1
|
Bennion KB, Miranda R.Bazzano J, Liu D, Wagener M, Paulos CM, Ford ML. Macrophage-derived Fgl2 dampens antitumor immunity through regulation of FcγRIIB+CD8+ T cells in melanoma. JCI Insight 2025; 10:e182563. [PMID: 40125553 PMCID: PMC11949062 DOI: 10.1172/jci.insight.182563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 02/05/2025] [Indexed: 03/25/2025] Open
Abstract
Cancer immunotherapy has emerged as a promising therapeutic modality but heterogeneity in patient responsiveness remains. Thus, greater understanding of the immunologic factors that dictate response to immunotherapy is critical to improve patient outcomes. Here, we show that fibrinogen-like protein 2 (Fgl2) is elevated in the setting of melanoma in humans and mice and plays a functional role in inhibiting the CD8+ T cell response. Surprisingly, the tumor itself is not the major cellular source of Fgl2. Instead, we found that macrophage-secreted Fgl2 dampens the CD8+ T cell response through binding and apoptosis of FcγRIIB+CD8+ T cells. This regulation was CD8+ T cell autonomous and not via an antigen-presenting cell intermediary, as absence of Fcgr2b from the CD8+ T cells rendered T cells insensitive to Fgl2 regulation. Fgl2 is robustly expressed by macrophages in 10 cancer types in humans and in 6 syngeneic tumor models in mice, underscoring the clinical relevance of Fgl2 as a therapeutic target to promote T cell activity and improve patient immunotherapeutic response.
Collapse
Affiliation(s)
- Kelsey B. Bennion
- Cancer Biology PhD program
- Department of Surgery
- Winship Cancer Institute
| | | | - Danya Liu
- Department of Surgery
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maylene Wagener
- Department of Surgery
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Mandy L. Ford
- Cancer Biology PhD program
- Department of Surgery
- Winship Cancer Institute
- Immunology and Molecular Pathogenesis PhD program, and
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Zhao Y, Xiang Z, Pan H, Huang X, Chen W, Huang Z. FGL2 improves experimental colitis related to gut microbiota structure and bile acid metabolism by regulating macrophage autophagy and apoptosis. Heliyon 2024; 10:e34349. [PMID: 39104498 PMCID: PMC11298944 DOI: 10.1016/j.heliyon.2024.e34349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a refractory disease with immune abnormalities and pathological changes. Intestinal macrophages are considered to be the main factor in establishing and maintaining intestinal homeostasis. The immunoregulatory and anti-inflammatory activity of fibrinogen-like protein 2 (FGL2) can regulate macrophage polarization. However, its function in IBD is unclear. In this study, we explored the effect of FGL2 on macrophage polarization, autophagy, and apoptosis in bone marrow-derived macrophages (BMDMs) treated with lipopolysaccharide (LPS) and further investigated changes in the intestinal barrier, flora, and bile acid in dextran sodium sulfate (DSS)-treated mice. Our results demonstrated that FGL2-/- weakened ERK signaling to promote M1 polarization and upregulate inflammation, autophagy, and apoptosis in LPS-stimulated BMDMs. rFGL2 treatment reversed these effects. FGL2-/- mice exhibited higher sensitivity to DSS exposure, with faster body weight loss, shorter colon lengths, and higher disease activity index (DAI) values. rFGL2 treatment protected against experimental ulcerative colitis (UC), restrained excessive autophagy, apoptosis, and improved gut barrier impairment. Gut microbiota structure and bile acid homeostasis were more unbalanced in FGL2-/- DSS mice than in wild-type (WT) DSS mice. rFGL2 treatment improved gut microbiota structure and bile acid homeostasis. Altogether, our results established that FGL2 is a potential therapeutic target for IBD.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zheng Xiang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Haoran Pan
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xielin Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weizhen Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhiming Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
3
|
Galpin KJC, Rodriguez GM, Maranda V, Cook DP, Macdonald E, Murshed H, Zhao S, McCloskey CW, Chruscinski A, Levy GA, Ardolino M, Vanderhyden BC. FGL2 promotes tumour growth and attenuates infiltration of activated immune cells in melanoma and ovarian cancer models. Sci Rep 2024; 14:787. [PMID: 38191799 PMCID: PMC10774293 DOI: 10.1038/s41598-024-51217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024] Open
Abstract
The tumour microenvironment is infiltrated by immunosuppressive cells, such as regulatory T cells (Tregs), which contribute to tumour escape and impede immunotherapy outcomes. Soluble fibrinogen-like protein 2 (sFGL2), a Treg effector protein, inhibits immune cell populations, via receptors FcγRIIB and FcγRIII, leading to downregulation of CD86 in antigen presenting cells and limiting T cell activation. Increased FGL2 expression is associated with tumour progression and poor survival in several different cancers, such as glioblastoma multiforme, lung, renal, liver, colorectal, and prostate cancer. Querying scRNA-seq human cancer data shows FGL2 is produced by cells in the tumour microenvironment (TME), particularly monocytes and macrophages as well as T cells and dendritic cells (DCs), while cancer cells have minimal expression of FGL2. We studied the role of FGL2 exclusively produced by cells in the TME, by leveraging Fgl2 knockout mice. We tested two murine models of cancer in which the role of FGL2 has not been previously studied: epithelial ovarian cancer and melanoma. We show that absence of FGL2 leads to a more activated TME, including activated DCs (CD86+, CD40+) and T cells (CD25+, TIGIT+), as well as demonstrating for the first time that the absence of FGL2 leads to more activated natural killer cells (DNAM-1+, NKG2D+) in the TME. Furthermore, the absence of FGL2 leads to prolonged survival in the B16F10 melanoma model, while the absence of FGL2 synergizes with oncolytic virus to prolong survival in the ID8-p53-/-Brca2-/- ovarian cancer model. In conclusion, targeting FGL2 is a promising cancer treatment strategy alone and in combination immunotherapies.
Collapse
Affiliation(s)
- Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Vincent Maranda
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - David P Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Elizabeth Macdonald
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Humaira Murshed
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Shan Zhao
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Andrzej Chruscinski
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Gary A Levy
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
An T, Guo M, Fan C, Huang S, Liu H, Liu K, Wang Z. sFgl2-Treg Positive Feedback Pathway Protects against Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032338. [PMID: 36768661 PMCID: PMC9916961 DOI: 10.3390/ijms24032338] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Soluble fibrinogen-like protein 2 (sFgl2), a novel effector of regulatory T cells (Tregs), has been demonstrated to have potent immunosuppressive functions. Multiple studies indicate that Tregs could exert important atheroprotective effects, but their numbers gradually decrease during atherogenesis. The receptor of sFgl2 can be expressed on Treg precursor cells, while the role of sFgl2 on Treg differentiation and atherosclerosis progression remains unclear. Firstly, we detected that the sFgl2 was decreased in humans and mice with atherosclerotic diseases and was especially lower in their vulnerable plaques. Then, we used both Adeno-associated virus-sFgl2 (AAV-sFgl2)-injected ApoE-/- mice, which is systemic overexpression of sFgl2, and sFgl2TgApoE-/- bone marrow cells (BMC)-transplanted ApoE-/- mice, which is almost immune-system-specific overexpression of sFgl2, to explore the role of sFgl2 in atherosclerosis. Our experiment data showed that AAV-sFgl2 and BMT-sFgl2 could reduce atherosclerotic area and enhance plaque stability. Mechanistically, sFgl2 increases the abundance and immunosuppressive function of Tregs, which is partly mediated by binding to FcγRIIB receptors and phosphorylating Smad2/3. Collectively, sFgl2 has an atheroprotective effect that is mainly achieved by forming a positive feedback pathway with Treg. sFgl2 and Treg could synergistically protect against atherosclerosis.
Collapse
Affiliation(s)
- Tianhui An
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengyuan Guo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shiyuan Huang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (K.L.); (Z.W.)
| | - Zhaohui Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (K.L.); (Z.W.)
| |
Collapse
|
5
|
Abstract
Exhaustion of T cells occurs in response to long-term exposure to self and foreign antigens. It limits T cell capacity to proliferate and produce cytokines, leading to an impaired ability to clear chronic infections or eradicate tumors. T-cell exhaustion is associated with a specific transcriptional, epigenetic, and metabolic program and characteristic cell surface markers' expression. Recent studies have begun to elucidate the role of T-cell exhaustion in transplant. Higher levels of exhausted T cells have been associated with better graft function in kidney transplant recipients. In contrast, reinvigorating exhausted T cells by immune checkpoint blockade therapies, while promoting tumor clearance, increases the risk of acute rejection. Lymphocyte depletion and high alloantigen load have been identified as major drivers of T-cell exhaustion. This could account, at least in part, for the reduced rates of acute rejection in organ transplant recipients induced with thymoglobulin and for the pro-tolerogenic effects of a large organ such as the liver. Among the drugs that are widely used for maintenance immunosuppression, calcineurin inhibitors have a contrasting inhibitory effect on exhaustion of T cells, while the influence of mTOR inhibitors is still unclear. Harnessing or encouraging the natural processes of exhaustion may provide a novel strategy to promote graft survival and transplantation tolerance.
Collapse
|
6
|
You Y, Huang S, Liu H, Fan C, Liu K, Wang Z. Soluble fibrinogen‑like protein 2 levels are decreased in patients with ischemic heart failure and associated with cardiac function. Mol Med Rep 2021; 24:559. [PMID: 34109427 PMCID: PMC8188637 DOI: 10.3892/mmr.2021.12198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Soluble fibrinogen‑like protein 2 (sFGL2), as a novel effector of regulatory T cells (Tregs), exhibits immune regulatory activity in several inflammatory diseases. Immune activation and persistent inflammation participate in the progression of ischemic heart failure (IHF). The present study aimed to determine serum sFGL2 levels in patients with IHF and explore the relationship between sFGL2 levels and cardiac function. A total of 104 patients with IHF and 32 healthy controls were enrolled. patients with IHF were further split into subgroups according to the New York Heart Association functional classification or left ventricular ejection fraction (LVEF). Serum sFGL2 levels and peripheral Tregs frequencies were analyzed by ELISA and flow cytometry, respectively. The suppressive function of Tregs was measured by proliferation and functional suppression assays. Serum levels of sFGL2 and circulating Tregs frequencies were significantly decreased in patients with IHF compared with healthy controls. In patients with IHF, sFGL2 levels and Tregs frequencies were decreased with the deterioration of cardiac function. Tregs from patients with IHF exhibited compromised ability to suppress CD4+CD25‑ T cells proliferation and inflammatory cytokines secretion. Specifically, sFGL2 levels and Tregs frequencies positively correlated with LVEF, whereas negatively correlated with left ventricular end‑diastolic dimension and N‑terminal pro‑brain natriuretic peptide. sFGL2 levels were positively correlated with Tregs frequencies. In conclusion, the reduction of serum sFGL2 levels are associated with the progression of IHF and sFGL2 could be used as a potential indicator for predicting disease severity.
Collapse
Affiliation(s)
- Ya You
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shiyuan Huang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hui Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhaohui Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
7
|
Zhang X, Ma J, Li H, Zhou L, Liu Z, Lyu S, He Q, Li X. Overexpression of fibrinogen-like protein 2 alleviates acute rejection in rat models of liver transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:408. [PMID: 33842629 PMCID: PMC8033335 DOI: 10.21037/atm-20-7881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background The role of cluster of differentiation (CD)8+ regulatory T cells (Tregs) has previously been elucidated in tolerance models. Fibrinogen-like protein 2 (FGL2), that is secreted by Treg cells, which exhibited immunosuppressive functions, may alleviate acute rejection (AR). However, the precise role of CD8+ Tregs and FGL2 in the AR of rat liver transplantation remains unknown. Our previous study found that CD8+CD45RClow Tregs played crucial roles in maintaining immune tolerance. Here, we elucidated the role of CD8+ CD45RClowTreg and FGL2 in AR of rat liver transplantation. Methods A rat non-materialized AR of liver transplantation model was established using donors infected with no-load adeno-associated virus and adeno‐associated virus expressing FGL2. Results There was an accumulation of tolerogenic CD8+CD45RClow in allografts compared with blank groups. Moreover, the proportion of CD8+CD45RClow Tregs was increased with longer survival time. Furthermore, we detected higher levels of FGL2 in the allografts infected with AAV-FGL2 in rats with AR of liver transplantation. We found that FGL2 could alleviate AR, and the survival time was prolonged in the recipients of donors infected with AAV-FGL2. Conclusions Our data suggest that CD8+CD45RClow Tregs was accumulated in allografts. The presence of FGL2 alleviated AR and prolonged survival time in the AR of liver transplantation rat model, suggesting that FGL2 and CD8+CD45RClow Tregs may serves as novel therapeutic targets for AR in liver transplantation.
Collapse
Affiliation(s)
- Xinxue Zhang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jun Ma
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Han Li
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Lin Zhou
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Zhe Liu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Shaocheng Lyu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xianliang Li
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Cravedi P. FcγRIIB, a new checkpoint to halt alloreactive memory T cells. Am J Transplant 2020; 20:1967-1968. [PMID: 32185851 DOI: 10.1111/ajt.15854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Paolo Cravedi
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
9
|
Robineau-Charette P, Grynspan D, Benton SJ, Gaudet J, Cox BJ, Vanderhyden BC, Bainbridge SA. Fibrinogen-Like Protein 2-Associated Transcriptional and Histopathological Features of Immunological Preeclampsia. Hypertension 2020; 76:910-921. [PMID: 32713274 PMCID: PMC7418930 DOI: 10.1161/hypertensionaha.120.14807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Preeclampsia is a multifactorial hypertensive disorder of pregnancy, with variable presentation in both maternal and fetal factors, such that no treatment or marker is currently universal to all cases. Here, we demonstrate that the prothrombinase and immunomodulatory secreted factor FGL-2 (fibrinogen-like protein 2) is differentially expressed across previously characterized gene expression clusters containing clinically relevant disease subtypes. FGL2 is low in a cluster consistent with the traditional paradigm of the pathology of preeclampsia (canonical preeclampsia) and high in a cluster exhibiting evidence of immune activation (immunological preeclampsia). We show that it is part of an immunoregulatory gene module integral to the transcriptional profile and placental pathology specific to immunological preeclampsia. We determine that FGL2 associates positively with chronic inflammation lesions of the placenta while associating negatively with maternal vascular malperfusion lesions. The transcriptional profiles of maternal vascular malperfusion lesions show downregulation of FGL2 and upregulation of previously investigated preeclampsia biomarkers, such as FLT1 (Fms Related Receptor Tyrosine Kinase 1) and ENG (endoglin). Conversely, the profiles of chronic inflammation lesions show an interesting downregulation of these genes, but an upregulation of FGL2 and of FGL2-correlated immunoregulatory genes, suggesting it is upregulated downstream of major inflammatory mediators such as TNF (tumor necrosis factor)-α and IFN (interferon)-γ, hallmarks of the immunological preeclampsia subtype. This work, overall, demonstrates that FGL-2 expression levels in the term placenta reflect the unique pathophysiology that leads to immunological preeclampsia, leading to its potential as a subtype-specific biomarker.
Collapse
Affiliation(s)
- Pascale Robineau-Charette
- From the Department of Cellular and Molecular Medicine (P.R.-C., S.J.B, B.C.V., S.A.B.), University of Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada (P.R.-C., B.C.V.)
| | - David Grynspan
- Department of Pathology and Laboratory Medicine (D.G.), University of Ottawa, ON, Canada
| | - Samantha J Benton
- From the Department of Cellular and Molecular Medicine (P.R.-C., S.J.B, B.C.V., S.A.B.), University of Ottawa, ON, Canada
| | - Jeremiah Gaudet
- Faculty of Medicine and Interdisciplinary School of Health Sciences, Faculty of Health Sciences (J.G., S.A.B.), University of Ottawa, ON, Canada
| | - Brian J Cox
- Department of Physiology (B.J.C.), Faculty of Medicine, University of Toronto, ON, Canada.,Department of Obstetrics and Gynecology (B.J.C.), Faculty of Medicine, University of Toronto, ON, Canada
| | - Barbara C Vanderhyden
- From the Department of Cellular and Molecular Medicine (P.R.-C., S.J.B, B.C.V., S.A.B.), University of Ottawa, ON, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada (P.R.-C., B.C.V.)
| | - Shannon A Bainbridge
- From the Department of Cellular and Molecular Medicine (P.R.-C., S.J.B, B.C.V., S.A.B.), University of Ottawa, ON, Canada.,Faculty of Medicine and Interdisciplinary School of Health Sciences, Faculty of Health Sciences (J.G., S.A.B.), University of Ottawa, ON, Canada
| |
Collapse
|
10
|
Li T, Chen RR, Gong HP, Wang BF, Wu XX, Chen YQ, Huang ZM. FGL2 regulates IKK/NF-κB signaling in intestinal epithelial cells and lamina propria dendritic cells to attenuate dextran sulfate sodium-induced colitis. Mol Immunol 2019; 117:84-93. [PMID: 31743856 DOI: 10.1016/j.molimm.2019.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disease characterized by an abnormal immune response. Fibrinogen-like protein 2 (FGL2) is known to have immunoregulatory and anti-inflammatory activity. The level of FGL2 is elevated in patients with IBD; however, its comprehensive function in IBD is almost unknown. In our study, we explored the effect of FGL2 on dextran sulfate sodium (DSS)-induced colitis in mice and on NF-κB signaling in intestinal epithelial cells (IECs) and lamina propria dendritic cells (LPDCs). We founded that FGL2-/- mice in the colitis model showed more severe colitis manifestations than WT mice did, including weight loss, disease activity index (DAI), and colon histological scores. FGL2-/- mice treated with DSS produced more proinflammatory cytokines (IL-1β, IL-6, TNF-α) in serum than WT mice did and demonstrated upregulated expression of TNF-α and inflammatory marker enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (Cox-2) in the colon tissue. Our data suggested that DSS-treated FGL2-/- mice showed stronger activation of NF-κB signaling, especially in IECs. Next, we demonstrated that recombinant FGL2 (rFGL2) inhibited the production of proinflammatory cytokines and the expression of inflammatory marker enzymes by downregulating the NF-κB signaling in HT-29 cells. Finally, we discovered that LPDCs from the colon of DSS-treated FGL2-/- mice showed significantly upregulated expression of surface maturation co-stimulatory molecules, including CD80, CD86, CD40, and MHC class II molecules compared with that in WT mice. In addition, LPDCs in FGL2-/- treated with DSS exhibited excessive NF-κB activity and the administration of rFGL2 to FGL2-/- mice could rescue the aggravated results of FGL2-/- mice. Taken together, our findings demonstrated that FGL2 might be a target for further therapy of IBD.
Collapse
Affiliation(s)
- Tang Li
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Ru-Ru Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Hong-Peng Gong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Bin-Feng Wang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Xi-Xi Wu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Yue-Qiu Chen
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China
| | - Zhi-Ming Huang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, PR China.
| |
Collapse
|
11
|
Pan G, Zhao Z, Tang C, Ding L, Li Z, Zheng D, Zong L, Wu Z. Soluble fibrinogen-like protein 2 ameliorates acute rejection of liver transplantation in rat via inducing Kupffer cells M2 polarization. Cancer Med 2018; 7:3168-3177. [PMID: 29749104 PMCID: PMC6051168 DOI: 10.1002/cam4.1528] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023] Open
Abstract
Soluble fibrinogen-like protein 2 (sFGL2) could ameliorate acute rejection (AR) in rat cardiac transplantation. However, the role of sFGL2 in AR of liver transplantation has not been addressed. In this study, we found that FGL2 was upregulated in rat orthotropic liver transplantation (OLT) models of tolerance and positive correlation with the frequency of M2 Kupffer cells (KCs). Gain-of-function experiments in vitro showed that sFGL2 promoted the secretion of anti-inflammatory cytokines (IL-10, TGF-β) and the expression of CD206, and inhibited the activities of STAT1 and NF-κB signaling pathway. Consistently, in vivo assays showed that adeno-associated virus-mediated FGL2 (AAV-FGL2) transfer to recipients could ameliorate AR of rat OLT and induce KCs M2 polarization in allografts. Notably, we found that the recipients receiving transferred KCs from AAV-FGL2-treated allograft showed alleviated AR. Taken together, we revealed that sFGL2 ameliorated AR by inducing KCs M2 polarization.
Collapse
Affiliation(s)
- Guangrui Pan
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhengfei Zhao
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Chengyong Tang
- Department of Clinical PharmacologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Liuyue Ding
- Medical Research CenterSu Bei People's Hospital of Jiangsu ProvinceYangzhou UniversityYangzhouChina
- Department of SurgerySu Bei People's Hospital of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| | - Zhongtang Li
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Daofeng Zheng
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Liang Zong
- Medical Research CenterSu Bei People's Hospital of Jiangsu ProvinceYangzhou UniversityYangzhouChina
- Department of SurgerySu Bei People's Hospital of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| | - Zhongjun Wu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
12
|
Liu XG, Liu Y, Chen F. Soluble fibrinogen like protein 2 (sFGL2), the novel effector molecule for immunoregulation. Oncotarget 2018; 8:3711-3723. [PMID: 27732962 PMCID: PMC5356913 DOI: 10.18632/oncotarget.12533] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/29/2016] [Indexed: 02/07/2023] Open
Abstract
Soluble fibrinogen-like protein 2 (sFGL2) is the soluble form of fibrinogen-like protein 2 belonging to the fibrinogen-related protein superfamily. It is now well characterized that sFGL2 is mainly secreted by regulatory T cell (Treg) populations, and exerts potently immunosuppressive activities. By repressing not only the differentiation and proliferation of T cells but also the maturation of dendritic cells (DCs), sFGL2 acts largely as an immunosuppressant. Moreover, sFGL2 also induces apoptosis of B cells, tubular epithelial cells (TECs), sinusoidal endothelial cells (SECs), and hepatocytes. This mini-review focuses primarily on the recent literature with respect to the signaling mechanism of sFGL2 in immunomodulation, and discusses the clinical implications of sFGL2 in transplantation, hepatitis, autoimmunity, and tumors.
Collapse
Affiliation(s)
- Xin-Guang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P. R. China
| | - Yu Liu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China
| | - Feng Chen
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P. R. China.,Capital Medical University Cancer Center, Beijing Shijitan Hospital, Beijing Key Laboratory for Therapeutic Cancer Vaccines, Beijing, China
| |
Collapse
|
13
|
Bartczak A, Zhang J, Adeyi O, Amir A, Grant D, Gorczynski R, Selzner N, Chruscinski A, Levy GA. Overexpression of fibrinogen-like protein 2 protects against T cell-induced colitis. World J Gastroenterol 2017; 23:2673-2684. [PMID: 28487604 PMCID: PMC5403746 DOI: 10.3748/wjg.v23.i15.2673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/13/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To determine the effect of overexpression of fibrinogen-like protein 2 (FGL2) on regulatory T cell (Treg) and effector T (Teff) cell function on T cell-induced colitis in Rag1-/- mice. METHODS Treg and Teff cells from fgl2-/-, fgl2+/+, and fgl2Tg mice were purified by FACS. They were studied in vitro for immunosuppressive activity and cell proliferation and in vivo for their effects on the development and prevention of T cell-induced colitis in Rag1-/- mice. RESULTS In vitro, fgl2Tg Treg had enhanced immunosuppressive activity, and fgl2Tg Teff had reduced proliferation to alloantigen stimulation. Transfer of Teff from C57Bl/6J mice (fgl2+/+) into Rag1-/- mice produced both clinical and histologic colitis with dense infiltrates of CD3+ T cells, crypt abscesses and loss of goblet cells. Fgl2Tg Treg prevented the development of T cell-induced colitis, whereas fgl2+/+ and fgl2-/- Treg were only partially protective. In mice that received fgl2Tg Treg, the ratio of Foxp3+ to CD3+ cells was increased both in the colon and in mesenteric lymph nodes, and Teff cell proliferation as determined by staining with Ki67 was reduced. Teff cells from fgl2Tg mice did not produce colitis. CONCLUSION Here we show that fgl2Tg Teff are hypoproliferative and do not induce colitis. We further demonstrate that fgl2Tg Treg prevent colitis in contrast to fgl2+/+ Treg, which were only partially protective. These studies collectively provide a rationale for exploring the use of FGL2 or Treg expressing high levels of FGL2 in the treatment of inflammatory bowel disease.
Collapse
|