1
|
Gazzotti M, Casula M, Bertolini S, Capra ME, Olmastroni E, Catapano AL, Pederiva C. The Role of Registers in Increasing Knowledge and Improving Management of Children and Adolescents Affected by Familial Hypercholesterolemia: the LIPIGEN Pediatric Group. Front Genet 2022; 13:912510. [PMID: 35795214 PMCID: PMC9251337 DOI: 10.3389/fgene.2022.912510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Pathology registers can be a useful tool to overcome obstacles in the identification and management of familial hypercholesterolemia since childhood. In 2018, the LIPIGEN pediatric group was constituted within the Italian LIPIGEN study to focus on FH subjects under 18 years. This work aimed at discussing its recent progress and early outcomes. Demographic, biochemical, and genetic baseline characteristics were collected, with an in-depth analysis of the genetic defects. The analysis was carried out on 1,602 children and adolescents (mean age at baseline 9.9 ± 4.0 years), and almost the whole cohort underwent the genetic test (93.3%). Overall, the untreated mean value of LDL-C was 220.0 ± 97.2 mg/dl, with an increasing gradient from subjects with a negative (N = 317; mean untreated LDL-C = 159.9 ± 47.7 mg/dl), inconclusive (N = 125; mean untreated LDL-C = 166.4 ± 56.5 mg/dl), or positive (N = 1,053; mean untreated LDL-C = 246.5 ± 102.1 mg/dl) genetic diagnosis of FH. In the latter group, the LDL-C values presented a great variability based on the number and the biological impact of involved causative variants. The LIPIGEN pediatric group represents one of the largest cohorts of children with FH, allowing the deepening of the characterization of their baseline and genetic features, providing the basis for further longitudinal investigations for complete details.
Collapse
Affiliation(s)
| | - Manuela Casula
- IRCCS MultiMedica, Sesto San Giovanni(Milan), Italy
- Department of Pharmacological and Biomolecular Sciences, Epidemiology and Preventive Pharmacology Service (SEFAP), University of Milan, Milan, Italy
- *Correspondence: Manuela Casula,
| | - Stefano Bertolini
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Maria Elena Capra
- Centre for Paediatric Dyslipidaemias, Paediatrics and Neonatology Unit, Guglielmo da Saliceto Hospital, Piacenza, Italy
| | - Elena Olmastroni
- Department of Pharmacological and Biomolecular Sciences, Epidemiology and Preventive Pharmacology Service (SEFAP), University of Milan, Milan, Italy
| | - Alberico Luigi Catapano
- IRCCS MultiMedica, Sesto San Giovanni(Milan), Italy
- Department of Pharmacological and Biomolecular Sciences, Epidemiology and Preventive Pharmacology Service (SEFAP), University of Milan, Milan, Italy
| | - Cristina Pederiva
- Clinical Service for Dyslipidaemias, Study and Prevention of Atherosclerosis in Childhood, Paediatrics Unit, ASST-Santi Paolo e Carlo, Milan, Italy
| | | |
Collapse
|
2
|
Turkyilmaz A, Kurnaz E, Alavanda C, Yarali O, Kartal Baykan E, Yavuz D, Cayir A, Ata P. The Spectrum of Low-Density Lipoprotein Receptor Mutations in a Large Turkish Cohort of Patients with Familial Hypercholesterolemia. Metab Syndr Relat Disord 2021; 19:340-346. [PMID: 33794673 DOI: 10.1089/met.2021.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Monogenic hypercholesterolemia with Mendelian inheritance is a heterogeneous group of diseases that are characterized by elevated plasma low-density lipoprotein cholesterol (LDL-C) levels, and the most common form of this disorder is autosomal-dominant familial hypercholesterolemia (FH). Methods: A total of 104 index cases with the clinical diagnosis of FH were included in this study. Low-density lipoprotein receptor (LDLR) was sequenced using the Sanger sequencing method. Results: Pathogenic/likely pathogenic variants were detected in LDLR in 55 of the 104 cases (mutation detection rate = 52.8%). Thirty different variants were detected in LDLR, three of which were novel. The total cholesterol and LDL-C values of the patients in the group of premature termination codon (PTC) mutation carriers were significantly higher than those of the patients in the group of non-PTC mutation carriers. A total of 87 patients (17 pediatric and 70 adult cases) were diagnosed with cascade genetic screening. Statin treatment was recommended to all 87 patients and was accepted and initiated in 70 of these patients. Conclusions: This study is the largest patient cohort that evaluated FH cases in the Turkish population. Herein, we revealed the LDLR mutation spectrum for a Turkish population and compared the cases in the context of genotype-phenotype correlation. Genetic screening of individuals with suspected FH not only helps to establish their diagnosis, but also facilitates early diagnosis and treatment initiation in other family members through cascade screening.
Collapse
Affiliation(s)
- Ayberk Turkyilmaz
- Department of Medical Genetics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Erdal Kurnaz
- Department of Pediatric Endocrinology, Dr. Sami Ulus Obstetrics and Gynecology, Children's Health and Disease Training and Research Hospital, Ankara, Turkey
| | - Ceren Alavanda
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| | - Oguzhan Yarali
- Department of Medical Genetics, Erzurum City Hospital, Erzurum, Turkey
| | | | - Dilek Yavuz
- Department of Endocrinology, Marmara University School of Medicine, Istanbul, Turkey
| | - Atilla Cayir
- Department of Pediatric Endocrinology, Erzurum City Hospital, Erzurum, Turkey
| | - Pinar Ata
- Department of Medical Genetics, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
3
|
Sánchez A, Bustos P, Honorato P, Burgos CF, Barriga N, Jannes CE, Sáez K, Alonso R, Asenjo S, Radojkovic C. Phenotypic characterization and predictive analysis of p.Asp47Asn LDL receptor mutation associated with Familial Hypercholesterolemia in a Chilean population. J Clin Lipidol 2021; 15:366-374.e1. [PMID: 33547002 DOI: 10.1016/j.jacl.2021.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is an inherited disorder mainly caused by mutations in the LDL receptor (LDL-R) and characterized by elevation of low-density lipoprotein cholesterol (LDL-C) levels and premature cardiovascular disease. OBJECTIVE In this study, we evaluated the clinical phenotype of the p.Asp47Asn, described as an uncertain pathogenic variant, and its effect on the structure of LDL-R and ligand interactions with apolipoproteins. METHODS 27 children and adolescents with suspected FH diagnosis were recruited from a pediatric endocrinology outpatient clinic. Blood samples were collected after 12 h fasting for lipid profile analysis. DNA sequencing was performed for six FH-related genes by Ion Torrent PGM platform and copy number variation by MLPA. For index cases, a familial cascade screening was done restricted to the same mutation found in the index case. In silico analysis were developed to evaluate the binding capacity of LDL-R to apolipoproteins B100 and E. RESULTS Lipid profile in children and adolescents demonstrated higher LDL-C levels in p.Asp47Asn carriers compared to the wild type genotype. In silico analysis predicted a reduction in the binding capacity of the ligand-binding modules LA1-2 of p.Asp47Asn LDL-R for ApoB100 and ApoE, which was not produced by local structural changes or folding defects but as a consequence of a decreased apparent affinity for both apolipoproteins. CONCLUSION The clinical phenotype and the structural effects of p.Asp47Asn LDL-R mutation suggest that this variant associates to FH.
Collapse
Affiliation(s)
- Andrea Sánchez
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Paulina Bustos
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Paula Honorato
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Carlos F Burgos
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Natalia Barriga
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Cinthia E Jannes
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School Hospital, São Paulo, Brazil
| | - Katia Sáez
- Departamento de Estadística, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Alonso
- Center for Advanced Metabolic Medicine and Nutrition, Santiago de Chile. Fundación Hipercolesterolemia Familiar, Madrid, Spain
| | - Sylvia Asenjo
- Departamento de Pediatría, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Claudia Radojkovic
- Departamento de Bioquímica Clínica e Inmunología, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
4
|
Gazzotti M, Casula M, Olmastroni E, Averna M, Arca M, Catapano AL. How registers could enhance knowledge and characterization of genetic dyslipidaemias: The experience of the LIPIGEN in Italy and of other networks for familial hypercholesterolemia. ATHEROSCLEROSIS SUPP 2020; 42:e35-e40. [PMID: 33589222 DOI: 10.1016/j.atherosclerosissup.2021.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Familial hypercholesterolemia (FH) is a common genetic disorder of lipid metabolism, still underdiagnosed and undertreated in the general population. Pathology registers could play a crucial role in the creation of a comprehensive and integrated global approach to cover all aspects of this disease. Systematic data collection of patients affected by FH has increased dramatically worldwide in the past few years. Moreover, results from registers already established for the longest time showed their potentialities in the implementation of the knowledge of FH, comparing country-specific approaches and providing real-world data about identification, management and treatment of FH individuals in the clinical practice. The potential fields of research through registers are related to the deepening of the genetic basis of disease, the study of genotype-phenotype correlation, the local adaption and implementation of diagnostic algorithms, the comparison of pharmacological approaches and treatment gaps in real-life clinical practice, the evaluation of specific subpopulations, and the identification of factors modifying cardiovascular disease risk. Registers could become also a valid resource for other rare dyslipidaemias, contributing towards the evidence-based enhancement in the worldwide care of uncommon diseases.
Collapse
Affiliation(s)
- Marta Gazzotti
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| | - Manuela Casula
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS MultiMedica, Sesto San Giovanni (MI), Italy
| | - Elena Olmastroni
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Maurizio Averna
- Department ProMISE (Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties), University of Palermo, Palermo, Italy
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Alberico L Catapano
- Epidemiology and Preventive Pharmacology Service (SEFAP), Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy; IRCCS MultiMedica, Sesto San Giovanni (MI), Italy
| |
Collapse
|
5
|
Novel combined variants of LDLR and LDLRAP1 genes causing severe familial hypercholesterolemia. Atherosclerosis 2019; 277:425-433. [PMID: 30270081 DOI: 10.1016/j.atherosclerosis.2018.06.878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/29/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Familial hypercholesterolemia (FH) is a predominantly autosomal dominant hereditary disorder with significant potential for expansion of coronary artery disease. METHODS To identify candidate variant/s in FH phenotype implicated genes, next-generation sequencing was performed using a targeted customized gene panel. RESULTS We recognized a 45-year-old Saudi female FH patient with double variants in the LDLR [c.1255 T > G, p.(Y419D)] and LDLRAP1 genes [c.604_605delTCinsA, p.(S202Tfs*2)]. The proband was found to be homozygous for the LDLR variant and heterozygous for the LDLRAP1 variant. Three of the proband's children were found to be double heterozygous for the LDLR/LDLRAP1 gene variant. While her other three children were heterozygous for the same single LDLR variant. Both variants were not previously reported. The variants segregation pattern correlated with the clinical picture and with the patient's lipid profile. FH severity was greater in the proband while her children did not show any clinical manifestations. The missense variant p.(Y419D) was found to be deleterious and clinically significant based on prediction identified by PolyPhen-2 and Proven. Molecular dynamics simulation was used to further analyze the effect of the variant p.(Y419D) on the structure and function of the LDLR protein. The secondary structure was investigated, as well as the solvent accessibility and stabilizing residues. The frameshift variant of the LDLRAP1 gene results in a truncated peptide that could affect the cellular internalization of LDLR/LDL complex. CONCLUSIONS The finding of the combined variants in LDLR/LDLRAP1 genes triggering a severe FH phenotype is essential to elaborate the spectrum of variants causing FH and to understand the genotype-phenotype correlation.
Collapse
|
6
|
Rizos CV, Elisaf MS, Skoumas I, Tziomalos K, Kotsis V, Rallidis L, Garoufi A, Athyros VG, Skalidis E, Kolovou G, Koutagiar I, Papagianni M, Antza C, Katsiki N, Ganotakis E, Liberopoulos EN. Characteristics and management of 1093 patients with clinical diagnosis of familial hypercholesterolemia in Greece: Data from the Hellenic Familial Hypercholesterolemia Registry (HELLAS-FH). Atherosclerosis 2018; 277:308-313. [PMID: 30270064 DOI: 10.1016/j.atherosclerosis.2018.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/15/2018] [Accepted: 08/21/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Although familial hypercholesterolemia (FH) is one of the most common genetic disorders, it remains largely underdiagnosed and undertreated. The Hellenic Atherosclerosis Society has established the Hellenic Familial Hypercholesterolemia (HELLAS-FH) Registry, part of the Familial Hypercholesterolemia Studies Collaboration (FHSC), to evaluate the characteristics and management of patients with FH in Greece. METHODS Patients with diagnosed FH were recruited by a network of sites throughout Greece. The prevalence of cardiovascular disease (CVD) risk factors, as well as management of FH, was recorded. RESULTS This interim analysis included 1093 patients (556 male; 950 adults). The median age of FH diagnosis was 42.2 years (interquartile range 27.2-53.0). A family history of CVD was present in 47.8%, while 21.1% of patients had a personal history of CVD. At diagnosis, low-density lipoprotein cholesterol (LDL-C) was 241 ± 76 mg/dL in adults and 229 ± 57 mg/dL in children. Overall, 63.1% of the patients were receiving hypolipidemic drug treatment, mainly statins, at inclusion in the registry. Mean LDL-C of patients receiving drug treatment was 154 ± 76 mg/dL in adults and 136 ± 47 mg/dL in children. The majority of treated patients (87.9%) did not achieve LDL-C targets. CONCLUSIONS FH in Greece is characterized by a significant delay in diagnosis and a high prevalence of both family and personal history of established CVD. The vast majority of FH patients do not achieve LDL-C targets. Improved awareness and management of FH are definitely needed.
Collapse
Affiliation(s)
- Christos V Rizos
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Moses S Elisaf
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Ioannis Skoumas
- Department of Cardiology, Hippokration Hospital, Athens, Greece
| | - Kostantinos Tziomalos
- First Propedeutic Department of Internal Medicine, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Vasilios Kotsis
- Department of Internal Medicine, Aristotle University of Thessaloniki Medical School, Papageorgiou Hospital, Thessaloniki, Greece
| | - Loukianos Rallidis
- Second Department of Cardiology, University of Athens Medical School, Attiko University Hospital, Athens, Greece
| | - Anastasia Garoufi
- Second Department of Pediatrics, Medical School, National &Kapodistrian University of Athens, "P & A Kyriakou" Children's Hospital, Greece
| | - Vasilios G Athyros
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki Medical School, Hippokration Hospital, Thessaloniki, Greece
| | - Emmanouil Skalidis
- Department of Cardiology, University Hospital of Heraklion, Crete, Greece
| | - Genovefa Kolovou
- Department of Cardiology, Onassis Cardiac Surgery Centre, Athens, Greece
| | - Iosif Koutagiar
- Department of Cardiology, Hippokration Hospital, Athens, Greece
| | - Marianthi Papagianni
- First Propedeutic Department of Internal Medicine, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Christina Antza
- Department of Internal Medicine, Aristotle University of Thessaloniki Medical School, Papageorgiou Hospital, Thessaloniki, Greece
| | - Niki Katsiki
- 2nd Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki Medical School, Hippokration Hospital, Thessaloniki, Greece
| | - Emmanouil Ganotakis
- Department of Internal Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | | |
Collapse
|
7
|
Rashidi OM, H Nazar FA, Alama MN, Awan ZA. Interpreting the Mechanism of APOE (p.Leu167del) Mutation in the Incidence of Familial Hypercholesterolemia; An In-silico Approach. Open Cardiovasc Med J 2017; 11:84-93. [PMID: 29204218 PMCID: PMC5688386 DOI: 10.2174/1874192401711010084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 06/30/2017] [Accepted: 07/08/2017] [Indexed: 11/22/2022] Open
Abstract
Background: Apolipoprotein E (APOE) gene is a ligand protein in humans which mediates the metabolism of cholesterol by binding to the low-density lipoprotein receptor (LDLR). P.Leu167del mutation in APOE gene was recently connected with Familial Hypercholesterolemia, a condition associated with premature cardiovascular disease. The consequences of this mutation on the protein structure and its receptor binding capacity remain largely unknown. Objective: The current study aims to further decipher the underlying mechanism of this mutation using advanced software-based algorithms. The consequences of disrupting the leucine zipper by this mutation was studied at the structural and functional level of the APOE protein. Methods: 3D protein modeling for both APOE and LDLR (wild types), along with APOE (p.Leu167del) mutant type were generated using homology modeling template-based alignment. Structural deviation analysis was performed to evaluate the spatial orientation and the stability of the mutant APOE structure. Molecular docking analysis simulating APOE-LDLR protein interaction was carried out, in order to evaluate the impact of the mutation on the binding affinity. Result: Structural deviation analysis for APOE mutated model showed low degree of deviance scoring root-mean-square deviation, (RMSD) = 0.322 Å. Whereas Docking simulation revealed an enhanced molecular interaction towards the LDLR with an estimation of +171.03 kJ/mol difference in binding free energy. Conclusion: This in-silico study suggests that p.Leu167del is causing the protein APOE to associate strongly with its receptor, LDLR. This gain-of-function is likely hindering the ability of LDLR to be effectively recycled back to the surface of the hepatocytes to clear cholesterol from the circulation therefore leading to FH.
Collapse
Affiliation(s)
- Omran Mohammed Rashidi
- Department of Clinical Biochemistry. Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fatima Amanullah H Nazar
- Department of Biology, Genomic and Biotechnology Section. Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed Nabil Alama
- Adult interventional cardiology, Cardiology unit, King Abdulaziz University Hospital (KAUH), Jeddah, Saudi Arabia
| | - Zuhier Ahmed Awan
- Department of Clinical Biochemistry. Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
8
|
Minicocci I, Pozzessere S, Prisco C, Montali A, di Costanzo A, Martino E, Martino F, Arca M. Analysis of Children and Adolescents with Familial Hypercholesterolemia. J Pediatr 2017; 183:100-107.e3. [PMID: 28161202 DOI: 10.1016/j.jpeds.2016.12.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/28/2016] [Accepted: 12/28/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To evaluate the effectiveness of criteria based on child-parent assessment in predicting familial hypercholesterolemia (FH)-causative mutations in unselected children with hypercholesterolemia. STUDY DESIGN LDLR, APOB, and PCSK9 genes were sequenced in 78 children and adolescents (mean age 8.4 ± 3.7 years) with clinically diagnosed FH. The presence of polygenic hypercholesterolemia was further evaluated by genotyping 6 low-density lipoprotein cholesterol (LDL-C)-raising single-nucleotide polymorphisms. RESULTS Thirty-nine children (50.0%) were found to carry LDLR mutant alleles but none with APOB or PCSK9 mutant alleles. Overall, 27 different LDLR mutations were identified, and 2 were novel. Children carrying mutations showed higher LDL-C (215.2 ± 52.7 mg/dL vs 181.0 ± 44.6 mg/dL, P <.001) and apolipoprotein B levels (131.6 ± 38.3 mg/dL vs 100.3 ± 30.0 mg/dL, P <.004), compared with noncarriers. A LDL-C of ~190 mg/dL was the optimal value to discriminate children with and without LDLR mutations. When different diagnostic criteria were compared, those proposed by the European Atherosclerosis Society showed a reasonable balance between sensitivity and specificity in the identification of LDLR mutations. In children without mutation, the FH phenotype was not caused by the aggregation of LDL-C raising single-nucleotide polymorphisms. CONCLUSIONS In unselected children with hypercholesterolemia, LDL-C levels >190 mg/dL and a positive family history of hypercholesterolemia appeared to be the most reliable criteria for detecting FH. As 50% of children with suspected FH did not carry FH-causing mutations, genetic testing should be considered.
Collapse
Affiliation(s)
- Ilenia Minicocci
- Department of Internal Medicine and Allied Sciences, Sapienza University of Rome, Rome, Italy
| | - Simone Pozzessere
- Department of Internal Medicine and Allied Sciences, Sapienza University of Rome, Rome, Italy
| | - Cristina Prisco
- Department of Internal Medicine and Allied Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Montali
- Department of Internal Medicine and Allied Sciences, Sapienza University of Rome, Rome, Italy
| | - Alessia di Costanzo
- Department of Internal Medicine and Allied Sciences, Sapienza University of Rome, Rome, Italy
| | - Eliana Martino
- Department of Pediatrics, Sapienza University of Rome, Rome, Italy
| | | | - Marcello Arca
- Department of Internal Medicine and Allied Sciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
9
|
Mollaki V, Drogari E. Genetic causes of monogenic familial hypercholesterolemia in the Greek population: Lessons, mistakes, and the way forward. J Clin Lipidol 2016; 10:748-756. [DOI: 10.1016/j.jacl.2016.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 10/22/2022]
|
10
|
Al-Allaf FA, Alashwal A, Abduljaleel Z, Taher MM, Siddiqui SS, Bouazzaoui A, Abalkhail H, Aun R, Al-Allaf AF, AbuMansour I, Azhar Z, Ba-Hammam FA, Khan W, Athar M. Identification of a recurrent frameshift mutation at the LDLR exon 14 (c.2027delG, p.(G676Afs*33)) causing familial hypercholesterolemia in Saudi Arab homozygous children. Genomics 2015; 107:24-32. [PMID: 26688439 DOI: 10.1016/j.ygeno.2015.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/06/2015] [Accepted: 12/09/2015] [Indexed: 11/25/2022]
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant disease, predominantly caused by variants in the low-density lipoprotein (LDL) receptor gene (LDLR). Herein, we describe genetic analysis of severely affected homozygous FH patients who were mostly resistant to statin therapy and were managed on an apheresis program. We identified a recurrent frameshift mutation p.(G676Afs*33) in exon 14 of the LDLR gene in 9 probands and their relatives in an apparently unrelated Saudi families. We also describe a three dimensional homology model of the LDL receptor protein (LDLR) structure and examine the consequence of the frameshift mutation p.(G676Afs*33), as this could affect the LDLR structure in a region involved in dimer formation, and protein stability. This finding of a recurrent mutation causing FH in the Saudi population could serve to develop a rapid genetic screening procedure for FH, and the 3D-structure analysis of the mutant LDLR, may provide tools to develop a mechanistic model of the LDLR function.
Collapse
Affiliation(s)
- Faisal A Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia; Molecular Diagnostics Unit, Department of Laboratory and Blood Bank, King Abdullah Medical City, Makkah, Saudi Arabia.
| | - Abdullah Alashwal
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Zainularifeen Abduljaleel
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohiuddin M Taher
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shahid S Siddiqui
- Department of Oral and Basic Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hala Abalkhail
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Rakan Aun
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Iman AbuMansour
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Zohor Azhar
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faisal A Ba-Hammam
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wajahatullah Khan
- Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mohammad Athar
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia; Science and Technology Unit, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
11
|
Drogari E, Ragia G, Mollaki V, Elens L, Van Schaik RHN, Manolopoulos VG. POR*28 SNP is associated with lipid response to atorvastatin in children and adolescents with familial hypercholesterolemia. Pharmacogenomics 2015; 15:1963-72. [PMID: 25521355 DOI: 10.2217/pgs.14.138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In children and adolescents with familial hypercholesterolemia (FH) pharmacotherapy with statins is the cornerstone in the current regimen to reduce low-density lipoprotein cholesterol (LDLc) and premature coronary heart disease risk. There is, however, a great interindividual variation in response to therapy, partially attributed to genetic factors. The polymorphic enzyme POR transfers electrons from NADPH to CYP450 enzymes including CYP3A, which metabolize atorvastatin. POR*28 polymorphism is associated with increased CYP3A enzyme activity. We analyzed the association of POR*28 allele with response to atorvastatin. MATERIALS & METHODS One hundred and five FH children and adolescents treated with atorvastatin at doses 10-40 mg were included in the study. Total cholesterol (TChol) and LDLc were measured at baseline and after 6 months of treatment. POR*28 allele was analyzed with TaqMan assay. CYP3A4*22, CYP3A5*3 and SLCO1B1 521T>C and 388A>G genotypes were also determined with TaqMan or PCR-RFLP methods. RESULTS POR*28 carriers had significantly lower percent mean reduction of TChol (33.1% in *1/*1, 29.8% in *1/*28 and 25.9% in *28/*28 individuals, p = 0.045) and of LDLc (43.9% in *1/*1, 40.9% in *1/*28 and 30.8% in *28/*28 individuals, p = 0.013). In multivariable linear regression adjusted for confounding factors, POR*28 genotypes, additionally to baseline cholesterol level, accounted for an estimated 8.3% and 7.3% of overall variability in % TChol and LDLc reduction (β: 4.05; 95% CI: 1.73-6.37; p = 0.001 and β: 5.08; 95% CI: 1.62-8.54; p = 0.004, respectively). CYP3A4*22, CYP3A5*3 and SLCO1B1 521T>C and 388A>G polymorphisms were not associated with lipid reductions and did not modify the effect of POR*28 on atorvastatin response. CONCLUSION In children with FH, carriage of POR*28 allele is associated with reduced effect of atorvastatin on TChol and LDLc and therefore identifies FH children that may require higher atorvastatin doses to achieve full therapeutic benefits. Additional studies in different populations are needed to replicate this association.
Collapse
Affiliation(s)
- Euridiki Drogari
- Unit of Metabolic Diseases, 1st Department of Pediatrics, Choremio Research Laboratory, Aghia Sophia Children's Hospital, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
12
|
Identification of a novel nonsense variant c.1332dup, p.(D445*) in the LDLR gene that causes familial hypercholesterolemia. Hum Genome Var 2014; 1:14021. [PMID: 27081511 PMCID: PMC4785512 DOI: 10.1038/hgv.2014.21] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 11/08/2022] Open
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant disease predominantly caused by a mutation in the low-density lipoprotein receptor (LDLR) gene. Here, we describe two severely affected FH patients who were resistant to statin therapy and were managed on an apheresis program. We identified a novel duplication variant c.1332dup, p.(D445*) at exon 9 and a known silent variant c.1413A>G, p.(=), rs5930, NM_001195798.1 at exon 10 of the LDLR gene in both patients.
Collapse
|
13
|
Mollaki V, Progias P, Drogari E. Familial Hypercholesterolemia in Greek children and their families: genotype-to-phenotype correlations and a reconsideration of LDLR mutation spectrum. Atherosclerosis 2014; 237:798-804. [PMID: 25463123 DOI: 10.1016/j.atherosclerosis.2014.09.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/10/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Familial Hypercholesterolemia (FH) is a common lipid metabolism disease, resulting in premature atherosclerosis, even from childhood. We aimed to define the genetic basis of FH in children and their families, to refine the spectrum of Low-Density Lipoprotein Receptor gene (LDLR) mutations and identify genotype-to-phenotype correlations in patients of Greek origin. METHODS LDLR was analyzed in 561 patients from 262 families, by whole-gene sequencing. RESULTS Children with identified LDLR mutations showed higher lipid levels compared to non-carriers. Molecular analysis identified a mutation in 53.4% of index cases. Twenty six LDLR mutations were identified, including 19 point mutations, 2 nonsense mutations, 3 splice site mutations and 2 small insertions. Amongst patients with common mutations, carriers of c.1646G > A and c.1285G > A showed higher lipid levels, whereas carriers of c.858C > A and c.81C > G showed a milder phenotype. CONCLUSIONS The spectrum of LDLR mutations in Greece is refined and expanded, with more patients analyzed by whole-gene sequencing. Although a quick screening method is feasible for the Greek population, whole-gene sequencing is essential to identify rare variants. Children with border line lipid levels and a family history of hypercholesterolemia should be considered for molecular diagnosis, since carriers of certain mutations show milder phenotypes and may be missed during clinical diagnosis.
Collapse
Affiliation(s)
- Vasiliki Mollaki
- Unit of Metabolic Diseases, Choremio Research Laboratory, 1st Department of Paediatrics, University of Athens Medical School, "Aghia Sophia" Children's Hospital, Greece.
| | - Pavlos Progias
- Unit of Metabolic Diseases, Choremio Research Laboratory, 1st Department of Paediatrics, University of Athens Medical School, "Aghia Sophia" Children's Hospital, Greece
| | - Euridiki Drogari
- Unit of Metabolic Diseases, Choremio Research Laboratory, 1st Department of Paediatrics, University of Athens Medical School, "Aghia Sophia" Children's Hospital, Greece
| |
Collapse
|
14
|
Bodamer OA, Giugliani R, Wood T. The laboratory diagnosis of mucopolysaccharidosis III (Sanfilippo syndrome): A changing landscape. Mol Genet Metab 2014; 113:34-41. [PMID: 25127543 DOI: 10.1016/j.ymgme.2014.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/11/2014] [Accepted: 07/11/2014] [Indexed: 12/24/2022]
Abstract
Mucopolysaccharidosis type III (MPS III) is characterized by progressive neurological deterioration, behavioral abnormalities, a relatively mild somatic phenotype, and early mortality. Because of the paucity of somatic manifestations and the rarity of the disease, early diagnosis is often difficult. Therapy targeting the underlying disease pathophysiology may offer the greatest clinical benefit when started prior to the onset of significant neurologic sequelae. Here we review current practices in the laboratory diagnosis of MPS III in order to facilitate earlier patient identification and diagnosis. When clinical suspicion of MPS III arises, the first step is to order a quantitative assay that screens urine for the presence of glycosaminoglycan biomarkers using a spectrophotometric compound (e.g., dimethylmethylene blue). We recommend testing all patients with developmental delay and/or behavioral abnormalities as part of the diagnostic work-up because quantitative urine screening is inexpensive and non-invasive. Semi-quantitative urine screening assays using cationic dyes on filter paper (e.g., spot tests) have relatively high rates of false-positives and false-negatives and are obsolete. Of note, a negative urinary glycosaminoglycan assay does not necessarily rule out MPS because, in some patients, an overlap in excretion levels with healthy controls may occur. All urine samples that test positive for glycosaminoglycans with a quantitative assay should be confirmed by electrophoresis, thin layer chromatography, or tandem mass spectrometry, which further improves the sensitivity and specificity. The gold standard for diagnosis remains the enzyme activity assay in cultured skin fibroblasts, leukocytes, plasma, or serum, which can be used as a first-line diagnostic test in some regions. Molecular genetic analysis should be offered to all families of patients to allow genetic counseling for informed family planning. For a small number of variants, genotype-phenotype correlations are available and can offer prognostic value. Prenatal testing via enzyme activity assay in chorionic villi or amniotic fluid cells is available at a limited number of centers worldwide, but whenever possible, a molecular genetic analysis is preferred for prenatal diagnosis. To conclude, we discuss the development of newborn screening assays in dried blood spots and high-throughput methods for sequencing the protein-coding regions of the genome (whole exome sequencing) and their relevance to future changes in the MPS III diagnostic landscape.
Collapse
Affiliation(s)
- Olaf A Bodamer
- Division of Clinical and Translational Genetics, Dr. John T. MacDonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Roberto Giugliani
- Department of Genetics/UFRGS, Medical Genetics Service/HCPA and INAGEMP, Porto Alegre, RS, Brazil
| | - Tim Wood
- Metabolic Laboratory, Greenwood Genetic Center, Greenwood, SC, USA.
| |
Collapse
|