1
|
Gehlhaar P, Schaper-Gerhardt K, Gutzmer R, Hasler F, Röhn TA, Werfel T, Mommert S. Histamine and TH2 cytokines regulate the biosynthesis of cysteinyl-leukotrienes and expression of their receptors in human mast cells. Inflamm Res 2025; 74:32. [PMID: 39890627 PMCID: PMC11785601 DOI: 10.1007/s00011-024-01974-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/28/2024] [Accepted: 11/25/2024] [Indexed: 02/03/2025] Open
Abstract
INTRODUCTION In skin lesions of atopic dermatitis (AD), a chronic inflammatory skin disease, mast cells beyond other immune cells are present in increasing numbers. Upon activation, mast cells release a plethora of mediators, in particular histamine and leukotrienes, as well as chemokines and cytokines, which modulate the immune response of cells in their microenvironment and may influence mast cells in an autocrine loop. This study investigated the effects of histamine and TH2 cytokines on the biosynthesis of cysteinyl leukotrienes (CysLTs) as well as CysLT receptor expression on human mast cells from healthy volunteers and patients with AD. METHODS Human mast cells were generated from CD34+ progenitor cells from peripheral blood. The cultured mast cells were stimulated with IL-4, IL-13, histamine and different histamine receptor selective ligands. Expression of enzymes in the biosynthesis of leukotrienes and expression of CysLT receptors were quantified by real-time PCR. The release of CysLTs was measured by ELISA. RESULTS Mast cells from AD patients showed higher expression of 5-Lipoxygenase (5-LO) and 5-Lipoxygenase activating protein (FLAP) compared to mast cells from healthy volunteers at baseline and in presence of histamine and TH2 cytokines. Expression of leukotriene C4 synthase (LTC4S), the biosynthesis of CysLTs, and mRNA expression of both CysLT receptors were induced by histamine and TH2 cytokines in mast cells from healthy volunteers and AD patients. CONCLUSION We provide evidence that in an acute allergic situation histamine and TH2 cytokines may activate the biosynthesis of pro-allergic cysteinyl leukotrienes and up-regulation of CysLT receptor expression in human mast cells. This suggests a novel mechanism for sustaining mast cell activation through a possible autocrine signalling loop under these conditions.
Collapse
Affiliation(s)
- Patricia Gehlhaar
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Katrin Schaper-Gerhardt
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Germany
| | - Ralf Gutzmer
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, Minden, Germany
| | - Franziska Hasler
- Immunology Disease Area, Novartis BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Till A Röhn
- Immunology Disease Area, Novartis BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Susanne Mommert
- Department of Dermatology and Allergy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
2
|
Santoro D, Nadeau P, Archer L. Investigation on the in vitro effects of resveratrol on peripheral blood mononuclear cells harvested from healthy and atopic dogs. Res Vet Sci 2024; 180:105441. [PMID: 39481303 DOI: 10.1016/j.rvsc.2024.105441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024]
Abstract
Canine atopic dermatitis (AD) is a common skin disease. Many therapeutic options are available to decrease inflammation and ameliorate pruritus. However, those treatments are associated with side effects, a long lag phase for efficacy, or high expense. Natural plant extracts have been identified as possible, safer alternatives to traditional anti-inflammatory and antipruritic drugs. Resveratrol has been revisited as a new, possible alternative for its numerous beneficial properties. The purpose of this study was to evaluate the in vitro effects of resveratrol on peripheral blood mononuclear cells (PBMC) harvested from healthy and atopic privately-owned dogs. The PBMC harvested from nine healthy and 11 atopic dogs were isolated and exposed to four concentrations (1.5-9 μg/mL) of resveratrol both with or without phytohemagglutinin stimulation. After 24 h cytotoxicity, host defense peptides (HDPs), as well as oxidative stress (catalase and superoxide dismutase), and pro-inflammatory cytokines were assessed. Cytotoxicity was not observed in either group under any experimental conditions. An increase in catalase was only seen in healthy PBMC after exposure to low concentrations of resveratrol (p ≤ 0.03). Resveratrol did not show any effect on canine HDPs. Compared to baseline, there was a significant reduction in monocyte chemotactic protein-1 and interleukin-6 after exposure to 9 μg/mL of resveratrol in unstimulated healthy (p = 0.029) and stimulated atopic (p = 0.0075) PBMC. In conclusion, these data confirm the overall lack of cytotoxicity of resveratrol on healthy and atopic PBMC at the tested concentrations. However, at the concentrations tested, there was only a minimal effect of resveratrol on the secretion of HDPs and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16(th) Ave., Gainesville, FL 32610, USA.
| | - Peter Nadeau
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16(th) Ave., Gainesville, FL 32610, USA
| | - Linda Archer
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16(th) Ave., Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Gao J, Li D, Feng Z, Zhu X, Yang F, Zhang B, Hu M, Wang Y, Feng H, Yu Y, Xie Q, Chen Z, Li Y. Diterpenoid DGT alleviates atopic dermatitis-like responses in vitro and in vivo via targeting IL-4Rα. Biomed Pharmacother 2024; 179:117321. [PMID: 39191027 DOI: 10.1016/j.biopha.2024.117321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Atopic dermatitis is a common chronic inflammatory skin disease characterized by relapsing eczema and intense itch. DGT is a novel synthetic heterocyclic diterpenoid derived from plants. Its therapeutic potential and mechanism(s) of action are poorly understood. OBJECTIVES We investigated the potent therapeutic effect of DGT on atopic dermatitis, exploring the underlying mechanisms and determining whether DGT is a safe and well-tolerated topical treatment. METHODS We observed anti-inflammatory effects of DGT on tumor necrosis factor-α/interferon-γ-treated human keratinocytes, and anti-allergic effects on immunoglobulin E-sensitized bone marrow-derived mast cells. In vivo, DGT was topically applied to two experimental mouse models of atopic dermatitis: oxazolone-induced sensitization and topically applied calcipotriol. Then the therapeutic effects of DGT were evaluated physiologically and morphologically. Moreover, we performed nonclinical toxicology and safety pharmacology research, including general toxicity, pharmacokinetics, and safety pharmacology on the cardiovascular, respiratory, and central nervous systems. RESULTS In keratinocytes, DGT reduced the expression of inflammatory factors, promoting the expression of barrier functional proteins and tight junctions and maintaining the steady state of barrier function. DGT also inhibited the activation and degranulation of mast cells induced by immunoglobulin E. Moreover, we found that interleukin-4 receptor-α was the possible target of DGT. Meanwhile, DGT had therapeutic effects on oxazolone/calcipotriol-treated mice. Notably, our pharmacology results demonstrated that DGT was safe and nontoxic in our studies. CONCLUSION DGT's potent anti-inflammatory effects and good safety profile suggest that it is a potential candidate for the treatment of atopic dermatitis.
Collapse
Affiliation(s)
- Jingjing Gao
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China; Department of Laboratory Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Dong Li
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Zhangyang Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Xiaoqiang Zhu
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Fei Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China; Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Biyan Zhang
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Mingming Hu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yanping Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
| | - Haimei Feng
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Yunhui Yu
- Department of Pharmacology, Suzhou Pharmavan Co., Ltd, Suzhou, China
| | - Qing Xie
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Zijun Chen
- College of traditional Chinese medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yunsen Li
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Kim HH, Jeong SH, Park MY, Bhosale PB, Abusaliya A, Heo JD, Kim HW, Seong JK, Kim TY, Park JW, Kim BS, Kim GS. The Skin Histopathology of Pro- and Parabiotics in a Mouse Model of Atopic Dermatitis. Nutrients 2024; 16:2903. [PMID: 39275219 PMCID: PMC11397434 DOI: 10.3390/nu16172903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
As it has been revealed that the activation of human immune cells through the activity of intestinal microorganisms such as pro- and prebiotics plays a vital role, controlling the proliferation of beneficial bacteria and suppressing harmful bacteria in the intestine has become essential. The importance of probiotics, especially for skin health and the immune system, has led to the emergence of products in various forms, including probiotics, prebiotics, and parabiotics. In particular, atopic dermatitis (AD) produces hypersensitive immunosuppressive substances by promoting the differentiation and activity of immune regulatory T cells. As a result, it has been in the Th1 and Th2 immune balance through a mechanism that suppresses skin inflammation or allergic immune responses caused by bacteria. Furthermore, an immune mechanism has recently emerged that simultaneously controls the expression of IL-17 produced by Th17. Therefore, the anti-atopic effect was investigated by administering doses of anti-atopic candidate substances (Lactobacilus sakei CVL-001, Lactobacilus casei MCL, and Lactobacilus sakei CVL-001 Lactobacilus casei MCL mixed at a ratio of 4:3) in an atopy model using 2,4-dinitrochlorobenzene and observing symptom changes for 2 weeks to confirm the effect of pro-, para-, and mixed biotics on AD. First, the body weight and feed intake of the experimental animals were investigated, and total IgG and IgM were confirmed through blood biochemical tests. Afterward, histopathological staining was performed using H&E staining, Toluidine blue staining, Filaggrin staining, and CD8 antibody staining. In the treatment group, the hyperproliferation of the epidermal layer, the inflammatory cell infiltration of the dermal layer, the expression of CD8, the expression of filaggrin, and the secretion of mast cells were confirmed to be significantly reduced. Lastly, small intestine villi were observed through a scanning microscope, and scoring evaluation was performed through skin damage. Through these results, it was confirmed that AD was reduced when treated with pro-, para-, and mixed biotics containing probiotics and parabiotics.
Collapse
Affiliation(s)
- Hun Hwan Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Se Hyo Jeong
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Min Yeong Park
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Abuyaseer Abusaliya
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong Doo Heo
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, Jinju 52834, Republic of Korea
| | - Hyun Wook Kim
- Division of Animal Bioscience & Intergrated Biotechnology, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Yang Kim
- R&D Group, Kick the Hurdle, Changwon-si 51139, Republic of Korea
| | - Jeong Woo Park
- R&D Group, Kick the Hurdle, Changwon-si 51139, Republic of Korea
| | - Byeong Soo Kim
- R&D Group, Kick the Hurdle, Changwon-si 51139, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Ding Q, Lin L, Li X, Xie X, Lu T. Association between systemic immune-inflammation index and atopic dermatitis: a cross-sectional study of NHANES 2001-2006. Front Med (Lausanne) 2024; 11:1461596. [PMID: 39267962 PMCID: PMC11390369 DOI: 10.3389/fmed.2024.1461596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Background While several studies have noted a higher SII correlates with multiple diseases, research on the association between SII and atopic dermatitis remains limited. Our cross-sectional study seeks to examine the association between SII and atopic dermatitis among outpatient US adults. Methods This compensatory cross-sectional study utilized NHANES data from 2001-2006 cycles, conducting sample-weighted multivariate logistic regression and stratified analysis of sub-groups. Results Higher levels of SII were positively associated with an increased risk of atopic dermatitis in adults with BMI <30 (OR, 1.44; 95% CI, 1.10-1.90) (p = 0.010). Conclusion Our findings suggested SII higher than 330 × 109/L was positively associated with a high risk of atopic dermatitis in US adults with BMI <30. To our knowledge, this is the first study focused on the risk of higher SII on atopic dermatitis in the outpatient US population. Currently, there are differences in the standards used to diagnose atopic dermatitis across countries, and our study may have implications.
Collapse
Affiliation(s)
- Qike Ding
- Department of Dermatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lihong Lin
- Department of Dermatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoting Li
- Department of Dermatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoping Xie
- Department of Dermatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Tao Lu
- Department of Dermatology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
6
|
Roquini D, Lemes BL, Kreutz ALB, Spoladore SC, Amaro MC, Lopes FB, Fernandes JP, de Moraes J. Antihistamines H 1 as Potential Anthelmintic Agents against the Zoonotic Parasite Angiostrongylus cantonensis. ACS OMEGA 2024; 9:31159-31165. [PMID: 39035884 PMCID: PMC11256074 DOI: 10.1021/acsomega.4c04773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Infections caused by parasitic helminths pose significant health concerns for both humans and animals. The limited efficacy of existing drugs underscores the urgent need for novel anthelmintic agents. Given the reported potential of antihistamines against various parasites, including worms, this study conducted a screening of clinically available antihistamines against Angiostrongylus cantonensis-a nematode with widespread implications for vertebrate hosts, including humans. Twenty-one anti-H1 antihistamines were screened against first-stage larvae (L1) of A. cantonensis obtained from the feces of infected rats. Standard anthelmintic drugs ivermectin and albendazole were employed for comparative analysis. The findings revealed four active compounds (promethazine, cinnarizine, desloratadine, and rupatadine), with promethazine demonstrating the highest potency (EC50 = 31.6 μM). Additionally, morphological analysis showed that antihistamines induced significant changes in larvae. To understand the mechanism of action, antimuscarinic activities were reported based on average pK i values for human muscarinic receptor (mAChR) subtypes of the evaluated compounds. Furthermore, an analysis of the physicochemical and pharmacodynamic properties of antihistamines revealed that their anthelmintic activity does not correlate with their activity at H1 receptors. This study marks the first documentation of antihistamines' activity against A. cantonensis, offering a valuable contribution to the quest for novel agents effective against zoonotic helminths.
Collapse
Affiliation(s)
- Daniel
B. Roquini
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
| | - Bruna L. Lemes
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
| | - Amanda L. B. Kreutz
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
| | - Sophia C. Spoladore
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
| | - Monique C. Amaro
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
| | - Flavia B. Lopes
- Departamento
de Medicina, Universidade Federal de São
Paulo, 04023-062 São Paulo, SP, Brazil
- Departamento
de Ciências Farmacêuticas, Universidade Federal de São Paulo, 09913-030 Diadema, SP, Brazil
| | - João Paulo
S. Fernandes
- Departamento
de Ciências Farmacêuticas, Universidade Federal de São Paulo, 09913-030 Diadema, SP, Brazil
| | - Josué de Moraes
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, 07023-070 Guarulhos, SP, Brazil
- Núcleo
de Pesquisa em Doenças Negligenciadas, Instituto Científico e Tecnológico, Universidade Brasil, 08230-030 São
Paulo, SP, Brazil
| |
Collapse
|
7
|
Zhou W, Zeng D, Liu S, Huang Y, Lv F, Zhou W. Histone deacetylase 3 inhibition alleviates 2,4-dinitrochlorobenzene-induced atopic dermatitis via epigenetically upregulating Nrf2/HO-1 signaling pathway. Int Immunopharmacol 2024; 126:111107. [PMID: 37992448 DOI: 10.1016/j.intimp.2023.111107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/24/2023]
Abstract
Atopic dermatitis (AD) is a frequent skin disorder that is associated with immune dysfunction and skin inflammation. Histone deacetylase 3 (HDAC3) possesses strong immune and inflammatory modulatory properties in multiple diseases. However, the role and mechanism of HDAC3 in AD remain unknown. Here, we reported that HDAC3 expression was aberrantly upregulated in 2,4-dinitrochlorobenzene (DNCB)-induced lesional AD skin in mice. Inhibition of HDAC3 by RGFP966 protected against DNCB-induced AD, indicated by improved histological damages, relieved inflammatory and immune dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) signaling pathway activity in lesional AD skin was significantly decreased and RGFP966 attenuated the decrease. Inhibition of Nrf2/HO-1 signaling pathway via Nrf2 inhibitor ML385 blunted anti-AD effect of RGFP966 in DNCB-treated mice. Mechanistically, RGFP966 promoted Nrf2 expression and upregulated H3K27ac deposition on the promoter region of Nrf2. Collectively, HDAC3 inhibition protects against AD via epigenetically activating Nrf2 transcription to upregulate Nrf2/HO-1 signaling pathway activity. HDAC3 may act as a promising therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Wei Zhou
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing 400045, China; Department of Allergy, Chongqing General Hospital, Chongqing 400014, China
| | - Dan Zeng
- Department of Allergy, Chongqing General Hospital, Chongqing 400014, China.
| | - Shunan Liu
- Department of Allergy, Chongqing General Hospital, Chongqing 400014, China
| | - Yunxia Huang
- Department of Allergy, Chongqing General Hospital, Chongqing 400014, China
| | - Fenglin Lv
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Chongqing 400045, China
| | - Weikang Zhou
- Department of Allergy, Chongqing General Hospital, Chongqing 400014, China.
| |
Collapse
|
8
|
Haertlé J, Kienlin P, Begemann G, Werfel T, Roesner LM. Inhibition of IL-17 ameliorates keratinocyte-borne cytokine responses in an in vitro model for house-dust-mite triggered atopic dermatitis. Sci Rep 2023; 13:16628. [PMID: 37789035 PMCID: PMC10547677 DOI: 10.1038/s41598-023-42595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
A subgroup of patients suffering from atopic dermatitis (AD) does not respond to biologics therapy targeting the key players of type-2 inflammation, and it is an ongoing discussion whether skin-infiltrating Th17 cells may underlie this phenomenon. This study aimed to investigate the potential of allergen-induced, immune-cell derived IL-17 on the induction of inflammatory processes in keratinocytes. Peripheral blood mononuclear cells derived from respectively sensitized AD patients were stimulated with house dust mite (HDM) extract and cell culture supernatants were applied subsequently in absence or presence of secukinumab to primary human keratinocytes. Hereby we confirm that the immune response of sensitized AD patients to HDM contains aside from type-2 cytokines significant amounts of IL-17. Blocking IL-17 efficiently reduced the stimulation-induced changes in keratinocyte gene expression. IL-17-dependent transcriptional changes included increased expression of the cytokines IL-20 and IL-24 as well as Suppressor of Cytokine Siganling 3 (SOCS3), a negative feedback-regulator of the STAT3/IL-17/IL-24 immune response. We conclude that the immune response to HDM can induce pro-inflammatory cytokines from keratinocytes in AD, which in part is mediated via IL-17. Targeting IL-17 may turn out to be a reasonable alternative therapy in a subgroup of patients with moderate to severe AD and HDM sensitization.
Collapse
Affiliation(s)
- Juliane Haertlé
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Petra Kienlin
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Gabriele Begemann
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Thomas Werfel
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Lennart M Roesner
- Department of Dermatology and Allergy, Hannover Medical School (MHH), Carl-Neuberg-Str.1, 30625, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
9
|
Tang CH, Huang YH, Chuang PY, Wang BCM, Wei CY, Ng KJ, Treuer T, Chu CY. Patient Characteristics, Treatment Patterns, Healthcare Resource Utilization, and Costs of Targeted Therapy-Eligible Atopic Dermatitis Patients in Taiwan-A Real-World Study. Dermatol Ther (Heidelb) 2022; 12:2547-2562. [PMID: 36155881 PMCID: PMC9510234 DOI: 10.1007/s13555-022-00816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/09/2022] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION The objective of this study was to conduct a retrospective analysis to understand the patient profile, treatment patterns, healthcare resource utilization, and cost of atopic dermatitis (AD) of patients eligible for targeted therapy in Taiwan. METHODS A retrospective, claims-based analysis was undertaken using Taiwan's National Health Insurance Research Database from 01 January 2014 to 31 December 2017. Patients aged ≥ 2 years and with at least one diagnosis code for AD during 2015 were identified. Patients with comorbid autoimmune diseases were excluded. Enrolled AD patients were categorized using claims-based treatment algorithms by disease severity and their eligibility for targeted therapy treatment. A cohort of targeted therapy-eligible patients was formed, and a matched cohort using patients not eligible for targeted therapy was derived using propensity score matching based on age, gender, and the Charlson Comorbidity Index (CCI). Treatment patterns, resource utilization, and costs were measured during a 1-year follow-up period. RESULTS A total of 377,423 patients with AD were identified for this study. Most patients had mild AD (84.5%; n = 318,830) with 11.9% (n = 45,035) having moderate AD, and 3.6% (n = 13,558) having severe AD. Within the 58,593 moderate-to-severe AD patients, 1.5% (n = 897) were included in the targeted therapy-eligible cohort. The matched cohort consisted of 3558 patients. During the 1-year follow-up period, targeted therapy-eligible patients utilized antihistamines (85.5%), topical treatments (80.8%), and systemic anti-inflammatories (91.6%) including systemic corticosteroids (51.4%) and azathioprine (59.1%). During the first year of follow-up, targeted therapy-eligible patients (70.5%; 7.01 [SD = 8.84] visits) had higher resource utilization rates and frequency of AD-related outpatient visits compared with the matched cohort (40.80%; 1.85 [SD = 4.71] visits). Average all-cause direct costs during 1-year follow-up were $2850 (SD = 3629) and $1841 (SD = 6434) for the eligible targeted therapy and matched cohorts, respectively. AD-related costs were 17.7% ($506) of total costs for the targeted therapy eligible cohort and 2.2% ($41) for the matched cohort. CONCLUSIONS AD patients eligible for targeted therapy in Taiwan experienced high resource and economic burden compared with their non-targeted-therapy-eligible counterparts.
Collapse
Affiliation(s)
- Chao-Hsiun Tang
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan
| | | | | | | | - Ching-Yun Wei
- Eli Lilly and Company (Taiwan), Inc., Taipei, Taiwan
| | - Khai Jing Ng
- Eli Lilly and Company (Taiwan), Inc., Taipei, Taiwan
| | | | - Chia-Yu Chu
- Department of Dermatology, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
10
|
Inhibitory Effects of Luteolin 7-Methyl Ether Isolated from Wikstroemia ganpi on Tnf-A/Ifn-Γ Mixture-Induced Inflammation in Human Keratinocyte. Nutrients 2021; 13:nu13124387. [PMID: 34959939 PMCID: PMC8703984 DOI: 10.3390/nu13124387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Plants of the genus Wikstroemia are traditionally used in China to treat various inflammatory diseases. The purpose of this study was to isolate the components of Wikstroemia ganpi (Siebold & Zucc.) Maxim., to evaluate their anti-atopic activities and to identify candidates with anti-atopic therapeutics. A total of 24 compounds were isolated by bioassay-guided separation, including one novel compound, which was tilianin 5-methyl ether. The anti-atopic activities of the isolated compounds were determined using TNF-α-treated RBL-2H3 cells and HaCaT cells. The mRNA expressions of IL-4, IL-6, GM-CSF, G-CSF and TRPV1 were reduced by luteolin 7-methyl ether. The study shows that the luteolin 7-methyl ether isolated from W. ganpi is a potential therapeutic agent for the treatment of atopic dermatitis.
Collapse
|
11
|
Puluhulawa LE, Joni IM, Mohammed AFA, Arima H, Wathoni N. The Use of Megamolecular Polysaccharide Sacran in Food and Biomedical Applications. Molecules 2021; 26:molecules26113362. [PMID: 34199586 PMCID: PMC8199723 DOI: 10.3390/molecules26113362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Natural polymer is a frequently used polymer in various food applications and pharmaceutical formulations due to its benefits and its biocompatibility compared to synthetic polymers. One of the natural polymer groups (i.e., polysaccharide) does not only function as an additive in pharmaceutical preparations, but also as an active ingredient with pharmacological effects. In addition, several natural polymers offer potential distinct applications in gene delivery and genetic engineering. However, some of these polymers have drawbacks, such as their lack of water retention and elasticity. Sacran, one of the high-molecular-weight natural polysaccharides (megamolecular polysaccharides) derived from Aphanothece sacrum (A. sacrum), has good water retention and elasticity. Historically, sacran has been used as a dietary food. Moreover, sacran can be applied in biomedical fields as an active material, excipient, and genetic engineering material. This article discusses the characteristics, extraction, isolation procedures, and the use of sacran in food and biomedical applications.
Collapse
Affiliation(s)
- Lisa Efriani Puluhulawa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjajaran, Sumedang 45363, Indonesia;
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjajaran, Sumedang 45363, Indonesia;
- Functional Nano Powder University Center of Excellence (FiNder U CoE) Padjadajaran Universitas Padjajaran, Sumedang 45363, Indonesia
| | | | | | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjajaran, Sumedang 45363, Indonesia;
- Correspondence: ; Tel.: +62-22-842-888888
| |
Collapse
|
12
|
Lee YS, Jeon SH, Ham HJ, Lee HP, Song MJ, Hong JT. Improved Anti-Inflammatory Effects of Liposomal Astaxanthin on a Phthalic Anhydride-Induced Atopic Dermatitis Model. Front Immunol 2020; 11:565285. [PMID: 33335525 PMCID: PMC7736086 DOI: 10.3389/fimmu.2020.565285] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/04/2020] [Indexed: 11/13/2022] Open
Abstract
Previously, we found that astaxanthin (AST) elicited an anti-inflammatory response in an experimental atopic dermatitis (AD) model. However, the use of AST was limited because of low bioavailability and solubility. We hypothesized that liposome formulation of AST could improve this. In this study, we compared the anti-inflammatory and anti-dermatotic effects of liposomal AST (L-AST) and free AST. We evaluated the effect of L-AST on a phthalic anhydride (PA)-induced animal model of AD by analyzing morphological and histopathological changes. We measured the mRNA levels of AD-related cytokines in skin tissue and immunoglobulin E concentrations in the serum. Oxidative stress and transcriptional activities of signal transducer and activator of transcription 3 (STAT3) and nuclear factor (NF)-κB were analyzed via western blotting and enzyme-linked immunosorbent assay. PA-induced dermatitis severity, epidermal thickening, and infiltration of mast cells in skin tissues were ameliorated by L-AST treatment. L-AST suppressed AD-related inflammatory mediators and the inflammation markers, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 in PA-induced skin conditions. Oxidative stress and expression of antioxidant proteins, glutathione peroxidase-1 (GPx-1) and heme oxygenase-1 (HO-1), were recovered by L-AST treatment in skin tissues from PA-induced mice. L-AST treatment reduced transcriptional activity of STAT3 and NF-κB in PA-induced skin tissues. Our results indicate that L-AST could be more effective than free AST for AD therapy.
Collapse
Affiliation(s)
- Yong Sun Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Seong Hee Jeon
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Hyeon Joo Ham
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - Min Jong Song
- Department of Obstetrics and Gynecology, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, South Korea
| |
Collapse
|
13
|
Sanabria-de la Torre R, Fernández-González A, Quiñones-Vico MI, Montero-Vilchez T, Arias-Santiago S. Bioengineered Skin Intended as In Vitro Model for Pharmacosmetics, Skin Disease Study and Environmental Skin Impact Analysis. Biomedicines 2020; 8:E464. [PMID: 33142704 PMCID: PMC7694072 DOI: 10.3390/biomedicines8110464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
Abstract
This review aims to be an update of Bioengineered Artificial Skin Substitutes (BASS) applications. At the first moment, they were created as an attempt to replace native skin grafts transplantation. Nowadays, these in vitro models have been increasing and widening their application areas, becoming important tools for research. This study is focus on the ability to design in vitro BASS which have been demonstrated to be appropriate to develop new products in the cosmetic and pharmacology industry. Allowing to go deeper into the skin disease research, and to analyze the effects provoked by environmental stressful agents. The importance of BASS to replace animal experimentation is also highlighted. Furthermore, the BASS validation parameters approved by the OECD (Organisation for Economic Co-operation and Development) are also analyzed. This report presents an overview of the skin models applicable to skin research along with their design methods. Finally, the potential and limitations of the currently available BASS to supply the demands for disease modeling and pharmaceutical screening are discussed.
Collapse
Affiliation(s)
- Raquel Sanabria-de la Torre
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - María I. Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Trinidad Montero-Vilchez
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Dermatology Department, School of Medicine, Granada University, 18016 Granada, Spain
| |
Collapse
|
14
|
Zhou Z, Shi T, Hou J, Li M. Ferulic acid alleviates atopic dermatitis-like symptoms in mice via its potent anti-inflammatory effect. Immunopharmacol Immunotoxicol 2020; 42:156-164. [PMID: 32122212 DOI: 10.1080/08923973.2020.1733012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhike Zhou
- Qingdao Municipal Hospital, Qingdao, China
| | | | - Jun Hou
- Qingdao Municipal Hospital, Qingdao, China
| | - Min Li
- Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
15
|
Ishiuji Y. Addiction and the itch‐scratch cycle. What do they have in common? Exp Dermatol 2019; 28:1448-1454. [DOI: 10.1111/exd.14029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/15/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Yozo Ishiuji
- Department of Dermatology The Jikei University School of Medicine Tokyo Japan
| |
Collapse
|
16
|
Lee MH, Lee YS, Kim HJ, Han CH, Kang SU, Kim CH. Non-thermal plasma inhibits mast cell activation and ameliorates allergic skin inflammatory diseases in NC/Nga mice. Sci Rep 2019; 9:13510. [PMID: 31534179 PMCID: PMC6751194 DOI: 10.1038/s41598-019-49938-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
Non-thermal plasma (NTP) has many functional activities such as, sterilization, wound healing and anti-cancer activity. Despite of its wide spread biomedical application, the effect of NTP on immune cells and allergic response has not been well studied. In this study, we determined whether NTP suppresses mast cell activation, which is important for allergic response, and ameliorates an atopic dermatitis (AD)-like skin inflammatory disease in mice. Exposure to NTP-treated medium during mast cell activation inhibited the expression and production of IL-6, TNF-α and suppressed NF-κB activation. We also investigated whether NTP treatment ameliorates house dust mite (HDM)-induced AD-like skin inflammation in mice. NTP treatment inhibited increases in epidermal thickness and recruitment of mast cells and eosinophils, which are important cell types in AD pathogenesis. In addition, Th2 cell differentiation was induced by application of HDM and the differentiation was also inhibited in the draining lymph node of NTP-treated mice. Finally, the expression of AD-related cytokines and chemokines was also decreased in NTP-treated mice. Taken together, these results suggest that NTP might be useful in the treatment of allergic skin diseases, such as AD.
Collapse
Affiliation(s)
- Myung-Hoon Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Yun Sang Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Chang Hak Han
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sung Un Kang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea. .,Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
17
|
Abstract
In severe cases of atopic dermatitis (AD) systemic treatment is indicated. So far, cyclosporine and systemic glucocorticosteroids represented the only systemic treatment options approved for the indications of AD in Germany; however, from clinical practice there is increasing evidence for beneficial therapeutic effects in AD by other immunosuppressive or immunomodulatory substances, such as mycophenolate, methotrexate, alitretinoin and ustekinumab. Beyond this, ongoing research activities focus on a better understanding of genetic and immunological aspects of this chronic inflammatory skin disease. Regarding treatment with mycophenolate, genetic polymorphisms in AD patients could be identified that might predict responsiveness to this medication. Moreover, several new substances specifically targeting inflammation in AD are currently being studied and the first promising treatment effects on skin condition and pruritic symptoms of AD could be observed. As an exceptional result of this development in September 2017 in Europe and therefore in Germany the first biologic as first-line treatment was approved for the indication of moderate to severe AD in adults. Dupilumab is a human monoclonal IgG4 antibody that blocks a subunit of the interleukin (IL)-4 and IL-13 receptors, thus inhibiting the proinflammatory effects of these cytokines. Furthermore, the cytokine IL-13 itself, the IL-31 receptor, which is of particular relevance for pruritus in AD, the histamine-4-receptor and Janus kinases represent further promising targets currently being investigated in clinical trials for the treatment of AD.
Collapse
|
18
|
Wu PC, Chuo WH, Lin SC, Lehman CW, Lien CZ, Wu CS, Lin CC. Sclareol attenuates the development of atopic dermatitis induced by 2,4-dinitrochlorobenzene in mice. Immunopharmacol Immunotoxicol 2019; 41:109-116. [PMID: 30704333 DOI: 10.1080/08923973.2018.1555846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Context: Atopic dermatitis is a common chronic inflammatory skin disease affecting up to 20% of children and 1% of adults worldwide. Treatment of atopic dermatitis include corticosteroids and immunosuppressants, such as calcineurin inhibitors and methotrexate. However, these treatments often bring about adverse effects including skin atrophy, osteoporosis, skin cancer, and metabolic syndrome. Objective: In this study, we evaluated the therapeutic effects and mechanisms of sclareol, a natural diterpene, on atopic dermatitis (AD)-like skin lesions induced by 2,4-dinitrochlorobenzene (DNCB) in mice. Materials and methods: To evaluate the effect of sclareol in vivo model, BALB/c mice were repeatedly injected intraperitoneally with sclareol (50 and 100 mg/kg) in 2,4-dinitrochlorobenzene (DNCB)-induced AD-like murine model. Major assays were enzyme-linked immunosorbent assay, histological analysis, flow cytometry, western blot analysis. Results: Intraperitoneal administration of sclareol (50 and 100 mg/kg) significantly attenuated AD-like symptoms, such as serum IgE levels, epidermal/dermal hyperplasia, and the numbers of infiltrated mast cells. In addition, systemic sclareol treatments reduced local pro-inflammatory cytokine concentrations, including IL-6, IL-1b, TNF-a, IL-4, IFN-g, and IL-17A, on AD-like lesions. Furthermore, we demonstrated that sclareol also suppressed T cell activation and the capability of cytokine productions (IFN-g, IL-4 and IL-17A) in response to DNCB stimulation. By examining the skin homogenate, we found that sclareol inhibited the AD-like severity likely through suppressions of both NF-kB translocation and phosphorylation of the MAP kinase pathway. Discussion and conclusions: Cumulatively, our results indicate that sclareol induced anti-inflammatory effects against the atopic dermatitis elicited by DNCB. Thus, sclareol is worth of being further evaluated for its potential therapeutic benefits for the clinical treatment of AD.
Collapse
Affiliation(s)
- Po-Chang Wu
- a Rheumatology and Immunology Center, China Medical University Hospital , Taichung , Taiwan
| | - Wen-Ho Chuo
- b Department of Pharmacy , Tajen University , Pingtung , Taiwan
| | - Shih-Chao Lin
- c School of Systems Biology , National Center for Biodefense and Infectious Diseases , George Mason University , Manassas , VA , USA
| | - Caitlin W Lehman
- c School of Systems Biology , National Center for Biodefense and Infectious Diseases , George Mason University , Manassas , VA , USA
| | - Christopher Z Lien
- d Biodefense Program, Schar School of Policy and Government , George Mason University , Fairfax , VA , USA
| | - Chieh-Shan Wu
- e Department of Dermatology , Kaohsiung Veterans General Hospital , Kaohsiung , Taiwan
| | - Chi-Chien Lin
- f Department of Medical Research , China Medical University Hospital , Taichung , Taiwan.,g Institute of Biomedical Science and Rong Hsing Research Center for Translational Medicine, National Chung-Hsing University , Taichung , Taiwan , ROC
| |
Collapse
|
19
|
Uttarkar S, Brembilla NC, Boehncke WH. Regulatory cells in the skin: Pathophysiologic role and potential targets for anti-inflammatory therapies. J Allergy Clin Immunol 2019; 143:1302-1310. [PMID: 30664891 DOI: 10.1016/j.jaci.2018.12.1011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/26/2018] [Accepted: 12/26/2018] [Indexed: 02/07/2023]
Abstract
Inflammation is a fundamental defense mechanism to protect the body from danger, which becomes potentially harmful if it turns chronic. Therapeutic strategies aimed at specifically blocking proinflammatory signals, particularly cytokines, such as IL-4, IL-6, IL-13, IL-17A, or TNF-α, have substantially improved our ability to effectively and safely treat chronic inflammatory diseases. Much less effort has been made to better understand the role of potential anti-inflammatory mechanisms. Here we summarize the current understanding of regulatory cell populations in the context of chronic inflammation, namely macrophages, Langerhans cells, myeloid-derived suppressor cells, and regulatory T and B lymphocytes. Emphasis is given to the skin because many different immune-related diseases occur in the skin. Development, phenotype, function, and evidence for their role in animal models of inflammation, as well as in the corresponding human diseases, are described. Finally, the feasibility of using regulatory cells as targets for potentially disease-modifying therapeutic strategies is discussed.
Collapse
Affiliation(s)
- Sagar Uttarkar
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Wolf-Henning Boehncke
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Dermatology and Venereology, Geneva University Hospitals and School of Medicine, Geneva, Switzerland.
| |
Collapse
|
20
|
Nakahara T, Furue M. Nemolizumab and Atopic Dermatitis: the Interaction Between Interleukin-31 and Interleukin-31 Receptor as a Potential Therapeutic Target for Pruritus in Patients With Atopic Dermatitis. CURRENT TREATMENT OPTIONS IN ALLERGY 2018. [DOI: 10.1007/s40521-018-0191-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Sulfuretin alleviates atopic dermatitis-like symptoms in mice via suppressing Th2 cell activity. Immunol Res 2018; 66:611-619. [DOI: 10.1007/s12026-018-9025-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Huet F, Severino-Freire M, Chéret J, Gouin O, Praneuf J, Pierre O, Misery L, Le Gall-Ianotto C. Reconstructed human epidermis for in vitro studies on atopic dermatitis: A review. J Dermatol Sci 2018; 89:213-218. [DOI: 10.1016/j.jdermsci.2017.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/15/2017] [Accepted: 11/27/2017] [Indexed: 11/24/2022]
|
23
|
Pan Y, Xu L, Qiao J, Fang H. A systematic review of ustekinumab in the treatment of atopic dermatitis. J DERMATOL TREAT 2018; 29:539-541. [PMID: 29164954 DOI: 10.1080/09546634.2017.1406894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yunlei Pan
- Department of Dermatology, the First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Lina Xu
- Department of Dermatology, the First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jianjun Qiao
- Department of Dermatology, the First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Hong Fang
- Department of Dermatology, the First Affiliated Hospital of Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Awosika O, Kim L, Mazhar M, Rengifo-Pardo M, Ehrlich A. Profile of dupilumab and its potential in the treatment of inadequately controlled moderate-to-severe atopic dermatitis. Clin Cosmet Investig Dermatol 2018; 11:41-49. [PMID: 29416367 PMCID: PMC5789047 DOI: 10.2147/ccid.s123329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disorder that manifests as eczematous lesions, often associated with allergic rhinitis and asthma. Historically, moderate-to-severe disease has been managed with systemic immunosuppression, such as oral corticosteroids, which result in relapse and limiting side effects. Due to recent advancements in the identification of interleukin (IL)-4 and IL-13 as key mediators in AD, new biological agents have been developed for treatment. Dupilumab is a recently approved monoclonal antibody that targets the alpha subunit of the IL-4 receptor and, thus, downregulates activity of IL-4 and IL-13. This review discusses the profile of dupilumab and its potential for efficacy and safety in treating moderate-to-severe AD by reviewing data from Phase I–III clinical trials. Results suggest that dupilumab shows great therapeutic promise for AD. Further studies investigating extended use of dupilumab and dupilumab in comparison to other agents are needed to establish long-term efficacy and safety.
Collapse
Affiliation(s)
- Olabola Awosika
- Department of Dermatology, The George Washington Medical Faculty Associates, Washington, DC, USA
| | - Lori Kim
- George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Momina Mazhar
- George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Monica Rengifo-Pardo
- Department of Dermatology, The George Washington Medical Faculty Associates, Washington, DC, USA.,George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Alison Ehrlich
- Department of Dermatology, The George Washington Medical Faculty Associates, Washington, DC, USA.,George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| |
Collapse
|
25
|
Lomas HR, Robinson PA. A Pilot Qualitative Investigation of Stakeholders' Experiences and Opinions of Equine Insect Bite Hypersensitivity in England. Vet Sci 2018; 5:E3. [PMID: 29315275 PMCID: PMC5876561 DOI: 10.3390/vetsci5010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 02/06/2023] Open
Abstract
Equine insect bite hypersensitivity (IBH), commonly known as sweet itch or summer eczema, is a frustrating recurrent skin disease in the equine industry involving an immune reaction to the bites of Culicoides spp. midges. To investigate the impact of IBH in the field, an exploratory pilot study was conducted with equine stakeholders in one region of central England. Nine semi-structured, face-to-face interviews were conducted with horse owners and an equine veterinarian. The aim was to gain an understanding of experiences with IBH, and to gauge opinions on the value of the various management strategies horse owners use to control IBH. Awareness of IBH was generally high, particularly in those individuals who had previous experience with the condition. Those with previous experience of IBH commented on the significant effect on daily routines, and the associated cost implications. Most participants supported an integrated approach to hypersensitivity management, and this most commonly involved a combination of physical barriers and chemical repellents, but sometimes included feed supplementation. Overall, attitudes towards IBH suggested that the condition is a notable welfare and economic concern for stakeholders, but veterinary involvement tended to only be in more severe cases. Further research is required in the future to improve understanding, management and potential treatment of this condition.
Collapse
Affiliation(s)
- Hannah R Lomas
- Department of Animal Production, Welfare and Veterinary Sciences, Harper Adams University, Newport, Shropshire TF10 8NB, UK.
| | - Philip A Robinson
- Department of Animal Production, Welfare and Veterinary Sciences, Harper Adams University, Newport, Shropshire TF10 8NB, UK.
| |
Collapse
|
26
|
Furue M, Yamamura K, Kido‐Nakahara M, Nakahara T, Fukui Y. Emerging role of interleukin-31 and interleukin-31 receptor in pruritus in atopic dermatitis. Allergy 2018; 73:29-36. [PMID: 28670717 DOI: 10.1111/all.13239] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2017] [Indexed: 12/17/2022]
Abstract
Atopic dermatitis (AD) is a chronic or chronically relapsing, eczematous, severely pruritic skin disorder associated with skin barrier dysfunction. The lesional skin of AD exhibits T helper 2 (TH 2)-deviated immune reactions. Interleukin-31 (IL-31), preferentially produced from TH 2 cells, is a potent pruritogenic cytokine, and its systemic and local administration induces scratching behavior in rodents, dogs and monkeys. Recent clinical trials have revealed that administration of an anti-IL-31 receptor antibody significantly alleviates pruritus in patients with AD. In this review, we summarize recent topics related to IL-31 and its receptor with special references to atopic itch.
Collapse
Affiliation(s)
- M. Furue
- Department of Dermatology and Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University Fukuoka Japan
- Research and clinical center for Yusho and dioxin Kyushu University Hospital Kyushu University Fukuoka Japan
| | - K. Yamamura
- Department of Dermatology and Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - M. Kido‐Nakahara
- Department of Dermatology and Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - T. Nakahara
- Department of Dermatology and Division of Skin Surface Sensing Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Y. Fukui
- Division of Immunogenetics Department of Immunobiology and Neuroscience Medical Institute of Bioregulation Kyushu University Fukuoka Japan
- Research Center for Advanced Immunology Kyushu University Fukuoka Japan
| |
Collapse
|
27
|
Effect of isoliquiritigenin for the treatment of atopic dermatitis-like skin lesions in mice. Arch Dermatol Res 2017; 309:805-813. [PMID: 29026975 DOI: 10.1007/s00403-017-1787-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/20/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease characterized with high heterogeneity. Recent studies have suggested that it is driven by both terminal keratinocyte differentiation defects and type 2 immune responses. The mainstay steroid topical therapy has severe side effect and new treatment is in demand. Isoliquiritigenin (ISLG) is a small phenolic bioactive molecule from licorice that has shown multiple pharmacological effects against cancer, inflammatory disorder, and cardiovascular diseases. ISLG was evaluated in AD-like lesion model induced by the repetitive application of 2,4-dinitrochlorobenzene (DNCB) in BALB/c mice. Overall symptom score, serological and molecular changes of the skin lesions were evaluated. ISLG could ameliorate the overall manifestation of AD-like symptoms including scratching behavior incidence and skin lesion severity. At blood level, ISLG significantly suppressed the DNCB-induced IgE and Th2 cytokines up-regulation. At skin lesion site, ISLG also inhibited DNCB-induced pro-inflammatory cytokines like TNF-α, IL-6 as well as IL-4 expressions. In a human monocyte model THP-1, ISLG suppressed the up-regulation of CD86 and CD54 and abolished the DNCB-induced p38-α and ERK activation, suggesting a molecular mechanism for ISLG therapy. This study indicated that ISLG could be a potential therapeutic agent for the treatment of AD.
Collapse
|
28
|
Yang Z, Liu M, Wang W, Wang Y, Cao B, Gao Y, Chen H, Li T. Pseudolaric acid B attenuates atopic dermatitis-like skin lesions by inhibiting interleukin-17-induced inflammation. Sci Rep 2017; 7:7918. [PMID: 28801611 PMCID: PMC5554149 DOI: 10.1038/s41598-017-08485-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022] Open
Abstract
Pseudolaric acid B (PB), isolated from the extract of the root bark of Pseudolarix kaempferi Gordon, has been used as a traditional remedy for the treatment of skin diseases. However, the information of PB on atopic dermatitis (AD) remains largely unknown. In the present study, oral administration with PB improved the severity scores of AD-like skin lesions dose-dependently in NC/Nga mice through reducing serum IgE, pro-inflammatory cytokines, and the infiltration of inflammatory cells. In addition, PB significantly attenuated the levels of IL-17 and IL-22, and the proportion of Th17 cells in NC/Nga mice, as well as decreased IL-17-induced inflammation in RAW264.7 cells. Moreover, PB inhibited the phosphorylation of IκBα and miR-155 expression both in NC/Nga mice and in IL-17-stimulated RAW264.7 cells, which could be reversed by GW9662, a specific antagonist for PPARγ. The incorporation of GW9662 reversed the inhibitory effect of PB on the RORγ-mediated activation of the Il17 promoter. Transfection with PPARγ luciferase reporter gene further demonstrated the enhancement of PB on PPARγ transactivation. These findings indicate that PB could ameliorate AD-like skin lesions by inhibiting IL-17-induced inflammation in a PPARγ-dependent manner, which would provide experimental evidence of PB for the therapeutic potential on AD and other inflammatory skin diseases.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Science Research, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, P.R. China
| | - Meilun Liu
- Department of Pharmacognosy and Pharmaceutics, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, P.R. China
| | - Wei Wang
- Department of Urology, The Affiliated Hospital of Logistics University of Chinese People's Armed Police Force, Tianjin, 300162, P.R. China
| | - Yiteng Wang
- Department of Pharmacognosy and Pharmaceutics, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, P.R. China
| | - Bo Cao
- Department of Pharmacognosy and Pharmaceutics, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, P.R. China
| | - Ying Gao
- Department of Pharmacognosy and Pharmaceutics, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, P.R. China
| | - Hong Chen
- Department of Pharmacognosy and Pharmaceutics, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, P.R. China.
| | - Tan Li
- Department of Pathogen Biology and Immunology, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, P.R. China.
| |
Collapse
|
29
|
Marsella R, De Benedetto A. Atopic Dermatitis in Animals and People: An Update and Comparative Review. Vet Sci 2017; 4:vetsci4030037. [PMID: 29056696 PMCID: PMC5644664 DOI: 10.3390/vetsci4030037] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis is an extremely common, pruritic, and frustrating disease to treat in both people and animals. Atopic dermatitis is multifactorial and results from complex interactions between genetic and environmental factors. Much progress has been done in recent years in terms of understanding the complex pathogenesis of this clinical syndrome and the identification of new treatments. As we learn more about it, we appreciate the striking similarities that exist in the clinical manifestations of this disease across species. Both in animals and people, atopic disease is becoming increasingly common and important similarities exist in terms of immunologic aberrations and the propensity for allergic sensitization. The purpose of this review is to highlight the most recent views on atopic dermatitis in both domestic species and in people emphasizing the similarities and the differences. A comparative approach can be beneficial in understanding the natural course of this disease and the variable response to existing therapies.
Collapse
Affiliation(s)
- Rosanna Marsella
- Department of Dermatology, College of Medicine, University of Florida, 4037 NW 86 Terrace, Gainesville, FL 32606, USA.
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, 2015 SW 16th Avenue, Gainesville, FL 32610, USA.
| | - Anna De Benedetto
- Department of Dermatology, College of Medicine, University of Florida, 4037 NW 86 Terrace, Gainesville, FL 32606, USA.
| |
Collapse
|
30
|
Otsuka A, Nomura T, Rerknimitr P, Seidel JA, Honda T, Kabashima K. The interplay between genetic and environmental factors in the pathogenesis of atopic dermatitis. Immunol Rev 2017; 278:246-262. [DOI: 10.1111/imr.12545] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Atsushi Otsuka
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Takashi Nomura
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Pawinee Rerknimitr
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
- Division of Dermatology; Department of Medicine; Faculty of Medicine, Allergy and Clinical Immunology Research Group; Chulalongkorn University; Bangkok Thailand
| | - Judith A. Seidel
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Tetsuya Honda
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Kenji Kabashima
- Department of Dermatology; Kyoto University Graduate School of Medicine; Kyoto Japan
- Singapore Immunology Network (SIgN) and Institute of Medical Biology; Agency for Science, Technology and Research (A*STAR); Biopolis; Singapore
| |
Collapse
|
31
|
Rerknimitr P, Otsuka A, Nakashima C, Kabashima K. The etiopathogenesis of atopic dermatitis: barrier disruption, immunological derangement, and pruritus. Inflamm Regen 2017; 37:14. [PMID: 29259713 PMCID: PMC5725646 DOI: 10.1186/s41232-017-0044-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic skin inflammatory disorder characterized by recurrent eczema accompanied by an intractable itch that leads to an impaired quality of life. Extensive recent studies have shed light on the multifaceted pathogenesis of the disease. The complex interplay among skin barrier deficiency, immunological derangement, and pruritus contributes to the development, progression, and chronicity of the disease. Abnormalities in filaggrin, other stratum corneum constituents, and tight junctions induce and/or promote skin inflammation. This inflammation, in turn, can further deteriorate the barrier function by downregulating a myriad of essential barrier-maintaining molecules. Pruritus in AD, which may be due to hyperinnervation of the epidermis, increases pruritogens, and central sensitization compromises the skin integrity and promotes inflammation. There are unmet needs in the treatment of AD. Based on the detailed evidence available to date, certain disease mechanisms can be chosen as treatment targets. Numerous clinical trials of biological agents are currently being conducted and are expected to provide treatments for patients suffering from AD in the future. This review summarizes the etiopathogenesis of the disease and provides a rationale for choosing the novel targeted therapy that will be available in the future.
Collapse
Affiliation(s)
- Pawinee Rerknimitr
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara, Sakyo, Kyoto, 606-8507 Japan.,Division of Dermatology, Department of Medicine, Faculty of Medicine, Skin and Allergy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Atsushi Otsuka
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara, Sakyo, Kyoto, 606-8507 Japan
| | - Chisa Nakashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara, Sakyo, Kyoto, 606-8507 Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawara, Sakyo, Kyoto, 606-8507 Japan.,Singapore Immunology Network (SIgN) and Institute of Medical Biology, Agency for Science, Technology and Research (ASTAR), Biopolis, Singapore
| |
Collapse
|
32
|
Abstract
Atopic dermatitis is one of the most common skin diseases and is associated with an impaired quality of life due to tormenting itching and stigmatization. The disease almost always manifests in early childhood and exhibits specific features in this phase, with involvement of the extensor sides of the extremities. During the further course of disease, the typical flexor involvement becomes quite clear and a considerable proportion of patients develop the associated atopic respiratory diseases. Therapeutic and prophylactic measures focus on the prevention of trigger factors, basic skin care, and application of lipid-replenishing creams, as well as patient and parent education. In the case of exacerbation, anti-inflammatory drugs are treatment of choice.
Collapse
Affiliation(s)
- R Fölster-Holst
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Str. 7, 24105, Kiel, Deutschland.
| |
Collapse
|
33
|
Abstract
INTRODUCTION Atopic dermatitis is a common inflammatory skin disease with an increasing prevalence. Treatment of patients suffering from mild or moderate disease includes the use of emollients and topical glucocorticoids or topical calcineurin inhibitors. Patients with chronic and severe atopic dermatitis where topical therapy is usually insufficient require the use of systemic immunosuppressive drugs, which is often limited due to toxicity and severe adverse effects. Areas covered: This review summarizes the literature on the mechanism of action, clinical efficacy and safety of dupilumab, a monoclonal antibody that targets the α-subunit of the interleukin-4 receptor (IL-4Rα) leading to the inhibition of both the IL-4 and IL-13 pathways. A literature search was performed on Pubmed and ClinicalTrials.gov using key words 'dupilumab', 'REGN668', 'IL-4'/'IL-13' and 'atopic dermatitis'. Expert commentary: Dupilumab offers an innovative therapeutic approach for moderate-to-severe atopic dermatitis. It is not approved for clinical use in any country yet; however, due to its excellent clinical efficacy and a favorable safety profile, dupilumab may revolutionize the treatment of moderate-to-severe atopic dermatitis in the next upcoming years.
Collapse
Affiliation(s)
- Magdalena Kraft
- a Department of Dermatology and Allergology , Allergy-Center-Charité, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Margitta Worm
- a Department of Dermatology and Allergology , Allergy-Center-Charité, Charité - Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|
34
|
Wei N, Wei Y, Li B, Pang L. Baicalein Promotes Neuronal and Behavioral Recovery After Intracerebral Hemorrhage Via Suppressing Apoptosis, Oxidative Stress and Neuroinflammation. Neurochem Res 2017; 42:1345-1353. [PMID: 28108850 DOI: 10.1007/s11064-017-2179-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 01/10/2023]
Abstract
Intracerebral hemorrhage (ICH) is an important public health problem in neurology, which is not only associated with high mortality but also leading to disability. Yet no satisfactory treatment has been developed. The secondary injury that resulted from a number of self-destructive processes such as neuroinflammation, apoptosis and oxidative stress, is the key factor contributing to ICH-induced brain damage. Baicalein has been proved to improve neuronal functional recovery in rat model of subarachnoid hemorrhage and ischemic brain damage. To investigate the effect of baicalein on ICH and its underlying mechanism, a collagenase-induced ICH rat model was performed. Baicalein treatment significantly decreased neurological severity score at day 1 and 3 after ICH injury. Our results showed that the lesion volume, the brain water content, the expression levels of four pro-inflammatory cytokines (IL-1β, IL-4 and IL-6 and TNF-α) and the numbers of apoptotic cells were reduced significantly in ICH rats receiving baicalein treatment, especially in 50 mg/kg baicalein-treated group. Moreover, baicalein increased SOD and GSH-Px activities and down-regulated MDA level of brain tissues in rats. These results suggested that the therapeutic efficacy of baicalein on repairing brain damage is probably caused by suppressing apoptosis, oxidative stress and neuroinflammation. Baicalein could be developed into a novel drug for clinical treatment of ICH and ICH-related brain injuries.
Collapse
Affiliation(s)
- Ning Wei
- Department of the Fifth Yard of Neurology, Affiliated Guangxi Minzu Hospital of Guangxi Medical University, Min Xiu Rd. #232, 530001, Nanning, China.
| | - Yinghai Wei
- Department of the Fifth Yard of Neurology, Affiliated Guangxi Minzu Hospital of Guangxi Medical University, Min Xiu Rd. #232, 530001, Nanning, China
| | - Binru Li
- Department of the Fifth Yard of Neurology, Affiliated Guangxi Minzu Hospital of Guangxi Medical University, Min Xiu Rd. #232, 530001, Nanning, China
| | - Linlin Pang
- Department of the Fifth Yard of Neurology, Affiliated Guangxi Minzu Hospital of Guangxi Medical University, Min Xiu Rd. #232, 530001, Nanning, China
| |
Collapse
|
35
|
Ita K. Dermal/transdermal delivery of small interfering RNA and antisense oligonucleotides- advances and hurdles. Biomed Pharmacother 2017; 87:311-320. [PMID: 28064104 DOI: 10.1016/j.biopha.2016.12.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022] Open
Abstract
A diverse array of nucleic acids has been studied by several researchers for the management of several diseases. Among these compounds, small interfering RNA and antisense oligonucleotides have attracted considerable attention. Antisense oligonucleotides are synthetic single stranded strings of nucleic acids that bind to RNA and thereby alter or reduce expression of the target RNA while siRNAs, on the other hand, are double-stranded RNA molecules which can hybridize with a specific mRNA sequence and block the translation of numerous genes. One of the main obstacles in the dermal or transdermal delivery of these compounds is their low skin permeability. In this review, various techniques used to enhance the delivery of these molecules into or across the skin are described and in some cases, the correlation between enhanced dermal/transdermal delivery and therapeutic efficacy is highlighted.
Collapse
Affiliation(s)
- Kevin Ita
- College of Pharmacy, Touro University, Mare Island-Vallejo, CA 94592, USA.
| |
Collapse
|