1
|
Sokolov PL, Chebanenko NV, Mednaya DM, Fedotova YA. [Epilepsy with PCDH19 mutation: polypharmacy as a consequence of the complexity and diversity of pathogenesis mechanisms]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:51-55. [PMID: 39113443 DOI: 10.17116/jnevro202412407151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mutations in the human PCDH19 gene lead to epileptic encephalopathy of early childhood. It is characterized by the early onset of serial seizures, cognitive impairment and behavioral disorders (including autistic personality traits). In most cases, difficulties arise in selecting therapy due to pharmacoresistance. The pathogenesis of the disease is complex. The data available to us at the moment from numerous studies present the pathogenesis of «PCDH19 syndrome» as multi-level, affecting both the epigenetic support of cell life, and development of stem cells and progenitor cells in the process of neuroontogenesis, and the influence on the neurotransmitter mechanisms of the brain, and disruption of the formation of neural networks with an inevitable increase in the excitability of the cerebral cortex as a whole, and local changes in the highly labile regulatory structures of the hippocampal region. And it is not surprising that all these changes entail not only (and perhaps not so much) epileptization, but a profound disruption of the regulation of brain activity, accompanied by autism spectrum disorders, more profound disorders in the form of schizophrenia or cyclothymia, and the formation of delayed psychomotor development. A «side branch» of these pathogenetic processes can also be considered the participation of PCDH19 dysfunctions in certain variants of oncogenesis. The need for polypharmacy (in most cases) confirms the diversity of mechanisms involved in the pathogenesis of the disease and makes the prospects for the development of effective and rational treatment regimens very vague. Cautious optimism is caused only by attempts at relatively specific treatment with ganaxolone.
Collapse
Affiliation(s)
- P L Sokolov
- Voyno-Yasenetsky Scientific and Practical Center for Specialized Assistance for Children, Moscow, Russia
| | - N V Chebanenko
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - D M Mednaya
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Yu A Fedotova
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
2
|
Du J, Wu K. PCDHA1 High Expression is Associated With Poor Prognosis and Correlated With Immune Cell Infiltration in Breast Cancer. Clin Breast Cancer 2023; 23:397-407. [PMID: 36858841 DOI: 10.1016/j.clbc.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
INTRODUCTION Breast cancer (BC) remains one of the biggest threats to women's health. Protocadherin gene Protocadherin Alpha 1 (PCDHA1) is abnormally highly expressed in breast cancer tissues. However, the biological role of PCDHA1 in breast cancer has not been fully elucidated and the relationship with the immune microenvironment needs to be further studied. MATERIALS AND METHODS TCGA-BRCA gene expression profiles were used to characterize PCDHA1. Kaplan-Meier method was used to estimate PCDHA1 prognosis potential. Gene set enrichment analysis (GSEA) analysis was performed to determine the signaling pathways altered by PCDHA1 aberrant expression. The correlations between PCDHA1 and immune cell infiltration levels were analyzed by CIBERSORT. Wilcoxon's rank-sum test was used to identify chemokine and chemokine receptors significantly associated with PCDHA1. The CCK8 assay and the transwell invasion assay were occupied to evaluate the effect of PCDHA1 overexpression on BC cells. RESULTS Survival analysis revealed PCDHA1 overexpression was associated with poor prognosis in BC. Enrichment analysis uncovered several metabolism pathways were activated by PCDHA1 overexpression. Moreover, PCDHA1 was positively correlated with activated NK cells but negatively correlated with resting NK cells infiltration. In addition, chemokines CCL28, CXCL17, and receptor CCR9 expression were associated with PCDHA1 overexpression. The CCK8 assay and the transwell invasion assay proved that PCDHA1 overexpression enhanced MCF-7 and MDA-MB-231 cell proliferation and invasion. CONCLUSION This study demonstrated that PCDHA1 effectively predicted BC prognosis. Upregulated PCDHA1 activated metabolism pathways, and promoted NK cells and chemokines. PCDHA1 overexpression enhanced BC cell proliferation and invasion. Therefore, an understanding of PCDHA1's function in BC may yield insights into the mechanisms of BC development.
Collapse
Affiliation(s)
- Jiawei Du
- Ultrasonography Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Kaidi Wu
- Ultrasonography Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
3
|
Molecular Classification of Hepatocellular Carcinoma Using Wnt-Hippo Signaling Pathway-Related Genes. Cancers (Basel) 2022; 14:cancers14194580. [PMID: 36230503 PMCID: PMC9559216 DOI: 10.3390/cancers14194580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary The characters of Taiwanese hepatocellular carcinoma (HCC) are different from other parts of the world. We characterized the molecular features of HCC using a newly developed classification system based on the expression of the Wnt–Hippo signaling pathway-related genes. We analyzed the data in terms of prognostic value, transcriptome features, immune infiltration, and clinical characteristics, and compared the resulting subclasses with previously published classifications. A new molecular classification method based on a 272 gene panel of Wnt–Hippo pathways that may provide a new target for the treatment. Abstract In Taiwan, a combination of hepatitis B and C infection, economic boom-related food and alcohol overconsumption, and Chinese medicine prescriptions has led to a high rate of hepatocellular carcinoma (HCC). However, the causative factors and underlying tumor biology for this unique HCC environment have not been identified. Wnt and Hippo signaling pathways play an important regulatory role in HCC development, and their functions are generally considered as positive and negative regulators of cell proliferation, respectively. In this study, we characterized the molecular features of HCC using a newly developed classification system based on the expression of the Wnt–Hippo signaling pathway-related genes. RNA sequencing (RNA-Seq) was performed on liver tumor tissues from 100 patients with liver cancer. RNA-Seq data for 272 previously characterized Wnt–Hippo signaling pathway-related genes were used for hierarchical clustering. We analyzed the data in terms of prognostic value, transcriptome features, immune infiltration, and clinical characteristics, and compared the resulting subclasses with previously published classifications. Four subclasses of HCC (HCCW1–4) were identified. Subclass HCCW1 displayed the highest PCDHB4 expression. Subclass HCCW2 displayed lower Edmondson–Steiner grades (I and II) and CTNNB1 mutation frequencies. Subclass HCCW3 was associated with a good prognosis, the highest PCDHGB7 expression, high CD8+ naïve T cells abundance, and relatively low TP53 mutation rates. Subclass HCCW4 was associated with a poor prognosis, the highest PCDHB2 and PCDHB6 expression, a relatively high abundance of Th1 cells, NKT and class-switched memory B cells, relatively low enrichment of cDC, iDC, and CD4+ memory T cells, and high Edmondson–Steiner grades (III and IV). We also identified Wnt–Hippo signaling pathway-related genes that may influence immune cell infiltration. We developed a panel of 272 Wnt–Hippo signaling pathway-related genes to classify HCC into four groups based on Taiwanese HCC and The Cancer Genome Atlas Liver Hepatocellular Carcinoma datasets. This novel molecular classification system may aid the treatment of HCC.
Collapse
|
4
|
Hernaiz A, Sanz A, Sentre S, Ranera B, Lopez-Pérez O, Zaragoza P, Badiola JJ, Filali H, Bolea R, Toivonen JM, Martín-Burriel I. Genome-Wide Methylation Profiling in the Thalamus of Scrapie Sheep. Front Vet Sci 2022; 9:824677. [PMID: 35252421 PMCID: PMC8888973 DOI: 10.3389/fvets.2022.824677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Scrapie is a neurodegenerative disorder belonging to the group of transmissible spongiform encephalopathy (TSE). Scrapie occurs in sheep and goats, which are considered good natural animal models of these TSE. Changes in DNA methylation occur in the central nervous system (CNS) of patients suffering from prion-like neurodegenerative diseases, such as Alzheimer's disease. Nevertheless, potential DNA methylation alterations have not yet been investigated in the CNS of any prion disease model or naturally infected cases, neither in humans nor in animals. Genome-wide DNA methylation patterns were studied in the thalamus obtained from sheep naturally infected with scrapie at a clinical stage (n = 4) and from controls (n = 4) by performing a whole-genome bisulfite sequencing (WGBS) analysis. Ewes carried the scrapie-susceptible ARQ/ARQ PRNP genotype and were sacrificed at a similar age (4–6 years). Although the average genomic methylation levels were similar between the control and the scrapie animals, we identified 8,907 significant differentially methylated regions (DMRs) and 39 promoters (DMPs). Gene Ontology analysis revealed that hypomethylated DMRs were enriched in genes involved in transmembrane transport and cell adhesion, whereas hypermethylated DMRs were related to intracellular signal transduction genes. Moreover, genes highly expressed in specific types of CNS cells and those previously described to be differentially expressed in scrapie brains contained DMRs. Finally, a quantitative PCR (qPCR) validation indicated differences in the expression of five genes (PCDH19, SNCG, WDR45B, PEX1, and CABIN1) that matched the methylation changes observed in the genomic study. Altogether, these results suggest a potential regulatory role of DNA methylation in prion neuropathology.
Collapse
Affiliation(s)
- Adelaida Hernaiz
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Arianne Sanz
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Sara Sentre
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Beatriz Ranera
- Facultad de Ciencias de la Salud, Universidad San Jorge, Zaragoza, Spain
| | - Oscar Lopez-Pérez
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Juan J. Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Hicham Filali
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
| | - Janne M. Toivonen
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza-IA2, IIS, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Inmaculada Martín-Burriel
| |
Collapse
|
5
|
Song H, Ruan C, Xu Y, Xu T, Fan R, Jiang T, Cao M, Song J. Survival stratification for colorectal cancer via multi-omics integration using an autoencoder-based model. Exp Biol Med (Maywood) 2021; 247:898-909. [PMID: 34904882 DOI: 10.1177/15353702211065010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Prognosis stratification in colorectal cancer helps to address cancer heterogeneity and contributes to the improvement of tailored treatments for colorectal cancer patients. In this study, an autoencoder-based model was implemented to predict the prognosis of colorectal cancer via the integration of multi-omics data. DNA methylation, RNA-seq, and miRNA-seq data from The Cancer Genome Atlas (TCGA) database were integrated as input for the autoencoder, and 175 transformed features were produced. The survival-related features were used to cluster the samples using k-means clustering. The autoencoder-based strategy was compared to the principal component analysis (PCA)-, t-distributed random neighbor embedded (t-SNE)-, non-negative matrix factorization (NMF)-, or individual Cox proportional hazards (Cox-PH)-based strategies. Using the 175 transformed features, tumor samples were clustered into two groups (G1 and G2) with significantly different survival rates. The autoencoder-based strategy performed better at identifying survival-related features than the other transformation strategies. Further, the two survival groups were robustly validated using "hold-out" validation and five validation cohorts. Gene expression profiles, miRNA profiles, DNA methylation, and signaling pathway profiles varied from the poor prognosis group (G2) to the good prognosis group (G1). miRNA-mRNA networks were constructed using six differentially expressed miRNAs (let-7c, mir-34c, mir-133b, let-7e, mir-144, and mir-106a) and 19 predicted target genes. The autoencoder-based computational framework could distinguish good prognosis samples from bad prognosis samples and facilitate a better understanding of the molecular biology of colorectal cancer.
Collapse
Affiliation(s)
- Hu Song
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Chengwei Ruan
- Department of Anorectal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yixin Xu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Teng Xu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Ruizhi Fan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Tao Jiang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Meng Cao
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Jun Song
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| |
Collapse
|
6
|
Zheng H, Yan Y, Cheng J, Yu S, Wang Y. Association between SOCS3 hypermethylation and HBV-related hepatocellular carcinoma and effect of sex and age: A meta-analysis. Medicine (Baltimore) 2021; 100:e27604. [PMID: 34713837 PMCID: PMC8556007 DOI: 10.1097/md.0000000000027604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 10/01/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Suppressor 3 of cytokine signaling (SOCS3) hypermethylation has been reported to participate in hepatocellular carcinoma (HCC) development and progression, but conflicting results were published. This study aimed to analyze the clinical effects of SOCS3 hypermethylation in HCC and the effects of sex and age on SOCS3 hypermethylation in HCC. METHODS Databases were searched for relevant case-control and cohort studies on SOCS3 hypermethylation in HBV-related HCC. In vitro and in vivo studies and studies of patients with serious comorbidities were excluded. Review Manager 5.2 was used to estimate the effects of the results among the selected studies. Forest plots, sensitivity analysis, and bias analysis for the included studies were also conducted. RESULTS Finally, 8 relevant studies met the inclusion criteria. A significant difference in SOCS3 hypermethylation in HCC was found between tumor and nontumor groups (the odds ratio [OR] = 2.01, 95% confidence interval [CI]: 1.48-2.73, P < .00001; P for heterogeneity = .39, I2 = 5%). The meta-analysis suggested no significant difference in the effect of sex (OR = 1.00, 95% CI: 0.76-1.31, P = .76; P for heterogeneity = .44, I2 = 0%) and age on SOCS3 hypermethylation in HCC (OR = 1.11, 100% CI: 0.78-1.29, P = .03; P for heterogeneity = .14, I2 = 36%). Limited publication bias was observed in this study. CONCLUSION SOCS3 hypermethylation is associated with HBV-related HCC. Sex and age do not affect the association between SOCS3 hypermethylation and HCC. SOCS3 might be a treatment target for HCC.
Collapse
Affiliation(s)
- Hairu Zheng
- Department of Physical Examination, the Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Yanggang Yan
- Department of Interventional Radiology, the Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiajia Cheng
- Cancer Center of Minimally Invasive and Comprehensive Therapy, Hainan Cancer Hospital, Haikou, China
| | - Shuyong Yu
- Cancer Center of Minimally Invasive and Comprehensive Therapy, Hainan Cancer Hospital, Haikou, China
| | - Yong Wang
- Department of Interventional Radiology, the Second Affiliated Hospital of Hainan Medical University, Haikou, China
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, China
- Key laboratory of Emergency and Trauma (Hainan Medical University), Ministry of Education, China
- Hainan Clinical Research Center for Acute and Critical Diseases, the Second Affiliated Hospital of Hainan Medical University, China
| |
Collapse
|
7
|
Artemov AV, Zhenilo S, Kaplun D, Starshin A, Sokolov A, Mazur AM, Szpotan J, Gawronski M, Modrzejewska M, Gackowski D, Prokhortchouk EB. An IDH-independent mechanism of DNA hypermethylation upon VHL inactivation in cancer. Epigenetics 2021; 17:894-905. [PMID: 34494499 DOI: 10.1080/15592294.2021.1971372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Hypermethylation of tumour suppressors and other aberrations of DNA methylation in tumours play a significant role in cancer progression. DNA methylation can be affected by various environmental conditions, including hypoxia. The response to hypoxia is mainly achieved through activation of the transcriptional program associated with HIF1A transcription factor. Inactivation of Von Hippel-Lindau Tumour Suppressor gene (VHL) by genetic or epigenetic events, which also induces aberrant activation of HIF1A, is the most common driver event for renal cancer. With whole-genome bisulphite sequencing and LC-MS, we demonstrated that VHL inactivation induced global genome hypermethylation in human kidney cancer cells under normoxic conditions. This effect was reverted by exogenous expression of wild-type VHL. We showed that global genome hypermethylation in VHL mutants can be explained by transcriptional changes in MDH and L2HGDH genes that cause the accumulation of 2-hydroxyglutarate - a metabolite that inhibits DNA demethylation by TET enzymes. Unlike the known cases of DNA hypermethylation in cancer, 2-hydroxyglutarate was accumulated in the cells with the wild-type isocitrate dehydrogenases.
Collapse
Affiliation(s)
- Artem V Artemov
- Institute of Bioengineering, Research Center of Biotechnology RAS, Moscow, Russia.,Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Svetlana Zhenilo
- Institute of Bioengineering, Research Center of Biotechnology RAS, Moscow, Russia
| | - Daria Kaplun
- Institute of Bioengineering, Research Center of Biotechnology RAS, Moscow, Russia
| | - Alexey Starshin
- Institute of Bioengineering, Research Center of Biotechnology RAS, Moscow, Russia
| | - Alexey Sokolov
- Institute of Bioengineering, Research Center of Biotechnology RAS, Moscow, Russia
| | - Alexander M Mazur
- Institute of Bioengineering, Research Center of Biotechnology RAS, Moscow, Russia
| | - Justyna Szpotan
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland.,Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Poland
| | - Maciej Gawronski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Martyna Modrzejewska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Egor B Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology RAS, Moscow, Russia
| |
Collapse
|
8
|
Impact of prenatal maternal nutrition and parental residual feed intake (RFI) on mRNA abundance of metabolic drivers of growth and development in young Angus bulls. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Shi J, Huang D, Zhang G, Zhao F, Yang L. A DNA methylation-associated nomogram predicts the overall survival of osteosarcoma. Medicine (Baltimore) 2020; 99:e23772. [PMID: 33371144 PMCID: PMC7748315 DOI: 10.1097/md.0000000000023772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/16/2020] [Indexed: 11/25/2022] Open
Abstract
Numerous reports have demonstrated that DNA methylation may be underlying prognostic biomarkers of cancer. However, few studies indicated that DNA methylation was independent biomarker for osteosarcoma prognosis. We aimed to discover and validate a novel DNA methylation signature for prediction of osteosarcoma patients' overall survival (OS).The DNA methylation data of osteosarcoma patients was researched from The Cancer Genome Atlas (TCGA) database. Overall, 80 samples with 485,577 DNA methylation sites were enrolled in our study. The 80 samples were randomly allocated into training dataset (first two-thirds) and validation dataset (remaining one-third). Initially, the univariate Cox proportional hazard analysis was performed in the training dataset to determine methylation sites significantly (P < .05) relevant to osteosarcoma patients' OS as underlying indicators. Subsequently, the underlying indicators were employed to carry out the least absolute shrinkage and selection operator (LASSO) Cox regression analysis for further selecting the candidate methylation sites. Then, the selected candidate methylation sites were employed as covariates to perform multivariate Cox proportional hazard model for identifying the predictor of OS in osteosarcoma patients. The validation dataset was used to validate the predictive accuracy by receiver operating characteristic (ROC) analysis and Kaplan-Meier survival analysis.We discovered a 7-DNA methylation signature closely relevant to OS of osteosarcoma patients. AUC at 1, 3, 5 years in training dataset (0.951, 0.922, 0.925, respectively), testing dataset (0.952, 0.918, 0.925, respectively), and entire dataset (0.952, 0.968, 0.968, respectively). Suggesting high predictive values for OS of osteosarcoma patients. In addition, a methylation-associated nomogram suggested good predictive value and clinical application.We discovered and validated a novel 7-DNA methylation-associated nomogram for predicting OS of osteosarcoma patients.
Collapse
Affiliation(s)
- Jun Shi
- Department of Orthopeadic Surgery, People's Hospital of Dongxihu District, Wuhan, Hubei
| | - Daijuan Huang
- Department of Nuclear Medicine
- Hubei Province Key Laboratory of Molecular Imaging
| | - Gao Zhang
- Department of Oncology, General Hospital of Central Theater Command of Chinese People's Liberation Army
| | - Feng Zhao
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Yang
- Department of Orthopeadic Surgery, People's Hospital of Dongxihu District, Wuhan, Hubei
| |
Collapse
|
10
|
Chen H, Ma X, Yang M, Wang M, Li L, Huang T. A methylomics-associated nomogram predicts recurrence-free survival of thyroid papillary carcinoma. Cancer Med 2020; 9:7183-7193. [PMID: 32783399 PMCID: PMC7541134 DOI: 10.1002/cam4.3388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background Thyroid papillary carcinoma (TPC) is the most common type of thyroid cancer (TC). The prognosis of TPC patients with tumor‐cell metastasis is poor. Therefore, this study aims to develop a model for predicting TPC patients' recurrence‐free survival (RFS). Methods We included 546 TPC patients who were clinically and pathologically diagnosed with TPC. The methylation biomarkers that associate with RFS were explored. These 546 samples were divided into training dataset (first 70%) and validation dataset (remaining 30%) randomly. The training dataset was used to identify prognostic biomarkers and construct risk prediction model, in addition, the validation dataset was used to verify the predictive performance of the model. We used Cox proportional hazard analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis to identify the significant predictive biomarkers, and establish the relapse risk prediction model from the identified biomarkers. Results A 6‐DNA methylation signature yielded a high evaluative performance for RFS. The Kaplan‐Meier analysis indicated that the 6‐DNA methylation signature could significantly distinguish the high‐ and low‐risk patients in training, validation and entire sets. In addition, a nomogram was constructed based on risk score, metastasis status and residual tumor status, and C‐index, receiver operating characteristic (ROC) and the calibration plots analysis which demonstrated the good performance and clinical utility of the nomogram. Conclusions The results suggested that the 6‐DNA methylation signature is the independent prognostic marker for RFS and functioned as a significant tool for guiding the clinical treatment of TPC patients.
Collapse
Affiliation(s)
- Hengyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin, China
| | - Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengyi Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Zhang Q, Wang J, Liu M, Zhu Q, Li Q, Xie C, Han C, Wang Y, Gao M, Liu J. Weighted correlation gene network analysis reveals a new stemness index-related survival model for prognostic prediction in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:13502-13517. [PMID: 32644941 PMCID: PMC7377834 DOI: 10.18632/aging.103454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
In this study, we constructed a new survival model using mRNA expression-based stemness index (mRNAsi) for prognostic prediction in hepatocellular carcinoma (HCC). Weighted correlation network analysis (WGCNA) of HCC transcriptome data (374 HCC and 50 normal liver tissue samples) from the TCGA database revealed 7498 differentially expressed genes (DEGs) that clustered into seven gene modules. LASSO regression analysis of the top two gene modules identified ANGPT2, EMCN, GLDN, USHBP1 and ZNF532 as the top five mRNAsi-related genes. We constructed our survival model with these five genes and tested its performance using 243 HCC and 202 normal liver samples from the ICGC database. Kaplan-Meier survival curve and receive operating characteristic curve analyses showed that the survival model accurately predicted the prognosis and survival of high- and low-risk HCC patients with high sensitivity and specificity. The expression of these five genes was significantly higher in the HCC tissues from the TCGA, ICGC, and GEO datasets (GSE25097 and GSE14520) than in normal liver tissues. These findings demonstrate that a new survival model derived from five strongly correlating mRNAsi-related genes provides highly accurate prognoses for HCC patients.
Collapse
Affiliation(s)
- Qiujing Zhang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Jia Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.,Department of Oncology, Zibo Maternal and Child Health Hospital, Zibo 255000, Shandong, China
| | - Menghan Liu
- Basic Medicine College, Shandong First Medical University, Taian 271016, Shandong, China
| | - Qingqing Zhu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Qiang Li
- Department of Oncology, Mengyin County Hospital, Linyi 276299, Shandong, China
| | - Chao Xie
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Congcong Han
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Yali Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Min Gao
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Jie Liu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| |
Collapse
|
12
|
Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the Crossroad of Signaling Pathways. Front Mol Neurosci 2020; 13:117. [PMID: 32694982 PMCID: PMC7339444 DOI: 10.3389/fnmol.2020.00117] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Protocadherins (Pcdhs) are cell adhesion molecules that belong to the cadherin superfamily, and are subdivided into clustered (cPcdhs) and non-clustered Pcdhs (ncPcdhs) in vertebrates. In this review, we summarize their discovery, expression mechanisms, and roles in neuronal development and cancer, thereby highlighting the context-dependent nature of their actions. We furthermore provide an extensive overview of current structural knowledge, and its implications concerning extracellular interactions between cPcdhs, ncPcdhs, and classical cadherins. Next, we survey the known molecular action mechanisms of Pcdhs, emphasizing the regulatory functions of proteolytic processing and domain shedding. In addition, we outline the importance of Pcdh intracellular domains in the regulation of downstream signaling cascades, and we describe putative Pcdh interactions with intracellular molecules including components of the WAVE complex, the Wnt pathway, and apoptotic cascades. Our overview combines molecular interaction data from different contexts, such as neural development and cancer. This comprehensive approach reveals potential common Pcdh signaling hubs, and points out future directions for research. Functional studies of such key factors within the context of neural development might yield innovative insights into the molecular etiology of Pcdh-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anna Pancho
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D Mitsogiannis
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Ma X, Cheng J, Zhao P, Li L, Tao K, Chen H. DNA methylation profiling to predict recurrence risk in stage Ι lung adenocarcinoma: Development and validation of a nomogram to clinical management. J Cell Mol Med 2020; 24:7576-7589. [PMID: 32530136 PMCID: PMC7339160 DOI: 10.1111/jcmm.15393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence suggested DNA methylation may serve as potential prognostic biomarkers; however, few related DNA methylation signatures have been established for prediction of lung cancer prognosis. We aimed at developing DNA methylation signature to improve prognosis prediction of stage I lung adenocarcinoma (LUAD). A total of 268 stage I LUAD patients from the Cancer Genome Atlas (TCGA) database were included. These patients were separated into training and internal validation datasets. GSE39279 was used as an external validation set. A 13‐DNA methylation signature was identified to be crucially relevant to the relapse‐free survival (RFS) of patients with stage I LUAD by the univariate Cox proportional hazard analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis and multivariate Cox proportional hazard analysis in the training dataset. The Kaplan‐Meier analysis indicated that the 13‐DNA methylation signature could significantly distinguish the high‐ and low‐risk patients in entire TCGA dataset, internal validation and external validation datasets. The receiver operating characteristic (ROC) analysis further verified that the 13‐DNA methylation signature had a better value to predict the RFS of stage I LUAD patients in internal validation, external validation and entire TCGA datasets. In addition, a nomogram combining methylomic risk scores with other clinicopathological factors was performed and the result suggested the good predictive value of the nomogram. In conclusion, we successfully built a DNA methylation‐associated nomogram, enabling prediction of the RFS of patients with stage I LUAD.
Collapse
Affiliation(s)
- Xianxiong Ma
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Cheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhao
- Department of Hepatobiliary surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Li
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hengyu Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin, China
| |
Collapse
|
14
|
Chen L, Huang W, Wang L, Zhang Z, Zhang F, Zheng S, Kong D. The effects of epigenetic modification on the occurrence and progression of liver diseases and the involved mechanism. Expert Rev Gastroenterol Hepatol 2020; 14:259-270. [PMID: 32124651 DOI: 10.1080/17474124.2020.1736042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Epigenetic modification is a type of gene expression and regulation that does not involve changes in DNA sequences. An increasing number of studies have proven that epigenetic modifications play an important role in the occurrence and progression of liver diseases through the gene regulation and protein expressions of hepatocellular lipid metabolism, inflammatory reaction, cell proliferation, and activation, etc.Areas covered: In this study, we elaborated and analyzed the underlying functional mechanism of epigenetic modification in alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), liver fibrosis (LF), viral hepatitis, hepatocellular carcinoma (HCC), and research progress of recent years.Expert opinion: The further understanding of epigenetic mechanisms that can regulate gene expression and cell phenotype leads to new insights in epigenetic control of chronic liver disease. Currently, hepatologists are exploring the role of DNA methylation, histone/chromatin modification, and non-coding RNA in specific liver pathology. These findings have led to advances in direct epigenetic biomarker testing of patient tissue or body fluid specimens, as well as quantitative analysis. Based on these findings, drug validation of some targets involved in the epigenetic mechanism of liver disease is gradually being carried out clinically.
Collapse
Affiliation(s)
- Liping Chen
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weifang Huang
- Department of Pharmacology, School of Integral Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ling Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
15
|
Jiang HY, Ning G, Wang YS, Lv WB. 14-CpG-Based Signature Improves the Prognosis Prediction of Hepatocellular Carcinoma Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9762067. [PMID: 31998802 PMCID: PMC6970499 DOI: 10.1155/2020/9762067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Epigenetic dysregulation via alteration of DNA methylation often occurs during the development and progression of cancer, including hepatocellular carcinoma (HCC). In the past, many patterns of single-gene DNA methylation have been extensively explored in the context of HCC prognosis prediction. However, the combined model of a mixture of CpGs has rarely been evaluated. In the present study, we aimed to develop and validate a CpG-based signature model for HCC patient prognosis. METHODS Data from methylation profiling of GSE73003, GSE37988, and GSE57958 from the Gene Expression Omnibus (GEO) database and 371 HCC patients from the Cancer Genome Atlas (TCGA) were downloaded. The 371 HCC patients were randomly divided into a development cohort (N = 263) and a validation cohort (N = 263) and a validation cohort (. RESULTS Fourteen differential CpGs associated with OS were identified in HCC patients. The MSH, based on these 14 differential CpGs, could effectively divide HCC patients into two distinct subgroups with high risk or low risk of death (P < 0.0001) in the development cohort (26.35 vs 83.18 months, HR = 3.83, 95% CI: 2.56-5.90, P < 0.0001) in the development cohort (26.35 vs 83.18 months, HR = 3.83, 95% CI: 2.56-5.90, P < 0.0001) in the development cohort (26.35 vs 83.18 months, HR = 3.83, 95% CI: 2.56-5.90. CONCLUSION The 14-CpG-based signature is significantly associated with OS and may be used as a novel prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Hong-ye Jiang
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde), Foshan 528300, Guangdong Province, China
| | - Gang Ning
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, Guangdong Province, China
| | - Yen-sheng Wang
- Department of Environmental Health Science, Yale School of Public Health, New Haven, Connecticut, USA
| | - Wei-biao Lv
- Department of Clinical Laboratory, Shunde Hospital, Southern Medical University (the First People's Hospital of Shunde), Foshan 528300, Guangdong Province, China
| |
Collapse
|
16
|
Guo W, Zhu L, Zhu R, Chen Q, Wang Q, Chen JQ. A four-DNA methylation biomarker is a superior predictor of survival of patients with cutaneous melanoma. eLife 2019; 8:e44310. [PMID: 31169496 PMCID: PMC6553943 DOI: 10.7554/elife.44310] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/29/2019] [Indexed: 01/01/2023] Open
Abstract
Cutaneous melanoma (CM) is a life-threatening form of skin cancer. Prognostic biomarkers can reliably stratify patients at initial melanoma diagnosis according to risk, and may inform clinical decisions. Here, we performed a retrospective, cohort-based study analyzing genome-wide DNA methylation of 461 patients with CM from the TCGA database. Cox regression analyses were conducted to establish a four-DNA methylation signature that was significantly associated with the overall survival (OS) of patients with CM, and that was validated in an independent cohort. Corresponding Kaplan-Meier analysis displayed a distinct separation in OS. The ROC analysis confirmed that the predictive signature performed well. Notably, this signature exhibited much higher predictive accuracy in comparison with known biomarkers. This signature was significantly correlated with immune checkpoint blockade (ICB) immunotherapy-related signatures, and may have potential as a guide for measures of responsiveness to ICB immunotherapy.
Collapse
Affiliation(s)
- Wenna Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Liucun Zhu
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Rui Zhu
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Qihan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| |
Collapse
|
17
|
Yao X, Zhang H, Liu Y, Liu X, Wang X, Sun X, Cheng Y. miR-99b-3p promotes hepatocellular carcinoma metastasis and proliferation by targeting protocadherin 19. Gene 2019; 698:141-149. [PMID: 30849536 DOI: 10.1016/j.gene.2019.02.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 02/11/2019] [Accepted: 02/17/2019] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers in the world, with characteristics of high morbidity and mortality. Identifying clinically practical targets and uncovering the potential mechanism for HCC were urgent for us. Though aberrantly expressed miR-99b-3p has been reported in several cancers, the expression and roles of miR-99b-3p in HCC remain uncovered. In the present study, we demonstrated for the first time that miR-99b-3p was overexpressed in HCC by our findings and data from GEO datasets. Statistical analysis revealed that highly expressed miR-99b-3p was closely related to malignant clinicopathological characteristics and poorer prognosis of HCC patients. Furthermore, results from Wound healing assay, Transwell assays, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)assay and 5-ethynyl-2'-deoxyuridine (EdU) assay revealed that miR-99b-3p played a promoting role in migration, invasion and proliferation of HCC cells. Then, by bioinformatics tools, luciferase reporter gene assay, integrative database analysis, and Pearson correlation analysis and so on, protocadherin 19 (PCDH19) was identified as the target of miR-99b-3p in HCC cells. Furthermore, rescue experiments were conducted to confirm the mediator role of PCDH19 for miR-99b-3p. Collectively, we demonstrate that miR-99b-3p promotes HCC metastasis and proliferation by directly targeting PCDH19. MiR-99b-3p may become a potential therapy target for HCC.
Collapse
Affiliation(s)
- Xiaobin Yao
- Departments of General Surgery, General Hospital of Lanzhou Petrochemical Company, Lanzhou 730060, Gansu, China
| | - Hongguo Zhang
- Department of Pharmacy, General Hospital of Lanzhou Petrochemical Company, Lanzhou 730060, Gansu, China.
| | - Yujuan Liu
- Teaching and research section of physiology and pathology in the basic department, Medical Sciences, Hexi University, Zhangye 734000, Gansu, China
| | - Xiaoming Liu
- Departments of General Surgery, General Hospital of Lanzhou Petrochemical Company, Lanzhou 730060, Gansu, China
| | - Xinhui Wang
- Departments of General Surgery, General Hospital of Lanzhou Petrochemical Company, Lanzhou 730060, Gansu, China
| | - Xiaofeng Sun
- Departments of General Surgery, General Hospital of Lanzhou Petrochemical Company, Lanzhou 730060, Gansu, China
| | - Yujin Cheng
- Department of Science and Education, General Hospital of Lanzhou Petrochemical Company, Lanzhou 730060, Gansu, China
| |
Collapse
|
18
|
Zhou ZH, Wang QL, Mao LH, Li XQ, Liu P, Song JW, Liu X, Xu F, Lei J, He S. Chromatin accessibility changes are associated with enhanced growth and liver metastasis capacity of acid-adapted colorectal cancer cells. Cell Cycle 2019; 18:511-522. [PMID: 30712429 PMCID: PMC6422493 DOI: 10.1080/15384101.2019.1578145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/19/2018] [Accepted: 12/27/2018] [Indexed: 02/08/2023] Open
Abstract
The acidic extracellular microenvironment, namely acidosis, is a biochemical hallmark of solid tumors. However, the tumorigenicity, metastatic potential, gene expression profile and chromatin accessibility of acidosis-adapted colorectal cancer cells remain unknown. The colorectal cancer cell SW620 was cultured in acidic medium (pH 6.5) for more than 3 months to be acidosis-adapted (SW620-AA). In comparison to parental cells, SW620-AA cells exhibit enhanced tumorigenicity and liver metastatic potential in vivo. Following mRNA and lncRNA expression profiling, we validated that OLMF1, NFIB, SMAD9, DGKB are upregulated, while SESN2, MAP1B, UTRN, PCDH19, IL18, LMO2, CNKSR3, GXYLT2 are downregulated in SW620-AA cells. The differentially expressed mRNAs were significantly enriched in DNA remodeling-associated pathways including HDACs deacetylate histones, SIRT1 pathway, DNA methylation, DNA bending complex, and RNA polymerase 1 chain elongation. Finally, chromatin accessibility evaluation by ATAC-sequencing revealed that the differentially opened peaks were enriched in pathways such as small cell lung cancer, pathways in cancer, ErbB signaling, endometrial cancer, and chronic myeloid leukemia, which were mainly distributed in intergenic regions and introns. These results suggest that the chromatin accessibility changes are correlated with enhanced growth and liver metastasis capacity of acid-adapted colorectal cancer cells.
Collapse
Affiliation(s)
- Zhi-Hang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Pathology, the 309 hospital of PLA, Beijing, China
| | - Qing-Liang Wang
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Hong Mao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Qin Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Liu
- Department of Emergency, Chest Pain Center, General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Jin-Wen Song
- Treatment and Research Center for Infectious Diseases, The 302nd hosptital of PLA, Beijing, China
| | - Xue Liu
- Department of Pathology, Basic Science School, Jining Medical University, Jining, Shandong, China
| | - Feng Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Lei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Guo W, Zhu L, Yu M, Zhu R, Chen Q, Wang Q. A five-DNA methylation signature act as a novel prognostic biomarker in patients with ovarian serous cystadenocarcinoma. Clin Epigenetics 2018; 10:142. [PMID: 30446011 PMCID: PMC6240326 DOI: 10.1186/s13148-018-0574-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/28/2018] [Indexed: 12/25/2022] Open
Abstract
Background Ovarian cancer is the most fatal tumor of the female reproductive system and the fifth leading cause of cancer death among women in the USA. The prognosis is poor due to the lack of biomarkers for treatment options. Results The methylation array data of 551 patients with ovarian serous cystadenocarcinoma (OSC) in The Cancer Genome Atlas (TCGA) database were assessed in this study to explore the methylation biomarkers associated with prognosis and improve the prognosis of patients. These patients were divided into training (first two thirds) and validation datasets (remaining one third). A five-DNA methylation signature was found to be significantly associated with the overall survival of patients with OSC using the Cox regression analysis in the training dataset. The Kaplan–Meier analysis showed that the five-DNA methylation signature could significantly distinguish the high- and low-risk patients in both training and validation sets. The receiver operating characteristic (ROC) analysis further confirmed that the five-DNA methylation signature exhibited high sensitivity and specificity to predict the prognostic survival of patients. Also, the five-DNA methylation signature was not only applicable in patients of different ages, stages, histologic grade, and size of residual tumor after surgery but also more accurate in predicting OSC prognosis compared with known biomarkers. Conclusions This five-DNA methylation signature demonstrated the potential of being a novel independent prognostic indicator and served as an important tool for guiding the clinical treatment of OSC to improve outcome prediction and management for patients. Hence, the findings of this study might have potential clinical significance. Electronic supplementary material The online version of this article (10.1186/s13148-018-0574-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenna Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Minghao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Rui Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qihan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Qiang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|