Exp Res 2019; 43:628-639. [PMID: 30830696 PMCID: PMC6443499 DOI: 10.1111/acer.13971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/26/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) is a wide-spread, heritable brain disease, but few studies have linked genetic variants or epigenetic factors to brain structures related to AUD in humans, due to many factors including the high-dimensional nature of imaging and genomic data. METHODS To provide potential insights into the links among epigenetic regulation, brain structure, and AUD, we have performed an integrative analysis of brain structural imaging and blood DNA methylome data from 52 AUD and 58 healthy control (HC) subjects collected in the Nathan Kline Institute-Rockland Sample. RESULTS We first found that AUD subjects had significantly larger insular surface area than HC in both left and right hemispheres. We then found that 7,827 DNA methylation probes on the HumanMethylation450K BeadChip had significant correlations with the right insular surface area (false discovery rate [FDR] < 0.05). Furthermore, we showed that 44 of the insular surface area-correlated methylation probes were also strongly correlated with AUD status (FDR < 0.05). These AUD-correlated probes are annotated to 36 protein-coding genes, with 16 genes (44%) having been reported by others to be related to AUD or alcohol response, including TAS2R16 and PER2. The remaining 20 genes, in particular ARHGAP22, might represent novel genes involved in AUD or responsive to alcohol. CONCLUSIONS We have identified 36 insular surface area- and AUD-correlated protein-coding genes that are either known to be AUD- or alcohol-related or not yet reported by prior studies. Therefore, our study suggests that the brain imaging-guided epigenetic analysis has a potential of identifying possible epigenetic mechanisms involved in AUD.
Collapse
Affiliation(s)
- Yihong Zhao
- Department of Child and Adolescent Psychiatry, NYU Langone Medical Center, New York, NY 10016, USA
- Center for Behavioral Science Research, Department of Health Policy & Health Services Research, Boston University, Boston, MA 02118, USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhi-Liang Zheng
- Department of Biological Sciences, Lehman College, City University of New York, Bronx, NY 10468, USA
| |
Collapse
|
25
|
Moningka H, Lichenstein S, Worhunsky PD, DeVito EE, Scheinost D, Yip SW. Can neuroimaging help combat the opioid epidemic? A systematic review of clinical and pharmacological challenge fMRI studies with recommendations for future research. Neuropsychopharmacology 2019; 44:259-273. [PMID: 30283002 PMCID: PMC6300537 DOI: 10.1038/s41386-018-0232-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 02/04/2023]
Abstract
The current opioid epidemic is an urgent public health problem, with enormous individual, societal, and healthcare costs. Despite effective, evidence-based treatments, there is significant individual variability in treatment responses and relapse rates are high. In addition, the neurobiology of opioid-use disorder (OUD) and its treatment is not well understood. This review synthesizes published fMRI literature relevant to OUD, with an emphasis on findings related to opioid medications and treatment, and proposes areas for further research. We conducted a systematic literature review of Medline and Psychinfo to identify (i) fMRI studies comparing OUD and control participants; (ii) studies related to medication, treatment, abstinence or withdrawal effects in OUD; and (iii) studies involving manipulation of the opioid system in healthy individuals. Following application of exclusionary criteria (e.g., insufficient sample size), 45 studies were retained comprising data from ~1400 individuals. We found convergent evidence that individuals with OUD display widespread heightened neural activation to heroin cues. This pattern is potentiated by heroin, attenuated by medication-assisted treatments for opioids, predicts treatment response, and is reduced following extended abstinence. Nonetheless, there is a paucity of literature examining neural characteristics of OUD and its treatment. We discuss limitations of extant research and identify critical areas for future neuroimaging studies, including the urgent need for studies examining prescription opioid users, assessing sex differences and utilizing a wider range of clinically relevant task-based fMRI paradigms across different stages of addiction.
Collapse
Affiliation(s)
- Hestia Moningka
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Sarah Lichenstein
- Yale School of Medicine, Radiology and Bioimaging Sciences, New Haven, CT, 06510, USA
| | - Patrick D Worhunsky
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Elise E DeVito
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Dustin Scheinost
- Yale School of Medicine, Radiology and Bioimaging Sciences, New Haven, CT, 06510, USA
| | - Sarah W Yip
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
26
|
Droutman V, Xue F, Barkley-Levenson E, Lam HY, Bechara A, Smith B, Lu ZL, Xue G, Miller LC, Read SJ. Neurocognitive decision-making processes of casual methamphetamine users. NEUROIMAGE-CLINICAL 2018; 21:101643. [PMID: 30612937 PMCID: PMC6411911 DOI: 10.1016/j.nicl.2018.101643] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/01/2018] [Accepted: 12/13/2018] [Indexed: 11/04/2022]
Abstract
Neuroadaptations caused by chronic methamphetamine (MA) use are likely major contributors to high relapse rate following treatment. Thus, focusing intervention efforts at pre-empting addiction in vulnerable populations, thereby preventing MA-use-induced neurological changes that make recovery so challenging, may prove more effective than targeting chronic users. One approach is studying casual/recreational users, not diagnosed with substance use disorder. This group may be at high risk for addiction due to their experience with MA. On the other hand, they may be resilient against addiction since they were able to maintain casual use over the years and not become addicted. Understanding their neuro-cognitive characteristics during decision-making and risk-taking would help solve this dilemma and, may help identify intervention strategies. Unfortunately, research on neuro-cognitive characteristics of casual MA users is currently lacking. In this work we begin to address this deficit. This study was part of a larger investigation of neural correlates of risky sexual decision-making in men who have sex with men. While undergoing functional magnetic resonance imaging, 31 casual MA users and 66 non-users performed the CUPS task, in which they decided to accept or refuse a series of mixed gambles. Convergent results from whole brain, region of interest and psychophysiological interaction (PPI) analyses are presented. Whole brain analysis identified an amygdala-striatal cluster with weaker activation in casual MA users compared to non-users during decision-making. Activity in that cluster inversely correlated with decisions to gamble: lower activation corresponded to higher risk taking. Using this cluster as a seed in PPI analyses, we identified a wide range of neural network differences between casual MA users and non-users. Parametric whole brain analyses identified clusters in the ventral striatum, posterior insula and precuneus where activations modulated by risk and reward were significantly weaker in casual MA users than in non-users. The striatal cluster identified in these analyses overlapped with the amygdala-striatal cluster. This work identified neural differences in casual MA users' reward processing and outcome learning systems which may underlie their increased real-world risk-taking. It suggests that while making decisions casual MA users focus primarily on potential gain unlike non-users who also take the riskiness of the choice into consideration. Neurocognitive processes of casual meth users, not yet addicted but at high risk. Convergent results from whole brain, psychophysiological interaction and ROI. Isolated key deficits in reward processing and outcome learning. Identified deficits may contribute to increased lab and real-world risk-taking.
Collapse
Affiliation(s)
| | - Feng Xue
- University of Southern California, USA; University of California San Diego, USA
| | | | | | | | | | | | - Gue Xue
- Beijing Normal University, China
| | | | | |
Collapse
|
27
|
Blair R, Veroude K, Buitelaar J. Neuro-cognitive system dysfunction and symptom sets: A review of fMRI studies in youth with conduct problems. Neurosci Biobehav Rev 2018; 91:69-90. [DOI: 10.1016/j.neubiorev.2016.10.022] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 08/26/2016] [Accepted: 10/25/2016] [Indexed: 12/21/2022]
|
28
|
Ross MC, Lenow JK, Kilts CD, Cisler JM. Altered neural encoding of prediction errors in assault-related posttraumatic stress disorder. J Psychiatr Res 2018; 103:83-90. [PMID: 29783079 PMCID: PMC6008230 DOI: 10.1016/j.jpsychires.2018.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/10/2018] [Accepted: 05/11/2018] [Indexed: 10/16/2022]
Abstract
Posttraumatic stress disorder (PTSD) is widely associated with deficits in extinguishing learned fear responses, which relies on mechanisms of reinforcement learning (e.g., updating expectations based on prediction errors). However, the degree to which PTSD is associated with impairments in general reinforcement learning (i.e., outside of the context of fear stimuli) remains poorly understood. Here, we investigate brain and behavioral differences in general reinforcement learning between adult women with and without a current diagnosis of PTSD. 29 adult females (15 PTSD with exposure to assaultive violence, 14 controls) underwent a neutral reinforcement-learning task (i.e., two arm bandit task) during fMRI. We modeled participant behavior using different adaptations of the Rescorla-Wagner (RW) model and used Independent Component Analysis to identify timecourses for large-scale a priori brain networks. We found that an anticorrelated and risk sensitive RW model best fit participant behavior, with no differences in computational parameters between groups. Women in the PTSD group demonstrated significantly less neural encoding of prediction errors in both a ventral striatum/mPFC and anterior insula network compared to healthy controls. Weakened encoding of prediction errors in the ventral striatum/mPFC and anterior insula during a general reinforcement learning task, outside of the context of fear stimuli, suggests the possibility of a broader conceptualization of learning differences in PTSD than currently proposed in current neurocircuitry models of PTSD.
Collapse
Affiliation(s)
- Marisa C. Ross
- Neuroscience Training Program, University of Wisconsin-Madison, United States
| | | | - Clinton D. Kilts
- University of Arkansas for Medical Sciences, Department of Psychiatry, Brain Imaging Research Center, United States
| | - Josh M. Cisler
- Neuroscience Training Program, University of Wisconsin-Madison, United States,Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, United States
| |
Collapse
|
29
|
Forster SE, Dickey MW, Forman SD. Regional cerebral blood flow predictors of relapse and resilience in substance use recovery: A coordinate-based meta-analysis of human neuroimaging studies. Drug Alcohol Depend 2018; 185:93-105. [PMID: 29428325 DOI: 10.1016/j.drugalcdep.2017.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Predicting relapse vulnerability can inform level-of-care and personalized substance use treatment. Few reliable predictors of relapse risk have been identified from traditional clinical, psychosocial, and demographic variables. However, recent neuroimaging findings highlight the potential prognostic import of brain-based signals, indexing the degree to which neural systems have been perturbed by addiction. These proposed "neuromarkers" forecast the likelihood, severity, and timing of relapse but the reliability and generalizability of such effects remains to be established. METHODS Activation likelihood estimation was used to conduct a preliminary quantitative, coordinate-based meta-analysis of the addiction neuroprediction literature; specifically, studies wherein baseline measures of regional cerebral blood flow were prospectively associated with substance use treatment outcomes. Consensus patterns of activation associated with relapse vulnerability (greater activation predicts poorer outcomes) versus resilience (greater activation predicts improved outcomes) were specifically investigated. RESULTS Twenty-four eligible studies yielded 134 foci, representing 923 subjects. Consensus activation was identified in right putamen and claustrum (p < .05, cluster-corrected) in relation to positive and negative treatment outcomes - likely reflecting variability in measurement context (e.g., task, sample characteristics) across datasets. A single cluster in rostral-ventral anterior cingulate cortex (rACC) was associated with relapse resilience, specifically (p < .05, cluster-corrected); no significant vulnerability-related clusters were identified. CONCLUSIONS Right putamen activation has been associated with relapse vulnerability and resilience, while increased baseline rACC activation has been consistently associated with improved treatment outcomes. Methodological heterogeneity within the existing literature, however, limits firm conclusions and future work will be necessary to confirm and clarify these results.
Collapse
Affiliation(s)
- Sarah E Forster
- VA Pittsburgh Healthcare System, United States; University of Pittsburgh, Department of Psychiatry, United States.
| | - Michael Walsh Dickey
- VA Pittsburgh Healthcare System, United States; University of Pittsburgh, Department of Psychology, United States; University of Pittsburgh, Department of Communication Science and Disorders, United States
| | - Steven D Forman
- VA Pittsburgh Healthcare System, United States; University of Pittsburgh, Department of Psychiatry, United States
| |
Collapse
|
30
|
Victor TA, Khalsa SS, Simmons WK, Feinstein JS, Savitz J, Aupperle RL, Yeh HW, Bodurka J, Paulus MP. Tulsa 1000: a naturalistic study protocol for multilevel assessment and outcome prediction in a large psychiatric sample. BMJ Open 2018; 8:e016620. [PMID: 29371263 PMCID: PMC5786129 DOI: 10.1136/bmjopen-2017-016620] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Although neuroscience has made tremendous progress towards understanding the basic neural circuitry underlying important processes such as attention, memory and emotion, little progress has been made in applying these insights to psychiatric populations to make clinically meaningful treatment predictions. The overall aim of the Tulsa 1000 (T-1000) study is to use the NIMH Research Domain Criteria framework in order to establish a robust and reliable dimensional set of variables that quantifies the positive and negative valence, cognition and arousal domains, including interoception, to generate clinically useful treatment predictions. METHODS AND ANALYSIS The T-1000 is a naturalistic study that will recruit, assess and longitudinally follow 1000 participants, including healthy controls and treatment-seeking individuals with mood, anxiety, substance use and eating disorders. Each participant will undergo interview, behavioural, biomarker and neuroimaging assessments over the course of 1 year. The study goal is to determine how disorders of affect, substance use and eating behaviour organise across different levels of analysis (molecules, genes, cells, neural circuits, physiology, behaviour and self-report) to predict symptom severity, treatment outcome and long-term prognosis. The data will be used to generate computational models based on Bayesian statistics. The final end point of this multilevel latent variable analysis will be standardised assessments that can be developed into clinical tools to help clinicians predict outcomes and select the best intervention for each individual, thereby reducing the burden of mental disorders, and taking psychiatry a step closer towards personalised medicine. ETHICS AND DISSEMINATION Ethical approval was obtained from Western Institutional Review Board screening protocol #20101611. The dissemination plan includes informing health professionals of results for clinical practice, submitting results to journals for peer-reviewed publication, presenting results at national and international conferences and making the dataset available to researchers and mental health professionals. TRIAL REGISTRATION NUMBER NCT02450240; Pre-results.
Collapse
Affiliation(s)
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma, USA
| | - W Kyle Simmons
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma, USA
| | - Justin S Feinstein
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma, USA
| | - Robin L Aupperle
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, Oklahoma, USA
| | - Hung-Wen Yeh
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Tulsa, Oklahoma, USA
| | | |
Collapse
|
31
|
Toward biomarkers of the addicted human brain: Using neuroimaging to predict relapse and sustained abstinence in substance use disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:143-154. [PMID: 28322982 PMCID: PMC5603350 DOI: 10.1016/j.pnpbp.2017.03.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/17/2017] [Accepted: 03/01/2017] [Indexed: 01/23/2023]
Abstract
The ability to predict relapse is a major goal of drug addiction research. Clinical and diagnostic measures are useful in this regard, but these measures do not fully and consistently identify who will relapse and who will remain abstinent. Neuroimaging approaches have the potential to complement these standard clinical measures to optimize relapse prediction. The goal of this review was to survey the existing drug addiction literature that either used a baseline functional or structural neuroimaging phenotype to longitudinally predict a clinical outcome, or that examined test-retest of a neuroimaging phenotype during a course of abstinence or treatment. Results broadly suggested that, relative to individuals who sustained abstinence, individuals who relapsed had (1) enhanced activation to drug-related cues and rewards, but reduced activation to non-drug-related cues and rewards, in multiple corticolimbic and corticostriatal brain regions; (2) weakened functional connectivity of these same corticolimbic and corticostriatal regions; and (3) reduced gray and white matter volume and connectivity in prefrontal regions. Thus, beyond these regions showing baseline group differences, reviewed evidence indicates that function and structure of these regions can prospectively predict - and normalization of these regions can longitudinally track - important clinical outcomes including relapse and adherence to treatment. Future clinical studies can leverage this information to develop novel treatment strategies, and to tailor scarce therapeutic resources toward individuals most susceptible to relapse.
Collapse
|
32
|
Xue F, Droutman V, Barkley-Levenson EE, Smith BJ, Xue G, Miller LC, Bechara A, Lu ZL, Read SJ. The role of the dorsal anterior insula in sexual risk: Evidence from an erotic Go/NoGo task and real-world risk-taking. Hum Brain Mapp 2018; 39:1555-1562. [PMID: 29314426 DOI: 10.1002/hbm.23931] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 01/29/2023] Open
Abstract
The insula plays an important role in response inhibition. Most relevant here, it has been proposed that the dorsal anterior insular cortex (dAIC) plays a central role in a salience network that is responsible for switching between the default mode network and the executive control network. However, the insula's role in sexually motivated response inhibition has not yet been studied. In this study, eighty-five 18- to 30-year-old sexually active men who have sex with men (MSM) performed an erotic Go/NoGo task while in an MRI scanner. Participants' real-world sexual risk-taking (frequency of condomless anal intercourse over the past 90 days) was then correlated with their neural activity during the task. We found greater activity in bilateral anterior insular cortex (both dorsal and ventral) on contrasts with stronger motivational information (attractive naked male pictures versus pictures of clothed, middle-aged females) and on contrasts requiring greater response inhibition (NoGo versus Go). We also found that activity in the right dAIC was negatively correlated with participants' real-world sexual risk-taking. Our results confirmed the involvement of the insular cortex in motivated response inhibition. Especially, the decreased right dAIC activity may reduce the likelihood that the executive control network will come online when individuals are faced with situations requiring inhibitory control and thus lead them to make more risky choices.
Collapse
Affiliation(s)
- Feng Xue
- University of California, San Diego, La Jolla, California.,University of Southern California, Los Angeles, California
| | - Vita Droutman
- University of Southern California, Los Angeles, California
| | | | | | - Gui Xue
- Beijing Normal University, Beijing, China
| | - Lynn C Miller
- University of Southern California, Los Angeles, California
| | | | | | - Stephen J Read
- University of Southern California, Los Angeles, California
| |
Collapse
|
33
|
Guttman Z, Moeller SJ, London ED. Neural underpinnings of maladaptive decision-making in addictions. Pharmacol Biochem Behav 2018; 164:84-98. [PMID: 28666893 PMCID: PMC5745312 DOI: 10.1016/j.pbb.2017.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/07/2017] [Accepted: 06/26/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Zoe Guttman
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA 90095, United States
| | - Scott J Moeller
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Edythe D London
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, United States; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, United States; Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, United States.
| |
Collapse
|
34
|
Rabin RA, Moeller SJ. Commentary on Stewart et al. (2017): Stimulants and marijuana-the potential value in studying substance co-use. Addiction 2017; 112:1578-1579. [PMID: 28778123 DOI: 10.1111/add.13871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Rachel A Rabin
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Moeller
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
35
|
Stewart JL, Butt M, May AC, Tapert SF, Paulus MP. Insular and cingulate attenuation during decision making is associated with future transition to stimulant use disorder. Addiction 2017; 112:1567-1577. [PMID: 28387975 PMCID: PMC5544547 DOI: 10.1111/add.13839] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/17/2017] [Accepted: 04/03/2017] [Indexed: 01/18/2023]
Abstract
AIMS To understand processes placing individuals at risk for stimulant (amphetamine and cocaine) use disorder. DESIGN Longitudinal study. SETTING University of California, San Diego Department of Psychiatry, CA, USA. PARTICIPANTS Occasional stimulant users (OSU; n = 184) underwent a baseline clinical interview and a functional magnetic resonance imaging (fMRI) session. On the basis of a follow-up clinical interview completed 3 years later, OSU (n = 147) were then categorized as problem stimulant users (PSU: n = 36; those who developed stimulant use disorders in the interim) or desisted stimulant users (DSU: n = 74; those who stopped using). OSU who did not meet criteria for PSU or DSU (n = 37) were included in dimensional analyses. MEASUREMENTS fMRI blood oxygen level-dependent (BOLD) contrast percentage signal change from baseline collected during a Paper-Scissors-Rock task was examined during three decision-making conditions, those resulting in: (1) wins, (2) ties and (3) losses. These data were used as dependent variables in categorical analyses comparing PSU and DSU, as well as dimensional analyses including interim drug use as predictors, controlling for baseline drug use. FINDINGS PSU exhibited lower anterior cingulate, middle insula, superior temporal, inferior parietal, precuneus and cerebellum activation than DSU across all three conditions (significant brain clusters required > 19 neighboring voxels to exceed F(1,108) = 5.58, P < 0.01 two-tailed; all Cohen's d > 0.83). Higher interim marijuana use was linked to lower pre-central and superior temporal activation during choices resulting in wins (> 19 neighboring voxels to exceed t = 2.61, P < 0.01 two-tailed; R2 change > 0.11). CONCLUSIONS Individuals who transition from stimulant use to stimulant use disorder appear to show alterations in neural processing of stimulus valuation and outcome monitoring, patterns also evident in chronic stimulant use disorder. Attenuated anterior cingulate and insular processing may constitute a high-risk neural processing profile, which could be used to calculate risk scores for individuals experimenting with stimulants.
Collapse
Affiliation(s)
- Jennifer L. Stewart
- Department of Psychology, Queens College, City University of New York, Flushing, NY 11367,Department of Psychology, The Graduate Center, City University of New York, New York, NY 10016
| | - Mamona Butt
- Department of Psychology, Queens College, City University of New York, Flushing, NY 11367
| | - April C. May
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
| | - Susan F. Tapert
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093
| | - Martin P. Paulus
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093,Laureate Institute of Brain Research, Tulsa, OK 74136
| |
Collapse
|
36
|
Bertocci MA, Bebko G, Versace A, Iyengar S, Bonar L, Forbes EE, Almeida JRC, Perlman SB, Schirda C, Travis MJ, Gill MK, Diwadkar VA, Sunshine JL, Holland SK, Kowatch RA, Birmaher B, Axelson DA, Frazier TW, Arnold LE, Fristad MA, Youngstrom EA, Horwitz SM, Findling RL, Phillips ML. Reward-related neural activity and structure predict future substance use in dysregulated youth. Psychol Med 2017; 47:1357-1369. [PMID: 27998326 PMCID: PMC5576722 DOI: 10.1017/s0033291716003147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Identifying youth who may engage in future substance use could facilitate early identification of substance use disorder vulnerability. We aimed to identify biomarkers that predicted future substance use in psychiatrically un-well youth. METHOD LASSO regression for variable selection was used to predict substance use 24.3 months after neuroimaging assessment in 73 behaviorally and emotionally dysregulated youth aged 13.9 (s.d. = 2.0) years, 30 female, from three clinical sites in the Longitudinal Assessment of Manic Symptoms (LAMS) study. Predictor variables included neural activity during a reward task, cortical thickness, and clinical and demographic variables. RESULTS Future substance use was associated with higher left middle prefrontal cortex activity, lower left ventral anterior insula activity, thicker caudal anterior cingulate cortex, higher depression and lower mania scores, not using antipsychotic medication, more parental stress, older age. This combination of variables explained 60.4% of the variance in future substance use, and accurately classified 83.6%. CONCLUSIONS These variables explained a large proportion of the variance, were useful classifiers of future substance use, and showed the value of combining multiple domains to provide a comprehensive understanding of substance use development. This may be a step toward identifying neural measures that can identify future substance use disorder risk, and act as targets for therapeutic interventions.
Collapse
Affiliation(s)
- M A Bertocci
- Department of Psychiatry,Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh,Pittsburgh, PA,USA
| | - G Bebko
- Department of Psychiatry,Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh,Pittsburgh, PA,USA
| | - A Versace
- Department of Psychiatry,Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh,Pittsburgh, PA,USA
| | - S Iyengar
- Department of Statistics,University of Pittsburgh,Pittsburgh, PA,USA
| | - L Bonar
- Department of Psychiatry,Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh,Pittsburgh, PA,USA
| | - E E Forbes
- Department of Psychiatry,Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh,Pittsburgh, PA,USA
| | - J R C Almeida
- Department of Psychiatry,Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh,Pittsburgh, PA,USA
| | - S B Perlman
- Department of Psychiatry,Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh,Pittsburgh, PA,USA
| | - C Schirda
- Department of Psychiatry,Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh,Pittsburgh, PA,USA
| | - M J Travis
- Department of Psychiatry,Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh,Pittsburgh, PA,USA
| | - M K Gill
- Department of Psychiatry,Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh,Pittsburgh, PA,USA
| | - V A Diwadkar
- Department of Psychiatry and Behavioral Neuroscience,Wayne State University,Detroit, MI,USA
| | - J L Sunshine
- Department of Radiology,University Hospitals Case Medical Center/Case Western Reserve University,Cleveland, OH,USA
| | - S K Holland
- Cincinnati Children's Hospital Medical Center, University of Cincinnati,Cincinnati, OH,USA
| | - R A Kowatch
- Department of Psychiatry and Behavioral Health,Ohio State University,Columbus, OH,USA
| | - B Birmaher
- Department of Psychiatry,Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh,Pittsburgh, PA,USA
| | - D A Axelson
- Department of Psychiatry and Behavioral Health,Ohio State University,Columbus, OH,USA
| | - T W Frazier
- Pediatric Institute,Cleveland Clinic,Cleveland, OH,USA
| | - L E Arnold
- Department of Psychiatry and Behavioral Health,Ohio State University,Columbus, OH,USA
| | - M A Fristad
- Department of Psychiatry and Behavioral Health,Ohio State University,Columbus, OH,USA
| | - E A Youngstrom
- Department of Psychology,University of North Carolina at Chapel Hill,Chapel Hill, NC,USA
| | - S M Horwitz
- Department of Child and Adolescent Psychiatry,New York University School of Medicine,New York, NY,USA
| | - R L Findling
- Department of Psychiatry,Johns Hopkins University,Baltimore, MD,USA
| | - M L Phillips
- Department of Psychiatry,Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh,Pittsburgh, PA,USA
| |
Collapse
|
37
|
Forster SE, Finn PR, Brown JW. Neural responses to negative outcomes predict success in community-based substance use treatment. Addiction 2017; 112:884-896. [PMID: 28029198 PMCID: PMC5382058 DOI: 10.1111/add.13734] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/25/2016] [Accepted: 12/22/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Patterns of brain activation have demonstrated promise as prognostic indicators in substance dependent individuals (SDIs) but have not yet been explored in SDIs typical of community-based treatment settings. DESIGN Prospective clinical outcome design, evaluating baseline functional magnetic resonance imaging data from the Balloon Analogue Risk Task (BART) as a predictor of 3-month substance use treatment outcomes. SETTING Community-based substance use programs in Bloomington, Indiana, USA. PARTICIPANTS Twenty-three SDIs (17 male, aged 18-43 years) in an intensive outpatient or residential treatment program; abstinent 1-4 weeks at baseline. MEASUREMENTS Event-related brain response, BART performance and self-report scores at treatment onset, substance use outcome measure (based on days of use). FINDINGS Using voxel-level predictive modeling and leave-one-out cross-validation, an elevated response to unexpected negative feedback in bilateral amygdala and anterior hippocampus (Amyg/aHipp) at baseline successfully predicted greater substance use during the 3-month study interval (P ≤ 0.006, cluster-corrected). This effect was robust to inclusion of significant non-brain-based covariates. A larger response to negative feedback in bilateral Amyg/aHipp was also associated with faster reward-seeking responses after negative feedback (r(23) = -0.544, P = 0.007; r(23) = -0.588, P = 0.003). A model including Amyg/aHipp activation, faster reward-seeking after negative feedback and significant self-report scores accounted for 45% of the variance in substance use outcomes in our sample. CONCLUSIONS An elevated response to unexpected negative feedback in bilateral amygdala and anterior hippocampus (Amyg/aHipp) appears to predict relapse to substance use in people attending community-based treatment.
Collapse
Affiliation(s)
- Sarah E. Forster
- Indiana University, Department of Psychological and Brain Sciences,VA Pittsburgh Healthcare System,University of Pittsburgh, Department of Psychiatry
| | - Peter R. Finn
- Indiana University, Department of Psychological and Brain Sciences
| | - Joshua W. Brown
- Indiana University, Department of Psychological and Brain Sciences
| |
Collapse
|
38
|
Suckling J, Nestor LJ. The neurobiology of addiction: the perspective from magnetic resonance imaging present and future. Addiction 2017; 112:360-369. [PMID: 27452960 PMCID: PMC5244682 DOI: 10.1111/add.13474] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 11/19/2015] [Accepted: 05/20/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Addiction is associated with severe economic and social consequences and personal tragedies, the scientific exploration of which draws upon investigations at the molecular, cellular and systems levels with a wide variety of technologies. Magnetic resonance imaging (MRI) has been key to mapping effects observed at the microscopic and mesoscopic scales. The range of measurements from this apparatus has opened new avenues linking neurobiology to behaviour. This review considers the role of MRI in addiction research, and what future technological improvements might offer. METHODS A hermeneutic strategy supplemented by an expansive, systematic search of PubMed, Scopus and Web of Science databases, covering from database inception to October 2015, with a conjunction of search terms relevant to addiction and MRI. Formal meta-analyses were prioritized. RESULTS Results from methods that probe brain structure and function suggest frontostriatal circuitry disturbances within specific cognitive domains, some of which predict drug relapse and treatment response. New methods of processing imaging data are opening opportunities for understanding the role of cerebral vasculature, a global view of brain communication and the complex topology of the cortical surface and drug action. Future technological advances include increases in MRI field strength, with concomitant improvements in image quality. CONCLUSIONS The magnetic resonance imaging literature provides a limited but convergent picture of the neurobiology of addiction as global changes to brain structure and functional disturbances to frontostriatal circuitry, accompanied by changes in anterior white matter.
Collapse
Affiliation(s)
- John Suckling
- Department of Psychiatry and Behavioural and Clinical Neuroscience InstituteUniversity of CambridgeCambridgeUK,Cambridge and Peterborough Foundation NHS TrustCambridgeUK
| | - Liam J. Nestor
- Department of Psychiatry and Behavioural and Clinical Neuroscience InstituteUniversity of CambridgeCambridgeUK,Centre for Neuropsychopharmacology, Division of Brain SciencesImperial College LondonLondonUK
| |
Collapse
|
39
|
Analysis of alcohol use disorders from the Nathan Kline Institute-Rockland Sample: Correlation of brain cortical thickness with neuroticism. Drug Alcohol Depend 2017; 170:66-73. [PMID: 27875803 PMCID: PMC5183556 DOI: 10.1016/j.drugalcdep.2016.10.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/20/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Although differences in both neuroanatomical measures and personality traits, in particular neuroticism, have been associated with alcohol use disorders (AUD), whether lifetime AUD diagnosis alters the relationship between neuroticism and neuroanatomical structures remains to be determined. METHODS Data from 65 patients with lifetime AUD diagnoses and 65 healthy comparisons (HC) group-matched on age, sex and race were extracted from the Nathan Kline Institute - Rockland Sample data set. Each subject completed personality trait measures and underwent MRI scanning. Cortical thickness measures at 68 Desikan-Killiany Atlas regions were obtained using FreeSurfer 5.3.0. Regression analyses were performed to identify brain regions at which the neuroticism-cortical thickness relationship was altered by lifetime AUD status. RESULTS As expected, AUDs had higher neuroticism scores than HCs. Correlations between neuroticism and cortical thickness in the left insula and right fusiform differed significantly across groups. Higher neuroticism score in AUD and the interaction between the insular cortical thickness-neuroticism correlation and AUD status were confirmed in a replication study using the Human Connectome Project data set. CONCLUSIONS Results confirmed the relationship between neuroticism and AUD and suggests that specific cortical regions, particularly the left insula, represent anatomic substrates underlying this association in AUD.
Collapse
|
40
|
Forster SE, Finn PR, Brown JW. A preliminary study of longitudinal neuroadaptation associated with recovery from addiction. Drug Alcohol Depend 2016; 168:52-60. [PMID: 27620345 PMCID: PMC5086261 DOI: 10.1016/j.drugalcdep.2016.08.626] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/24/2016] [Accepted: 08/15/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Few studies have explored longitudinal change in event-related brain responses during early recovery from addiction. Moreover, existing findings yield evidence of both increased and decreased signaling within reward and control centers over time. The current study explored reward- and control-related signals in a risky decision-making task and specifically investigated parametric modulations of the BOLD signal, rather than signal magnitude alone. It was hypothesized that risk-related signals during decision-making and outcome evaluation would reflect recovery and that change in specific signals would correspond with improved treatment outcomes. METHODS Twenty-one substance dependent individuals were recruited upon enrollment in community-based substance use treatment programs, wherein they received treatment-as-usual. Participants completed functional neuroimaging assessments at baseline and 3-month follow-up while performing the Balloon Analogue Risk Task (BART). Risk- and reward-sensitive signals were identified using parametric modulators. Substance use was tracked throughout the 3-month study interval using the timeline follow-back procedure. RESULTS Longitudinal contrasts of parametric modulators suggested improved formation of risk-informed outcome expectations at follow-up. Specifically, a greater response to high risk (low-likelihood) positive feedback was identified in caudal anterior cingulate cortex (ACC) and a greater response to low risk (low-likelihood) negative feedback was identified in caudal ACC and inferior frontal gyrus. In addition, attenuation of a ventromedial prefrontal cortex (vmPFC) "reward-seeking" signal (i.e., increasing response with greater reward) during risky decisions at follow-up was associated with less substance use during the study interval. CONCLUSIONS Changes in risk- and reward-related signaling in ACC/vmPFC appear to reflect recovery and may support sobriety.
Collapse
Affiliation(s)
- Sarah E Forster
- Indiana University, Department of Psychological and Brain Sciences, United States; VA Pittsburgh Healthcare System, United States; University of Pittsburgh, Department of Psychiatry, United States
| | - Peter R Finn
- Indiana University, Department of Psychological and Brain Sciences, United States
| | - Joshua W Brown
- Indiana University, Department of Psychological and Brain Sciences, United States.
| |
Collapse
|
41
|
Yip SW, DeVito EE, Kober H, Worhunsky PD, Carroll KM, Potenza MN. Anticipatory reward processing among cocaine-dependent individuals with and without concurrent methadone-maintenance treatment: Relationship to treatment response. Drug Alcohol Depend 2016; 166:134-42. [PMID: 27430401 PMCID: PMC5082418 DOI: 10.1016/j.drugalcdep.2016.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/21/2016] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cocaine dependence among opioid-dependent methadone-maintained individuals is a significant public health problem and is particularly challenging to treat. The neurobiology of this clinically complex population has not been previously assessed using fMRI. METHODS fMRI data from cocaine-dependent, methadone-maintained (CD-MM) patients (n=24), cocaine-dependent (CD) patients (n=20) and healthy comparison (HC) participants (n=21) were acquired during monetary incentive delay task performance. All patients were scanned prior to treatment for cocaine dependence. Between-group differences in anticipatory reward and loss processing were assessed using whole-brain ANOVAs in SPM12 (pFWE<0.05). Correlations between durations of abstinence during treatment and BOLD responses within the insula and caudate were also explored. RESULTS Main effects of diagnostic group, primarily involving decreased BOLD responses among CD-MM patients in comparison to HCs, were observed during anticipatory reward and loss processing within regions of posterior cingulate cortex, precuneus, inferior frontal gyrus and dorsolateral prefrontal cortex. BOLD responses within the right caudate were negatively associated with percentage of cocaine-negative urines during treatment among CD-MM patients, but not among non-methadone-maintained CD patients. CONCLUSIONS These data suggest neurofunctional differences that may be related to treatment outcomes for behavioral therapies between cocaine-dependent individuals with and without methadone-maintenance treatment. These findings may relate to differences in treatment efficacies and to the elevated relapse rates observed in methadone-maintained populations.
Collapse
Affiliation(s)
- Sarah W. Yip
- National Center on Addiction and Substance Abuse, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Division of Substance Abuse, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Corresponding author: 1 Church Street, 7th Floor, Room 730, New Haven, CT, 06510-3330; Tel: 203 737 4358; Fax: 203 737 3591;
| | - Elise E. DeVito
- Division of Substance Abuse, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Hedy Kober
- Division of Substance Abuse, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick D. Worhunsky
- Division of Substance Abuse, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kathleen M. Carroll
- Division of Substance Abuse, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Marc N. Potenza
- National Center on Addiction and Substance Abuse, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Division of Substance Abuse, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
42
|
Cox BM, Cope ZA, Parsegian A, Floresco SB, Aston-Jones G, See RE. Chronic methamphetamine self-administration alters cognitive flexibility in male rats. Psychopharmacology (Berl) 2016; 233:2319-27. [PMID: 27037939 PMCID: PMC5207031 DOI: 10.1007/s00213-016-4283-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
RATIONALE Methamphetamine (meth) addiction is a chronically relapsing disorder that often produces persistent cognitive deficits. These include decreased cognitive flexibility, which may prevent meth addicts from altering their habitual drug abuse and leave them more susceptible to relapse. Multiple factors including low rates of compliance with research study participation and varied drug use patterns make the relationship between cognitive flexibility and relapse difficult to establish in clinical populations. OBJECTIVES Here, we combined an extended-access meth self-administration paradigm with an automated set-shifting task in rats to directly compare cognitive flexibility performance with meth-seeking behavior. METHODS Rats were pre-trained on an automated visual discrimination task, followed by 14 days of extended access (6 h/day) of meth or sucrose self-administration. They were then tested in the set-shifting task on strategy shift and reversal and subsequently assessed for cue-induced reinstatement of meth seeking. RESULTS Rats with a history of meth, but not sucrose, self-administration had selective deficits in reversal learning. Specifically, meth rats had an increase in the total number of errors and perseverative errors (corresponding to the old stimulus-reward association) following the reversal shift, which correlated with prior stable meth self-administration. However, no relationship was seen between errors during the reversal and cue-induced reinstatement. CONCLUSION The lack of association between meth-induced reversal deficits and cue-induced reinstatement to meth seeking indicates that these two domains may constitute independent pathologies of meth addiction.
Collapse
Affiliation(s)
- Brittney M Cox
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Zackary A Cope
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Aram Parsegian
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Stan B Floresco
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Gary Aston-Jones
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
- Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| | - Ronald E See
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA.
- Department of Psychology, Westmont College, 955 La Paz Road, Santa Barbara, CA, 93108, USA.
| |
Collapse
|
43
|
Contreras-Rodríguez O, Albein-Urios N, Perales JC, Martínez-Gonzalez JM, Vilar-López R, Fernández-Serrano MJ, Lozano-Rojas O, Verdejo-García A. Cocaine-specific neuroplasticity in the ventral striatum network is linked to delay discounting and drug relapse. Addiction 2015. [PMID: 26212416 DOI: 10.1111/add.13076] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AIMS To contrast functional connectivity on ventral and dorsal striatum networks in cocaine dependence relative to pathological gambling, via a resting-state functional connectivity approach; and to determine the association between cocaine dependence-related neuroadaptations indexed by functional connectivity and impulsivity, compulsivity and drug relapse. DESIGN Cross-sectional study of 20 individuals with cocaine dependence (CD), 19 individuals with pathological gambling (PG) and 21 healthy controls (HC), and a prospective cohort study of 20 CD followed-up for 12 weeks to measure drug relapse. SETTING AND PARTICIPANTS CD and PG were recruited through consecutive admissions to a public clinic specialized in substance addiction treatment (Centro Provincial de Drogodependencias) and a public clinic specialized in gambling treatment (AGRAJER), respectively; HC were recruited through community advertisement in the same area in Granada (Spain). MEASUREMENTS Seed-based functional connectivity in the ventral striatum (ventral caudate and ventral putamen) and dorsal striatum (dorsal caudate and dorsal putamen), the Kirby delay-discounting questionnaire, the reversal-learning task and a dichotomous measure of cocaine relapse indicated with self-report and urine tests. FINDINGS CD relative to PG exhibit enhanced connectivity between the ventral caudate seed and subgenual anterior cingulate cortex, the ventral putamen seed and dorsomedial pre-frontal cortex and the dorsal putamen seed and insula (P≤0.001, kE=108). Connectivity between the ventral caudate seed and subgenual anterior cingulate cortex is associated with steeper delay discounting (P≤0.001, kE=108) and cocaine relapse (P≤0.005, kE=34). CONCLUSIONS Cocaine dependence-related neuroadaptations in the ventral striatum of the brain network are associated with increased impulsivity and higher rate of cocaine relapse.
Collapse
Affiliation(s)
- Oren Contreras-Rodríguez
- Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain.,Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain
| | | | - José C Perales
- Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain
| | - José M Martínez-Gonzalez
- Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain.,Centro Provincial de Drogodependencias, Diputación de Granada, Granada, Spain
| | | | - María J Fernández-Serrano
- Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain.,Department of Psychology, Universidad de Jaén, Jaén, Spain
| | - Oscar Lozano-Rojas
- Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain.,School of Psychology, Universidad de Huelva, Huelva, Spain
| | - Antonio Verdejo-García
- Red de Trastornos Adictivos, Universidad de Granada, Granada, Spain.,Institute of Neuroscience F. Oloriz, Universidad de Granada, Granada, Spain.,School of Psychological Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
44
|
Gowin JL, Ball TM, Wittmann M, Tapert SF, Paulus MP. Individualized relapse prediction: Personality measures and striatal and insular activity during reward-processing robustly predict relapse. Drug Alcohol Depend 2015; 152:93-101. [PMID: 25977206 PMCID: PMC4458160 DOI: 10.1016/j.drugalcdep.2015.04.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Nearly half of individuals with substance use disorders relapse in the year after treatment. A diagnostic tool to help clinicians make decisions regarding treatment does not exist for psychiatric conditions. Identifying individuals with high risk for relapse to substance use following abstinence has profound clinical consequences. This study aimed to develop neuroimaging as a robust tool to predict relapse. METHODS 68 methamphetamine-dependent adults (15 female) were recruited from 28-day inpatient treatment. During treatment, participants completed a functional MRI scan that examined brain activation during reward processing. Patients were followed 1 year later to assess abstinence. We examined brain activation during reward processing between relapsing and abstaining individuals and employed three random forest prediction models (clinical and personality measures, neuroimaging measures, a combined model) to generate predictions for each participant regarding their relapse likelihood. RESULTS 18 individuals relapsed. There were significant group by reward-size interactions for neural activation in the left insula and right striatum for rewards. Abstaining individuals showed increased activation for large, risky relative to small, safe rewards, whereas relapsing individuals failed to show differential activation between reward types. All three random forest models yielded good test characteristics such that a positive test for relapse yielded a likelihood ratio 2.63, whereas a negative test had a likelihood ratio of 0.48. CONCLUSIONS These findings suggest that neuroimaging can be developed in combination with other measures as an instrument to predict relapse, advancing tools providers can use to make decisions about individualized treatment of substance use disorders.
Collapse
Affiliation(s)
- Joshua L Gowin
- Psychiatry, University of California San Diego, La Jolla, CA, United States; Section on Human Psychopharmacology, Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.
| | - Tali M Ball
- Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Marc Wittmann
- Psychiatry, University of California San Diego, La Jolla, CA, United States; Empirical and Analytical Psychophysics, Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
| | - Susan F Tapert
- Psychiatry, University of California San Diego, La Jolla, CA, United States; Psychology Service, VA San Diego Healthcare System, La Jolla, CA, United States
| | - Martin P Paulus
- Psychiatry, University of California San Diego, La Jolla, CA, United States; Psychiatry Service, VA San Diego Healthcare System, La Jolla, CA, United States; Laureate Institute for Brain Research, United States
| |
Collapse
|
45
|
Droutman V, Read SJ, Bechara A. Revisiting the role of the insula in addiction. Trends Cogn Sci 2015; 19:414-20. [PMID: 26066588 PMCID: PMC4486609 DOI: 10.1016/j.tics.2015.05.005] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 11/18/2022]
Abstract
Brain lesions that damage the insular cortex (IC) interrupt addictive behaviors, suggesting that drug addiction sensitizes the insula. However, neuroimaging studies seem to lead to an opposite picture: structural neuroimaging studies show reduced gray matter volume of the IC of drug users, and functional neuroimaging studies show reduced IC activity when drug users perform decision-making tasks. These results have been interpreted as indicating that addictive behaviors are associated with reduced interoceptive signaling within the IC. Here, we use this apparent contradiction to examine the possible roles of the insula in addiction, identify open questions, and explore ways to address them.
Collapse
Affiliation(s)
- Vita Droutman
- Department of Psychology, University of Southern California, Los Angeles, CA, USA.
| | - Stephen J Read
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Antoine Bechara
- Department of Psychology, University of Southern California, Los Angeles, CA, USA; Brain and Creativity Institute, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
46
|
Alexander WH, Fukunaga R, Finn P, Brown JW. Reward salience and risk aversion underlie differential ACC activity in substance dependence. NEUROIMAGE-CLINICAL 2015; 8:59-71. [PMID: 26106528 PMCID: PMC4473292 DOI: 10.1016/j.nicl.2015.02.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 01/28/2015] [Accepted: 02/22/2015] [Indexed: 12/17/2022]
Abstract
The medial prefrontal cortex, especially the dorsal anterior cingulate cortex (ACC), has long been implicated in cognitive control and error processing. Although the association between ACC and behavior has been established, it is less clear how ACC contributes to dysfunctional behavior such as substance dependence. Evidence from neuroimaging studies investigating ACC function in substance users is mixed, with some studies showing disengagement of ACC in substance dependent individuals (SDs), while others show increased ACC activity related to substance use. In this study, we investigate ACC function in SDs and healthy individuals performing a change signal task for monetary rewards. Using a priori predictions derived from a recent computational model of ACC, we find that ACC activity differs between SDs and controls in factors related to reward salience and risk aversion between SDs and healthy individuals. Quantitative fits of a computational model to fMRI data reveal significant differences in best fit parameters for reward salience and risk preferences. Specifically, the ACC in SDs shows greater risk aversion, defined as concavity in the utility function, and greater attention to rewards relative to reward omission. Furthermore, across participants risk aversion and reward salience are positively correlated. The results clarify the role that ACC plays in both the reduced sensitivity to omitted rewards and greater reward valuation in SDs. Clinical implications of applying computational modeling in psychiatry are also discussed.
Collapse
Affiliation(s)
- William H Alexander
- Department of Psychological & Brain Sciences, Indiana University, 1101 E 10th St., Bloomington, IN 47405, USA ; Department of Experimental Psychology, Ghent University, Henri Dunantlaan 2, Ghent B-9000, Belgium
| | - Rena Fukunaga
- Department of Psychological & Brain Sciences, Indiana University, 1101 E 10th St., Bloomington, IN 47405, USA
| | - Peter Finn
- Department of Psychological & Brain Sciences, Indiana University, 1101 E 10th St., Bloomington, IN 47405, USA
| | - Joshua W Brown
- Department of Psychological & Brain Sciences, Indiana University, 1101 E 10th St., Bloomington, IN 47405, USA
| |
Collapse
|
47
|
Dinh-Williams L, Mendrek A, Dumais A, Bourque J, Potvin S. Executive-affective connectivity in smokers viewing anti-smoking images: an fMRI study. Psychiatry Res 2014; 224:262-8. [PMID: 25453167 DOI: 10.1016/j.pscychresns.2014.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 08/28/2014] [Accepted: 10/24/2014] [Indexed: 11/30/2022]
Abstract
Despite knowledge of the harmful consequences of smoking on health, tobacco users continue to smoke. Neuroimaging studies have begun to provide insight into the mechanisms underlying this response. Regions involved in executive control and affective processing/persuasion are activated when viewing the negative value of smoking, but these systems can interact in ways that promote or hinder its impact on behavior. The goal of this functional magnetic resonance imaging (fMRI) study was to examine the dynamics between these systems during the processing of images designed to elicit a negative emotional response regarding tobacco smoking in a group of current smokers. Thirty chronic smokers passively viewed aversive smoking-related, aversive nonsmoking-related and neutral images presented in a block design while being scanned. Functional connectivity analyses showed that the left inferior frontal gyrus (IFG) is negatively associated to activity in medial frontal, cingulate, limbic, subcortical and parietal regions in chronic smokers during the processing of aversive smoking-related material, a pattern that was significantly greater when stimuli were drug-related compared with when they were nondrug-related. Our results suggest that individuals with tobacco dependence present different patterns of functional connectivity depending on whether the aversive stimuli are smoking- or nonsmoking-related. Activity in the left inferior frontal gyrus may act to down-regulate corresponding activity in regions key to an affective and persuasive response during the processing of anti-smoking material. This mechanism may reduce the extent to which "feeling bad" brings about a change in behavior.
Collapse
Affiliation(s)
- Laurence Dinh-Williams
- Centre de recherche de l׳Institut Universitaire en Santé Mentale de Montréal and Department of Psychiatry, University of Montreal, Montreal, Canada
| | - Adrianna Mendrek
- Centre de recherche de l׳Institut Universitaire en Santé Mentale de Montréal and Department of Psychiatry, University of Montreal, Montreal, Canada; Department of Psychology, Bishop׳s University, Sherbrooke, Canada
| | - Alexandre Dumais
- Centre de recherche de l׳Institut Universitaire en Santé Mentale de Montréal and Department of Psychiatry, University of Montreal, Montreal, Canada; Institut Philippe-Pinel de Montréal, Montreal, Canada
| | - Josiane Bourque
- Centre de recherche de l׳Institut Universitaire en Santé Mentale de Montréal and Department of Psychiatry, University of Montreal, Montreal, Canada
| | - Stéphane Potvin
- Centre de recherche de l׳Institut Universitaire en Santé Mentale de Montréal and Department of Psychiatry, University of Montreal, Montreal, Canada.
| |
Collapse
|
48
|
London ED, Kohno M, Morales AM, Ballard ME. Chronic methamphetamine abuse and corticostriatal deficits revealed by neuroimaging. Brain Res 2014; 1628:174-85. [PMID: 25451127 DOI: 10.1016/j.brainres.2014.10.044] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 01/05/2023]
Abstract
Despite aggressive efforts to contain it, methamphetamine use disorder continues to be major public health problem; and with generic behavioral therapies still the mainstay of treatment for methamphetamine abuse, rates of attrition and relapse remain high. This review summarizes the findings of structural, molecular, and functional neuroimaging studies of methamphetamine abusers, focusing on cortical and striatal abnormalities and their potential contributions to cognitive and behavioral phenotypes that can serve to promote compulsive drug use. These studies indicate that individuals with a history of chronic methamphetamine abuse often display several signs of corticostriatal dysfunction, including abnormal gray- and white-matter integrity, monoamine neurotransmitter system deficiencies, neuroinflammation, poor neuronal integrity, and aberrant patterns of brain connectivity and function, both when engaged in cognitive tasks and at rest. More importantly, many of these neural abnormalities were found to be linked with certain addiction-related phenotypes that may influence treatment response (e.g., poor self-control, cognitive inflexibility, maladaptive decision-making), raising the possibility that they may represent novel therapeutic targets.
Collapse
Affiliation(s)
- Edythe D London
- Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024; Departments of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California 90024; Departments of Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90024.
| | - Milky Kohno
- Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024
| | - Angelica M Morales
- Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024
| | - Michael E Ballard
- Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024
| |
Collapse
|
49
|
Connolly CG, Bischoff-Grethe A, Jordan SJ, Woods SP, Ellis RJ, Paulus MP, Grant I. Altered functional response to risky choice in HIV infection. PLoS One 2014; 9:e111583. [PMID: 25347679 PMCID: PMC4210250 DOI: 10.1371/journal.pone.0111583] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/06/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Risky decision-making is commonly observed in persons at risk for and infected with HIV and is associated with executive dysfunction. Yet it is currently unknown whether HIV alters brain processing of risk-taking decision-making. METHODS This study examined the neural substrate of a risky decision-making task in 21 HIV seropositive (HIV+) and 19 seronegative (HIV-) comparison participants. Functional magnetic resonance imaging was conducted while participants performed the risky-gains task, which involves choosing among safe (20 cents) and risky (40/80 cent win or loss) choices. Linear mixed effects analyses examining group and decision type were conducted. Robust regressions were performed to examine the relationship between nadir CD4 count and Kalichman sexual compulsivity and brain activation in the HIV+ group. The overlap between the task effects and robust regressions was explored. RESULTS Although there were no serostatus effects in behavioral performance on the risky-gains task, HIV+ individuals exhibited greater activation for risky choices in the basal ganglia, i.e. the caudate nucleus, but also in the anterior cingulate, dorsolateral prefrontal cortex, and insula relative to the HIV- group. The HIV+ group also demonstrated reduced functional responses to safe choices in the anterior cingulate and dorsolateral prefrontal cortex relative to the HIV- group. HIV+ individuals with higher nadir CD4 count and greater sexual compulsivity displayed lower differential responses to safe versus risky choices in many of these regions. CONCLUSIONS This study demonstrated fronto-striatal loop dysfunction associated with HIV infection during risky decision-making. Combined with similar between-group task behavior, this suggests an adaptive functional response in regions critical to reward and behavioral control in the HIV+ group. HIV-infected individuals with higher CD4 nadirs demonstrated activation patterns more similar to seronegative individuals. This suggests that the severity of past immunosuppression (CD4 nadir) may exert a legacy effect on processing of risky choices in the HIV-infected brain.
Collapse
Affiliation(s)
- Colm G. Connolly
- Dept of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
| | - Amanda Bischoff-Grethe
- Dept of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (ABG); (IG)
| | - Stephan J. Jordan
- Dept of Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Steven Paul Woods
- Dept of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, California, United States of America
| | - Ronald J. Ellis
- Department of Neurosciences, University of California San Diego, San Diego, California, United States of America
| | - Martin P. Paulus
- Dept of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- Psychiatry Service, VA San Diego Healthcare System, La Jolla, California, United States of America
| | - Igor Grant
- Dept of Psychiatry, University of California San Diego, La Jolla, California, United States of America
- HIV Neurobehavioral Research Program, University of California San Diego, San Diego, California, United States of America
- * E-mail: (ABG); (IG)
| | | |
Collapse
|
50
|
Stewart JL, Connolly CG, May AC, Tapert SF, Wittmann M, Paulus MP. Cocaine dependent individuals with attenuated striatal activation during reinforcement learning are more susceptible to relapse. Psychiatry Res 2014; 223:129-39. [PMID: 24862388 PMCID: PMC4096111 DOI: 10.1016/j.pscychresns.2014.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 02/25/2014] [Accepted: 04/27/2014] [Indexed: 11/26/2022]
Abstract
Cocaine-dependent individuals show altered brain activation during decision making. It is unclear, however, whether these activation differences are related to relapse vulnerability. This study tested the hypothesis that brain-activation patterns during reinforcement learning are linked to relapse 1 year later in individuals entering treatment for cocaine dependence. Subjects performed a Paper-Scissors-Rock task during functional magnetic resonance imaging (fMRI). A year later, we examined whether subjects had remained abstinent (n=15) or relapsed (n=15). Although the groups did not differ on demographic characteristics, behavioral performance, or lifetime substance use, abstinent patients reported greater motivation to win than relapsed patients. The fMRI results indicated that compared with abstinent individuals, relapsed users exhibited lower activation in (1) bilateral inferior frontal gyrus and striatum during decision making more generally; and (2) bilateral middle frontal gyrus and anterior insula during reward contingency learning in particular. Moreover, whereas abstinent patients exhibited greater left middle frontal and striatal activation to wins than losses, relapsed users did not demonstrate modulation in these regions as a function of outcome valence. Thus, individuals at high risk for relapse relative to those who are able to abstain allocate fewer neural resources to action-outcome contingency formation and decision making, as well as having less motivation to win on a laboratory-based task.
Collapse
Affiliation(s)
- Jennifer L. Stewart
- Laboratory of Biological Dynamics and Theoretical Medicine, Department of Psychiatry, University of California San Diego, 8939 Villa La Jolla Drive, Suite 200, La Jolla, CA, 92037-0855, USA.
,Corresponding author. ; Phone: (858) 534-9440; Fax: (858) 534-9450
| | - Colm G. Connolly
- Laboratory of Biological Dynamics and Theoretical Medicine, Department of Psychiatry, University of California San Diego, 8939 Villa La Jolla Drive, Suite 200, La Jolla, CA, 92037-0855, USA.
,Department of Psychiatry, University of California San Francisco, San Francisco, CA 94143, USA.
| | - April C. May
- Laboratory of Biological Dynamics and Theoretical Medicine, Department of Psychiatry, University of California San Diego, 8939 Villa La Jolla Drive, Suite 200, La Jolla, CA, 92037-0855, USA.
| | - Susan F. Tapert
- Laboratory of Biological Dynamics and Theoretical Medicine, Department of Psychiatry, University of California San Diego, 8939 Villa La Jolla Drive, Suite 200, La Jolla, CA, 92037-0855, USA.
,Psychiatry Service, VA San Diego Healthcare System, La Jolla, CA, 92161, USA.
| | - Marc Wittmann
- Laboratory of Biological Dynamics and Theoretical Medicine, Department of Psychiatry, University of California San Diego, 8939 Villa La Jolla Drive, Suite 200, La Jolla, CA, 92037-0855, USA.
,Psychiatry Service, VA San Diego Healthcare System, La Jolla, CA, 92161, USA.
,Department of Empirical and Analytical Psychophysics, Institute for Frontier Areas of Psychology and Mental Health, Freiburg, Germany
| | - Martin P. Paulus
- Laboratory of Biological Dynamics and Theoretical Medicine, Department of Psychiatry, University of California San Diego, 8939 Villa La Jolla Drive, Suite 200, La Jolla, CA, 92037-0855, USA.
,Psychiatry Service, VA San Diego Healthcare System, La Jolla, CA, 92161, USA.
| |
Collapse
|