1
|
Nadri P, Nadri T, Gholami D, Zahmatkesh A, Hosseini Ghaffari M, Savvulidi Vargova K, Georgijevic Savvulidi F, LaMarre J. Role of miRNAs in assisted reproductive technology. Gene 2024; 927:148703. [PMID: 38885817 DOI: 10.1016/j.gene.2024.148703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Cellular proteins and the mRNAs that encode them are key factors in oocyte and sperm development, and the mechanisms that regulate their translation and degradation play an important role during early embryogenesis. There is abundant evidence that expression of microRNAs (miRNAs) is crucial for embryo development and are highly involved in regulating translation during oocyte and early embryo development. MiRNAs are a group of short (18-24 nucleotides) non-coding RNA molecules that regulate post-transcriptional gene silencing. The miRNAs are secreted outside the cell by embryos during preimplantation embryo development. Understanding regulatory mechanisms involving miRNAs during gametogenesis and embryogenesis will provide insights into molecular pathways active during gamete formation and early embryo development. This review summarizes recent findings regarding multiple roles of miRNAs in molecular signaling, plus their transport during gametogenesis and embryo preimplantation.
Collapse
Affiliation(s)
- Parisa Nadri
- Department of Animal Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Touba Nadri
- Department of Animal Science, College of Agriculture, Urmia University, Urmia, Iran; Department of Animal Science, College of Agriculture, Tehran University, Karaj, Iran.
| | - Dariush Gholami
- Department of Microbial Biotechniligy, Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
| | - Azadeh Zahmatkesh
- Department of Anaerobic Vaccine Research and Production, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Karin Savvulidi Vargova
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Filipp Georgijevic Savvulidi
- Department of Animal Science, Faculty of Agrobiology, Food and Natural Resources, Czech University, Prague, Kamýcká, Czech Republic
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Canada
| |
Collapse
|
2
|
Cordier AG, Zerbib E, Favier A, Dabi Y, Daraï E. Value of Non-Coding RNA Expression in Biofluids to Identify Patients at Low Risk of Pathologies Associated with Pregnancy. Diagnostics (Basel) 2024; 14:729. [PMID: 38611642 PMCID: PMC11011513 DOI: 10.3390/diagnostics14070729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Pregnancy-related complications (PRC) impact maternal and fetal morbidity and mortality and place a huge burden on healthcare systems. Thus, effective diagnostic screening strategies are crucial. Currently, national and international guidelines define patients at low risk of PRC exclusively based on their history, thus excluding the possibility of identifying patients with de novo risk (patients without a history of disease), which represents most women. In this setting, previous studies have underlined the potential contribution of non-coding RNAs (ncRNAs) to detect patients at risk of PRC. However, placenta biopsies or cord blood samples are required, which are not simple procedures. Our review explores the potential of ncRNAs in biofluids (fluids that are excreted, secreted, or developed because of a physiological or pathological process) as biomarkers for identifying patients with low-risk pregnancies. Beyond the regulatory roles of ncRNAs in placental development and vascular remodeling, we investigated their specific expressions in biofluids to determine favorable pregnancy outcomes as well as the most frequent pathologies of pregnant women. We report distinct ncRNA panels associated with PRC based on omics technologies and subsequently define patients at low risk. We present a comprehensive analysis of ncRNA expression in biofluids, including those using next-generation sequencing, shedding light on their predictive value in clinical practice. In conclusion, this paper underscores the emerging significance of ncRNAs in biofluids as promising biomarkers for risk stratification in PRC. The investigation of ncRNA expression patterns and their potential clinical applications is of diagnostic, prognostic, and theragnostic value and paves the way for innovative approaches to improve prenatal care and maternal and fetal outcomes.
Collapse
Affiliation(s)
| | - Elie Zerbib
- Department of Obstetrics and Reproductive Medicine, Sorbonne University, Hôpital Tenon, 4 Rue de la Chine, 75020 Paris, France; (A.-G.C.); (Y.D.)
| | | | | | - Emile Daraï
- Department of Obstetrics and Reproductive Medicine, Sorbonne University, Hôpital Tenon, 4 Rue de la Chine, 75020 Paris, France; (A.-G.C.); (Y.D.)
| |
Collapse
|
3
|
Sadowska A, Molcan T, Wójtowicz A, Lukasik K, Pawlina-Tyszko K, Gurgul A, Ferreira-Dias G, Skarzynski DJ, Szóstek-Mioduchowska A. Bioinformatic analysis of endometrial miRNA expression profile at day 26-28 of pregnancy in the mare. Sci Rep 2024; 14:3900. [PMID: 38365979 PMCID: PMC10873421 DOI: 10.1038/s41598-024-53499-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
The establishment of the fetomaternal interface depends on precisely regulated communication between the conceptus and the uterine environment. Recent evidence suggests that microRNAs (miRNAs) may play an important role in embryo-maternal dialogue. This study aimed to determine the expression profile of endometrial miRNAs during days 26-28 of equine pregnancy. Additionally, the study aimed to predict target genes for differentially expressed miRNAs (DEmiRs) and their potential role in embryo attachment, adhesion, and implantation. Using next-generation sequencing, we identified 81 DEmiRs between equine endometrium during the pre-attachment period of pregnancy (day 26-28) and endometrium during the mid-luteal phase of the estrous cycle (day 10-12). The identified DEmiRs appear to have a significant role in regulating the expression of genes that influence cell fate and properties, as well as endometrial receptivity formation. These miRNAs include eca-miR-21, eca-miR-126-3p, eca-miR-145, eca-miR-451, eca-miR-491-5p, members of the miR-200 family, and the miRNA-17-92 cluster. The target genes predicted for the identified DEmiRs are associated with ion channel activity and sphingolipid metabolism. Furthermore, it was noted that the expression of mucin 1 and leukemia inhibitory factor, genes potentially regulated by the identified DEmiRs, was up-regulated at day 26-28 of pregnancy. This suggests that miRNAs may play a role in regulating specific genes to create a favorable uterine environment that is necessary for proper attachment, adhesion, and implantation of the embryo in mares.
Collapse
Affiliation(s)
- Agnieszka Sadowska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Street 10, 10-748, Olsztyn, Poland
| | - Tomasz Molcan
- Molecular Biology Laboratory, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima Street 10, 10-748, Olsztyn, Poland
| | - Anna Wójtowicz
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Street 10, 10-748, Olsztyn, Poland
| | - Karolina Lukasik
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Street 10, 10-748, Olsztyn, Poland
| | - Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Sarego Street 2, 31-047, Kraków, Poland
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Mickiewicza Street 21, 31-120, Kraków, Poland
| | - Graca Ferreira-Dias
- CIISA-Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Dariusz J Skarzynski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Street 10, 10-748, Olsztyn, Poland
| | - Anna Szóstek-Mioduchowska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Street 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
4
|
Veraguas-Dávila D, Caamaño D, Saéz-Ruiz D, Vásquez Y, Saravia F, Castro FO, Rodríguez-Alvarez L. Zona pellucida removal modifies the expression and release of specific microRNAs in domestic cat blastocysts. ZYGOTE 2023; 31:544-556. [PMID: 37724015 DOI: 10.1017/s0967199423000436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The in vitro culture of domestic cat embryos without the zona pellucida affects their implantation capacity. MicroRNAs (miRNAs) have an important role in embryo-maternal communication and implantation. The objective of this study was to evaluate the expression of specific miRNAs in domestic cat blastocysts cultured without the zona pellucida. Two experimental groups were done: (1) domestic cat embryos cultured with the zona pellucida (zona intact control group, ZI); and (2) cultured without the zona pellucida (zona free group, ZF). The cleavage, morula and blastocyst rates were evaluated. The blastocysts and their spent medium were used for miRNA expression analysis using RT-qPCR (miR-21, miR-24, mi25, miR-29, miR-96, miR-98, miR-103, miR-191, miR-196, miR-199, miR-130, miR-155 and miR-302). The pre-mature microRNAs (pre-miRNAs) and miRNAs were evaluated in the blastocysts and only miRNAs were evaluated in the spent medium. No differences were observed in the cleavage, morula and blastocyst rates between the ZF and ZI groups (P > 0.05). For miRNAs analysis, miR-103 and miR-191 had the most stable expression and were selected as internal controls. ZF blastocysts had a higher expression of miR-21, miR-25, miR-29 and miR-199 and a lower expression of miR-96 than their ZI counterparts (P < 0.05). Furthermore, higher levels of miR-21, miR-25 and miR-98 were detected in the spent medium of ZF blastocysts (P < 0.05). In conclusion, in vitro culture of domestic cat embryos without the zona pellucida modifies the expression of miR-21, miR-25, miR-29, miR-199 and miR-96 at the blastocyst stage and the release of miR-21, miR-25 and miR-98.
Collapse
Affiliation(s)
- Daniel Veraguas-Dávila
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
- Facultad de Ciencias Agrarias y Forestales, Departamento de Ciencias Agrarias, Escuela de Medicina Veterinaria, Universidad Católica del Maule, Los Niches, Curicó, Chile
| | - Diego Caamaño
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Darling Saéz-Ruiz
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Yazmín Vásquez
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Fernando Saravia
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | - Fidel Ovidio Castro
- Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Chillán, Chile
| | | |
Collapse
|
5
|
Gao D, Wang X, Yan YL, Li C, Tan YP, Liu QC, Zhang MY, Zhang JV, Sun QY, Cao ZB, Zhang YH. CircKDM5B sponges miR-128 to regulate porcine blastocyst development by modulating trophectoderm barrier function. Mol Hum Reprod 2023; 29:gaad027. [PMID: 37471586 DOI: 10.1093/molehr/gaad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Circular RNAs (circRNAs), which exert critical functions in the regulation of transcriptional and post-transcriptional gene expression, are found in mammalian cells but their functions in mammalian preimplantation embryo development remain poorly understood. Here, we showed that circKDM5B mediated miRNA-128 (miR-128) to regulate porcine early embryo development. We screened circRNAs potentially expressed in porcine embryos through an integrated analysis of sequencing data from mouse and human embryos, as well as porcine oocytes. An authentic circRNA originating from histone demethylase KDM5B (referred to as circKDM5B) was abundantly expressed in porcine embryos. Functional studies revealed that circKDM5B knockdown not only significantly reduced blastocyst formation but also decreased the number of total cells and trophectoderm (TE) cells. Moreover, the knockdown of circKDM5B resulted in the disturbance of tight junction assembly and impaired paracellular sealing within the TE epithelium. Mechanistically, miR-128 inhibitor injection could rescue the early development of circKDM5B knockdown embryos. Taken together, the findings revealed that circKDM5B functions as a miR-128 sponge, thereby facilitating early embryonic development in pigs through the modulation of gene expression linked to tight junction assembly.
Collapse
Affiliation(s)
- Di Gao
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong Shenzhen Hospital, Shenzhen, China
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ye-Lian Yan
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chao Li
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yong-Peng Tan
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qiu-Chen Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Meng-Ya Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jian V Zhang
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advance Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qing-Yuan Sun
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zu-Bing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yun-Hai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Xu Z, Zhang T, Hu J, Zhang J, Yang G, He J, Wang H, Jiang R, Yao G. MicroRNA-338-3p helps regulate ovarian function by affecting granulosa cell function and early follicular development. J Ovarian Res 2023; 16:175. [PMID: 37633947 PMCID: PMC10463366 DOI: 10.1186/s13048-023-01258-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/10/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Follicular development in mammalian ovaries is a complex and dynamic process, and the interactions and regulatory-feedback loop between the follicular microenvironment, granulosa cells (GCs), and oocytes can affect follicular development and normal ovary functions. Abnormalities in any part of the process may cause abnormal follicular development, resulting in infertility. Hence, exploring the pathogenesis of abnormal follicular development is extremely important for diagnosing and treating infertile women. METHODS RNA sequencing was performed with ovarian cortical tissues established in vitro. In situ-hybridization assays were performed to study microRNA-338-3p (miR-338-3p) expressed in GCs and oocytes. In vitro culture models were established with GCs and neonatal mouse ovaries to study the biological effects of miR-338-3p. We also performed in vivo experiments by injecting adeno-associated virus vectors that drive miR-338-3p overexpression into the mouse ovarian bursae. RESULTS Sequencing analysis showed that miR-338-3p was expressed at significantly higher levels in ovarian cortical tissues derived from patients with ovarian insufficiency than in cortical tissues derived from patients with normal ovarian function; miR-338-3p was also significantly highly expressed in the GCs of patients with diminished ovarian reserve (P < 0.05). In situ-hybridization assays revealed that miR-338-3p was expressed in the cytoplasm of GCs and oocytes. Using in vitro culture models of granulosa cells, we found that miR-338-3p overexpression significantly suppressed the proliferation and oestradiol-production capacity of GCs (P < 0.05). In vitro culture models of neonatal mouse ovaries indicated that miR-338-3p overexpression suppressed the early follicular development in mouse ovaries. Further analysis revealed that miR-338-3p might be involved in transforming growth factor β-dependent regulation of granulosa cell proliferation and, thus, early follicular development. Injecting miR-338-3p-overexpression vectors into the mouse ovarian bursae showed that miR-338-3p down-regulated the oocyte mitochondrial membrane potential in mice and disrupted mouse oestrous cycles. CONCLUSION miR-338-3p can affect early follicular development and normal ovary functions by interfering with the proliferation and oestradiol production of GCs. We systematically elucidated the regulatory effect of miR-338-3p on follicular development and the underlying mechanism, which can inspire new studies on the diagnosis and treatment of diseases associated with follicular development abnormalities.
Collapse
Affiliation(s)
- Ziwen Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tongwei Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingyi Hu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junya Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guang Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiahuan He
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huihui Wang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ran Jiang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guidong Yao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
7
|
Beltrami S, Rizzo S, Schiuma G, Speltri G, Di Luca D, Rizzo R, Bortolotti D. Gestational Viral Infections: Role of Host Immune System. Microorganisms 2023; 11:1637. [PMID: 37512810 PMCID: PMC10383666 DOI: 10.3390/microorganisms11071637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Viral infections in pregnancy are major causes of maternal and fetal morbidity and mortality. Infections can develop in the neonate transplacentally, perinatally, or postnatally (from breast milk or other sources) and lead to different clinical manifestations, depending on the viral agent and the gestational age at exposure. Viewing the peculiar tolerogenic status which characterizes pregnancy, viruses could exploit this peculiar immunological status to spread or affect the maternal immune system, adopting several evasion strategies. In fact, both DNA and RNA virus might have a deep impact on both innate and acquired immune systems. For this reason, investigating the interaction with these pathogens and the host's immune system during pregnancy is crucial not only for the development of most effective therapies and diagnosis but mostly for prevention. In this review, we will analyze some of the most important DNA and RNA viruses related to gestational infections.
Collapse
Affiliation(s)
- Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Sabrina Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Giovanna Schiuma
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgia Speltri
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Sgueglia G, Longobardi S, Valerio D, Campitiello MR, Colacurci N, Di Pietro C, Battaglia R, D'Hooghe T, Altucci L, Dell'Aversana C. The impact of epigenetic landscape on ovarian cells in infertile older women undergoing IVF procedures. Clin Epigenetics 2023; 15:76. [PMID: 37143127 PMCID: PMC10161563 DOI: 10.1186/s13148-023-01490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/24/2023] [Indexed: 05/06/2023] Open
Abstract
The constant decline in fertility and older reproductive age is the major cause of low clinical pregnancy rates in industrialised countries. Epigenetic mechanisms impact on proper embryonic development in women undergoing in vitro fertilisation (IVF) protocols. Here, we describe the main epigenetic modifications that may influence female reproduction and could affect IVF success.
Collapse
Affiliation(s)
- Giulia Sgueglia
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy
| | | | - Domenico Valerio
- Outpatient Fertility Unit, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Maria Rosaria Campitiello
- Department of Obstetrics and Gynecology and Physiopathology of Human Reproduction, ASL Salerno, Salerno, Italy
| | - Nicola Colacurci
- Outpatient Fertility Unit, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
- Department of Woman, Child and General and Special Surgery, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "Giovanni Sichel", University of Catania, 95123, Catania, CT, Italy
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics "Giovanni Sichel", University of Catania, 95123, Catania, CT, Italy
| | | | - Lucia Altucci
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy.
- BIOGEM, Ariano Irpino, Italy.
- Institute of Experimental Endocrinology and Oncology 'Gaetano Salvatore' (IEOS)-National Research Council (CNR), Naples, Italy.
| | - Carmela Dell'Aversana
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Programma di Epigenetica Medica, Azienda Ospedaliera Universitaria, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology 'Gaetano Salvatore' (IEOS)-National Research Council (CNR), Naples, Italy.
| |
Collapse
|
9
|
DNA Double-Strand Break-Related Competitive Endogenous RNA Network of Noncoding RNA in Bovine Cumulus Cells. Genes (Basel) 2023; 14:genes14020290. [PMID: 36833217 PMCID: PMC9956238 DOI: 10.3390/genes14020290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
(1) Background: DNA double strand breaks (DSBs) are the most serious form of DNA damage that affects oocyte maturation and the physiological state of follicles and ovaries. Non-coding RNAs (ncRNAs) play a crucial role in DNA damage and repair. This study aims to analyze and establish the network of ncRNAs when DSB occurs and provide new ideas for next research on the mechanism of cumulus DSB. (2) Methods: Bovine cumulus cells (CCs) were treated with bleomycin (BLM) to construct a DSB model. We detected the changes of the cell cycle, cell viability, and apoptosis to determine the effect of DSBs on cell biology, and further evaluated the relationship between the transcriptome and competitive endogenous RNA (ceRNA) network and DSBs. (3) Results: BLM increased γH2AX positivity in CCs, disrupted the G1/S phase, and decreased cell viability. Totals of 848 mRNAs, 75 long noncoding RNAs (lncRNAs), 68 circular RNAs (circRNAs), and 71 microRNAs (miRNAs) in 78 groups of lncRNA-miRNA-mRNA regulatory networks, 275 groups of circRNA-miRNA-mRNA regulatory networks, and five groups of lncRNA/circRNA-miRNA-mRNA co-expression regulatory networks were related to DSBs. Most differentially expressed ncRNAs were annotated to cell cycle, p53, PI3K-AKT, and WNT signaling pathways. (4) Conclusions: The ceRNA network helps to understand the effects of DNA DSBs activation and remission on the biological function of CCs.
Collapse
|
10
|
Lyu S, Zhai Y, Zhu X, Shi Q, Chen F, Zhang G, Zhang Z, Wang E. Bta-miR-200b promotes endometrial epithelial cell apoptosis by targeting MYB in cattle. Theriogenology 2023; 195:77-84. [DOI: 10.1016/j.theriogenology.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022]
|
11
|
A Comprehensive Sequencing Analysis of Testis-Born miRNAs in Immature and Mature Indigenous Wandong Cattle ( Bos taurus). Genes (Basel) 2022; 13:genes13122185. [PMID: 36553452 PMCID: PMC9777600 DOI: 10.3390/genes13122185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Micro RNAs (miRNAs) have been recognized as important regulators that are indispensable for testicular development and spermatogenesis. miRNAs are endogenous transcriptomic elements and mainly regulate the gene expression at post-transcriptional levels; however, the key role of miRNA in bovine testicular growth is not clearly understood. Thus, supposing to unveil the transcriptomics expression changes in the developmental processes of bovine testes, we selected three immature calves and three sexually mature bulls of the local Wandong breed for testicular-tissue sample collection. The cDNA libraries of experimental animals were established for RNA-sequencing analysis. We detected the miRNA expression in testes by using high-throughput sequencing technology, and bioinformatics analysis followed. The differentially expressed (DE) data showed that 151 miRNAs linked genes were significantly DE between immature and mature bull testes. Further, in detail, 64 were significantly up-regulated and 87 were down-regulated in the immature vs. mature testes (p-value < 0.05). Pathway analyses for miRNA-linked genes were performed and identified JAG2, BCL6, CFAP157, PHC2, TYRO3, SEPTIN6, and BSP3; these genes were involved in biological pathways such as TNF signaling, T cell receptor, PI3KAkt signaling, and functions affecting testes development and spermatogenesis. The DE miRNAs including MIR425, MIR98, MIR34C, MIR184, MIR18A, MIR136, MIR15A, MIR1388 and MIR210 were associated with cattle-bull sexual maturation and sperm production. RT-qPCR validation analysis showed a consistent correlation to the sequencing data findings. The current study provides a good framework for understanding the mechanism of miRNAs in the development of testes and spermatogenesis.
Collapse
|
12
|
Prmt7 Downregulation in Mouse Spermatogonia Functions through miR-877-3p/ Col6a3. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081194. [PMID: 36013373 PMCID: PMC9410080 DOI: 10.3390/life12081194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022]
Abstract
Protein arginine methyltransferases 7 (Prmt7) is expressed in male germ cells, including primordial germ cells, gonocytes, and spermatogonia. Our previous study demonstrated that Prmt7 downregulation reduced the proliferation of GC-1 cells (a cell line of mouse immortalized spermatogonia). However, how Prmt7 regulates spermatogonial proliferation through miRNA and the target gene remains elusive. Here, we experimentally reduced the Prmt7 expression in the GC-1 cells and subjected them to miRNA sequencing to explore the miRNA profile and its Prmt7-responsive members. In total, 48 differentially expressed miRNAs (DEmiRNAs), including 36 upregulated and 12 downregulated miRNAs, were identified. After verifying the validity of sequencing results through qRT-PCR assays in randomly selected DEmiRNAs, we predicted the target genes of these DEmiRNAs. Next, we combined DEmiRNA target genes and previously identified differentially expressed genes between Prmt7 knockdown and control groups of GC-1 cells, which resulted in seven miRNA/target gene pairs. Among these miRNA/target gene pairs, we further detected the expression of Col6a3 (collagen type VI alpha 3) as the target gene of mmu-miR-877-3p. The results suggested that Prmt7 downregulation in mouse spermatogonia might function through miR-877-3p/Col6a3. Overall, these findings provide new insights into the role of Prmt7 in male germ cell development through miRNA and target genes.
Collapse
|
13
|
Ye HX, Liao GN, Dong YJ, Li L, Wang XM, Shu J, Zheng Q, Jia Y. miR-146a-5p enhances embryo survival in unexplained recurrent spontaneous abortion by promoting M2 polarization of decidual macrophages. Int Immunopharmacol 2022; 110:108930. [PMID: 35764020 DOI: 10.1016/j.intimp.2022.108930] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/25/2022] [Accepted: 06/05/2022] [Indexed: 02/08/2023]
Abstract
Unexplained recurrent spontaneous abortion (URSA) is one of the most challenging conditions in the reproductive field, and macrophage M1/M2 polarization disorder is involved in URSA pathogenesis, although the relevant mechanisms are undefined. miR-146a-5p possesses an immunoregulatory role and is expressed in decidual immune cells, and this study aims to investigate its effect on decidual macrophage polarization and therapeutic prospects in URSA, which has never been reported. The levels of M1/M2 markers in the deciduae and the miR-146a-5p expression in the decidual macrophages of URSA and healthy pregnant women were first detected and analyzed. Then, the in vitro effect of miR-146a-5p on the M1/M2 polarization and the secretion of inflammatory cytokines was investigated in Tamm-Horsfall protein-1 (THP-1)-induced macrophages. Finally, the in vivo immunotherapeutic effect of miR-146a-5p on embryo survival and the potential mechanisms were evaluated in a murine model of immune-based URSA. As a result, the abnormal M1/M2 polarization, which showed a shift towards the M1 phenotype and correlated with the decreased expression of miR-146a-5p, was verified in human URSA decidual macrophages. miR-146a-5p could inhibit M1 polarization, promote M2 polarization, and result in an anti-inflammatory microenvironment in THP-1-induced macrophages. The intravenous injection of exogenous miR-146a-5p in the first trimester of pregnant URSA mice significantly reduced the embryo resorption rate and promoted the M2 polarization of decidual macrophages. In conclusion, miR-146a-5p enhances embryo survival in URSA by promoting decidual macrophage polarization toward an M2 phenotype, giving new ideas and potential targets for subsequent research on the pathogenesis and immunotherapeutic strategies of URSA.
Collapse
Affiliation(s)
- Hong-Xia Ye
- Department of Reproductive Immunology, Chengdu Xi'nan Gynecology Hospital, Chengdu 610066, Sichuan, China; Department of Reproductive Immunology, Chengdu Jinjiang Hospital for Maternal & Child Health Care, Chengdu 610066, Sichuan, China; Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Guang-Neng Liao
- Laboratory Animal Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ya-Jun Dong
- Department of Reproductive Immunology, Chengdu Xi'nan Gynecology Hospital, Chengdu 610066, Sichuan, China; Department of Reproductive Immunology, Chengdu Jinjiang Hospital for Maternal & Child Health Care, Chengdu 610066, Sichuan, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xue-Mei Wang
- Department of Reproductive Immunology, Chengdu Xi'nan Gynecology Hospital, Chengdu 610066, Sichuan, China; Department of Reproductive Immunology, Chengdu Jinjiang Hospital for Maternal & Child Health Care, Chengdu 610066, Sichuan, China
| | - Jin Shu
- Department of Gynecology, Chengdu Xi'nan Gynecology Hospital, Chengdu 610066, Sichuan, China
| | - Qu Zheng
- Department of Laboratory Medicine, Chengdu Xi'nan Gynecology Hospital, Chengdu 610066, Sichuan, China
| | - Yan Jia
- Department of Reproductive Immunology, Chengdu Xi'nan Gynecology Hospital, Chengdu 610066, Sichuan, China; Department of Reproductive Immunology, Chengdu Jinjiang Hospital for Maternal & Child Health Care, Chengdu 610066, Sichuan, China.
| |
Collapse
|
14
|
Gurunathan S, Kang MH, Song H, Kim NH, Kim JH. The role of extracellular vesicles in animal reproduction and diseases. J Anim Sci Biotechnol 2022; 13:62. [PMID: 35681164 PMCID: PMC9185900 DOI: 10.1186/s40104-022-00715-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized membrane-enclosed compartments that serve as messengers in cell-to-cell communication, both in normal physiology and in pathological conditions. EVs can transfer functional proteins and genetic information to alter the phenotype and function of recipient cells, which undergo different changes that positively affect their structural and functional integrity. Biological fluids are enriched with several subpopulations of EVs, including exosomes, microvesicles (MVs), and apoptotic bodies carrying several cargoes, such as lipids, proteins, and nucleic acids. EVs associated with the reproductive system are actively involved in the regulation of different physiological events, including gamete maturation, fertilization, and embryo and fetal development. EVs can influence follicle development, oocyte maturation, embryo production, and endometrial-conceptus communication. EVs loaded with cargoes are used to diagnose various diseases, including pregnancy disorders; however, these are dependent on the type of cell of origin and pathological characteristics. EV-derived microRNAs (miRNAs) and proteins in the placenta regulate inflammatory responses and trophoblast invasion through intercellular delivery in the placental microenvironment. This review presents evidence regarding the types of extracellular vesicles, and general aspects of isolation, purification, and characterization of EVs, particularly from various types of embryos. Further, we discuss EVs as mediators and messengers in reproductive biology, the effects of EVs on placentation and pregnancy disorders, the role of EVs in animal reproduction, in the male reproductive system, and mother and embryo cross-communication. In addition, we emphasize the role of microRNAs in embryo implantation and the role of EVs in reproductive and therapeutic medicine. Finally, we discuss the future perspectives of EVs in reproductive biology.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Nam Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
15
|
Shekibi M, Heng S, Nie G. MicroRNAs in the Regulation of Endometrial Receptivity for Embryo Implantation. Int J Mol Sci 2022; 23:ijms23116210. [PMID: 35682889 PMCID: PMC9181585 DOI: 10.3390/ijms23116210] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 12/13/2022] Open
Abstract
Development of endometrial receptivity is crucial for successful embryo implantation and pregnancy initiation. Understanding the molecular regulation underpinning endometrial transformation to a receptive state is key to improving implantation rates in fertility treatments such as IVF. With microRNAs (miRNAs) increasingly recognized as important gene regulators, recent studies have investigated the role of miRNAs in the endometrium. Studies on miRNAs in endometrial disorders such as endometriosis and endometrial cancer have been reviewed previously. In this minireview, we aim to provide an up-to-date knowledge of miRNAs in the regulation of endometrial receptivity. Since endometrial remodelling differs considerably between species, we firstly summarised the key events of the endometrial cycle in humans and mice and then reviewed the miRNAs identified so far in these two species with likely functional significance in receptivity establishment. To date, 29 miRNAs have been reported in humans and 15 miRNAs in mice within various compartments of the endometrium that may potentially modulate receptivity; miRNAs regulating the Wnt signalling and those from the let-7, miR-23, miR-30, miR-200 and miR-183 families are found in both species. Future studies are warranted to investigate miRNAs as biomarkers and/or therapeutic targets to detect/improve endometrial receptivity in human fertility treatment.
Collapse
|
16
|
Žarković M, Hufsky F, Markert UR, Marz M. The Role of Non-Coding RNAs in the Human Placenta. Cells 2022; 11:1588. [PMID: 35563893 PMCID: PMC9104507 DOI: 10.3390/cells11091588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a central and regulatory role in almost all cells, organs, and species, which has been broadly recognized since the human ENCODE project and several other genome projects. Nevertheless, a small fraction of ncRNAs have been identified, and in the placenta they have been investigated very marginally. To date, most examples of ncRNAs which have been identified to be specific for fetal tissues, including placenta, are members of the group of microRNAs (miRNAs). Due to their quantity, it can be expected that the fairly larger group of other ncRNAs exerts far stronger effects than miRNAs. The syncytiotrophoblast of fetal origin forms the interface between fetus and mother, and releases permanently extracellular vesicles (EVs) into the maternal circulation which contain fetal proteins and RNA, including ncRNA, for communication with neighboring and distant maternal cells. Disorders of ncRNA in placental tissue, especially in trophoblast cells, and in EVs seem to be involved in pregnancy disorders, potentially as a cause or consequence. This review summarizes the current knowledge on placental ncRNA, their transport in EVs, and their involvement and pregnancy pathologies, as well as their potential for novel diagnostic tools.
Collapse
Affiliation(s)
- Milena Žarković
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Franziska Hufsky
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
- Aging Research Center (ARC), 07745 Jena, Germany
| |
Collapse
|
17
|
Esmaeilivand M, Abedelahi A, Hamdi K, Farzadi L, Goharitaban S, Fattahi A, Niknafs B. Role of miRNAs in preimplantation embryo development and their potential as embryo selection biomarkers. Reprod Fertil Dev 2022; 34:589-597. [PMID: 35440361 DOI: 10.1071/rd21274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
CONTEXT MicroRNAs (miRNAs) play different roles in oocyte fertilisation, degradation of maternal transcripts, embryo development, and implantation. During in vitro fertilisation (IVF), different miRNAs are released from embryos into the spent culture media (SCM) that can potentially reflect the status of the embryo. AIMS This study is the assessment of miRNAs, which secreted in SCM during the IVF cycles can be used as noninvasive biomarkers to predict an embryo's ability to form a blastocyst, implant, and give live birth. METHODS Systematic literature search was conducted to review all recent studies about miRNAs as potential non-invasive biomarkers for selecting the best embryos in the assisted reproductive technology (ART) cycle. KEY RESULTS Studies have shown that levels of some miRNAs in the SCM have an association with the implantation potential and pregnancy outcome of the embryo. CONCLUSIONS Embryo-secreted miRNAs can be used as potential non-invasive biomarkers for selecting the best embryos in the ART cycle. Unfortunately, few human studies evaluated the association between ART outcomes and miRNAs in SCM. IMPLICATIONS This review can pave the way for further miRNAs transcriptomic studies on human embryo culture media and introducing a specific miRNA profile as a multivariable prediction model for embryo selection in IVF cycles.
Collapse
Affiliation(s)
- Masoumeh Esmaeilivand
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Hamdi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Laya Farzadi
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepide Goharitaban
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; and Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Niknafs
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; and Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; and Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Zuccarello D, Sorrentino U, Brasson V, Marin L, Piccolo C, Capalbo A, Andrisani A, Cassina M. Epigenetics of pregnancy: looking beyond the DNA code. J Assist Reprod Genet 2022; 39:801-816. [PMID: 35301622 PMCID: PMC9050975 DOI: 10.1007/s10815-022-02451-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
Epigenetics is the branch of genetics that studies the different mechanisms that influence gene expression without direct modification of the DNA sequence. An ever-increasing amount of evidence suggests that such regulatory processes may play a pivotal role both in the initiation of pregnancy and in the later processes of embryonic and fetal development, thus determining long-term effects even in adult life. In this narrative review, we summarize the current knowledge on the role of epigenetics in pregnancy, from its most studied and well-known mechanisms to the new frontiers of epigenetic regulation, such as the role of ncRNAs and the effects of the gestational environment on fetal brain development. Epigenetic mechanisms in pregnancy are a dynamic phenomenon that responds both to maternal-fetal and environmental factors, which can influence and modify the embryo-fetal development during the various gestational phases. Therefore, we also recapitulate the effects of the most notable environmental factors that can affect pregnancy and prenatal development, such as maternal nutrition, stress hormones, microbiome, and teratogens, focusing on their ability to cause epigenetic modifications in the gestational environment and ultimately in the fetus. Despite the promising advancements in the knowledge of epigenetics in pregnancy, more experience and data on this topic are still needed. A better understanding of epigenetic regulation in pregnancy could in fact prove valuable towards a better management of both physiological pregnancies and assisted reproduction treatments, other than allowing to better comprehend the origin of multifactorial pathological conditions such as neurodevelopmental disorders.
Collapse
Affiliation(s)
- Daniela Zuccarello
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy.
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Valeria Brasson
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | - Loris Marin
- Gynaecological Clinic, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Chiara Piccolo
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| | | | - Alessandra Andrisani
- Gynaecological Clinic, Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Matteo Cassina
- Clinical Genetics Unit, Department of Women's and Children's Health, University Hospital of Padova, Padua, Italy
| |
Collapse
|
19
|
Su Y, Xu J, Gao R, Liu X, Liu T, Li C, Ding Y, Chen X, He J, Liu X, Li C, Qi H, Wang Y. The Circ-CYP24A1-miR-224-PRLR Axis Impairs Cell Proliferation and Apoptosis in Recurrent Miscarriage. Front Physiol 2022; 13:778116. [PMID: 35309064 PMCID: PMC8928262 DOI: 10.3389/fphys.2022.778116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
AimRecurrent miscarriage (RM) is associated with numerous clinical factors. However, some RM occurred without specific factors. It has been revealed that some molecules such as hormones, miRNAs, and transcription factors are involved in RM by regulating proliferation, apoptosis, etc. However, the mechanism of RM has yet to be identified clearly. Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs that often act as sponges for miRNAs or binds to proteins involved in biological processes. However, the functional role of circRNAs in the uterine decidua of patients with early RM is still unclear. In this study, we aimed to investigate the mechanisms of circ-CYP24A1 in RM.MethodsThe Dual-Luciferase Activity Assay was designed to analyze the bonding between circ-CYP24A1 and miR-224, and miR-224 and prolactin receptor (PRLR) mRNA 3′UTR. In situ hybridization (ISH) and immunohistochemistry (IHC) were used to observe the expression of circ-CYP24A1 and PRLR in the decidua. Rescue experiments were performed to investigate the regulating effects of circ-CYP24A1, miR-224, and PRLR. Western blotting was conducted to test the expression level of PRLR. The proliferation and apoptosis-related markers in Ishikawa cells were analyzed using CCK8, immunofluorescence staining, and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay.ResultsIn this study, based on the microarray analysis data, we identified a high level of circ-CYP24A1 and PRLR in the decidua of patients with early RM. Based on the bioinformatics prediction, the binding relationship between circ-CYP24A1 and miR-224, as well as miR-224 and PRLR, were verified. Functional experiments demonstrated that circ-CYP24A1 regulated proliferation and apoptosis by binding to and inhibiting miR-224, resulting in increased PRLR expression. Taken together, this study provides new insights into the mechanism of RM.ConclusionIn this study, we found that circ-CYP24A1 plays a role in RM by impairing the balance of cell proliferation and apoptosis by sponging miR-224, thereby regulating PRLR.
Collapse
Affiliation(s)
- Yan Su
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jiani Xu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xiaoli Liu
- Department of Family Planning, Chongqing Health Center for Women and Children, Chongqing, China
| | - Taihang Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Cong Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chunli Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Chunli Li,
| | - Hongbo Qi
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- Hongbo Qi,
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
- Yingxiong Wang,
| |
Collapse
|
20
|
Bebbere D, Coticchio G, Borini A, Ledda S. Oocyte aging: looking beyond chromosome segregation errors. J Assist Reprod Genet 2022; 39:793-800. [PMID: 35212880 PMCID: PMC9051005 DOI: 10.1007/s10815-022-02441-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
The age-associated decline in female fertility is largely ascribable to a decrease in oocyte quality. This phenomenon is multifaceted and influenced by numerous interconnected maternal and environmental factors. An increase in the rate of meiotic errors is the major cause of the decline in oocyte developmental competence. However, abnormalities in the ooplasm accumulating with age - including altered metabolism, organelle dysfunction, and aberrant gene regulation - progressively undermine oocyte quality. Stockpiling of maternal macromolecules during folliculogenesis is crucial, as oocyte competence to achieve maturation, fertilization, and the earliest phases of embryo development occur in absence of transcription. At the same time, crucial remodeling of oocyte epigenetics during oogenesis is potentially exposed to interfering factors, such as assisted reproduction technologies (ARTs) or environmental changes, whose impact may be enhanced by reproductive aging. As the effects of maternal aging on molecular mechanisms governing the function of the human oocyte remain poorly understood, studies in animal models are essential to deepen current understanding, with translational implications for human ARTs. The present mini review aims at offering an updated and consistent view of cytoplasmic alterations occurring in oocytes during aging, focusing particularly on gene and epigenetic regulation. Appreciation of these mechanisms could inspire solutions to mitigate/control the phenomenon, and thus benefit modern ARTs.
Collapse
Affiliation(s)
- Daniela Bebbere
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy.
| | | | | | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
21
|
Mohammadi Yeganeh S, Nazarian H, Habibi B, Novin M, Salehpour S, Novin M. Expression analysis of genes and MicroRNAs involved in recurrent implantation failure: New noninvasive biomarkers of implantation. BIOMEDICAL AND BIOTECHNOLOGY RESEARCH JOURNAL (BBRJ) 2022. [DOI: 10.4103/bbrj.bbrj_246_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Bahmyari S, Jamali Z, Khatami SH, Vakili O, Roozitalab M, Savardashtaki A, Solati A, Mousavi P, Shabaninejad Z, Vakili S, Behrouj H, Ghasemi H, Movahedpour A. microRNAs in female infertility: An overview. Cell Biochem Funct 2021; 39:955-969. [PMID: 34708430 DOI: 10.1002/cbf.3671] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022]
Abstract
Infertility impacts a considerable number of women worldwide, and it affects different aspects of family life and society. Although female infertility is known as a multifactorial disorder, there are strong genetic and epigenetic bases. Studies revealed that miRNAs play critical roles in initiation and development of female infertility related disorders. Early diagnosis and control of these diseases is an essential key for improving disease prognosis and reducing the possibility of infertility and other side effects. Investigating the possible use of miRNAs as biomarkers and therapeutic options is valuable, and it merits attention. Thus, in this article, we reviewed research associated with female diseases and highlighted microRNAs that are related to the polycystic ovary syndrome (up to 30 miRNAs), premature ovarian failure (10 miRNAs), endometriosis (up to 15 miRNAs), uterine fibroids (up to 15 miRNAs), endometrial polyp (3 miRNAs), and pelvic inflammatory (6 miRNAs), which are involved in one or more ovarian or uterine disease-causing processes.
Collapse
Affiliation(s)
- Sedigheh Bahmyari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Jamali
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Roozitalab
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arezoo Solati
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Behrouj
- Department of Clinical Biochemistry, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Hassan Ghasemi
- Department of Clinical Biochemistry, Abadan University of Medical Sciences, Abadan, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Daneshvar M, Movahedin M, Salehi M, Noruzinia M. Alterations of miR-16, miR-let-7a and their target genes expression in human blastocysts following vitrification and re-vitrification. Reprod Biol Endocrinol 2021; 19:155. [PMID: 34627262 PMCID: PMC8501585 DOI: 10.1186/s12958-021-00842-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 09/29/2021] [Indexed: 01/05/2023] Open
Abstract
Embryo cryopreservation is a widely used technique in infertility management and today is an essential part of assisted reproductive technology (ART). In some cases, re-vitrification can be applied to good quality supernumerary warmed embryos that have not been transferred in the present cycle. However, there is no study about re-vitrification impact on microRNA and gene expression in human embryos. The purpose of this study is to evaluate miR-16, miR-let7a and target genes expression in in vitro produced human blastocysts following re-vitrification.Day3 embryos obtained from ICSI cycles of fertile couples referring for family balancing program were biopsied and cultured individually. On the fourth day (post-ICSI) male ones (choices of their parents) were transferred and the females (good quality embryos) were donated for research. Donated embryos were cultured to blastocyst stage and assigned to three groups: fresh, vitrified and re-vitrification. Embryos were vitrified on Cryotech carriers. Then blastocysts of three groups were individually assessed for expression of miR-16, miR-let7a and target genes.The results showed that re-vitrification of human blastocysts did not affect the ability to re-expand in culture. In addition, significant decrease was observed in miR-16 and miR-let7a expression in re-vitrified group compared to fresh (p < 0.05). A significant upregulation of the target genes ITGβ3 and BCL-2 in re-vitrified and vitrified embryos was observed compared to the fresh group (p < 0.05). The expression of BAX as a pro-apoptotic gene showed a significant decrease in re-vitrification group comparing with the fresh one (P < 0.05).The results of this research indicated that re-vitrification of embryos changes the expression of miR-16, miR-let-7a and their target genes. These alterations include increased expression of BCl-2 and ITGβ3 genes which play important roles in embryo survival and implantation, respectively. Clinical proof of these effects requires further research.
Collapse
Affiliation(s)
- Maryam Daneshvar
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Noruzinia
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
24
|
Kolanska K, Sbeih M, Canlorbe G, Mekinian A, Varinot J, Capmas P, Koskas M, Aractingi S, Daraï E, Chabbert-Buffet N. Ulipristal Acetate Modifies miRNA Expression in Both Superficial and Basal Layers of the Human Endometrium. J Clin Med 2021; 10:jcm10194442. [PMID: 34640460 PMCID: PMC8509688 DOI: 10.3390/jcm10194442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/05/2022] Open
Abstract
(1) Background: Ulipristal acetate (UPA) is a selective progesterone receptor modulator (SPRM) widely used for emergency contraception and mid- to long-term leiomyoma treatment. The aim of this study was to identify modifications of miRNA expression in superficial and basal layers of the human endometrium at the end of the UPA treatment for at least 3 months. (2) Methods: Microarray miRNA analysis of formalin-fixed, paraffin-embedded hysterectomy tissue samples was conducted, followed by an Ingenuity Pathway Analysis. Samples were divided into three groups: women having had 3 months of UPA treatment (n = 7); and two control groups of UPA-naïve women in the proliferative (n = 8) or secretory (n = 6) phase. (3) Results: The UPA modified the expression of 59 miRNAs involved in the processes of cell cycle, carcinogenesis, and inflammation. Their expression profiles were different in the basal and superficial layers. Most of the processes influenced by the UPA in the basal layer were connected to the cell cycle and immune regulation. (4) Conclusion: Specific changes were observed in both layers of the endometrium in the UPA group. However, the miRNA expression in the basal layer was not consistent with that in the superficial layer. Other large studies analysing the long-term impact of SPRM on endometrial miRNA expression are necessary.
Collapse
Affiliation(s)
- Kamila Kolanska
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 rue Chaligny, CEDEX 12, 75571 Paris, France; (M.S.); (G.C.); (M.K.); (S.A.); (E.D.); (N.C.-B.)
- Service de Gynécologie Sestertius et Médecine de la Reproduction, AP-HP Sorbonne Université Site Tenon, 4 rue de la Chine, 75020 Paris, France
- Correspondence:
| | - Maria Sbeih
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 rue Chaligny, CEDEX 12, 75571 Paris, France; (M.S.); (G.C.); (M.K.); (S.A.); (E.D.); (N.C.-B.)
| | - Geoffroy Canlorbe
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 rue Chaligny, CEDEX 12, 75571 Paris, France; (M.S.); (G.C.); (M.K.); (S.A.); (E.D.); (N.C.-B.)
- Department of Gynecological and Breast Surgery and Oncology, Pitié-Salpêtrière University Hospital, Assistance Publique des Hôpitaux de Paris (AP-HP), 75013 Paris, France
| | - Arsène Mekinian
- Service de Médecine Interne, AP-HP Sorbonne Université Site St Antoine, 184 rue du Faubourg Saint Antoine, 75012 Paris, France;
| | - Justine Varinot
- Service d’Anatomopathologie, AP HP Sorbonne Université Site Tenon, 4 rue de la Chine, 75020 Paris, France;
| | - Perrine Capmas
- Department of Gynecology and Obstetrics, University Paris Saclay, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France;
- Inserm, Centre of Research in Epidemiology and Population Health (CESP), U1018, 94276 Le Kremlin-Bicêtre, France
| | - Martin Koskas
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 rue Chaligny, CEDEX 12, 75571 Paris, France; (M.S.); (G.C.); (M.K.); (S.A.); (E.D.); (N.C.-B.)
- Department of Obstetrics and Gynecology, AP-HP Bichat University Hospital, 75018 Paris, France
- Institut de Recherche en Santé de la Femme, Equipe d’accueil 7285, Universite de Versailles Saint-Quentin-en-Yvelines, 78180 Montigny-le-Bretonneux, France
| | - Selim Aractingi
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 rue Chaligny, CEDEX 12, 75571 Paris, France; (M.S.); (G.C.); (M.K.); (S.A.); (E.D.); (N.C.-B.)
| | - Emile Daraï
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 rue Chaligny, CEDEX 12, 75571 Paris, France; (M.S.); (G.C.); (M.K.); (S.A.); (E.D.); (N.C.-B.)
- Service de Gynécologie Sestertius et Médecine de la Reproduction, AP-HP Sorbonne Université Site Tenon, 4 rue de la Chine, 75020 Paris, France
| | - Nathalie Chabbert-Buffet
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 rue Chaligny, CEDEX 12, 75571 Paris, France; (M.S.); (G.C.); (M.K.); (S.A.); (E.D.); (N.C.-B.)
- Service de Gynécologie Sestertius et Médecine de la Reproduction, AP-HP Sorbonne Université Site Tenon, 4 rue de la Chine, 75020 Paris, France
| |
Collapse
|
25
|
Kolanska K, Bendifallah S, Canlorbe G, Mekinian A, Touboul C, Aractingi S, Chabbert-Buffet N, Daraï E. Role of miRNAs in Normal Endometrium and in Endometrial Disorders: Comprehensive Review. J Clin Med 2021; 10:jcm10163457. [PMID: 34441754 PMCID: PMC8396961 DOI: 10.3390/jcm10163457] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
The molecular responses to hormonal stimuli in the endometrium are modulated at the transcriptional and post-transcriptional stages. Any imbalance in cellular and molecular endometrial homeostasis may lead to gynecological disorders. MicroRNAs (miRNAs) are involved in a wide variety of physiological mechanisms and their expression patterns in the endometrium are currently attracting a lot of interest. miRNA regulation could be hormone dependent. Conversely, miRNAs could regulate the action of sexual hormones. Modifications to miRNA expression in pathological situations could either be a cause or a result of the existing pathology. The complexity of miRNA actions and the diversity of signaling pathways controlled by numerous miRNAs require rigorous analysis and findings need to be interpreted with caution. Alteration of miRNA expression in women with endometriosis has been reported. Thus, a potential diagnostic test supported by a specific miRNA signature could contribute to early diagnosis and a change in the therapeutic paradigm. Similarly, specific miRNA profile signatures are expected for RIF and endometrial cancer, with direct implications for associated therapies for RIF and adjuvant therapies for endometrial cancer. Advances in targeted therapies based on the regulation of miRNA expression are under evaluation.
Collapse
Affiliation(s)
- Kamila Kolanska
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
- Correspondence:
| | - Sofiane Bendifallah
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| | - Geoffroy Canlorbe
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Service de Chirurgie et Cancérologie Gynécologique et Mammaire, Hôpitaux Universitaires Pitié-Salpêtrière, Charles-Foix, Sorbonne Université, 47/83, Boulevard de l’Hôpital, 75013 Paris, France
| | - Arsène Mekinian
- Service de Médecine Interne, Hôpital Saint Antoine, AP-HP, 184 Rue du Faubourg Saint Antoine, Sorbonne Université, 75012 Paris, France;
| | - Cyril Touboul
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| | - Selim Aractingi
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Faculté de Médecine Paris 5 Descartes, 12 Rue de l’Ecole de Médecine, 75006 Paris, France
| | - Nathalie Chabbert-Buffet
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| | - Emile Daraï
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| |
Collapse
|
26
|
Maternal Neutrophil Depletion Fails to Avert Systemic Lipopolysaccharide-Induced Early Pregnancy Defects in Mice. Int J Mol Sci 2021; 22:ijms22157932. [PMID: 34360700 PMCID: PMC8347248 DOI: 10.3390/ijms22157932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
Maternal infection-induced early pregnancy complications arise from perturbation of the immune environment at the uterine early blastocyst implantation site (EBIS), yet the underlying mechanisms remain unclear. Here, we demonstrated in a mouse model that the progression of normal pregnancy from days 4 to 6 induced steady migration of leukocytes away from the uterine decidual stromal zone (DSZ) that surrounds the implanted blastocyst. Uterine macrophages were found to be CD206+ M2-polarized. While monocytes were nearly absent in the DSZ, DSZ cells were found to express monocyte marker protein Ly6C. Systemic endotoxic lipopolysaccharide (LPS) exposure on day 5 of pregnancy led to: (1) rapid (at 2 h) induction of neutrophil chemoattractants that promoted huge neutrophil infiltrations at the EBISs by 24 h; (2) rapid (at 2 h) elevation of mRNA levels of MyD88, but not Trif, modulated cytokines at the EBISs; and (3) dose-dependent EBIS defects by day 7 of pregnancy. Yet, elimination of maternal neutrophils using anti-Ly6G antibody prior to LPS exposure failed to avert LPS-induced EBIS defects allowing us to suggest that activation of Tlr4-MyD88 dependent inflammatory pathway is involved in LPS-induced defects at EBISs. Thus, blocking the activation of the Tlr4-MyD88 signaling pathway may be an interesting approach to prevent infection-induced pathology at EBISs.
Collapse
|
27
|
Zhou G, Ren L, Yin H, Liu J, Li X, Wang J, Li Y, Sang Y, Zhao Y, Zhou X, Sun Z. The alterations of miRNA and mRNA expression profile and their integration analysis induced by silica nanoparticles in spermatocyte cells. NANOIMPACT 2021; 23:100348. [PMID: 35559849 DOI: 10.1016/j.impact.2021.100348] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 06/15/2023]
Abstract
Air pollution and the application of Silica nanoparticles (SiNPs) have increased the risk of human exposure to SiNPs. SiNPs are known to induce cytotoxicity in spermatocyte cells (GC-2spd cells) of mice and male reproductive system damage. However, the expression profiles of miRNA and mRNA and the molecular mechanism of miRNA-mRNA integration in reproductive toxicity induced by SiNPs in GC-2spd cells are still unclear. Therefore, GC-2spd cells were divided into 0 μg/mL and 5 μg/mL SiNPs groups, and the cells were collected and analyzed after passaging for 30 generations using miRNA microarray and Illumina high-throughput sequencing (Illumina HiSeq) for the integrated analysis of miRNA and mRNA expression. Both miRNA Microarray and Illumina Hiseq identified 15 significant differentially expressed miRNAs and 1648 significant differentially expressed mRNAs. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and miRNA-gene-pathway-network analysis revealed 15 significant differentially expressed miRNAs that could regulate the DNA replication and the fatty acid metabolism, respectively. Furthermore, the mRNA-mRNA regulatory network analysis revealed that Pkfl (phosphofructokinase, liver, B-type) and DHCR24 (24-dehydrocholesterol reductase) were highly expressed, but also affected DNA replication and fatty acid metabolism in SiNPs-treated GC-2spd cells. Additionally, miRNA-mRNA integration analysis revealed that miRNA-138-1-3p might have a regulatory relationship with fatty acid metabolism and DNA replication. It is confirmed that SiNPs could decrease the expression of 10 miRNAs and increase the expression of 5 miRNAs. These findings suggest that the cytotoxicity of GC-2spd cells induced by SiNPs depends on the deregulation of multiple miRNAs, which regulate the DNA replication and fatty acid metabolism. Our results are the first to establish an integrated analysis of miRNA-mRNA interactions and mRNA-mRNA and defines multiple pathways involved in SiNPs-treated GC-2spd cells.
Collapse
Affiliation(s)
- Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lihua Ren
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; School of Nursing, Peking University, Beijing 100191, China
| | - Haiping Yin
- Gansu International Travel Healthcare Center, Lanzhou, Gansu 730030, China
| | - Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China
| | - Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yanbo Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yujian Sang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yanzhi Zhao
- Yanjing Medical College, Capital Medical University, Beijing 101300, China.
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| |
Collapse
|
28
|
Takamura M, Zhou W, Rombauts L, Dimitriadis E. The long noncoding RNA PTENP1 regulates human endometrial epithelial adhesive capacity in vitro: implications in infertility. Biol Reprod 2021; 102:53-62. [PMID: 31504217 DOI: 10.1093/biolre/ioz173] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022] Open
Abstract
There is general consensus that the synchronous development of the embryo and endometrium is absolutely essential for successful implantation. Recent studies have strongly suggested that embryo-secreted factors are able to deliver into the endometrial cavity/endometrium and alter its protein profile in preparation for implantation. However, there is limited research focusing on long noncoding RNA (lncRNA) changes in the endometrium that brought about by the embryonic derived factors. It has been suggested that lncRNA has intricate interplay with microRNA (miR), small (~19-22 nucleotides), non-protein-coding RNA, to regulate protein production in the endometrium, thus controlling adhesive capacity. Here through microarray assays, we compare the lncRNA profile of the primary human endometrial epithelial cells (HEECs) that have been precultured with blastocyst-conditioned media (BCM) from embryos that implanted versus nonimplanted. Our data indicate a substantial change of lncRNA expression in HEECs, including 9 up-regulated and 12 down-regulated lncRNAs after incubation with implanted BCM. Selective knockdown of PTENP1, the most increased lncRNA after implanted BCM treatment in the HEECs, compromised the spheroid adhesion (P < 0.001). Characterization of PTENP1 confirmed its expression in the luminal epithelium with staining appeared most intense in the midsecretory phase. Furthermore, we have recorded a substantial change of miR profile upon PTENP1 knockdown in HEECs. Overexpression of miR-590-3p, a novel predicted target of PTENP1, impaired spheroid adhesion (P < 0.001). Collectively, these data have supported a novel regulation system that lncRNAs were able to participate in the regulation of implantation through association with miRs.
Collapse
Affiliation(s)
- Masashi Takamura
- Centre for Reproductive Health, The Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| | - Luk Rombauts
- Monash IVF, Monash Surgical Private Hospital, Clayton, VIC, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia.,Gynaecology Research Centre, Royal Women's Hospital, Parkville, VIC, Australia
| |
Collapse
|
29
|
Dell'Aversana C, Cuomo F, Longobardi S, D'Hooghe T, Caprio F, Franci G, Santonastaso M, Colacurci N, Barone S, Pisaturo V, Valerio D, Altucci L. Age-related miRNome landscape of cumulus oophorus cells during controlled ovarian stimulation protocols in IVF cycles. Hum Reprod 2021; 36:1310-1325. [PMID: 33454781 PMCID: PMC8058597 DOI: 10.1093/humrep/deaa364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/06/2020] [Indexed: 12/26/2022] Open
Abstract
STUDY QUESTION Is the microRNA (miRNA) expression pattern of cumulus oophorus cells (COCs) in women undergoing medically assisted reproduction (MAR) procedures differentially modulated according to patient age and gonadotropin treatment strategy? SUMMARY ANSWER Maternal age is an independent factor impacting miRNA expression in COCs while gonadotropin treatment may affect follicular miRNA expression and IVF efficacy. WHAT IS KNOWN ALREADY Epigenetic mechanisms in female infertility are complex and poorly studied. DNA methylation, histone modifications, miRNAs and nucleosome positioning influence cellular machinery through positive and negative feedback mechanisms either alone or interactively. miRNAs are important regulators during oogenesis, spermatogenesis and early embryogenesis, and are reported to play a role in regulating crosstalk between the oocyte and COCs. Although miRNome analysis has been performed in female human reproductive tissues (endometrium, myometrium, cervix and ovaries), epigenetic modifications in women with infertility have not been explored in detail. In addition, the impact of gonadotropin treatments during MAR on miRNA expression in COCs has not been fully investigated. STUDY DESIGN, SIZE, DURATION This study was carried out in 53 COC samples obtained from mature metaphase II (MII) oocytes in 53 women undergoing MAR treatment. A total of 38 samples for assay development were pooled by maternal age and gonadotropin treatment into four predetermined subgroups: ≥36 years and recombinant human FSH (r-hFSH), n = 10; ≥36 years and r-hFSH+ recombinant human-luteinizing hormone (r-hLH), n = 10; ≤35 years and r-hFSH, n = 9; ≤35 years and r-hFSH+r-hLH, n = 9. miRNome profiles were determined and compared between subgroups. Expression of defined miRNAs was validated in the remaining fifteen samples, representative of each subgroup, by quantitative polymerase chain reaction (PCR). PARTICIPANTS/MATERIALS, SETTING, METHODS COCs were processed for miRNA-enriched total RNA extraction and pooled in homogeneous subgroups to obtain a sufficient amount and quality of starting material to perform the analysis. Each pooled sample underwent miRNA profiling using PCR assay system to examine expression of 752 human miRNAs without pre-amplification. Data were analyzed using the delta-delta Ct method for relative quantitation and prediction of target genes (with at least four algorithms predicting the same miRNA-gene interaction pair (HIT)>4). The miRSystem database provided functional annotation enrichment (raw P-value <0.05) of co-expressed miRNAs. MAIN RESULTS AND THE ROLE OF CHANCE We found distinctive miRNA expression profiles in each subgroup correlating with age and MAR stimulation. In addition, a number of selective and co-expressed miRNAs were revealed by comparative analysis. A cluster of 37 miRNAs were commonly but differentially expressed in all four pools. Significant differences were observed in expression regulation of 37 miRNAs between age groups (≤35 or ≥36) in women receiving r-hFSH+r-hLH compared to those receiving r-hFSH alone. Higher concentrations and increased numbers of miRNAs were recorded in younger than in older patients, regardless of treatment. Functional and expression studies performed to retrieve common miRNome profiles revealed an enrichment of biological functions in oocyte growth and maturation, embryo development, steroidogenesis, ovarian hyperstimulation, apoptosis and cell survival, glucagon and lipid metabolism, and cell trafficking. The highest scored pathways of target genes of the 37 common miRNAs were associated with mitogen-activated protein kinase (MAPK) signaling pathways, G alpha signaling, transcription regulation, tight junctions, RNA polymerase I and III, and mitochondrial transcription. We identified a potential age- and MAR stimulation-dependent signature in the miRNA landscape of COCs. LIMITATIONS, REASONS FOR CAUTION We cannot rule out the possibility that other unknown individual genetic or clinical factors may have interfered with the reported results. Since miRNA profiling was conducted with a predefined array of target probes, other miRNA molecules, potentially modulated by age and hormonal stimulation, may have been missed in this study. WIDER IMPLICATIONS OF THE FINDINGS miRNA expression in COCs is modulated by gonadotropin treatment and correlates strongly with age. A better understanding of the expression patterns and functions of miRNAs may lead to the development of novel therapeutics to treat ovarian dysfunction and improve fertility in older women. STUDY FUNDING/COMPETING INTEREST This study was funded by Merck KGaA, Darmstadt, Germany. All authors declared no competing interest, except SL and TD who are fully employed by Merck KGaA. TRIAL REGISTRATION NUMBER N/A
Collapse
Affiliation(s)
- C Dell'Aversana
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples 80138, Italy.,Institute of Experimental Endocrinology and Oncology 'Gaetano Salvatore' (IEOS)-National Research Council (CNR), Naples 80131, Italy
| | - F Cuomo
- EPI-C S.r.l., Naples 80138, Italy
| | | | | | - F Caprio
- Outpatient Fertility Unit, University of Campania 'Luigi Vanvitelli', Naples 80138, Italy
| | - G Franci
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples 80138, Italy.,Department of Medicine, Surgery and Dentistry "ScuolaMedicaSalernitana", University of Salerno, Baronissi, SA 84081, Italy
| | - M Santonastaso
- Department of Woman, Child and General and Special Surgery, University of Campania 'Luigi Vanvitelli', Naples 80138, Italy
| | - N Colacurci
- Outpatient Fertility Unit, University of Campania 'Luigi Vanvitelli', Naples 80138, Italy.,Department of Woman, Child and General and Special Surgery, University of Campania 'Luigi Vanvitelli', Naples 80138, Italy
| | - S Barone
- Department of Assisted Reproduction, Versilia Hospital, Lido di Camaiore, Lucca 55049, Italy
| | - V Pisaturo
- Department of Reproductive Medicine, International Evangelical Hospital, Genoa 16122, Italy
| | - D Valerio
- Merck Serono S.p.A, Rome 00176, Italy.,Institute of Genetic Research (IRG), Naples 80143, Italy
| | - L Altucci
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples 80138, Italy
| |
Collapse
|
30
|
Navarro A, Bariani MV, Yang Q, Al-Hendy A. Understanding the Impact of Uterine Fibroids on Human Endometrium Function. Front Cell Dev Biol 2021; 9:633180. [PMID: 34113609 PMCID: PMC8186666 DOI: 10.3389/fcell.2021.633180] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Uterine fibroids (leiomyomas) are the most common benign gynecological tumors in women of reproductive age worldwide. They cause heavy menstrual bleeding, usually leading to severe anemia, pelvic pain/pressure, infertility, and other debilitating morbidities. Fibroids are believed to be monoclonal tumors arising from the myometrium, and recent studies have demonstrated that fibroids actively influence the endometrium globally. Studies suggest a direct relationship between the number of fibroids removed and fertility problems. In this review, our objective was to provide a complete overview of the origin of uterine fibroids and the molecular pathways and processes implicated in their development and growth, which can directly affect the function of a healthy endometrium. One of the most common characteristics of fibroids is the excessive production of extracellular matrix (ECM) components, which contributes to the stiffness and expansion of fibroids. ECM may serve as a reservoir of profibrotic growth factors such as the transforming growth factor β (TGF-β) and a modulator of their availability and actions. Fibroids also elicit mechanotransduction changes that result in decreased uterine wall contractility and increased myometrium rigidity, which affect normal biological uterine functions such as menstrual bleeding, receptivity, and implantation. Changes in the microRNA (miRNA) expression in fibroids and myometrial cells appear to modulate the TGF-β pathways and the expression of regulators of ECM production. Taken together, these findings demonstrate an interaction among the ECM components, TGF-β family signaling, miRNAs, and the endometrial vascular system. Targeting these components will be fundamental to developing novel pharmacotherapies that not only treat uterine fibroids but also restore normal endometrial function.
Collapse
Affiliation(s)
| | | | | | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
31
|
Retis-Resendiz AM, González-García IN, León-Juárez M, Camacho-Arroyo I, Cerbón M, Vázquez-Martínez ER. The role of epigenetic mechanisms in the regulation of gene expression in the cyclical endometrium. Clin Epigenetics 2021; 13:116. [PMID: 34034824 PMCID: PMC8146649 DOI: 10.1186/s13148-021-01103-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The human endometrium is a highly dynamic tissue whose function is mainly regulated by the ovarian steroid hormones estradiol and progesterone. The serum levels of these and other hormones are associated with three specific phases that compose the endometrial cycle: menstrual, proliferative, and secretory. Throughout this cycle, the endometrium exhibits different transcriptional networks according to the genes expressed in each phase. Epigenetic mechanisms are crucial in the fine-tuning of gene expression to generate such transcriptional networks. The present review aims to provide an overview of current research focused on the epigenetic mechanisms that regulate gene expression in the cyclical endometrium and discuss the technical and clinical perspectives regarding this topic. MAIN BODY The main epigenetic mechanisms reported are DNA methylation, histone post-translational modifications, and non-coding RNAs. These epigenetic mechanisms induce the expression of genes associated with transcriptional regulation, endometrial epithelial growth, angiogenesis, and stromal cell proliferation during the proliferative phase. During the secretory phase, epigenetic mechanisms promote the expression of genes associated with hormone response, insulin signaling, decidualization, and embryo implantation. Furthermore, the global content of specific epigenetic modifications and the gene expression of non-coding RNAs and epigenetic modifiers vary according to the menstrual cycle phase. In vitro and cell type-specific studies have demonstrated that epithelial and stromal cells undergo particular epigenetic changes that modulate their transcriptional networks to accomplish their function during decidualization and implantation. CONCLUSION AND PERSPECTIVES Epigenetic mechanisms are emerging as key players in regulating transcriptional networks associated with key processes and functions of the cyclical endometrium. Further studies using next-generation sequencing and single-cell technology are warranted to explore the role of other epigenetic mechanisms in each cell type that composes the endometrium throughout the menstrual cycle. The application of this knowledge will definitively provide essential information to understand the pathological mechanisms of endometrial diseases, such as endometriosis and endometrial cancer, and to identify potential therapeutic targets and improve women's health.
Collapse
Affiliation(s)
- Alejandra Monserrat Retis-Resendiz
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Ixchel Nayeli González-García
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Moisés León-Juárez
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Ciudad de México, Mexico
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Montes Urales 800, Lomas Virreyes, Miguel Hidalgo, 11000, Ciudad de México, Mexico.
| |
Collapse
|
32
|
Wang X, Yuan T, Yin N, Ma X, Yang Y, Yang J, Shaukat A, Deng G. Interferon-τ regulates the expression and function of bovine leukocyte antigen by downregulating bta-miR-204. Exp Ther Med 2021; 21:594. [PMID: 33884032 PMCID: PMC8056107 DOI: 10.3892/etm.2021.10026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
IFN-τ is a pregnancy recognition factor that regulates embryo implantation in ruminants. IFN-τ has been suggested to be involved in the expression of microRNA (miRNA/miR) and bovine leukocyte antigen (BoLA), which is an analog of the human major histocompatibility complex class I. However, little is known about whether the miRNAs are involved in the expression of BoLA in ruminants. The present study firstly verified that bta-miR-204 was downregulated and that BoLA was upregulated in the uterine tissues of dairy cows during early pregnancy. Subsequently, luciferase reporter assays, reverse transcription-quantitative PCR and western blot analysis were used to validate BoLA as the target gene of bta-miR-204. Moreover, BoLA was markedly upregulated and bta-miR-204 was downregulated in bovine endometrial epithelial cells (bEECs) treated with IFN-τ. In addition, the results indicated that when the expression level of BoLA was increased by IFN-τ, the expression level of programmed death-ligand 1 (PD-L1) and programmed death-ligand 2 (PD-L2) was also increased. Furthermore, when BoLA was silenced in bEECs by small interfering RNA, the expression of PD-L1 and PD-L2 was not affected by IFN-τ. The expression level of PD-L1 and PD-L2 was also increased in the uterine tissues of pregnant dairy cattle. In conclusion, IFN-τ may function by suppressing the expression of bta-miR-204 to increase the expression of BoLA during the embryo implantation period in cattle. IFN-τ may induce PD-L1 and PD-L2 transcription by regulating BoLA, which may influence the T cell immune response, thereby regulating pregnant cattle immunization.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China.,College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, P.R. China
| | - Ting Yuan
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, P.R. China
| | - Nannan Yin
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Yaping Yang
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Jing Yang
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Aftab Shaukat
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
33
|
Chen CH, Lu F, Yang WJ, Yang PE, Chen WM, Kang ST, Huang YS, Kao YC, Feng CT, Chang PC, Wang T, Hsieh CA, Lin YC, Jen Huang JY, Wang LHC. A novel platform for discovery of differentially expressed microRNAs in patients with repeated implantation failure. Fertil Steril 2021; 116:181-188. [PMID: 33823989 DOI: 10.1016/j.fertnstert.2021.01.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To identify predictor microRNAs (miRNAs) from patients with repeated implantation failure (RIF). DESIGN Systemic analysis of miRNA profiles from the endometrium of patients undergoing in vitro fertilization (IVF). SETTING University research institute, private IVF center, and molecular testing laboratory. PATIENT(S) Twenty five infertile patients in the discovery cohort and 11 patients in the validation cohort. INTERVENTIONS(S) None. MAIN OUTCOME MEASURE(S) A signature set of miRNA associated with the risk of RIF. RESULT(S) We designed a reproductive disease-related PanelChip to access endometrium miRNA profiles in patients undergoing IVF. Three major miRNA signatures, including hsa-miR-20b-5p, hsa-miR-155-5p, and hsa-miR-718, were identified using infinite combination signature search algorithm analysis from 25 patients in the discovery cohort undergoing IVF. These miRNAs were used as biomarkers in the validation cohort of 11 patients. Finally, the 3-miRNA signature was capable of predicting patients with RIF with an accuracy >90%. CONCLUSION(S) Our findings indicated that specific endometrial miRNAs can be applied as diagnostic biomarkers to predict RIF. Such information will definitely help to increase the success rate of implantation practice.
Collapse
Affiliation(s)
- Ching Hung Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan; Department of Obstetrics and Gynecology, Ton Yen General Hospital, Hsinchu, Taiwan; Taiwan IVF Group Center for Reproductive Medicine and Infertility, Hsinchu, Taiwan
| | - Farn Lu
- Department of Obstetrics and Gynecology, Ton Yen General Hospital, Hsinchu, Taiwan; Taiwan IVF Group Center for Reproductive Medicine and Infertility, Hsinchu, Taiwan
| | - Wen Jui Yang
- Department of Obstetrics and Gynecology, Ton Yen General Hospital, Hsinchu, Taiwan; Taiwan IVF Group Center for Reproductive Medicine and Infertility, Hsinchu, Taiwan
| | | | | | | | | | - Yi Chi Kao
- Quark Biosciences, Inc., Hsinchu, Taiwan
| | | | | | | | - Chi An Hsieh
- Taiwan IVF Group Center for Reproductive Medicine and Infertility, Hsinchu, Taiwan
| | - Yu Chun Lin
- Taiwan IVF Group Center for Reproductive Medicine and Infertility, Hsinchu, Taiwan
| | - Jack Yu Jen Huang
- Department of Obstetrics and Gynecology, Ton Yen General Hospital, Hsinchu, Taiwan; Taiwan IVF Group Center for Reproductive Medicine and Infertility, Hsinchu, Taiwan; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Stanford University, Stanford, California
| | - Lily Hui-Ching Wang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
34
|
Zang X, Zhou C, Wang W, Gan J, Li Y, Liu D, Liu G, Hong L. Differential MicroRNA Expression Involved in Endometrial Receptivity of Goats. Biomolecules 2021; 11:biom11030472. [PMID: 33810054 PMCID: PMC8004627 DOI: 10.3390/biom11030472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
Endometrial receptivity represents one of the leading factors affecting the successful implantation of embryos during early pregnancy. However, the mechanism of microRNAs (miRNAs) to establish goat endometrial receptivity remains unclear. This study was intended to identify potential miRNAs and regulatory mechanisms associated with establishing endometrial receptivity through integrating bioinformatics analysis and experimental verification. MiRNA expression profiles were obtained by high-throughput sequencing, resulting in the detection of 33 differentially expressed miRNAs (DEMs), followed by their validation through quantitative RT-PCR. Furthermore, 10 potential transcription factors (TFs) and 1316 target genes of these DEMs were obtained, and the TF–miRNA and miRNA–mRNA interaction networks were constructed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these miRNAs were significantly linked to establishing endometrial receptivity. Moreover, the fluorescence in situ hybridization (FISH) analysis, dual-luciferase report assay, and immunohistochemistry (IHC) analysis corroborated that chi-miR-483 could directly bind to deltex E3 ubiquitin ligase 3L (DTX3L) to reduce its expression level. In conclusion, our findings contribute to a better understanding of molecular mechanisms regulating the endometrial receptivity of goats, and they provide a reference for improving embryo implantation efficiency.
Collapse
Affiliation(s)
- Xupeng Zang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Chen Zhou
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Wenjing Wang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Jianyu Gan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Dewu Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
| | - Guangbin Liu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
- Correspondence: (G.L.); (L.H.); Tel.: +86-02085281859 (L.H.)
| | - Linjun Hong
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (C.Z.); (W.W.); (J.G.); (Y.L.); (D.L.)
- Lingnan Guangdong Laboratory of Modern Agriculture, Guangzhou 510642, China
- Correspondence: (G.L.); (L.H.); Tel.: +86-02085281859 (L.H.)
| |
Collapse
|
35
|
Ridlo MR, Kim EH, Kim GA. MicroRNA-210 Regulates Endoplasmic Reticulum Stress and Apoptosis in Porcine Embryos. Animals (Basel) 2021; 11:ani11010221. [PMID: 33477489 PMCID: PMC7831048 DOI: 10.3390/ani11010221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/22/2020] [Accepted: 01/14/2021] [Indexed: 01/26/2023] Open
Abstract
Simple Summary The purpose of this study was to explore the effect of miR-210 on in vitro embryo development, mRNA expression related endoplasmic reticulum (ER) stress. Treatment with a miR-210-inhibitor significantly improved in vitro embryo development and total blastocyst cell number (TCN). Furthermore, miR-210-inhibitor treatment downregulated ER stress and apoptosis-related gene expression, while simultaneously improving embryo capacity. In contrast, a miR-210-mimic decreased in vitro embryo development, TCN, upregulated ER stress and apoptosis genes, and concomitantly impaired embryo quality. Therefore, we suggest that miR-210 plays an important role in porcine in vitro embryo development. Abstract Endoplasmic reticulum (ER) stress can be triggered during in vitro embryo production and is a major obstacle to embryo survival. MicroRNA (miR)-210 is associated with cellular adaptation to cellular stress and inflammation. An experiment was conducted to understand the effects of miR-210 on in vitro embryo development, ER stress, and apoptosis; to achieve this, miR-210 was microinjected into parthenogenetically activated embryos. Our results revealed that miR-210 inhibition significantly enhanced the cleavage rate, blastocyst formation rate, and total cell number (TCN) of blastocysts, and reduced expression levels of XBP1 (p < 0.05). miR-210 inhibition greatly reduced the expression of ER stress-related genes (uXBP1, sXBP1, ATF4, and PTPN1) and Caspase 3 and increased the levels of NANOG and SOX2 (p < 0.05). A miR-210-mimic significantly decreased the cleavage, blastocyst rate, TCN, and expression levels of XBP1 compared with other groups (p < 0.05). The miR-210-mimic impaired the expression levels of uXBP1, sXBP1, ATF4, PTPN1, and Caspase 3 and decreased the expression of NANOG and SOX2 (p < 0.05). In conclusion, miR-210 plays an essential role in porcine in vitro embryo development. Therefore, we suggest that miR-210 inhibition could alleviate ER stress and reduce apoptosis to support the enhancement of in vitro embryo production.
Collapse
Affiliation(s)
- Muhammad Rosyid Ridlo
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (M.R.R.); (E.H.K.)
- Department of Bioresources Technology and Veterinary, Vocational College, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Eui Hyun Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (M.R.R.); (E.H.K.)
| | - Geon A. Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejon 34824, Korea
- Correspondence:
| |
Collapse
|
36
|
Jiang NX, Li XL. The Complicated Effects of Extracellular Vesicles and Their Cargos on Embryo Implantation. Front Endocrinol (Lausanne) 2021; 12:681266. [PMID: 34149619 PMCID: PMC8213030 DOI: 10.3389/fendo.2021.681266] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
As a rate-limiting step in pregnancy, embryo implantation is highly dependent on intercellular communication. Extracellular vesicles (EVs) are newly identified to be important in the course of intercellular communication. EVs have been isolated from a wide variety of biofluids and tissues, including plasma, liver, uterine, semen, embryo, etc. The present and future use of EVs not only as biomarkers, but also as targeting drug delivery system, is promisingly pave the way for advanced comprehension of implantation failure in reproductive diseases. However, as the precise mechanisms of EVs in embryo implantation has not been elucidated yet. Herein, we summarize the current knowledge on the diverse effects of EVs from various sources and their cargos such as microRNA, long non-coding RNA, protein, etc. on embryo implantation, and the potential mechanisms of EVs in reproductive diseases such as recurrent implantation failure, polycystic ovary syndrome and endometriosis. It is essential to note that many of the biologically plausible functions of EVs in embryo implantation discussed in present literatures still need further research in vivo.
Collapse
Affiliation(s)
- Nan-Xing Jiang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xue-Lian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- *Correspondence: Xue-Lian Li,
| |
Collapse
|
37
|
Abstract
The characteristics of fetal membrane cells and their phenotypic adaptations to support pregnancy or promote parturition are defined by global patterns of gene expression controlled by chromatin structure. Heritable epigenetic chromatin modifications that include DNA methylation and covalent histone modifications establish chromatin regions permissive or exclusive of regulatory interactions defining the cell-specific scope and potential of gene activity. Non-coding RNAs acting at the transcriptional and post-transcriptional levels complement the system by robustly stabilizing gene expression patterns and contributing to ordered phenotype transitions. Here we review currently available information about epigenetic gene regulation in the amnion and the chorion laeve. In addition, we provide an overview of epigenetic phenomena in the decidua, which is the maternal tissue fused to the chorion membrane forming the anatomical and functional unit called choriodecidua. The relationship of gene expression with DNA (CpG) methylation, histone acetylation and methylation, micro RNAs, long non-coding RNAs and chromatin accessibility is discussed in the context of normal pregnancy, parturition and pregnancy complications. Data generated using clinical samples and cell culture models strongly suggests that epigenetic events are associated with the phenotypic transitions of fetal membrane cells during the establishment, maintenance and termination of pregnancy potentially driving and consolidating the changes as pregnancy progresses. Disease conditions and environmental factors may produce epigenetic footprints that indicate exposures and mediate adverse pregnancy outcomes. Although knowledge is expanding rapidly, fetal membrane epigenetics is still in an early stage of development necessitating further research to realize its remarkable basic and translational potential.
Collapse
Affiliation(s)
- Tamas Zakar
- Department of Maternity & Gynaecology, John Hunter Hospital, New Lambton Heights, NSW, Australia
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan W. Paul
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Reproductive Science, The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
38
|
Wang P, Chen X, Chang Y, Wang Y, Xu X, Guo Y, Cui H. Inhibition of microRNA-149 protects against recurrent miscarriage through upregulating RUNX2 and activation of the PTEN/Akt signaling pathway. J Obstet Gynaecol Res 2020; 46:2534-2546. [PMID: 32939872 PMCID: PMC7756651 DOI: 10.1111/jog.14488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/19/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022]
Abstract
AIM Recently, microRNA-149 (miR-149) has been indicated to act as an oncogene or a tumor suppressor in various malignant tumors, while its inner mechanisms in recurrent miscarriage (RM) are still in infancy. Therein, this study intends to decode the mechanism of miR-149 in RM. METHODS miR-149 and RUNX2 expression in the chorionic tissues of normal pregnant women and RM patients were first examined, and the correlation between miR-149 and RUNX2 was analyzed. Subsequently, miR-149 was upregulated in HTR-8 cells or downregulated in BEWO cells, and then the changes in biological functions of trophoblasts in RM were detected. Furthermore, the expression of PTEN/Akt signaling pathway-related factors in trophoblasts was detected by western blot analysis. RESULTS miR-149 expression was increased while RUNX2 expression was suppressed in RM patients, and miR-149 was negatively correlated with RUNX2. Overexpressed miR-149 induced cell apoptosis and inhibited cell activity, while reduced miR-149 in trophoblasts contributed to opposite experimental results. Moreover, miR-149 promoted the expression of PTEN and inhibited Akt phosphorylation by targeting RUNX2, thereby inhibiting trophoblast activity and promoting their apoptosis. CONCLUSION Our study demonstrates that miR-149 knockdown halted the RM development through upregulating RUNX2 and activation of the PTEN/Akt signaling pathway.
Collapse
Affiliation(s)
- Peng Wang
- Department of Obstetrics, Tianjin Central Hospital of Obstetrics and GynecologyTianjin Key Laboratory of Human Development and Reproductive RegulationTianjinPR China
| | - Xu Chen
- Department of ObstetricsTianjin Central Hospital of Obstetrics and GynecologyTianjinPR China
| | - Ying Chang
- Department of Obstetrics, Tianjin Central Hospital of Obstetrics and GynecologyTianjin Key Laboratory of Human Development and Reproductive RegulationTianjinPR China
| | - Yanping Wang
- Department of ObstetricsTianjin Central Hospital of Obstetrics and GynecologyTianjinPR China
| | - Xinran Xu
- Department of ObstetricsTianjin Central Hospital of Obstetrics and GynecologyTianjinPR China
| | - Yuling Guo
- Department of ObstetricsTianjin Central Hospital of Obstetrics and GynecologyTianjinPR China
| | - Hongyan Cui
- Department of Obstetrics, Tianjin Central Hospital of Obstetrics and GynecologyTianjin Key Laboratory of Human Development and Reproductive RegulationTianjinPR China
| |
Collapse
|
39
|
Cao D, Liang J, Feng F, Shi S, Tan Q, Wang Z. MiR-183 impeded embryo implantation by regulating Hbegf and Lamc1 in mouse uterus. Theriogenology 2020; 158:218-226. [PMID: 32980684 DOI: 10.1016/j.theriogenology.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/14/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022]
Abstract
Embryo implantation plays a decisive role in pregnancy. While in the process of implantation, microRNA (miRNA) is an important regulatory factor in the post transcriptional level. However, the role of many miRNAs in embryo implantation remained unknown. In this study, microRNA-183 (miR-183) was found differentially expressed in mouse uterus during implantation. In vivo treatment of miR-183 agomir in the uterine horn before implantation could eliminate the number of implantation site. The localization of miR-183 in mouse uteri gradually changed from epithelial to stromal layer in early pregnancy. Mice implantation models demonstrated that the decrease of miR-183 was mainly caused by maternal factors. Loss and gain function of miR-183 in endometrial cell lines showed that miR-183 could inhibit cell migration, invasion and apoptosis. MiR-183 could inhibit embryo implantation by binding Heparin-Binding EGF-like growth factor (Hbegf) and Laminin gamma one (Lamc1), which were key genes in embryo apposition and penetration. All these evidences indicate that miR-183 plays an important role during embryo implantation. This study provides new insights into the functions of miR-183 during embryo implantation and the development of contraceptive drugs in early pregnancy.
Collapse
Affiliation(s)
- Dingren Cao
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Jingjie Liang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Fuqiang Feng
- Agricultural Economic Service Center of Wuzhen Town, Tongxiang City 314501, PR China
| | - Shuang Shi
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Qiang Tan
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
| |
Collapse
|
40
|
Li L, Gou J, Yi T, Li Z. MicroRNA-30a-3p regulates epithelial-mesenchymal transition to affect embryo implantation by targeting Snai2†. Biol Reprod 2020; 100:1171-1179. [PMID: 30753312 DOI: 10.1093/biolre/ioz022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/11/2018] [Accepted: 02/08/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To study the potential role of miR-30a-3p in embryo implantation and explore underlying mechanisms. METHODS We first established normal pregnancy, pseudopregnancy, delayed implantation, and artificial decidualization mouse models. Next, we detected miR-30a-3p expression profiles of these models with real-time reverse transcription PCR(qRT-PCR), then predicted potential target genes through a dual-luciferase assay. Immunofluorescence-fluorescence in situ hybridization co-located miR-30a-3p and target genes. We then examined the effect of miR-30a-3p on embryo implantation in vivo and in vitro. Wound healing and transwell assays were employed to explore possible miR-30a-3p effects on epithelial-mesenchymal transition (EMT), before molecules related to the latter process were examined with qRT-PCR. RESULTS MiR-30a-3p expression decreased significantly on embryo implantation day, compared with the peri-implantation period (P < 0.05). Identified target gene Snai2 expression increased significantly during implantation (P < 0.05). In vivo and in vitro analysis showed that up-regulation of miR-30a-3p by agomir and mimics resulted in decreased implantation sites and embryo implantation rate. Transfection of miR-30a-3p mimics to HEC-1-b cells decreased expression of Snai2 and mesenchymal markers (Vimentin and N-cadherin). Furthermore, wound healing area decreased, as did migration and invasion capacity. CONCLUSION MiR-30a-3p is down-regulated in the embryo implantation period and might have some effect on embryo implantation by acting as a suppressor of EMT through targeting Snai2.
Collapse
Affiliation(s)
- Lin Li
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Jinhai Gou
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Tao Yi
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhengyu Li
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
41
|
Mother and Embryo Cross-Communication. Genes (Basel) 2020; 11:genes11040376. [PMID: 32244282 PMCID: PMC7230353 DOI: 10.3390/genes11040376] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/23/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Endometrial receptivity is a biosensor for embryo quality, as embryos with reduced developmental potential are rejected. However, embryo quality only accounts for an estimated one-third of implantation failures, with suboptimal endometrial receptivity accounting for the remaining two-thirds. As pregnancy progresses, a uterus continues to engage in close communication with an embryo/fetus, exchanging information in the form of endocrine, paracrine, and other cues. Given the long mammalian gestation period, this dialogue is intricate, diverse, and, currently, not fully understood. Recent progress and the availability of high-throughput techniques, including transcriptomics, proteomics, and metabolomics, has allowed the simultaneous examination of multiple molecular changes, enhancing our knowledge in this area. This review covers the known mechanisms of mother–embryo cross-communication gathered from animal and human studies.
Collapse
|
42
|
Owusu-Akyaw A, Krishnamoorthy K, Goldsmith LT, Morelli SS. The role of mesenchymal-epithelial transition in endometrial function. Hum Reprod Update 2020; 25:114-133. [PMID: 30407544 DOI: 10.1093/humupd/dmy035] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/13/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The human uterine endometrium undergoes significant remodeling and regeneration on a rapid and repeated basis, after parturition, menstruation, and in some cases, injury. The ability of the adult endometrium to undergo cyclic regeneration and differentiation/decidualization is essential for successful human reproduction. Multiple key physiologic functions of the endometrium require the cells of this tissue to transition between mesenchymal and epithelial phenotypes, processes known as mesenchymal-epithelial transition (MET) and epithelial-mesenchymal transition (EMT). Although MET/EMT processes have been widely characterized in embryonic development and in the context of malignancy, mounting evidence demonstrates the importance of MET/EMT in allowing the endometrium the phenotypic and functional flexibility necessary for successful decidualization, regeneration/re-epithelialization and embryo implantation. OBJECTIVE AND RATIONALE The objective of this review is to provide a comprehensive summary of the observations concerning MET and EMT and their regulation in physiologic uterine functions, specifically in the context of endometrial regeneration, decidualization and embryo implantation. SEARCH METHODS Using variations of the search terms 'mesenchymal-epithelial transition', 'mesenchymal-epithelial transformation', 'epithelial-mesenchymal transition', 'epithelial-mesenchymal transformation', 'uterus', 'endometrial regeneration', 'endometrial decidualization', 'embryo implantation', a search of the published literature between 1970 and 2018 was conducted using the PubMed database. In addition, we searched the reference lists of all publications included in this review for additional relevant original studies. OUTCOMES Multiple studies demonstrate that endometrial stromal cells contribute to the regeneration of both the stromal and epithelial cell compartments of the uterus, implicating a role for MET in mechanisms responsible for endometrial regeneration and re-epithelialization. During decidualization, endometrial stromal cells undergo morphologic and functional changes consistent with MET in order to accommodate embryo implantation. Under the influence of estradiol, progesterone and multiple other factors, endometrial stromal fibroblasts acquire epithelioid characteristics, such as expanded cytoplasm and rough endoplasmic reticulum required for greater secretory capacity, rounded nuclei, increased expression of junctional proteins which allow for increased cell-cell communication, and a reorganized actin cytoskeleton. During embryo implantation, in response to both maternal and embryonic-derived signals, the maternal luminal epithelium as well as the decidualized stromal cells acquire the mesenchymal characteristics of increased migration/motility, thus undergoing EMT in order to accommodate the invading trophoblast. WIDER IMPLICATIONS Overall, the findings support important roles for MET/EMT in multiple endometrial functions required for successful reproduction. The endometrium may be considered a unique wound healing model, given its ability to repeatedly undergo repair without scarring or loss of function. Future studies to elucidate how MET/EMT mechanisms may contribute to scar-free endometrial repair will have considerable potential to advance studies of wound healing mechanisms in other tissues.
Collapse
Affiliation(s)
- Amma Owusu-Akyaw
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Kavitha Krishnamoorthy
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Laura T Goldsmith
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Sara S Morelli
- Department of Obstetrics, Gynecology, and Women's Health, Rutgers-New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
43
|
Zhang J, Li H, Fan B, Xu W, Zhang X. Extracellular vesicles in normal pregnancy and pregnancy-related diseases. J Cell Mol Med 2020; 24:4377-4388. [PMID: 32175696 PMCID: PMC7176865 DOI: 10.1111/jcmm.15144] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized, membranous vesicles released by almost all types of cells. Extracellular vesicles can be classified into distinct subtypes according to their sizes, origins and functions. Extracellular vesicles play important roles in intercellular communication through the transfer of a wide spectrum of bioactive molecules, contributing to the regulation of diverse physiological and pathological processes. Recently, it has been established that EVs mediate foetal‐maternal communication across gestation. Abnormal changes in EVs have been reported to be critically involved in pregnancy‐related diseases. Moreover, EVs have shown great potential to serve as biomarkers for the diagnosis of pregnancy‐related diseases. In this review, we discussed about the roles of EVs in normal pregnancy and how changes in EVs led to complicated pregnancy with an emphasis on their values in predicting and monitoring of pregnancy‐related diseases.
Collapse
Affiliation(s)
- Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Haibo Li
- Department of Clinical Laboratory, Nantong Maternal and Child Health Care Hospital, Nantong, China
| | - Boyue Fan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
44
|
Regulation of human trophoblast surrogate Jeg-3 spheroids implantation potential by Wnt/β-catenin pathway and lin28a/let-7a axis. Exp Cell Res 2020; 388:111718. [DOI: 10.1016/j.yexcr.2019.111718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
|
45
|
Bolouki A, Zal F, Alaee S. Ameliorative effects of quercetin on the preimplantation embryos development in diabetic pregnant mice. J Obstet Gynaecol Res 2020; 46:736-744. [PMID: 32088935 DOI: 10.1111/jog.14219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/27/2020] [Accepted: 02/08/2020] [Indexed: 02/02/2023]
Abstract
AIM Maternal diabetes adversely retards the development of preimplantation embryos. Quercetin is a flavonoid belonging to phytoestrogens family and may be useful in treatment of reproductive disorders. The aim of this study was investigation of the ameliorative effects of quercetin administration on preimplantation embryo development in diabetic pregnancy. METHODS Diabetic and healthy female mice were treated with 30 mg/kg/day quercetin 4 weeks before conception. Blastocysts were recovered at the 4th day of pregnancy for protein and mRNA expression changes. Plasma sex-steroid levels were also analyzed. RESULTS Quercetin significantly decreased blood glucose levels in diabetic mice. Embryos retrieved from diabetic mice exhibited a considerable delay in morphological development. In diabetic mice with quercetin treatment, morphological distribution was shifted considerably to the well-developed stages. Serum estradiol level reduced in diabetic mice but, treatment with quercetin significantly increased serum estradiol level. While IGF1R, integrin αvβ3, and Cox2 mRNA expression in the blastocyst of diabetic mice decreased significantly, quercetin treatment caused increasing expression levels of these genes. Expression of the Caspase3 gene increased dramatically in the collected blastocysts from diabetic mice and reduced following quercetin treatment. Besides, the inactive β-catenin protein level in the blastocysts of diabetic mice was higher than that in normal mice, while treatment with quercetin decreased the level of inactive β-catenin protein in the blastocyst of diabetic mice. CONCLUSION Quercetin protects preimplantation embryos from destructive effects of diabetes. The amelioration of sex hormones disturbance in early pregnancy may help to treat reproductive disorders in diabetic women. Quercetin can be considered as a novel solution to the improvement of reproductive disorders in the diabetic females.
Collapse
Affiliation(s)
- Ayeh Bolouki
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Zal
- Biochemistry Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.,Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sanaz Alaee
- Reproductive Biology Department, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
46
|
Liu X, Zhao H, Li W, Bao H, Qu Q, Ma D. Up-regulation of miR-145 may contribute to repeated implantation failure after IVF-embryo transfer by targeting PAI-1. Reprod Biomed Online 2020; 40:627-636. [PMID: 32205015 DOI: 10.1016/j.rbmo.2020.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022]
Abstract
RESEARCH QUESTION Repeated implantation failure (RIF) is a major limiting factor in assisted reproductive technology. As miR-145 (also known as MIR145) is up-regulated in patients with RIF, this study asked, what is the molecular mechanism underlying the affect of miR-145 on embryo implantation in RIF? DESIGN Ishikawa cells were infected with lentivirus containing miR-145 and miR-145 NC. Massive transcriptome data analyses and bioinformatics analysis were used to search for a potential candidate target of miR-145. The expression of the potential candidate target was detected using quantitative reverse transcription PCR (qRT-PCR) and western blotting in the Ishikawa cells infected with lentivirus containing miR-145 or miR-145 NC. Subsequently, a dual luciferase reporter assay was performed to verify whether the potential candidate target was a novel direct target of miR-145. In addition, expression of PAI-1 (plasminogen activator inhibitor 1, also known as SERPINE1) in endometrial tissue from women with RIF and in control endometrial tissue was examined using qRT-PCR and immunohistochemistry. RESULTS Based on massive transcriptome data analyses and bioinformatics analysis, PAI-1 was regarded as a potential candidate target of miR-145. miR-145 overexpression was achieved in Ishikawa cells. PAI-1 was confirmed as a direct target of miR-145 by bioinformatic analysis, qRT-PCR, western blotting and dual luciferase reporter assay. Further, results from the clinical sample indicated that at both the mRNA and protein levels, PAI-1 expression was down-regulated in endometrial tissues from women with RIF compared with control group women, and this was negatively related to miR-145 expression. CONCLUSIONS The study results suggests that miR-145 may target and down-regulate PAI-1 expression and influence embryo implantation in women with RIF who are undergoing IVF.
Collapse
Affiliation(s)
- Xuemei Liu
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| | - Huishan Zhao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Wenshu Li
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Hongchu Bao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Qinglan Qu
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Ding Ma
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
47
|
Smits K, Gansemans Y, Tilleman L, Van Nieuwerburgh F, Van De Velde M, Gerits I, Ververs C, Roels K, Govaere J, Peelman L, Deforce D, Van Soom A. Maternal Recognition of Pregnancy in the Horse: Are MicroRNAs the Secret Messengers? Int J Mol Sci 2020; 21:ijms21020419. [PMID: 31936511 PMCID: PMC7014256 DOI: 10.3390/ijms21020419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 01/22/2023] Open
Abstract
The signal for maternal recognition of pregnancy (MRP) has still not been identified in the horse. High-throughput molecular biology at the embryo-maternal interface has substantially contributed to the knowledge on pathways affected during MRP, but an integrated study in which proteomics, transcriptomics and miRNA expression can be linked directly is currently lacking. The aim of this study was to provide such analysis. Endometrial biopsies, uterine fluid, embryonic tissues, and yolk sac fluid were collected 13 days after ovulation during pregnant and control cycles from the same mares. Micro-RNA-Sequencing was performed on all collected samples, mRNA-Sequencing on the same tissue samples and mass spectrometry was conducted previously on the same fluid samples. Differential expression of miRNA, mRNA and proteins showed high conformity with literature and confirmed involvement in pregnancy establishment, embryo quality, steroid synthesis and prostaglandin regulation, but the link between differential miRNAs and their targets was limited and did not indicate the identity of an unequivocal signal for MRP in the horse. Differential expression at the embryo-maternal interface was prominent, highlighting a potential role of miRNAs in embryo-maternal communication during early pregnancy in the horse. These data provide a strong basis for future targeted studies.
Collapse
Affiliation(s)
- Katrien Smits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Correspondence:
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Laurentijn Tilleman
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Margot Van De Velde
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Ilse Gerits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Cyrillus Ververs
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Kim Roels
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Jan Govaere
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Luc Peelman
- Animal Genetics Lab, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820 Merelbeke, Belgium
| | - Dieter Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
48
|
Bortolotti D, Soffritti I, D'Accolti M, Gentili V, Di Luca D, Rizzo R, Caselli E. HHV-6A Infection of Endometrial Epithelial Cells Affects miRNA Expression and Trophoblast Cell Attachment. Reprod Sci 2020; 27:779-786. [PMID: 32046402 PMCID: PMC7077927 DOI: 10.1007/s43032-019-00102-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
We recently reported that human herpesvirus 6 (HHV-6) infection is frequently present in endometrial tissue of women with unexplained infertility, and that virus infection induces a profound remodulation of miRNA expression in human cells of different origin. Since specific miRNA patterns have been associated with specific pregnancy outcomes, we aimed to analyze the impact of HHV-6A infection on miRNAs expression and trophoblast receptivity in human endometrial cells. To this purpose, a human endometrial cell line (HEC-1A) was infected with HHV-6A and analyzed for alterations in the expression of miRNAs and for permissiveness to the attachment of a human choriocarcinoma trophoblast cell line (JEG-3). The results showed that HHV-6A infection of endometrial cells up-modulates miR22 (26-fold), miR15 (19.5-fold), and miR196-5p (12.1 fold), that are correlated with implant failure, and down-modulates miR18 (11.4 fold), miR101-3p (4.6 fold), miR181-5p (4.9 fold), miR92 (3.3 fold), and miR1207-5p (3.9 fold), characterized by a low expression in preeclampsia. Moreover, HHV-6A-infected endometrial cells infected resulted less permissive to the attachment of trophoblast cells. In conclusion, collected data suggest that HHV-6A infection could modify miRNA expression pattern and control of trophoblast cell adhesion of endometrial cells, undermining a correct trophoblast cell attachment on endometrial cells.
Collapse
Affiliation(s)
- Daria Bortolotti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Irene Soffritti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Maria D'Accolti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Valentina Gentili
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Dario Di Luca
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Roberta Rizzo
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Elisabetta Caselli
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
49
|
Kong S, Zhou C, Bao H, Ni Z, Liu M, He B, Huang L, Sun Y, Wang H, Lu J. Epigenetic control of embryo-uterine crosstalk at peri-implantation. Cell Mol Life Sci 2019; 76:4813-4828. [PMID: 31352535 PMCID: PMC11105790 DOI: 10.1007/s00018-019-03245-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/28/2019] [Accepted: 07/23/2019] [Indexed: 01/05/2023]
Abstract
Embryo implantation is one of the pivotal steps during mammalian pregnancy, since the quality of embryo implantation determines the outcome of ongoing pregnancy and fetal development. A large number of factors, including transcription factors, signalling transduction components, and lipids, have been shown to be indispensable for embryo implantation. Increasing evidence also suggests the important roles of epigenetic factors in this critical event. This review focuses on recent findings about the involvement of epigenetic regulators during embryo implantation.
Collapse
Affiliation(s)
- Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Chan Zhou
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Zhangli Ni
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Mengying Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Bo He
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Lin Huang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Yang Sun
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| | - Jinhua Lu
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
50
|
Alipour M, Abtin M, Hosseinzadeh A, Maleki M. Association between miR-146a C > G, miR-149 T > C, miR-196a2 T > C, and miR-499 A > G polymorphisms and susceptibility to idiopathic recurrent pregnancy loss. J Assist Reprod Genet 2019; 36:2237-2244. [PMID: 31605260 DOI: 10.1007/s10815-019-01573-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A growing body of evidence suggests that microRNAs play fundamental regulatory roles in embryo implantation and maintenance of pregnancy. The aim of this study was to investigate the possible association between miR-146a C > G, miR-149 T > C, miR-196a2 T > C, and miR-499 A > G polymorphisms and genetic susceptibility to recurrent pregnancy loss (RPL). MATERIAL AND METHODS One hundred and twenty women with a history of two or more unexplained consecutive miscarriages and 90 ethnically matched healthy women with a history of at least two successful pregnancy outcomes and without a history of miscarriage were enrolled in a case-control study. Genotyping was performed using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. RESULTS Our findings showed that the prevalence of miR-149 T > C polymorphism in RPL patients was significantly higher than those in healthy controls (p < 0.05). We also found that the presence of miR-149 C and miR-499 G alleles was significantly associated with susceptibility to RPL (p < 0.05). The miR-146a CC/miR-499 GG, miR-149 TC/miR-499 AG, and miR-196a2 TT/miR-499 GG combined genotypes were associated with the high risk of RPL (p < 0.05). CONCLUSION This study suggests that miR-149 T > C polymorphism and the presence of miR-149 C, and miR-499 G alleles are a genetic determinant for the risk of idiopathic RPL.
Collapse
Affiliation(s)
- Meysam Alipour
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Maryam Abtin
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Asghar Hosseinzadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoud Maleki
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|