1
|
Wu NC, Welbergen JA, Villada‐Cadavid T, Lumsden LF, Turbill C. Vulnerability of Southern Hemisphere bats to white-nose syndrome based on global analysis of fungal host specificity and cave temperatures. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025; 39:e14390. [PMID: 39403886 PMCID: PMC11959316 DOI: 10.1111/cobi.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/02/2024] [Accepted: 07/15/2024] [Indexed: 04/02/2025]
Abstract
White-nose syndrome (WNS), a disease affecting hibernating bats, is caused by the fungal pathogen Pseudogymnoascus destructans (Pd). Since the initial introduction of Pd from Eurasia to the United States in 2006, WNS has killed millions of bats throughout the temperate parts of North America. There is concern that if Pd is accidentally introduced to the Southern Hemisphere, WNS could pose similar threats to the bat fauna of the Southern Hemisphere's more temperate regions. Efforts are required to better understand the vulnerability of bats globally to WNS. We examined phylogenetic distances among cave roosting bat species globally to estimate the probability of infection by Pd. We predicted cave thermal suitability for Pd for 441 cave-roosting bat species across the globe via spatial analysis. We used host specificity models based on 65 species tested for Pd to determine phylogenetic specificity of Pd. Phylogenetic distance was not an important predictor of Pd infection, confirming that Pd has low host specificity. We found extensive areas (i.e., South America, Africa, and Australia) in the Southern Hemisphere with caves that were suitable for cave-roosting bat species and for Pd growth. Hence, if Pd spreads to the Southern Hemisphere, the risk of exposure is widespread for cave-roosting bats, and infection is possible regardless of relatedness to infected species in the Northern Hemisphere. Predicting the consequences of infection remains difficult due to lack of species-specific information about bat winter biology. Nevertheless, WNS is an important threat to naive Southern Hemisphere bat populations. Hence, biosecurity measures and planning of management responses that can help prevent or minimize a potential WNS outbreak in the Southern Hemisphere are urgently needed.
Collapse
Affiliation(s)
- Nicholas C. Wu
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Justin A. Welbergen
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Tomás Villada‐Cadavid
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
| | - Lindy F. Lumsden
- Department of Energy, Environment and Climate ActionArthur Rylah Institute for Environmental ResearchHeidelbergVictoriaAustralia
| | - Christopher Turbill
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNew South WalesAustralia
- School of ScienceWestern Sydney UniversityRichmondNew South WalesAustralia
| |
Collapse
|
2
|
Liu XF, Karunarathna SC, Tibpromma S, Chethana KWT, Hyde KD, Elgorban AM, Suwannarach N, Kumla J, Mortimer PE, Hughes AC. Understanding the role of bats as fungal vectors in the environment. IMA Fungus 2024; 15:28. [PMID: 39232794 PMCID: PMC11373111 DOI: 10.1186/s43008-024-00161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Bats (Chiroptera), the second largest group of mammals, are known for their unique immune system and their ability to act as vectors for various zoonoses. Bats also act as important carriers of fungi, which include plant, animal, and human pathogens. Their roosting areas, foraging behaviors, and even migration routes make bats ideal vectors for fungi. We isolated 75 culturable fungal species from bats in Yunnan Province, China, with 36 species representing known pathogens of plants, animals, and humans, while 39 species are non-pathogenic fungi. Among these species, 77% (58 species) belonged to Ascomycota, 9% (seven species) belonged to Basidiomycota, and 13% (10 species) belonged to Mucoromycota. Even though several taxonomic studies on fungi associated with bats have been published, studies exploring the role of bats as fungal vectors are lacking. This study discusses the fungi host-specific traits and pathogenicity and the impact and ecological significance of bats as fungal vectors.
Collapse
Affiliation(s)
- Xiang-Fu Liu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011, Yunnan, People's Republic of China
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Samantha Chandranath Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011, Yunnan, People's Republic of China
- National Institute Fundamental Studies (NIFS), Kandy, Sri Lanka
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011, Yunnan, People's Republic of China
| | - K W Thilini Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Kevin D Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Abdallah M Elgorban
- Center of Excellence in Biotechnology Research (CEBR), King Saud University, Riyadh, Saudi Arabia
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jaturong Kumla
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Peter E Mortimer
- Centre for Mountain Futures, Kunming Institute of Botany, Kunming, 650201, Yunnan, People's Republic of China.
- Department of Soil Science, Stellenbosch University, Private Bag X1, Matieland, South Africa.
| | - Alice C Hughes
- School of Biological Sciences, The University of Hong Kong, Pokfulam, 999077, Hong Kong, People's Republic of China.
| |
Collapse
|
3
|
Legge S, Rumpff L, Garnett ST, Woinarski JCZ. Loss of terrestrial biodiversity in Australia: Magnitude, causation, and response. Science 2023; 381:622-631. [PMID: 37561866 DOI: 10.1126/science.adg7870] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/08/2023] [Indexed: 08/12/2023]
Abstract
Australia's biota is species rich, with high rates of endemism. This natural legacy has rapidly diminished since European colonization. The impacts of invasive species, habitat loss, altered fire regimes, and changed water flows are now compounded by climate change, particularly through extreme drought, heat, wildfire, and flooding. Extinction rates, already far exceeding the global average for mammals, are predicted to escalate across all taxa, and ecosystems are collapsing. These losses are symptomatic of shortcomings in resourcing, law, policy, and management. Informed by examples of advances in conservation practice from invasive species control, Indigenous land management, and citizen science, we describe interventions needed to enhance future resilience. Many characteristics of Australian biodiversity loss are globally relevant, with recovery requiring society to reframe its relationship with the environment.
Collapse
Affiliation(s)
- Sarah Legge
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia
- Fenner School of Society and the Environment, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
| | - Libby Rumpff
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Stephen T Garnett
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia
| | - John C Z Woinarski
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia
| |
Collapse
|
4
|
Sewall BJ, Turner GG, Scafini MR, Gagnon MF, Johnson JS, Keel MK, Anis E, Lilley TM, White JP, Hauer CL, Overton BE. Environmental control reduces white‐nose syndrome infection in hibernating bats. Anim Conserv 2023. [DOI: 10.1111/acv.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- B. J. Sewall
- Department of Biology Temple University Philadelphia PA USA
| | | | | | - M. F. Gagnon
- Department of Biology Temple University Philadelphia PA USA
| | - J. S. Johnson
- Department of Biological Sciences Ohio University Athens OH USA
- School of Information Technology University of Cincinnati Cincinnati OH USA
| | - M. K. Keel
- School of Veterinary Medicine University of California Davis CA USA
| | - E. Anis
- Department of Pathobiology University of Pennsylvania, School of Veterinary Medicine, New Bolton Center Kennett Square PA USA
| | - T. M. Lilley
- Finnish Museum of Natural History University of Helsinki Helsinki Finland
| | - J. P. White
- Wisconsin Department of Natural Resources Madison WI USA
| | - C. L. Hauer
- Department of Biology Temple University Philadelphia PA USA
| | - B. E. Overton
- Department of Biology Commonwealth University of Pennsylvania Lock Haven PA USA
| |
Collapse
|
5
|
Mammola S, Meierhofer MB, Borges PA, Colado R, Culver DC, Deharveng L, Delić T, Di Lorenzo T, Dražina T, Ferreira RL, Fiasca B, Fišer C, Galassi DMP, Garzoli L, Gerovasileiou V, Griebler C, Halse S, Howarth FG, Isaia M, Johnson JS, Komerički A, Martínez A, Milano F, Moldovan OT, Nanni V, Nicolosi G, Niemiller ML, Pallarés S, Pavlek M, Piano E, Pipan T, Sanchez‐Fernandez D, Santangeli A, Schmidt SI, Wynne JJ, Zagmajster M, Zakšek V, Cardoso P. Towards evidence-based conservation of subterranean ecosystems. Biol Rev Camb Philos Soc 2022; 97:1476-1510. [PMID: 35315207 PMCID: PMC9545027 DOI: 10.1111/brv.12851] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022]
Abstract
Subterranean ecosystems are among the most widespread environments on Earth, yet we still have poor knowledge of their biodiversity. To raise awareness of subterranean ecosystems, the essential services they provide, and their unique conservation challenges, 2021 and 2022 were designated International Years of Caves and Karst. As these ecosystems have traditionally been overlooked in global conservation agendas and multilateral agreements, a quantitative assessment of solution-based approaches to safeguard subterranean biota and associated habitats is timely. This assessment allows researchers and practitioners to understand the progress made and research needs in subterranean ecology and management. We conducted a systematic review of peer-reviewed and grey literature focused on subterranean ecosystems globally (terrestrial, freshwater, and saltwater systems), to quantify the available evidence-base for the effectiveness of conservation interventions. We selected 708 publications from the years 1964 to 2021 that discussed, recommended, or implemented 1,954 conservation interventions in subterranean ecosystems. We noted a steep increase in the number of studies from the 2000s while, surprisingly, the proportion of studies quantifying the impact of conservation interventions has steadily and significantly decreased in recent years. The effectiveness of 31% of conservation interventions has been tested statistically. We further highlight that 64% of the reported research occurred in the Palearctic and Nearctic biogeographic regions. Assessments of the effectiveness of conservation interventions were heavily biased towards indirect measures (monitoring and risk assessment), a limited sample of organisms (mostly arthropods and bats), and more accessible systems (terrestrial caves). Our results indicate that most conservation science in the field of subterranean biology does not apply a rigorous quantitative approach, resulting in sparse evidence for the effectiveness of interventions. This raises the important question of how to make conservation efforts more feasible to implement, cost-effective, and long-lasting. Although there is no single remedy, we propose a suite of potential solutions to focus our efforts better towards increasing statistical testing and stress the importance of standardising study reporting to facilitate meta-analytical exercises. We also provide a database summarising the available literature, which will help to build quantitative knowledge about interventions likely to yield the greatest impacts depending upon the subterranean species and habitats of interest. We view this as a starting point to shift away from the widespread tendency of recommending conservation interventions based on anecdotal and expert-based information rather than scientific evidence, without quantitatively testing their effectiveness.
Collapse
Affiliation(s)
- Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS), University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Melissa B. Meierhofer
- BatLab Finland, Finnish Museum of Natural History Luomus (LUOMUS)University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
| | - Paulo A.V. Borges
- cE3c—Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group / CHANGE – Global Change and Sustainability InstituteUniversity of Azores, Faculty of Agrarian Sciences and Environment (FCAA), Rua Capitão João d'ÀvilaPico da Urze, 9700‐042 Angra do HeroísmoAzoresPortugal
| | - Raquel Colado
- Departament of Ecology and HidrologyUniversity of MurciaMurcia30100Spain
| | - David C. Culver
- Department of Environmental ScienceAmerican University4400 Massachusetts Avenue, N.WWashingtonDC20016U.S.A.
| | - Louis Deharveng
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS UMR 7205, MNHN, UPMC, EPHEMuseum National d'Histoire Naturelle, Sorbonne UniversitéParisFrance
| | - Teo Delić
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems (IRET‐CNR), National Research CouncilVia Madonna del Piano 10, 50019 Sesto FiorentinoFlorenceItaly
| | - Tvrtko Dražina
- Division of Zoology, Department of BiologyFaculty of Science, University of ZagrebRooseveltov Trg 6Zagreb10000Croatia
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
| | - Rodrigo L. Ferreira
- Center of Studies in Subterranean Biology, Biology Department, Federal University of LavrasCampus universitário s/n, Aquenta SolLavrasMG37200‐900Brazil
| | - Barbara Fiasca
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaVia Vetoio 1, CoppitoL'Aquila67100Italy
| | - Cene Fišer
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Diana M. P. Galassi
- Department of Life, Health and Environmental SciencesUniversity of L'AquilaVia Vetoio 1, CoppitoL'Aquila67100Italy
| | - Laura Garzoli
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Vasilis Gerovasileiou
- Department of Environment, Faculty of EnvironmentIonian University, M. Minotou‐Giannopoulou strPanagoulaZakynthos29100Greece
- Hellenic Centre for Marine Research (HCMR), Institute of Marine BiologyBiotechnology and Aquaculture (IMBBC)Thalassocosmos, GournesCrete71500Greece
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, Division of LimnologyUniversity of ViennaDjerassiplatz 1Vienna1030Austria
| | - Stuart Halse
- Bennelongia Environmental Consultants5 Bishop StreetJolimontWA6014Australia
| | | | - Marco Isaia
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Joseph S. Johnson
- Department of Biological SciencesOhio University57 Oxbow TrailAthensOH45701U.S.A.
| | - Ana Komerički
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
| | - Alejandro Martínez
- Molecular Ecology Group (dark‐MEG)Water Research Institute (IRSA), National Research Council (CNR)Largo Tonolli, 50Verbania‐Pallanza28922Italy
| | - Filippo Milano
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Oana T. Moldovan
- Emil Racovita Institute of SpeleologyClinicilor 5Cluj‐Napoca400006Romania
- Romanian Institute of Science and TechnologySaturn 24‐26Cluj‐Napoca400504Romania
| | - Veronica Nanni
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Giuseppe Nicolosi
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Matthew L. Niemiller
- Department of Biological SciencesThe University of Alabama in Huntsville301 Sparkman Drive NWHuntsvilleAL35899U.S.A.
| | - Susana Pallarés
- Departamento de Biogeografía y Cambio GlobalMuseo Nacional de Ciencias Naturales, CSICCalle de José Gutiérrez Abascal 2Madrid28006Spain
| | - Martina Pavlek
- Croatian Biospeleological SocietyRooseveltov Trg 6Zagreb10000Croatia
- Ruđer Bošković InstituteBijenička cesta 54Zagreb10000Croatia
| | - Elena Piano
- Department of Life Sciences and Systems BiologyUniversity of TurinVia Accademia Albertina, 13TorinoI‐10123Italy
| | - Tanja Pipan
- ZRC SAZUKarst Research InstituteNovi trg 2Ljubljana1000Slovenia
- UNESCO Chair on Karst EducationUniversity of Nova GoricaGlavni trg 8Vipava5271Slovenia
| | | | - Andrea Santangeli
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiViikinkaari 1Helsinki00014Finland
| | - Susanne I. Schmidt
- Institute of Hydrobiology, Biology Centre CASNa Sádkách 702/7České Budějovice370 05Czech Republic
- Department of Lake ResearchHelmholtz Centre for Environmental ResearchBrückstraße 3aMagdeburg39114Germany
| | - J. Judson Wynne
- Department of Biological SciencesCenter for Adaptable Western Landscapes, Box 5640, Northern Arizona UniversityFlagstaffAZ86011U.S.A.
| | - Maja Zagmajster
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Valerija Zakšek
- SubBio Lab, Department of Biology, Biotechnical FacultyUniversity of LjubljanaJamnikarjeva 101Ljubljana1000Slovenia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS), University of HelsinkiPohjoinen Rautatiekatu 13Helsinki00100Finland
- cE3c—Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group / CHANGE – Global Change and Sustainability InstituteUniversity of Azores, Faculty of Agrarian Sciences and Environment (FCAA), Rua Capitão João d'ÀvilaPico da Urze, 9700‐042 Angra do HeroísmoAzoresPortugal
| |
Collapse
|
6
|
Barratt AE, Gonsalves L, Turbill C. Winter torpor and activity patterns of a fishing bat ( Myotis macropus) in a mild climate. J Mammal 2022. [DOI: 10.1093/jmammal/gyac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Small insectivorous bats often enter a state of torpor, a controlled, reversible decrease in body temperature and metabolic rate. Torpor provides substantial energy savings and is used more extensively during periods of low temperature and reduced prey availability. We studied torpor use and activity of a small (10.1 ± 0.4 g) fishing bat, Myotis macropus, during winter in a mild climate in Australia. We predicted that the thermal stability of water would make foraging opportunities in winter more productive and consistent in a riparian habitat compared to a woodland habitat, and therefore, fishing bats would use torpor less than expected during winter compared to other bats. Using temperature-sensitive radio transmitters, we recorded the skin temperature of 12 adult (6 M, 6 F) bats over 161 bat-days (13.4 ± 5.4 days per bat) during Austral winter (late May to August), when daily air temperature averaged 6.2–18.2°C. Bats used torpor every day, with bouts lasting a median of 21.3 h and up to 144.6 h. Multiday torpor bouts were more common in females than males. Arousals occurred just after sunset and lasted 3.5 ± 2.9 h. Arousals tended to be longer in males than females and to occur on warmer evenings, suggesting some winter foraging and perhaps male harem territoriality or other mating-related activity was occurring. The extensive use of torpor by M. macropus during relatively mild winter conditions when food is likely available suggests torpor might function to minimize the risks of mortality caused by activity and to increase body condition for the upcoming breeding season.
Collapse
Affiliation(s)
- Alice E Barratt
- Hawkesbury Institute for the Environment and School of Science, Western Sydney University, Hawkesbury Campus , Richmond, New South Wales 2753 , Australia
| | - Leroy Gonsalves
- Forest Science Unit, New South Wales Department of Primary Industries , Parramatta, New South Wales 2150 , Australia
| | - Christopher Turbill
- Hawkesbury Institute for the Environment and School of Science, Western Sydney University, Hawkesbury Campus , Richmond, New South Wales 2753 , Australia
| |
Collapse
|
7
|
Turner GG, Sewall BJ, Scafini MR, Lilley TM, Bitz D, Johnson JS. Cooling of bat hibernacula to mitigate white-nose syndrome. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13803. [PMID: 34224186 DOI: 10.1111/cobi.13803] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
White-nose syndrome (WNS) is a fungal disease that has caused precipitous declines in several North American bat species, creating an urgent need for conservation. We examined how microclimates and other characteristics of hibernacula have affected bat populations following WNS-associated declines and evaluated whether cooling of warm, little-used hibernacula could benefit bats. During the period following mass mortality (2013-2020), we conducted 191 winter surveys of 25 unmanipulated hibernacula and 6 manipulated hibernacula across Pennsylvania (USA). We joined these data with additional datasets on historical (pre-WNS) bat counts and on the spatial distribution of underground sites. We used generalized linear mixed models and model selection to identify factors affecting bat populations. Winter counts of Myotis lucifugus were higher and increased over time in colder hibernacula (those with midwinter temperatures of 3-6 °C) compared with warmer (7-11 °C) hibernacula. Counts of Eptesicus fuscus, Myotis leibii, and Myotis septentrionalis were likewise higher in colder hibernacula (temperature effects = -0.73 [SE 0.15], -0.51 [0.18], and -0.97 [0.28], respectively). Populations of M. lucifugus and M. septentrionalis increased most over time in hibernacula surrounded by more nearby sites, whereas Eptesicus fuscus counts remained high where they had been high before WNS onset (pre-WNS high count effect = 0.59 [0.22]). Winter counts of M. leibii were higher in hibernacula with high vapor pressure deficits (VPDs) (particularly over 0.1 kPa) compared with sites with lower VPDs (VPD effect = 15.3 [4.6]). Counts of M. lucifugus and E. fuscus also appeared higher where VPD was higher. In contrast, Perimyotis subflavus counts increased over time in relatively warm hibernacula and were unaffected by VPD. Where we manipulated hibernacula, we achieved cooling of on average 2.1 °C. At manipulated hibernacula, counts of M. lucifugus and P. subflavus increased over time (years since manipulation effect = 0.70 [0.28] and 0.51 [0.15], respectively). Further, there were more E. fuscus where cooling was greatest (temperature difference effect = -0.46 [SE 0.11]), and there was some evidence there were more P. subflavus in hibernacula sections that remained warm after manipulation. These data show bats are responding effectively to WNS through habitat selection. In M. lucifugus, M. septentrionalis, and possibly P. subflavus, this response is ongoing, with bats increasingly aggregating at suitable hibernacula, whereas E. fuscus remain in previously favored sites. Our results suggest that cooling warm sites receiving little use by bats is a viable strategy for combating WNS.
Collapse
Affiliation(s)
| | - Brent J Sewall
- Department of Biology, Temple University, Philadelphia, Pennsylvania, USA
| | | | - Thomas M Lilley
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Daniel Bitz
- CNX Gas Company LLC, Canonsburg, Pennsylvania, USA
| | - Joseph S Johnson
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
| |
Collapse
|
8
|
Garzoli L, Bozzetta E, Varello K, Cappelleri A, Patriarca E, Debernardi P, Riccucci M, Boggero A, Girometta C, Picco AM. White-Nose Syndrome Confirmed in Italy: A Preliminary Assessment of Its Occurrence in Bat Species. J Fungi (Basel) 2021; 7:192. [PMID: 33803110 PMCID: PMC8000523 DOI: 10.3390/jof7030192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Although no mass mortality has been recorded so far, the precise demographic effect of white-nose syndrome (WNS) on European bats still remains to be ascertained. Following the first isolation of P. destructans in Italy, further surveys were performed to assess the distribution of the fungus in NW Italy and its effects on bats. Data were collected from March 2019 to April 2020 at sites used for hibernation (six sites) and/or for reproduction (four sites) in Piedmont and Aosta Valley. A total of 138 bats, belonging to 10 species, were examined to identify clinical features possibly related to the fungal presence. Culture from swabs and the molecular identification of isolates confirmed the presence of P. destructans in bats from five sites, including two maternal roosts. Dermal fungal infiltration, the criterion to assess the presence of WNS, was observed in biopsies of bats belonging to Myotis blythii, M. daubentonii, M. emarginatus and M. myotis. This is the first report of the disease in Italy. The results suggest a greater susceptibility to the infection of the genus Myotis and particularly of M. emarginatus, possibly due to the long length of its hibernation period. Other fungal dermatophytes were also observed.
Collapse
Affiliation(s)
- Laura Garzoli
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (C.G.); (A.M.P.)
- S.Te.P. Stazione Teriologica Piemontese, 10022 Carmagnola, Italy; (E.P.); (P.D.)
- CNR-Water Research Institute (IRSA), 28922 Verbania, Italy;
| | - Elena Bozzetta
- Department of Specialised Diagnostic, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (E.B.); (K.V.)
| | - Katia Varello
- Department of Specialised Diagnostic, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, 10154 Turin, Italy; (E.B.); (K.V.)
| | - Andrea Cappelleri
- Department of Veterinary Medicine, University of Milan, 26900 Lodi, Italy;
- Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UniMi, 20139 Milan, Italy
| | - Elena Patriarca
- S.Te.P. Stazione Teriologica Piemontese, 10022 Carmagnola, Italy; (E.P.); (P.D.)
| | - Paolo Debernardi
- S.Te.P. Stazione Teriologica Piemontese, 10022 Carmagnola, Italy; (E.P.); (P.D.)
| | - Marco Riccucci
- Zoological Section «La Specola», Museum of Natural History of the University of Florence, 50125 Florence, Italy;
| | - Angela Boggero
- CNR-Water Research Institute (IRSA), 28922 Verbania, Italy;
| | - Carolina Girometta
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (C.G.); (A.M.P.)
| | - Anna Maria Picco
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (C.G.); (A.M.P.)
| |
Collapse
|
9
|
Urbina J, Chestnut T, Allen JM, Levi T. Pseudogymnoascus destructans growth in wood, soil and guano substrates. Sci Rep 2021; 11:763. [PMID: 33436940 PMCID: PMC7804951 DOI: 10.1038/s41598-020-80707-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022] Open
Abstract
Understanding how a pathogen can grow on different substrates and how this growth impacts its dispersal are critical to understanding the risks and control of emerging infectious diseases. Pseudogymnoascus destructans (Pd) causes white-nose syndrome (WNS) in many bat species and can persist in, and transmit from, the environment. We experimentally evaluated Pd growth on common substrates to better understand mechanisms of pathogen persistence, transmission and viability. We inoculated autoclaved guano, fresh guano, soil, and wood with live Pd fungus and evaluated (1) whether Pd grows or persists on each (2) if spores of the fungus remain viable 4 months after inoculation on each substrate, and (3) whether detection and quantitation of Pd on swabs is sensitive to the choice to two commonly used DNA extraction kits. After inoculating each substrate with 460,000 Pd spores, we collected ~ 0.20 g of guano and soil, and swabs from wood every 16 days for 64 days to quantify pathogen load through time using real-time qPCR. We detected Pd on all substrates over the course of the experiment. We observed a tenfold increase in pathogen loads on autoclaved guano and persistence but not growth in fresh guano. Pathogen loads increased marginally on wood but declined ~ 60-fold in soil. After four months, apparently viable spores were harvested from all substrates but germination did not occur from fresh guano. We additionally found that detection and quantitation of Pd from swabs of wood surfaces is sensitive to the DNA extraction method. The commonly used PrepMan Ultra Reagent protocol yielded substantially less DNA than did the QIAGEN DNeasy Blood and Tissue Kit. Notably the PrepMan Ultra Reagent failed to detect Pd in many wood swabs that were detected by QIAGEN and were subsequently found to contain substantial live conidia. Our results indicate that Pd can persist or even grow on common environmental substrates with results dependent on whether microbial competitors have been eliminated. Although we observed clear rapid declines in Pd on soil, viable spores were harvested four months after inoculation. These results suggest that environmental substrates and guano can in general serve as infectious environmental reservoirs due to long-term persistence, and even growth, of live Pd. This should inform management interventions to sanitize or modify structures to reduce transmission risk as well early detection rapid response (EDRR) planning.
Collapse
Affiliation(s)
- Jenny Urbina
- Department of Fisheries and Wildlife, Oregon State University, 2820 SW Campus Way, Nash Hall, Corvallis, OR, 97331, USA.
| | - Tara Chestnut
- National Park Service, Mount Rainier National Park, Ashford, WA, USA
| | - Jennifer M Allen
- Department of Fisheries and Wildlife, Oregon State University, 2820 SW Campus Way, Nash Hall, Corvallis, OR, 97331, USA
| | - Taal Levi
- Department of Fisheries and Wildlife, Oregon State University, 2820 SW Campus Way, Nash Hall, Corvallis, OR, 97331, USA
| |
Collapse
|
10
|
Salleh S, Cox-Witton K, Salleh Y, Hufschmid J. Caver Knowledge and Biosecurity Attitudes Towards White-Nose Syndrome and Implications for Global Spread. ECOHEALTH 2020; 17:487-497. [PMID: 33484389 PMCID: PMC8192400 DOI: 10.1007/s10393-020-01510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 10/14/2020] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans, has caused catastrophic declines of bat populations in North America. Risk assessment indicates that cavers could pose a risk for the spread of the fungus, however, information on cavers' knowledge of WNS and their caving and biosecurity habits is lacking. An anonymous qualitative survey was completed by delegates (n = 134) from 23 countries at an international speleological conference in Sydney, Australia. Cavers indicated that they visit caves frequently (80.6% at least bimonthly), including outside of their own country, but 20.3% of respondents did not know about WNS prior to the conference. Some respondents were incorrect, or unsure, about whether they had visited caves in countries where P. destructans occurs (26.5%) or whether their own country was free of the fungus (7.8%). Although 65.9% of respondents were aware of current decontamination protocols, only 23.9% and 31.2% (when in Australian or overseas caves, respectively) fully adhered to them. Overall, cavers showed strong willingness to help prevent further spread of this disease, but further efforts at education and targeted biosecurity activities may be urgently needed to prevent the spread of P. destructans to Australia and to other unaffected regions of the world.
Collapse
Affiliation(s)
- S Salleh
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia
| | - K Cox-Witton
- Wildlife Health Australia, Suite E, 34 Suakin Drive, Mosman, NSW, 2088, Australia
| | - Y Salleh
- The Childrens Hospital at Westmead, Cnr Hawkesbury Rd and Hainsworth St, Westmead, NSW, 2145, Australia
| | - Jasmin Hufschmid
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, Melbourne Veterinary School, The University of Melbourne, 250 Princes Highway, Werribee, VIC, 3030, Australia.
| |
Collapse
|
11
|
Population Connectivity Predicts Vulnerability to White-Nose Syndrome in the Chilean Myotis ( Myotis chiloensis) - A Genomics Approach. G3-GENES GENOMES GENETICS 2020; 10:2117-2126. [PMID: 32327452 PMCID: PMC7263680 DOI: 10.1534/g3.119.401009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite its peculiar distribution, the biology of the southernmost bat species in the world, the Chilean myotis (Myotis chiloensis), has garnered little attention so far. The species has a north-south distribution of c. 2800 km, mostly on the eastern side of the Andes mountain range. Use of extended torpor occurs in the southernmost portion of the range, putting the species at risk of bat white-nose syndrome, a fungal disease responsible for massive population declines in North American bats. Here, we examined how geographic distance and topology would be reflected in the population structure of M. chiloensis along the majority of its range using a double digestion RAD-seq method. We sampled 66 individuals across the species range and discovered pronounced isolation-by-distance. Furthermore, and surprisingly, we found higher degrees of heterozygosity in the southernmost populations compared to the north. A coalescence analysis revealed that our populations may still not have reached secondary contact after the Last Glacial Maximum. As for the potential spread of pathogens, such as the fungus causing WNS, connectivity among populations was noticeably low, especially between the southern hibernatory populations in the Magallanes and Tierra del Fuego, and more northerly populations. This suggests the probability of geographic spread of the disease from the north through bat-to-bat contact to susceptible populations is low. The study presents a rare case of defined population structure in a bat species and warrants further research on the underlying factors contributing to this. See the graphical abstract here. https://doi.org/10.25387/g3.12173385
Collapse
|