1
|
Luo J, Li C, Zhu Y, Guo R, Huang J, Yu H, Sun M, Zhu Q, Guo Q, Li Y, Guo P, Su L, Hu L. Deficiency of inducible nitric oxide synthase (iNOS) enhances MC903-induced atopic dermatitis-like inflammation in mice. Biochem Biophys Res Commun 2025; 771:152028. [PMID: 40398095 DOI: 10.1016/j.bbrc.2025.152028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 05/05/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Abstract
The production and secretion of inflammatory mediators contribute to the development of atopic dermatitis (AD). The production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) is essential for inflammation. Because of the association of iNOS with type 2 inflammation, upregulated iNOS expression in patients with AD suggests a potential pathogenic role of iNOS in AD. In addition, NO regulates keratinocyte and immune cell functions in various inflammatory dermatoses, contributing to the triggering and amplification of inflammation. To ascertain the role of iNOS in inflammation, we utilized a calcipotriol (CPT, MC903)-induced AD-like inflammation in C57BL/6J wildtype mice and iNOS knockout (iNOS KO) mice to investigate the role of iNOS in inflammation. The results showed that iNOS deficiency aggravated dermatitis in MC903-induced inflammation. The expression levels of pro-inflammatory cytokines and chemokines were dramatically elevated, accompanied by the activation of several pro-inflammatory signaling pathways. Moreover, immunofluorescence staining showed that iNOS was mainly expressed in the epidermis and iNOS deficiency significantly promoted the expression of inflammatory factors in keratinocytes. Additionally, topical application of NO donors ameliorated dermatitis symptoms in the iNOS KO mice. These results indicated that epidermal iNOS is important for the occurrence and development of AD. Our results also underscore the therapeutic potential of NO donors in the treatment of AD.
Collapse
Affiliation(s)
- Jing Luo
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Chenxi Li
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Yufei Zhu
- Natural Sciences, Mathematical and Physical Sciences Department, University College London (UCL), London, WC1E 6BT, UK.
| | - Ruitan Guo
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Junkai Huang
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Haoyue Yu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Mengke Sun
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Qianyu Zhu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Qi Guo
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Yingxi Li
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Pan Guo
- Tianjin Pediatric Research Institute, Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin Children's Hospital (Children's Hospital of Tianjin University), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.
| | - Long Su
- Department of Ophthalmology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Lizhi Hu
- Immunology Department, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China; Department of Ophthalmology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
2
|
Jung D, Ahn S, Park IG, Jeon Y, Lee S, Noh M. Anti-Inflammatory Activity of Cell-Penetrating Peptide Nucleic Acids Targeting Indoleamine 2,3-Dioxygenase 1 in IFNγ-Treated Human Keratinocytes. Biomol Ther (Seoul) 2025; 33:494-500. [PMID: 40275566 PMCID: PMC12059366 DOI: 10.4062/biomolther.2024.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 04/26/2025] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme that plays a pivotal role in immune regulation by metabolizing tryptophan into kynurenine, leading to T cell suppression and promoting immune tolerance. However, persistent activation of IDO1 can lead to prolonged immune stimulation in inflammatory conditions such as skin diseases and chronic inflammation. In this study, we developed modified peptide nucleic acids (PNAs) conjugated with cationic lipid chains to target IDO1 pre-mRNA and evaluated their anti-inflammatory effects in human keratinocytes. The modified PNAs demonstrated enhanced solubility, robust binding affinity, and effective penetration into keratinocytes. Quantitative PCR results showed significant downregulation of IDO1 and pro-inflammatory cytokines such as IL-6, IL-8, and PTGS2 in interferon γ (IFNγ)-treated keratinocytes. These findings suggest that cell-penetrating PNAs targeting IDO1 hold potential as a therapeutic approach for inflammatory skin disorders and chronic inflammation.
Collapse
Affiliation(s)
- Daram Jung
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- OliPass Corporation, Yongin 17015, Republic of Korea
| | - Sungjin Ahn
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - In Guk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeasel Jeon
- OliPass Corporation, Yongin 17015, Republic of Korea
| | - Sangbong Lee
- OliPass Corporation, Yongin 17015, Republic of Korea
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Liu Z, Guo M, Li Y, Xu H. A multidimensional analysis of prognostic factors in atopic dermatitis. Front Med (Lausanne) 2025; 12:1554669. [PMID: 40313541 PMCID: PMC12043433 DOI: 10.3389/fmed.2025.1554669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition with a high prevalence worldwide and multifaceted pathogenesis. In general, patients with moderate to severe AD often experience relapse after discontinuing treatment. Therefore, to understand the possible factors of chronic relapse of AD and to look for biological markers that predict the relapse or poor prognosis of AD will be helpful for clinical treatment. Mutations in genes such as FLG, SPINK5, STAT, KIF3A, claudin-1, Ovol1, and HLA-DRB1 offer new insights into the genetic basis of AD. Routine factors may help improve patient lifestyle, highlight the importance of environmental influences (including psychological stress), and support clinicians in optimizing anti-infective treatment strategies. The inflammatory axis (CD30-CD30L axis, IL-9-IL-18 axis) provides new insights into the inflammatory pathways of AD and may be a target for future therapies. Low NKG2D expression may have adverse effects on prognosis. Prognostic biomarkers can play an important role in treatment monitoring, disease progression and recurrence, and provide the possibility for more personalized treatment.
Collapse
Affiliation(s)
| | | | | | - Hui Xu
- Department of Dermatology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Indolfi C, Grella C, Klain A, Dinardo G, Colosimo S, Piatto D, Nespoli C, Perrotta A, Miraglia del Giudice M. Biomarkers in Atopic Dermatitis in Children: A Comprehensive Review. Life (Basel) 2025; 15:375. [PMID: 40141720 PMCID: PMC11943560 DOI: 10.3390/life15030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder with significant implications for patient quality of life and a well-documented association with the atopic march. Recent advancements in biomarker research have unveiled critical insights into AD pathogenesis, diagnosis, prognosis, and therapeutic monitoring. This comprehensive review evaluates the utility of emerging biomarkers, including cytokines, chemokines, genetic markers, and microbiome-related components, in understanding the disease mechanisms and stratifying patient care. The role of minimally invasive diagnostic techniques, such as tape stripping and RNA monitoring, is highlighted, offering innovative approaches to pediatric populations. Furthermore, this review explores the biomarkers that predict disease progression, therapeutic response, and comorbidities, including food allergies and asthma. Personalized treatment strategies based on endotype-specific biomarkers are discussed as a future direction for improving clinical outcomes. Despite promising findings, the integration of biomarkers into routine practice necessitates further validation through large-scale studies. This work underscores the transformative potential of biomarker-driven approaches in enhancing the management of AD in children and its associated conditions.
Collapse
Affiliation(s)
| | | | - Angela Klain
- Department of Woman, Child and General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy; (C.I.); (C.G.); (S.C.); (D.P.); (C.N.); (A.P.); (M.M.d.G.)
| | - Giulio Dinardo
- Department of Woman, Child and General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy; (C.I.); (C.G.); (S.C.); (D.P.); (C.N.); (A.P.); (M.M.d.G.)
| | | | | | | | | | | |
Collapse
|
5
|
Yue C, Zhou H, Wang X, Yu J, Hu Y, Zhou P, Zhao F, Zeng F, Li G, Li Y, Feng Y, Sun X, Huang S, He M, Wu W, Huang N, Li J. Atopic dermatitis: pathogenesis and therapeutic intervention. MedComm (Beijing) 2024; 5:e70029. [PMID: 39654684 PMCID: PMC11625510 DOI: 10.1002/mco2.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
The skin serves as the first protective barrier for nonspecific immunity and encompasses a vast network of skin-associated immune cells. Atopic dermatitis (AD) is a prevalent inflammatory skin disease that affects individuals of all ages and races, with a complex pathogenesis intricately linked to genetic, environmental factors, skin barrier dysfunction as well as immune dysfunction. Individuals diagnosed with AD frequently exhibit genetic predispositions, characterized by mutations that impact the structural integrity of the skin barrier. This barrier dysfunction leads to the release of alarmins, activating the type 2 immune pathway and recruiting various immune cells to the skin, where they coordinate cutaneous immune responses. In this review, we summarize experimental models of AD and provide an overview of its pathogenesis and the therapeutic interventions. We focus on elucidating the intricate interplay between the immune system of the skin and the complex regulatory mechanisms, as well as commonly used treatments for AD, aiming to systematically understand the cellular and molecular crosstalk in AD-affected skin. Our overarching objective is to provide novel insights and inform potential clinical interventions to reduce the incidence and impact of AD.
Collapse
Affiliation(s)
- Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Hong Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Pei Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fulei Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Guolin Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Ya Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Yuting Feng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Xiaochi Sun
- Department of CardiologyWest China HospitalSichuan UniversityChengduSichuanChina
| | - Shishi Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Mingxiang He
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversitySichuan University and Collaborative Innovation Center for BiotherapyChengduSichuanChina
| |
Collapse
|
6
|
Kim MS, Kong D, Han M, Roh K, Koo H, Lee S, Kang KS. Canine amniotic membrane-derived mesenchymal stem cells ameliorate atopic dermatitis through regeneration and immunomodulation. Vet Res Commun 2023; 47:2055-2070. [PMID: 37421548 DOI: 10.1007/s11259-023-10155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
Mesenchymal stem cells (MSCs) are a promising tool for treating immune disorders. However, the immunomodulatory effects of canine MSCs compared with other commercialized biologics for treating immune disorders have not been well studied. In this study we investigated the characteristics and immunomodulatory effects of canine amnion membrane (cAM)-MSCs. We examined gene expression of immune modulation and T lymphocytes from activated canine peripheral blood mononuclear cell (PBMC) proliferation. As a result, we confirmed that cAM-MSCs upregulated immune modulation genes (TGF-β1, IDO1 and PTGES2) and suppressed the proliferation capacity of T cells. Moreover, we confirmed the therapeutic effect of cAM-MSCs compared with oclacitinib (OCL), the most commonly used Janus kinase (JAK) inhibitor, as a treatment for canine atopic dermatitis (AD) using a mouse AD model. As a result, we confirmed that cAM-MSCs with PBS treatment groups (passage 4, 6 and 8) compared with PBS only (PBS) though scores of dermatologic signs, tissue pathologic changes and inflammatory cytokines were significantly reduced. In particular, cAM-MSCs were more effective than OCL in the recovery of wound dysfunction, regulation of mast cell activity and expression level of immune modulation protein. Interestingly, subcutaneous injection of cAM-MSCs induced weight recovery, but oral administration of oclacitinib induced weight loss as a side effect. In conclusion, this study suggests that cAM-MSCs can be developed as a safe canine treatment for atopic dermatitis without side effects through effective regeneration and immunomodulation.
Collapse
Affiliation(s)
- Min Soo Kim
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dasom Kong
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Myounghee Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyounghwan Roh
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd, Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Hojun Koo
- Smile Veterinary Clinic, Jungbu-daero, Cheoin-gu, yongin-si, Gyeonggi-do, 1510, Republic of Korea
| | - Seunghee Lee
- Stem Cell and Regenerative Bioengineering Institute, Global R&D Center, Kangstem Biotech Co. Ltd, Ace Highend Tower 8, 84, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08590, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Yu L, Li L. Potential biomarkers of atopic dermatitis. Front Med (Lausanne) 2022; 9:1028694. [PMID: 36465933 PMCID: PMC9712451 DOI: 10.3389/fmed.2022.1028694] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic, recurrent inflammatory skin disease with a wide range of heterogeneity. Accurate biomarkers or predictors are the keys to instructing personalized tailored precise treatment. The development of technology such as transcriptomics, genomics, and proteomics provides novel insights into the possibility to find potential biomarkers. Meanwhile, emerging minimally invasive methods such as tape stripping were used to reveal different profiles of patients' skin without biopsy. Several potential biomarkers or predictors have been found. In this review, we summarized the current development of potential biomarkers of AD. Nitric oxide synthase 2/inducible nitric oxide synthase (NOS2/iNOS), human beta-defensin-2 (hBD-2), and matrix metalloproteinases 8/9 (MMP8/9) may be the candidate biomarkers for AD diagnosis. Filaggrin (FLG) gene mutation increased the occurrence risk of AD. Fatty-acid-binding protein 5 (FABP5) may serve as an effective biomarker for the atopic march (AM). Squamous cell carcinoma antigen 2 (SCCA2), serum thymus and activation-regulated chemokine (TARC), cutaneous T-cell-attracting chemokine (CTACK), eosinophil-derived neurotoxin (EDN), macrophage-derived chemokine (MDC), lactate dehydrogenase (LDH), and interleukin (IL)-18 can be the candidate biomarkers for disease severity monitoring. IL-17, IL-23, IL-33, and indoleamine 2,3-dioxygenase (IDO1) can be used as predictive biomarkers for AD comorbidities. LDH, TARC, pulmonary and activation-regulated chemokine (PARC), periostin, IL-22, eotaxin-1/3, and IL-8 may be the candidate biomarkers for monitoring treatment effects. There are still unmet needs and a long way to go for more convenient, non-invasive, and effective predictors and biomarkers to better guide personalized precise treatment.
Collapse
Affiliation(s)
- Ling Yu
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Dermatology, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Dermatology, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Linfeng Li
- Department of Dermatology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
The Genetics of Eczema Herpeticum. Clin Rev Allergy Immunol 2022; 63:390-397. [DOI: 10.1007/s12016-022-08953-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
|
9
|
Mastraftsi S, Vrioni G, Bakakis M, Nicolaidou E, Rigopoulos D, Stratigos AJ, Gregoriou S. Atopic Dermatitis: Striving for Reliable Biomarkers. J Clin Med 2022; 11:jcm11164639. [PMID: 36012878 PMCID: PMC9410433 DOI: 10.3390/jcm11164639] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Atopic dermatitis (AD) is a highly heterogeneous inflammatory disease regarding both its pathophysiology and clinical manifestations. However, it is treated according to the “one-size-fits-all” approach, which may restrict response to treatment. Thus, there is an unmet need for the stratification of patients with AD into distinct endotypes and clinical phenotypes based on biomarkers that will contribute to the development of precision medicine in AD. The development of reliable biomarkers that may distinguish which patients with AD are most likely to benefit from specific targeted therapies is a complex procedure and to date none of the identified candidate biomarkers for AD has been validated for use in routine clinical practice. Reliable biomarkers in AD are expected to improve diagnosis, evaluate disease severity, predict the course of disease, the development of comorbidities, or the therapeutic response, resulting in effective and personalized treatment of AD. Among the studied AD potential biomarkers, thymus and activation-regulated chemokine/C-C motif ligand 17 (TARC/CCL17) has the greatest evidence-based support for becoming a reliable biomarker in AD correlated with disease severity in both children and adults. In this review, we present the most prominent candidate biomarkers in AD and their suggested use.
Collapse
Affiliation(s)
- Styliani Mastraftsi
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital for Skin and Venereal Diseases, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
- Correspondence: ; Tel.: +30-6974819341
| | - Georgia Vrioni
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital for Skin and Venereal Diseases, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michail Bakakis
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital for Skin and Venereal Diseases, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Electra Nicolaidou
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital for Skin and Venereal Diseases, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Dimitrios Rigopoulos
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital for Skin and Venereal Diseases, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Alexander J. Stratigos
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital for Skin and Venereal Diseases, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| | - Stamatios Gregoriou
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital for Skin and Venereal Diseases, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece
| |
Collapse
|
10
|
Zhou X, Ding S, Wang D, Chen L, Feng K, Huang T, Li Z, Cai Y. Identification of Cell Markers and Their Expression Patterns in Skin Based on Single-Cell RNA-Sequencing Profiles. Life (Basel) 2022; 12:life12040550. [PMID: 35455041 PMCID: PMC9025372 DOI: 10.3390/life12040550] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/27/2022] [Accepted: 04/04/2022] [Indexed: 12/19/2022] Open
Abstract
Atopic dermatitis and psoriasis are members of a family of inflammatory skin disorders. Cellular immune responses in skin tissues contribute to the development of these diseases. However, their underlying immune mechanisms remain to be fully elucidated. We developed a computational pipeline for analyzing the single-cell RNA-sequencing profiles of the Human Cell Atlas skin dataset to investigate the pathological mechanisms of skin diseases. First, we applied the maximum relevance criterion and the Boruta feature selection method to exclude irrelevant gene features from the single-cell gene expression profiles of inflammatory skin disease samples and healthy controls. The retained gene features were ranked by using the Monte Carlo feature selection method on the basis of their importance, and a feature list was compiled. This list was then introduced into the incremental feature selection method that combined the decision tree and random forest algorithms to extract important cell markers and thus build excellent classifiers and decision rules. These cell markers and their expression patterns have been analyzed and validated in recent studies and are potential therapeutic and diagnostic targets for skin diseases because their expression affects the pathogenesis of inflammatory skin diseases.
Collapse
Affiliation(s)
- Xianchao Zhou
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (X.Z.); (S.D.)
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shijian Ding
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (X.Z.); (S.D.)
| | - Deling Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou 510060, China;
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China;
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China;
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (T.H.); (Z.L.); (Y.C.); Tel.: +86-21-54923269 (T.H.); +86-21-66136132 (Y.C.)
| | - Zhandong Li
- College of Food Engineering, Jilin Engineering Normal University, Changchun 130052, China
- Correspondence: (T.H.); (Z.L.); (Y.C.); Tel.: +86-21-54923269 (T.H.); +86-21-66136132 (Y.C.)
| | - Yudong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China; (X.Z.); (S.D.)
- Correspondence: (T.H.); (Z.L.); (Y.C.); Tel.: +86-21-54923269 (T.H.); +86-21-66136132 (Y.C.)
| |
Collapse
|
11
|
Traidl S, Roesner L, Zeitvogel J, Werfel T. Eczema herpeticum in atopic dermatitis. Allergy 2021; 76:3017-3027. [PMID: 33844308 DOI: 10.1111/all.14853] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases leading to pruritic skin lesions. A subset of AD patients exhibits a disseminated severe HSV infection called eczema herpeticum (EH) that can cause life-threatening complications. This review gives an overview of the clinical picture, and characteristics of the patients as well as the diagnosis and therapy of EH. A special focus lies on the pathophysiological hallmarks identified so far that predispose for EH. This aspect covers genetic aberrations, immunological changes, and environmental influences displaying a complex multifactorial situation, which is not completely understood. Type 2 skewing of virus-specific T cells in ADEH+ patients has been implicated in immune profile abnormalities, along with impaired functions of dendritic cells and natural killer cells. Furthermore, aberrations in interferon pathway-related genes such as IFNG and IFNGR1 have been identified to increase the risk of EH. IL-4, IL-25, and thymic stromal lymphopoietin (TSLP) are overexpressed in EH, whereas antimicrobial peptides like human β-defensins and LL-37 are reduced. Concerning the epidermal barrier, single nucleotide polymorphisms (SNPs) in skin barrier proteins such as filaggrin were identified in ADEH+ patients. A dysbalance of the skin microbiome also contributes to EH due to an increase of Staphylococcus aureus, which provides a supporting role to the viral infection via secreted toxins such as α-toxin. The risk of EH is reduced in AD patients treated with dupilumab. Further research is needed to identify and specifically target risk factors for EH in AD patients.
Collapse
Affiliation(s)
- Stephan Traidl
- Division of Immunodermatology and Allergy Research Department of Dermatology and Allergy Hannover Medical School Hannover Germany
- Cluster of Excellence RESIST (EXC 2155) Hannover Medical School Hannover Germany
| | - Lennart Roesner
- Division of Immunodermatology and Allergy Research Department of Dermatology and Allergy Hannover Medical School Hannover Germany
- Cluster of Excellence RESIST (EXC 2155) Hannover Medical School Hannover Germany
| | - Jana Zeitvogel
- Division of Immunodermatology and Allergy Research Department of Dermatology and Allergy Hannover Medical School Hannover Germany
- Cluster of Excellence RESIST (EXC 2155) Hannover Medical School Hannover Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research Department of Dermatology and Allergy Hannover Medical School Hannover Germany
- Cluster of Excellence RESIST (EXC 2155) Hannover Medical School Hannover Germany
| |
Collapse
|
12
|
Damour A, Garcia M, Seneschal J, Lévêque N, Bodet C. Eczema Herpeticum: Clinical and Pathophysiological Aspects. Clin Rev Allergy Immunol 2021; 59:1-18. [PMID: 31836943 DOI: 10.1007/s12016-019-08768-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease in the world. AD is a complex pathology mainly characterized by an impaired skin barrier, immune response dysfunction, and unbalanced skin microbiota. Moreover, AD patients exhibit an increased risk of developing bacterial and viral infections. One of the most current, and potentially life-threatening, viral infection is caused by herpes simplex virus (HSV), which occurs in about 3% of AD patients under the name of eczema herpeticum (EH). Following a first part dedicated to the clinical features, virological diagnosis, and current treatments of EH, this review will focus on the description of the pathophysiology and, more particularly, the presently known predisposing factors to herpetic complications in AD patients. These factors include those related to impairment of the skin barrier such as deficit in filaggrin and anomalies in tight and adherens junctions. In addition, low production of the antimicrobial peptides cathelicidin LL-37 and human β-defensins; overexpression of cytokines such as interleukin (IL)-4, IL-13, IL-25, IL-33, and thymic stromal lymphopoietin (TSLP); or downregulation of type I to III interferons as well as defect in functions of immune cells such as dendritic, natural killer, and regulatory T cells have been involved. Otherwise, genetic polymorphisms and AD topical calcineurin inhibitor treatments have been associated with an increased risk of EH. Finally, dysbiosis of skin microbiota characterized in AD patients by Staphylococcus aureus colonization and toxin secretion, such as α-toxin, has been described as promoting HSV replication and could therefore contribute to EH.
Collapse
Affiliation(s)
- Alexia Damour
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331, Université de Poitiers, Poitiers, France
| | - Magali Garcia
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331, Université de Poitiers, Poitiers, France.,Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France
| | - Julien Seneschal
- INSERM U1035, BMGIC, Immuno-dermatologie ATIP-AVENIR, Bordeaux, France.,Département de Dermatologie and Dermatologie Pédiatrique, Centre national de référence pour les maladies rares de la peau, Hôpital Saint-André, Bordeaux, France
| | - Nicolas Lévêque
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331, Université de Poitiers, Poitiers, France.,Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation Tissus Epithéliaux et Cytokines EA 4331, Université de Poitiers, Poitiers, France.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW The precision medicine concept is both appealing and challenging. We review here the recent findings in the endotype-driven approach for major allergic diseases. RECENT FINDINGS Stratified medicine for different allergic diseases can identify patients who are more likely to benefit or experience an adverse reaction in response to a given therapy and anticipate their long-term outcome and vital risk. In addition, this approach potentially facilitates drug development and prevention strategies. SUMMARY The endotype-driven approach in allergic diseases has tremendous potential, but there are notable barriers in reaching the new world of precision medicine. Multidimensional endotyping integrating visible properties with multiple biomarkers is recommended for both type 2 and nontype 2 allergic diseases to provide evidence that a certain pathway is the key driver for a given patient. Significant healthcare system changes are required to achieve the expected targets.
Collapse
|
14
|
Albini E, Coletti A, Greco F, Pallotta M, Mondanelli G, Gargaro M, Belladonna M, Volpi C, Bianchi R, Grohmann U, Macchiarulo A, Orabona C. Identification of a 2-propanol analogue modulating the non-enzymatic function of indoleamine 2,3-dioxygenase 1. Biochem Pharmacol 2018; 158:286-297. [DOI: 10.1016/j.bcp.2018.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022]
|
15
|
Abstract
Atopic dermatitis is characterized by the interplay of skin barrier defects with the immune system and skin microbiome that causes patients to be at risk for infectious complications. This article reviews the pathogenesis of atopic dermatitis and the mechanisms through which patients are at risk for infection from bacterial, viral, and fungal pathogens. Although these complications may be managed acutely, prevention of secondary infections depends on a multipronged approach in the maintenance of skin integrity, control of flares, and microbial pathogens.
Collapse
Affiliation(s)
- Di Sun
- Department of Pediatrics, Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
| | - Peck Y Ong
- Department of Pediatrics, Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA; Division of Clinical Immunology and Allergy, Children's Hospital Los Angeles, 4650 Sunset Boulevard, MS 75, Los Angeles, CA 90027, USA.
| |
Collapse
|
16
|
Koch S, Stroisch TJ, Vorac J, Herrmann N, Leib N, Schnautz S, Kirins H, Förster I, Weighardt H, Bieber T. AhR mediates an anti-inflammatory feedback mechanism in human Langerhans cells involving FcεRI and IDO. Allergy 2017; 72:1686-1693. [PMID: 28376268 DOI: 10.1111/all.13170] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Aryl hydrocarbon receptor (AhR), an important regulator of immune responses, is activated by UVB irradiation in the skin. Langerhans cells (LC) in the epidermis of patients with atopic dermatitis (AD) carry the high-affinity receptor for IgE, FcεRI, and are crucially involved in the pathogenesis of AD by inducing inflammatory responses and regulating tolerogenic processes. OBJECTIVES We investigated AhR and AhR repressor (AhRR) expression and functional consequences of AhR activation in human ex vivo skin cells and in in vitro-generated LC. METHODS Epidermal cells from healthy skin were analyzed for their expression of AhR and AhRR. LC generated from CD34+ hematopoietic stem cells (CD34LC) were treated with the UV photoproduct and AhR ligand 6-formylindolo[3,2-b]carbazole (FICZ). Cell surface receptors, transcription factors, and the tolerogenic tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) were analyzed using flow cytometry and quantitative PCR. RESULTS Epidermal LC and CD34LC express AhR and AhRR. AhR was also found in keratinocytes, which lack AhRR. AhR activation of LC by FICZ caused downregulation of FcεRI in CD34LC without affecting their maturation. AhR-mediated regulation of FcεRI did not involve any known transcription factors related to this receptor. Furthermore, we could show upregulation of IDO mediated by AhR engagement. CONCLUSIONS Our study shows that AhR activation by FICZ reduces FcεRI and upregulates IDO expression in LC. This AhR-mediated anti-inflammatory feedback mechanism may dampen the allergen-induced inflammation in AD.
Collapse
Affiliation(s)
- S. Koch
- Department of Dermatology and AllergyChristine Kühne ‐ Center for Allergy Research and Education (CK‐CARE)University of BonnBonnGermany
| | - T. J. Stroisch
- Department of Dermatology and AllergyChristine Kühne ‐ Center for Allergy Research and Education (CK‐CARE)University of BonnBonnGermany
| | - J. Vorac
- LIMES Institute, Immunology and EnvironmentUniversity of BonnBonnGermany
| | - N. Herrmann
- Department of Dermatology and AllergyChristine Kühne ‐ Center for Allergy Research and Education (CK‐CARE)University of BonnBonnGermany
| | - N. Leib
- Department of Dermatology and AllergyChristine Kühne ‐ Center for Allergy Research and Education (CK‐CARE)University of BonnBonnGermany
| | - S. Schnautz
- Department of Dermatology and AllergyChristine Kühne ‐ Center for Allergy Research and Education (CK‐CARE)University of BonnBonnGermany
| | - H. Kirins
- Department of Dermatology and AllergyChristine Kühne ‐ Center for Allergy Research and Education (CK‐CARE)University of BonnBonnGermany
| | - I. Förster
- LIMES Institute, Immunology and EnvironmentUniversity of BonnBonnGermany
| | - H. Weighardt
- LIMES Institute, Immunology and EnvironmentUniversity of BonnBonnGermany
- Innate Immunity and Extrinsic Skin AgingIUF ‐ Leibniz Research Institute for Environmental MedicineDüsseldorfGermany
| | - T. Bieber
- Department of Dermatology and AllergyChristine Kühne ‐ Center for Allergy Research and Education (CK‐CARE)University of BonnBonnGermany
| |
Collapse
|
17
|
Rowe RK, Gill MA. Effects of Allergic Sensitization on Antiviral Immunity: Allergen, Virus, and Host Cell Mechanisms. Curr Allergy Asthma Rep 2017; 17:9. [PMID: 28233152 DOI: 10.1007/s11882-017-0677-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Multiple clinical and epidemiological studies demonstrate links between allergic sensitization and virus-induced atopic disease exacerbations. This review summarizes the recent findings regarding allergen, viral, and host cellular mechanisms relevant to these observations. RECENT FINDINGS Recent studies have focused on the molecular pathways and genetic influences involved in allergen-mediated inhibition of innate antiviral immune responses. Multiple tissue and cell types from atopic individuals across the atopy spectrum exhibit deficient interferon responses to a variety of virus infections. Impairment in barrier function, viral RNA and DNA recognition by intracellular sensing molecules, and dysregulation of signaling components are broadly affected by allergic sensitization. Finally, genetic predisposition by numerous nucleotide polymorphisms also impacts immune pathways and potentially contributes to virus-associated atopic disease pathogenesis. Allergen-virus interactions in the setting of atopy involve complex tissue and cellular mechanisms. Future studies defining the pathways underlying these interactions could uncover potential therapeutic targets. Available data suggest that therapies tailored to restore specific components of antiviral responses will likely lead to improved clinical outcomes in allergic disease.
Collapse
Affiliation(s)
- Regina K Rowe
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA
| | - Michelle A Gill
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9063, USA. .,Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Bieber T, D'Erme AM, Akdis CA, Traidl-Hoffmann C, Lauener R, Schäppi G, Schmid-Grendelmeier P. Clinical phenotypes and endophenotypes of atopic dermatitis: Where are we, and where should we go? J Allergy Clin Immunol 2017; 139:S58-S64. [PMID: 28390478 DOI: 10.1016/j.jaci.2017.01.008] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/13/2017] [Accepted: 01/24/2017] [Indexed: 12/15/2022]
Abstract
Atopic dermatitis (AD) is a paradigmatic chronic inflammatory skin disease characterized by a complex pathophysiology and a wide spectrum of the clinical phenotype. Despite this high degree of heterogeneity, AD is still considered a single disease and usually treated according to the "one-size-fits-all" approach. Thus more tailored prevention and therapeutic strategies are still lacking. As for other disciplines, such as oncology or rheumatology, we have to approach AD in a more differentiated way (ie, to dissect and stratify the complex clinical phenotype into more homogeneous subgroups based on the endophenotype [panel of biomarkers]) with the aim to refine the management of this condition. Because we are now entering the era of personalized medicine, a systems biology approach merging the numerous clinical phenotypes with robust (ie, relevant and validated) biomarkers will be needed to best exploit their potential significance for the future molecular taxonomy of AD. This approach will not only allow an optimized prevention and treatment with the available drugs but also hopefully help assign newly developed medicinal products to those patients who will have the best benefit/risk ratio.
Collapse
Affiliation(s)
- Thomas Bieber
- Department of Dermatology and Allergy, University of Bonn, Bonn, Germany; Christine Kühne-Center for Allergy Research and Education (CK-CARE) Davos-Augsburg-Bonn-St Gallen-Zürich, St Gallen, Switzerland.
| | - Angelo M D'Erme
- Unit of Dermatology, Livorno Hospital, Livomo, Italy; Unit of Dermatology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cezmi A Akdis
- Christine Kühne-Center for Allergy Research and Education (CK-CARE) Davos-Augsburg-Bonn-St Gallen-Zürich, St Gallen, Switzerland; Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - Claudia Traidl-Hoffmann
- Christine Kühne-Center for Allergy Research and Education (CK-CARE) Davos-Augsburg-Bonn-St Gallen-Zürich, St Gallen, Switzerland; Institute for Environmental Medicine, Technische Universität München and Helmholtzzentrum München, Munich, Germany
| | - Roger Lauener
- Christine Kühne-Center for Allergy Research and Education (CK-CARE) Davos-Augsburg-Bonn-St Gallen-Zürich, St Gallen, Switzerland; Children's Hospital of Eastern Switzerland, St Gallen, and the University of Zurich, Zurich, Switzerland
| | - Georg Schäppi
- Christine Kühne-Center for Allergy Research and Education (CK-CARE) Davos-Augsburg-Bonn-St Gallen-Zürich, St Gallen, Switzerland
| | - Peter Schmid-Grendelmeier
- Christine Kühne-Center for Allergy Research and Education (CK-CARE) Davos-Augsburg-Bonn-St Gallen-Zürich, St Gallen, Switzerland; Allergy Unit, Department of Dermatology, University Hospital, Zurich, Switzerland
| |
Collapse
|
19
|
Werfel T, Allam JP, Biedermann T, Eyerich K, Gilles S, Guttman-Yassky E, Hoetzenecker W, Knol E, Simon HU, Wollenberg A, Bieber T, Lauener R, Schmid-Grendelmeier P, Traidl-Hoffmann C, Akdis CA. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J Allergy Clin Immunol 2017; 138:336-49. [PMID: 27497276 DOI: 10.1016/j.jaci.2016.06.010] [Citation(s) in RCA: 433] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/18/2022]
Abstract
Atopic dermatitis (AD) is a complex skin disease frequently associated with other diseases of the atopic diathesis. Recent evidence supports the concept that AD can also recognize other comorbidities, such as chronic inflammatory bowel or cardiovascular diseases. These comorbidities might result from chronic cutaneous inflammation or from a common, yet-to-be-defined immunologic background leading to immune deviations. The activation of immune cells and their migration to the skin play an essential role in the pathogenesis of AD. In patients with AD, an underlying immune deviation might result in higher susceptibility of the skin to environmental factors. There is a high unmet medical need to define immunologic endotypes of AD because it has significant implications on upcoming stratification of the phenotype of AD and the resulting targeted therapies in the development of precision medicine. This review article emphasizes studies on environmental factors affecting AD development and novel biological agents used in the treatment of AD. Best evidence of the clinical efficacy of novel immunologic approaches using biological agents in patients with AD is available for the anti-IL-4 receptor α-chain antibody dupilumab, but a number of studies are currently ongoing with other specific antagonists to immune system players. These targeted molecules can be expressed on or drive the cellular players infiltrating the skin (eg, T lymphocytes, dendritic cells, or eosinophils). Such approaches can have immunomodulatory and thereby beneficial clinical effects on the overall skin condition, as well as on the underlying immune deviation that might play a role in comorbidities. An effect of these immunologic treatments on pruritus and the disturbed microbiome in patients with AD has other potential consequences for treatment.
Collapse
Affiliation(s)
- Thomas Werfel
- Division of Immunodermatology and Allergy Research, Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany.
| | - Jean-Pierre Allam
- Department of Dermatology and Allergy, Rheinische Friedrich Wilhelm University, Bonn, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Kilian Eyerich
- Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany
| | - Stefanie Gilles
- Institute of Environmental Medicine, UNIKA-T, Technical University Munich and Helmholtz Zentrum München, Augsburg, Germany
| | - Emma Guttman-Yassky
- Laboratory for Investigative Dermatology, Rockefeller University, and the Department of Dermatology and the Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Wolfram Hoetzenecker
- Department of Dermatology/Allergology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Edward Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Andreas Wollenberg
- Department of Dermatology and Allergy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Bieber
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Department of Dermatology and Allergy, University of Bonn, Bonn, Germany
| | - Roger Lauener
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Children's Hospital of Eastern Switzerland, St Gallen, Switzerland
| | - Peter Schmid-Grendelmeier
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Allergy Unit, University of Zurich, Zurich, Switzerland
| | - Claudia Traidl-Hoffmann
- Institute of Environmental Medicine, UNIKA-T, Technical University Munich and Helmholtz Zentrum München, Augsburg, Germany; Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Cezmi A Akdis
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland; Swiss Institute for Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
20
|
Precision medicine in patients with allergic diseases: Airway diseases and atopic dermatitis-PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 2017; 137:1347-58. [PMID: 27155030 DOI: 10.1016/j.jaci.2016.03.010] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/01/2023]
Abstract
In this consensus document we summarize the current knowledge on major asthma, rhinitis, and atopic dermatitis endotypes under the auspices of the PRACTALL collaboration platform. PRACTALL is an initiative of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology aiming to harmonize the European and American approaches to best allergy practice and science. Precision medicine is of broad relevance for the management of asthma, rhinitis, and atopic dermatitis in the context of a better selection of treatment responders, risk prediction, and design of disease-modifying strategies. Progress has been made in profiling the type 2 immune response-driven asthma. The endotype driven approach for non-type 2 immune response asthma, rhinitis, and atopic dermatitis is lagging behind. Validation and qualification of biomarkers are needed to facilitate their translation into pathway-specific diagnostic tests. Wide consensus between academia, governmental regulators, and industry for further development and application of precision medicine in management of allergic diseases is of utmost importance. Improved knowledge of disease pathogenesis together with defining validated and qualified biomarkers are key approaches to precision medicine.
Collapse
|
21
|
Early Immune Regulatory Changes in a Primary Controlled Human Plasmodium vivax Infection: CD1c + Myeloid Dendritic Cell Maturation Arrest, Induction of the Kynurenine Pathway, and Regulatory T Cell Activation. Infect Immun 2017; 85:IAI.00986-16. [PMID: 28320838 DOI: 10.1128/iai.00986-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/15/2017] [Indexed: 01/03/2023] Open
Abstract
Plasmodium vivax malaria remains a major public health problem. The requirements for acquisition of protective immunity to the species are not clear. Dendritic cells (DC) are essential for immune cell priming but also perform immune regulatory functions, along with regulatory T cells (Treg). An important function of DC involves activation of the kynurenine pathway via indoleamine 2,3-dioxygenase (IDO). Using a controlled human experimental infection study with blood-stage P. vivax, we characterized plasmacytoid DC (pDC) and myeloid DC (mDC) subset maturation, CD4+ CD25+ CD127lo Treg activation, and IDO activity. Blood samples were collected from six healthy adults preinoculation, at peak parasitemia (day 14; ∼31,400 parasites/ml), and 24 and 48 h after antimalarial treatment. CD1c+ and CD141+ mDC and pDC numbers markedly declined at peak parasitemia, while CD16+ mDC numbers appeared less affected. HLA-DR expression was selectively reduced on CD1c+ mDC, increased on CD16+ mDC, and was unaltered on pDC. Plasma IFN-γ increased significantly and was correlated with an increased kynurenine/tryptophan (KT) ratio, a measure of IDO activity. At peak parasitemia, Treg presented an activated CD4+ CD25+ CD127lo CD45RA- phenotype and upregulated TNFR2 expression. In a mixed-effects model, the KT ratio was positively associated with an increase in activated Treg. Our data demonstrate that a primary P. vivax infection exerts immune modulatory effects by impairing HLA-DR expression on CD1c+ mDC while activating CD16+ mDC. Induction of the kynurenine pathway and increased Treg activation, together with skewed mDC maturation, suggest P. vivax promotes an immunosuppressive environment, likely impairing the development of a protective host immune response.
Collapse
|
22
|
Polak ME, Ung CY, Masapust J, Freeman TC, Ardern-Jones MR. Petri Net computational modelling of Langerhans cell Interferon Regulatory Factor Network predicts their role in T cell activation. Sci Rep 2017; 7:668. [PMID: 28386100 PMCID: PMC5428800 DOI: 10.1038/s41598-017-00651-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 03/08/2017] [Indexed: 01/29/2023] Open
Abstract
Langerhans cells (LCs) are able to orchestrate adaptive immune responses in the skin by interpreting the microenvironmental context in which they encounter foreign substances, but the regulatory basis for this has not been established. Utilising systems immunology approaches combining in silico modelling of a reconstructed gene regulatory network (GRN) with in vitro validation of the predictions, we sought to determine the mechanisms of regulation of immune responses in human primary LCs. The key role of Interferon regulatory factors (IRFs) as controllers of the human Langerhans cell response to epidermal cytokines was revealed by whole transcriptome analysis. Applying Boolean logic we assembled a Petri net-based model of the IRF-GRN which provides molecular pathway predictions for the induction of different transcriptional programmes in LCs. In silico simulations performed after model parameterisation with transcription factor expression values predicted that human LC activation of antigen-specific CD8 T cells would be differentially regulated by epidermal cytokine induction of specific IRF-controlled pathways. This was confirmed by in vitro measurement of IFN-γ production by activated T cells. As a proof of concept, this approach shows that stochastic modelling of a specific immune networks renders transcriptome data valuable for the prediction of functional outcomes of immune responses.
Collapse
Affiliation(s)
- Marta E Polak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK.
- Institute for Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK.
| | - Chuin Ying Ung
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Joanna Masapust
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Midlothian, EH25 9RG, UK
| | - Michael R Ardern-Jones
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, SO16 6YD, Southampton, UK
| |
Collapse
|
23
|
Thijs JL, de Bruin-Weller MS, Hijnen D. Current and Future Biomarkers in Atopic Dermatitis. Immunol Allergy Clin North Am 2017; 37:51-61. [DOI: 10.1016/j.iac.2016.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Novikov O, Wang Z, Stanford EA, Parks AJ, Ramirez-Cardenas A, Landesman E, Laklouk I, Sarita-Reyes C, Gusenleitner D, Li A, Monti S, Manteiga S, Lee K, Sherr DH. An Aryl Hydrocarbon Receptor-Mediated Amplification Loop That Enforces Cell Migration in ER-/PR-/Her2- Human Breast Cancer Cells. Mol Pharmacol 2016; 90:674-688. [PMID: 27573671 PMCID: PMC5074452 DOI: 10.1124/mol.116.105361] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/24/2016] [Indexed: 12/18/2022] Open
Abstract
The endogenous ligand-activated aryl hydrocarbon receptor (AHR) plays an important role in numerous biologic processes. As the known number of AHR-mediated processes grows, so too does the importance of determining what endogenous AHR ligands are produced, how their production is regulated, and what biologic consequences ensue. Consequently, our studies were designed primarily to determine whether ER-/PR-/Her2- breast cancer cells have the potential to produce endogenous AHR ligands and, if so, how production of these ligands is controlled. We postulated that: 1) malignant cells produce tryptophan-derived AHR ligand(s) through the kynurenine pathway; 2) these metabolites have the potential to drive AHR-dependent breast cancer migration; 3) the AHR controls expression of a rate-limiting kynurenine pathway enzyme(s) in a closed amplification loop; and 4) environmental AHR ligands mimic the effects of endogenous ligands. Data presented in this work indicate that primary human breast cancers, and their metastases, express high levels of AHR and tryptophan-2,3-dioxygenase (TDO); representative ER-/PR-/Her2- cell lines express TDO and produce sufficient intracellular kynurenine and xanthurenic acid concentrations to chronically activate the AHR. TDO overexpression, or excess kynurenine or xanthurenic acid, accelerates migration in an AHR-dependent fashion. Environmental AHR ligands 2,3,7,8-tetrachlorodibenzo[p]dioxin and benzo[a]pyrene mimic this effect. AHR knockdown or inhibition significantly reduces TDO2 expression. These studies identify, for the first time, a positive amplification loop in which AHR-dependent TDO2 expression contributes to endogenous AHR ligand production. The net biologic effect of AHR activation by endogenous ligands, which can be mimicked by environmental ligands, is an increase in tumor cell migration, a measure of tumor aggressiveness.
Collapse
MESH Headings
- Cell Line, Tumor
- Cell Movement
- Female
- Gene Amplification
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Immunohistochemistry
- Kynurenine/metabolism
- Ligands
- Models, Biological
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, ErbB-2/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/metabolism
- Triple Negative Breast Neoplasms/pathology
- Tryptophan/metabolism
- Tryptophan Oxygenase/genetics
- Tryptophan Oxygenase/metabolism
- Xanthurenates/metabolism
Collapse
Affiliation(s)
- Olga Novikov
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Zhongyan Wang
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Elizabeth A Stanford
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Ashley J Parks
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Alejandra Ramirez-Cardenas
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Esther Landesman
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Israa Laklouk
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Carmen Sarita-Reyes
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Daniel Gusenleitner
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Amy Li
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Stefano Monti
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Sara Manteiga
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - Kyongbum Lee
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| | - David H Sherr
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts (O.N., Z.W., E.A.S., A.J.P., A.R.-C., D.H.S.); Boston University Molecular and Translational Medicine Program, Boston, Massachusetts (O.N., E.A.S.); Department of Medicine, Division of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts (D.G., A.L., S.Mo.); Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts (E.L., I.L., C.S.-R.); and Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts (S.Ma., K.L.)
| |
Collapse
|
25
|
Bieber T. Why we need a harmonized name for atopic dermatitis/atopic eczema/eczema! Allergy 2016; 71:1379-80. [PMID: 27624706 DOI: 10.1111/all.12984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- T. Bieber
- Department of Dermatology and Allergy; University Medical Center; Bonn Germany
- Christine Kühne-Center for Allergy Research and Education; Bonn Germany
| |
Collapse
|