1
|
Meloun A, León B. Beyond CCR7: dendritic cell migration in type 2 inflammation. Front Immunol 2025; 16:1558228. [PMID: 40093008 PMCID: PMC11906670 DOI: 10.3389/fimmu.2025.1558228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Conventional dendritic cells (cDCs) are crucial antigen-presenting cells that initiate and regulate T cell responses, thereby shaping immunity against pathogens, innocuous antigens, tumors, and self-antigens. The migration of cDCs from peripheral tissues to draining lymph nodes (dLNs) is essential for their function in immune surveillance. This migration allows cDCs to convey the conditions of peripheral tissues to antigen-specific T cells in the dLNs, facilitating effective immune responses. Migration is primarily mediated by chemokine receptor CCR7, which is upregulated in response to homeostatic and inflammatory cues, guiding cDCs to dLNs. However, during type 2 immune responses, such as those triggered by parasites or allergens, a paradox arises-cDCs exhibit robust migration to dLNs despite low CCR7 expression. This review discusses how type 2 inflammation relies on additional signaling pathways, including those induced by membrane-derived bioactive lipid mediators like eicosanoids, sphingolipids, and oxysterols, which cooperate with CCR7 to enhance cDC migration and T helper 2 (Th2) differentiation. We explore the potential regulatory mechanisms of cDC migration in type 2 immunity, offering insights into the differential control of cDC trafficking in diverse immune contexts and its impact on immune responses.
Collapse
Affiliation(s)
- Audrey Meloun
- Innate Cells and Th2 Immunity Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Beatriz León
- Innate Cells and Th2 Immunity Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Hogan NT, Castaneda-Castro FE, Logandha Ramamoorthy Premlal A, Brickner H, Mondal M, Herrera-De La Mata S, Vijayanand P, Crotty Alexander LE, Seumois G, Akuthota P. E-cigarette vapor extract alters human eosinophil gene expression in an effect mediated by propylene glycol, glycerin, and nicotine. J Leukoc Biol 2024; 116:1420-1431. [PMID: 39136235 DOI: 10.1093/jleuko/qiae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/24/2024] [Indexed: 11/28/2024] Open
Abstract
E-cigarette use has become widespread, and its effects on airway inflammation and disease are not fully delineated. E-cigarette vapor extract (EVE) profoundly affects neutrophil function. We hypothesized that EVE also alters eosinophil function and thus could impact allergic airway disease. We employed RNA sequencing to measure the ex vivo effect of EVE components on human eosinophil transcription. Blood eosinophils from 9 nonvaping subjects without asthma were isolated by negative selection. Cells were incubated for 48 h with EVE consisting of glycerin, propylene glycol, and nicotine (EVE+), EVE without nicotine ("EVE-"), air-exposed media termed extract buffer (EB), or untreated media. Bulk RNA sequencing was performed. Transcriptomic analysis revealed that the EB, EVE-, and EVE+ conditions showed highly variable gene expression with respect to no treatment and each other. Differential gene expression analysis comparing a combination of EVE+, EVE-, and EB revealed 3,030 differentially expressed genes (DEGs) with an adjusted P value <0.05 and log2 fold change >0.5 or <0.5. There were 645 DEGs between EB and EVE-, 1,713 between EB and EVE+, and 404 between EVE- and EVE+. Gene set enrichment analysis demonstrated that DEGs between both EVE+ and EVE- and the EB control were positively enriched for heme metabolism and apoptosis and negatively enriched tumor necrosis factor α signaling, interferon γ signaling, and inflammatory response. Thus, EVE significantly alters eosinophil metabolic and inflammatory pathways, mediated by propylene glycol and glycerin, with both enhancing and unique effects of nicotine. This study motivates further research into the pathogenic effects of vaping on airway eosinophils and allergic airways disease.
Collapse
Affiliation(s)
- Nicholas T Hogan
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California San Diego, 9500 Gilman Dr., MC 7381, San Diego, CA 92037, United States
| | | | | | - Howard Brickner
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California San Diego, 9500 Gilman Dr., MC 7381, San Diego, CA 92037, United States
| | - Monalisa Mondal
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States
| | - Sara Herrera-De La Mata
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States
| | - Pandurangan Vijayanand
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States
| | - Laura E Crotty Alexander
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California San Diego, 9500 Gilman Dr., MC 7381, San Diego, CA 92037, United States
- Pulmonary Critical Care Section, Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, United States
| | - Gregory Seumois
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States
| | - Praveen Akuthota
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California San Diego, 9500 Gilman Dr., MC 7381, San Diego, CA 92037, United States
| |
Collapse
|
3
|
Higham A, Beech A, Singh D. The relevance of eosinophils in chronic obstructive pulmonary disease: inflammation, microbiome, and clinical outcomes. J Leukoc Biol 2024; 116:927-946. [PMID: 38941350 DOI: 10.1093/jleuko/qiae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024] Open
Abstract
Chronic obstructive pulmonary disease is caused by the inhalation of noxious particles such as cigarette smoke. The pathophysiological features include airway inflammation, alveolar destruction, and poorly reversible airflow obstruction. A subgroup of patients with chronic obstructive pulmonary disease has higher blood eosinophil counts, associated with an increased response to inhaled corticosteroids and increased biomarkers of pulmonary type 2 inflammation. Emerging evidence shows that patients with chronic obstructive pulmonary disease with increased pulmonary eosinophil counts have an altered airway microbiome. Higher blood eosinophil counts are also associated with increased lung function decline, implicating type 2 inflammation in progressive pathophysiology in chronic obstructive pulmonary disease. We provide a narrative review of the role of eosinophils and type 2 inflammation in the pathophysiology of chronic obstructive pulmonary disease, encompassing the lung microbiome, pharmacological targeting of type 2 pathways in chronic obstructive pulmonary disease, and the clinical use of blood eosinophil count as a chronic obstructive pulmonary disease biomarker.
Collapse
Affiliation(s)
- Andrew Higham
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
| | - Augusta Beech
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
- Medicines Evaluation Unit, The Langley Building, Southmoor Road, Manchester, M23 9QZ, United Kingdom
| |
Collapse
|
4
|
Zhu C, Weng Q, Gao S, Li F, Li Z, Wu Y, Wu Y, Li M, Zhao Y, Han Y, Lu W, Qin Z, Yu F, Lou J, Ying S, Shen H, Chen Z, Li W. TGF-β signaling promotes eosinophil activation in inflammatory responses. Cell Death Dis 2024; 15:637. [PMID: 39214980 PMCID: PMC11364686 DOI: 10.1038/s41419-024-07029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Eosinophils, traditionally associated with allergic phenomena, play a pivotal role in inflammatory responses. Despite accumulating evidence suggesting their pro-inflammatory function upon activation, the underlying mechanisms governing eosinophil activation remain incompletely characterized. In this study, we investigate the local activation of pulmonary and colon eosinophils within the inflammatory microenvironment. Leveraging transcriptional sequencing, we identify TGF-β as a putative regulator of eosinophil activation, leading to the secretion of granule proteins, including peroxidase. Genetic deletion of TGF-β receptors on eosinophils resulted in the inhibition of peroxidase synthesis, affirming the significance of TGF-β signaling in eosinophil activation. Using models of HDM-induced asthma and DSS-induced colitis, we demonstrate the indispensability of TGF-β-driven eosinophil activation in both disease contexts. Notably, while TGF-β signaling did not significantly influence asthmatic inflammation, its knockout conferred protection against experimental colitis. This study delineates a distinct pattern of eosinophil activation within inflammatory responses, highlighting the pivotal role of TGF-β signaling in regulating eosinophil behavior. These findings deepen our comprehension of eosinophil-related pathophysiology and may pave the way for targeted therapeutic approaches in allergic and inflammatory diseases.
Collapse
Affiliation(s)
- Chen Zhu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingyu Weng
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shenwei Gao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhouyang Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanping Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Miao Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yun Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinling Han
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weina Lu
- Surgery Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhongnan Qin
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fangyi Yu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiafei Lou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- State Key Lab for Respiratory Diseases, Guangzhou, Guangdong, China.
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Kan LLY, Li P, Hon SSM, Lai AYT, Li A, Wong KCY, Huang D, Wong CK. Deciphering the Interplay between the Epithelial Barrier, Immune Cells, and Metabolic Mediators in Allergic Disease. Int J Mol Sci 2024; 25:6913. [PMID: 39000023 PMCID: PMC11241838 DOI: 10.3390/ijms25136913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Chronic exposure to harmful pollutants, chemicals, and pathogens from the environment can lead to pathological changes in the epithelial barrier, which increase the risk of developing an allergy. During allergic inflammation, epithelial cells send proinflammatory signals to group 2 innate lymphoid cell (ILC2s) and eosinophils, which require energy and resources to mediate their activation, cytokine/chemokine secretion, and mobilization of other cells. This review aims to provide an overview of the metabolic regulation in allergic asthma, atopic dermatitis (AD), and allergic rhinitis (AR), highlighting its underlying mechanisms and phenotypes, and the potential metabolic regulatory roles of eosinophils and ILC2s. Eosinophils and ILC2s regulate allergic inflammation through lipid mediators, particularly cysteinyl leukotrienes (CysLTs) and prostaglandins (PGs). Arachidonic acid (AA)-derived metabolites and Sphinosine-1-phosphate (S1P) are significant metabolic markers that indicate immune dysfunction and epithelial barrier dysfunction in allergy. Notably, eosinophils are promoters of allergic symptoms and exhibit greater metabolic plasticity compared to ILC2s, directly involved in promoting allergic symptoms. Our findings suggest that metabolomic analysis provides insights into the complex interactions between immune cells, epithelial cells, and environmental factors. Potential therapeutic targets have been highlighted to further understand the metabolic regulation of eosinophils and ILC2s in allergy. Future research in metabolomics can facilitate the development of novel diagnostics and therapeutics for future application.
Collapse
Affiliation(s)
- Lea Ling-Yu Kan
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Peiting Li
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Sharon Sze-Man Hon
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Andrea Yin-Tung Lai
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Aixuan Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Katie Ching-Yau Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Danqi Huang
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Chun-Kwok Wong
- Institute of Chinese Medicine, State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Wiese AV, Duhn J, Korkmaz RÜ, Quell KM, Osman I, Ender F, Schröder T, Lewkowich I, Hogan S, Huber-Lang M, Gumprecht F, König P, Köhl J, Laumonnier Y. C5aR1 activation in mice controls inflammatory eosinophil recruitment and functions in allergic asthma. Allergy 2023. [PMID: 36757006 DOI: 10.1111/all.15670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Pulmonary eosinophils comprise at least two distinct populations of resident eosinophils (rEOS) and inflammatory eosinophils (iEOS), the latter recruited in response to pulmonary inflammation. Here, we determined the impact of complement activation on rEOS and iEOS trafficking and function in two models of pulmonary inflammation. METHODS BALB/c wild-type and C5ar1-/- mice were exposed to different allergens or IL-33. Eosinophil populations in the airways, lung, or mediastinal lymph nodes (mLN) were characterized by FACS or immunohistochemistry. rEOS and iEOS functions were determined in vivo and in vitro. RESULTS HDM and IL-33 exposure induced a strong accumulation of iEOS but not rEOS in the airways, lungs, and mLNs. rEOS and iEOS expressed C3/C5 and C5aR1, which were significantly higher in iEOS. Initial pulmonary trafficking of iEOS was markedly reduced in C5ar1-/- mice and associated with less IL-5 production from ILC2 cells. Functionally, adoptively transferred pulmonary iEOS from WT but not from C5ar1-/- mice-induced airway hyperresponsiveness (AHR), which was associated with significantly reduced C5ar1-/- iEOS degranulation. Pulmonary iEOS but not rEOS were frequently associated with T cells in lung tissue. After HDM or IL-33 exposure, iEOS but not rEOS were found in mLNs, which were significantly reduced in C5ar1-/- mice. C5ar1-/- iEOS expressed less costimulatory molecules, associated with a decreased potency to drive antigen-specific T cell proliferation and differentiation into memory T cells. CONCLUSIONS We uncovered novel roles for C5aR1 in iEOS trafficking and activation, which affects key aspects of allergic inflammation such as AHR, ILC2, and T cell activation.
Collapse
Affiliation(s)
- Anna V Wiese
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jannis Duhn
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Rabia Ülkü Korkmaz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Katharina M Quell
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Ibrahim Osman
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Fanny Ender
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Torsten Schröder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein & University of Lübeck, Lübeck, Germany
| | - Ian Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Simon Hogan
- Mary H. Weiser Food Allergy Center, Experimental Pathology, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology (ITI), University of Ulm, Ulm, Germany
| | | | - Peter König
- Institute for Anatomy, University of Lübeck, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| | - Yves Laumonnier
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Nutritional Medicine, University Hospital of Schleswig-Holstein & University of Lübeck, Lübeck, Germany.,Airway Research Center North, Member of the German Center for Lung Research (DZL), Lübeck, Germany
| |
Collapse
|
7
|
Li K, Zhang Q, Li L, Li S, Yue Q, Li X, Li Y, Wang J, Wang S, Yuan Z, Chen H. DJ-1 governs airway progenitor cell/eosinophil interactions to promote allergic inflammation. J Allergy Clin Immunol 2022; 150:1178-1193.e13. [PMID: 35724763 DOI: 10.1016/j.jaci.2022.03.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND DJ-1 is an antioxidant protein known to regulate mast cell-mediated allergic response, but its role in airway eosinophilic interactions and allergic inflammation is not known. OBJECTIVE The aim of this study was to investigate the role of DJ-1 in airway eosinophilic inflammation in vitro and in vivo. METHODS Ovalbumin-induced airway allergic inflammation was established in mice. ELISA was adopted to analyze DJ-1 and cytokine levels in mouse bronchoalveolar lavage fluid. Transcriptional profiling of mouse lung tissues was conducted by single-cell RNA-sequencing technology. The role of DJ-1 in the differentiation of airway progenitor cells into goblet cells was examined by organoid cultures, immunofluorescence staining, quantitative PCR, and cell transplantation in normal, DJ-1 knockout (KO), or conditional DJ-1 KO mice. RESULTS This study observed that DJ-1 was increased in the lung tissues of ovalbumin-sensitized and challenged mice. DJ-1 KO mice exhibited reduced airway eosinophil infiltration and goblet cell differentiation. Mechanistically, we discovered that eosinophil-club cell interactions are reduced in the absence of DJ-1. Organoid cultures indicated that eosinophils impair the proliferative potential of club cells. Intratracheal transplantation of DJ-1-deficient eosinophils suppresses airway goblet cell differentiation. Loss of DJ-1 inhibits the metabolism of arachidonic acid into cysteinyl leukotrienes in eosinophils while these secreted metabolites promote airway goblet cell fate in organoid cultures and in vivo. CONCLUSIONS DJ-1-mediated interactions between airway epithelial progenitor cells and immune cells are essential in controlling airway goblet cell metaplasia and eosinophilia. Blockade of the DJ-1 pathway is protective against airway allergic inflammation.
Collapse
Affiliation(s)
- Kuan Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China; Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China; Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Qiuyang Zhang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China; Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China; Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Li Li
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China; Department of Respiratory Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Shuangyan Li
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qing Yue
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China; Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China; Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Yu Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China; Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China; Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Jianhai Wang
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China; Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China; Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Sisi Wang
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Zengqiang Yuan
- Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China; Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China; Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China; Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China.
| |
Collapse
|
8
|
Jung SH, Bae CH, Kim JH, Park SD, Shim JJ, Lee JL. Lactobacillus casei HY2782 and Pueraria lobata Root Extract Complex Ameliorates Particulate Matter-Induced Airway Inflammation in Mice by Inhibiting Th2 and Th17 Immune Responses. Prev Nutr Food Sci 2022; 27:188-197. [PMID: 35919572 PMCID: PMC9309071 DOI: 10.3746/pnf.2022.27.2.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to investigate the effects of Lactobacillus casei HY2782 and Pueraria lobata root extract complex (HY2782 complex) in mitigating airway inflammation resulting from exposure to particulate matter ≤2.5 μm in diameter (PM2.5) in an animal model. Chronic inflammatory airway disease is associated with Th2-related cytokines interleukin (IL)-4, IL-5, and IL-13 and Th17-related cytokine IL-17A, which are the major contributors to allergy and asthma. Results indicated that PM2.5 elevates allergen-related airway inflammation and respiratory hyperresponsiveness in C57BL/6 mice. The HY2782 complex significantly reduced Th2/Th17-derived cytokines IL-4, IL5, IL-13, and IL-17A; immunoglobulin E; and leukotriene C4 in bronchoalveolar lavage fluid (BALF) and serum. Furthermore, the HY2782 complex was associated with the modulation of oxidative stress-related genes. Administration of the HY2782 complex resulted in a markedly reduced number of neutrophils and eosinophil infiltration in BALF. Histopathological observation of lung tissue also showed reduced inflammatory cell infiltration into airways and surrounding tissue. The HY2782 complex may be a promising candidate for the preventive therapy of allergic diseases and airway inflammation caused by PM2.5 inhalation.
Collapse
Affiliation(s)
| | - Chu Hyun Bae
- R&BD Center, hy Co., Ltd., Gyeonggi 17086, Korea
| | - Ji Hyun Kim
- R&BD Center, hy Co., Ltd., Gyeonggi 17086, Korea
| | | | | | | |
Collapse
|
9
|
Li M, Zhu W, Saeed U, Sun S, Fang Y, Wang C, Luo Z. Identification of the molecular subgroups in asthma by gene expression profiles: airway inflammation implications. BMC Pulm Med 2022; 22:29. [PMID: 35000593 PMCID: PMC8742931 DOI: 10.1186/s12890-022-01824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 12/24/2021] [Indexed: 11/21/2022] Open
Abstract
Background Asthma is a heterogeneous disease and different phenotypes based on clinical parameters have been identified. However, the molecular subgroups of asthma defined by gene expression profiles of induced sputum have been rarely reported. Methods We re-analyzed the asthma transcriptional profiles of the dataset of GSE45111. A deep bioinformatics analysis was performed. We classified 47 asthma cases into different subgroups using unsupervised consensus clustering analysis. Clinical features of the subgroups were characterized, and their biological function and immune status were analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and single sample Gene Set Enrichment Analysis (ssGSEA). Weighted gene co-expression network analysis (WGCNA) and protein–protein interaction (PPI) network were performed to identify key gene modules and hub genes. Results Unsupervised consensus clustering of gene expression profiles in asthma identified two distinct subgroups (Cluster I/II), which were significantly associated with eosinophilic asthma (EA) and paucigranulocytic asthma (PGA). The differentially expressed genes (DEGs) between the two subgroups were primarily enriched in immune response regulation and signal transduction. The ssGSEA suggested the different immune infiltration and function scores between the two clusters. The WGCNA and PPI analysis identified three hub genes: THBS1, CCL22 and CCR7. ROC analysis further suggested that the three hub genes had a good ability to differentiate the Cluster I from the Cluster II. Conclusions Based on the gene expression profiles of the induced sputum, we identified two asthma subgroups, which revealed different clinical characteristics, gene expression patterns, biological functions and immune status. The transcriptional classification confirms the molecular heterogeneity of asthma and provides a framework for more in-depth research on the mechanisms of asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01824-3.
Collapse
Affiliation(s)
- Min Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, People's Republic of China
| | - Wenye Zhu
- Department of Pharmacy, First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Ummair Saeed
- Department of Dermatology, National Orthopedic and General Hospital, Bahawalpur, Pakistan
| | - Shibo Sun
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, People's Republic of China
| | - Yan Fang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, People's Republic of China
| | - Chu Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, People's Republic of China
| | - Zhuang Luo
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650000, People's Republic of China.
| |
Collapse
|
10
|
Schetters STT, Schuijs MJ. Pulmonary Eosinophils at the Center of the Allergic Space-Time Continuum. Front Immunol 2021; 12:772004. [PMID: 34868033 PMCID: PMC8634472 DOI: 10.3389/fimmu.2021.772004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Eosinophils are typically a minority population of circulating granulocytes being released from the bone-marrow as terminally differentiated cells. Besides their function in the defense against parasites and in promoting allergic airway inflammation, regulatory functions have now been attributed to eosinophils in various organs. Although eosinophils are involved in the inflammatory response to allergens, it remains unclear whether they are drivers of the asthma pathology or merely recruited effector cells. Recent findings highlight the homeostatic and pro-resolving capacity of eosinophils and raise the question at what point in time their function is regulated. Similarly, eosinophils from different physical locations display phenotypic and functional diversity. However, it remains unclear whether eosinophil plasticity remains as they develop and travel from the bone marrow to the tissue, in homeostasis or during inflammation. In the tissue, eosinophils of different ages and origin along the inflammatory trajectory may exhibit functional diversity as circumstances change. Herein, we outline the inflammatory time line of allergic airway inflammation from acute, late, adaptive to chronic processes. We summarize the function of the eosinophils in regards to their resident localization and time of recruitment to the lung, in all stages of the inflammatory response. In all, we argue that immunological differences in eosinophils are a function of time and space as the allergic inflammatory response is initiated and resolved.
Collapse
Affiliation(s)
- Sjoerd T T Schetters
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
11
|
Nam W, Kim H, Kim J, Nam B, Bae C, Kim J, Park S, Lee J, Sim J. Lactic Acid Bacteria and Natural Product Complex Ameliorates Ovalbumin-Induced Airway Hyperresponsiveness in Mice. J Med Food 2021; 24:517-526. [PMID: 34009021 DOI: 10.1089/jmf.2020.4853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The incidence of respiratory diseases, such as asthma, has substantially increased in recent times owing to environmental changes, such as air pollution. Induction of a chronic inflammatory response begins with production of biologically active mediators from the airway epithelium, which attracts and recruits inflammatory cells into the lung airway. In our previous study, we confirmed that Lactobacillus casei HY2782 and Bifidobacterium animalis spp. lactis HY8002 could improve lung inflammation in the COPD animal model. In this study, we investigated the effect of the HY2782 complex against airway hyperresponsiveness by using an ovalbumin (OVA)-induced animal model. An orally administered HY2782 complex on OVA-induced allergic asthma in a BALB/c mouse model was used. The present results showed that the HY2782 complex suppressed total immunoglobulin E in serum and bronchoalveolar lavage fluid (BALF). The cytokine production profile in BALF and serum revealed that the HY2782 complex showed reduced levels of Th2 cytokines among immune factors released due to the elevated allergic response. Levels of inflammatory mediators in BALF, MCP-1, MIP-2, and CXCL-9 were decreased by oral administration of the HY2782 complex. Lower numbers of eosinophils and neutrophils in BALF suggested that inflammation was ameliorated by the HY2782 complex. Histological observation of lung sections also showed infiltration of fewer cells. From results, we suggested that the HY2782 complex effectively responds to improvement of the immune response and airway hypersensitivity reaction because of the anti-inflammatory effect of the Pueraria lobata root extract and antioxidant effect of HY2782.
Collapse
Affiliation(s)
- Woo Nam
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Hyeonji Kim
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Jisoo Kim
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Bora Nam
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Chuhyun Bae
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Jooyun Kim
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | - Soodong Park
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| | | | - Jaehun Sim
- R&D Center, Korea Yakult Co. Ltd., Yongin, Korea
| |
Collapse
|
12
|
Jo-Watanabe A, Okuno T, Yokomizo T. The Role of Leukotrienes as Potential Therapeutic Targets in Allergic Disorders. Int J Mol Sci 2019; 20:ijms20143580. [PMID: 31336653 PMCID: PMC6679143 DOI: 10.3390/ijms20143580] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
Leukotrienes (LTs) are lipid mediators that play pivotal roles in acute and chronic inflammation and allergic diseases. They exert their biological effects by binding to specific G-protein-coupled receptors. Each LT receptor subtype exhibits unique functions and expression patterns. LTs play roles in various allergic diseases, including asthma (neutrophilic asthma and aspirin-sensitive asthma), allergic rhinitis, atopic dermatitis, allergic conjunctivitis, and anaphylaxis. This review summarizes the biology of LTs and their receptors, recent developments in the area of anti-LT strategies (in settings such as ongoing clinical studies), and prospects for future therapeutic applications.
Collapse
Affiliation(s)
- Airi Jo-Watanabe
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|
13
|
Schuijs MJ, Hammad H, Lambrecht BN. Professional and 'Amateur' Antigen-Presenting Cells In Type 2 Immunity. Trends Immunol 2018; 40:22-34. [PMID: 30502024 DOI: 10.1016/j.it.2018.11.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/19/2018] [Accepted: 11/03/2018] [Indexed: 01/21/2023]
Abstract
Dendritic cells (DCs) are critical for the activation of naïve CD4+ T cells and are considered professional antigen-presenting cells (APCs), as are macrophages and B cells. Recently, several innate type 2 immune cells, such as basophils, mast cells (MCs), eosinophils, and innate type 2 lymphocytes (ILC2), have also emerged as harboring APC behavior. Through surface expression or transfer of peptide-loaded MHCII, expression of costimulatory and co-inhibitory molecules, as well as the secretion of polarizing cytokines, these innate cells can extensively communicate with effector and regulatory CD4+ T cells. An exciting new concept is that the complementary tasks of these 'amateur' APCs contribute to shaping and regulating adaptive immunity to allergens and helminths, often in collaboration with professional APCs.
Collapse
Affiliation(s)
- Martijn J Schuijs
- Laboratory for Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory for Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory for Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium; Department of Respiratory Medicine, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
14
|
Thompson-Souza GA, Gropillo I, Neves JS. Cysteinyl Leukotrienes in Eosinophil Biology: Functional Roles and Therapeutic Perspectives in Eosinophilic Disorders. Front Med (Lausanne) 2017; 4:106. [PMID: 28770202 PMCID: PMC5515036 DOI: 10.3389/fmed.2017.00106] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/29/2017] [Indexed: 12/16/2022] Open
Abstract
Cysteinyl leukotrienes (cysLTs), LTC4, and its extracellular metabolites, LTD4 and LTE4, have varied and multiple roles in mediating eosinophilic disorders including host defense against parasitic helminthes and allergic inflammation, especially in the lung and in asthma. CysLTs are known to act through at least 2 receptors termed cysLT1 receptor (CysLT1R) and cysLT2 receptor (CysLT2R). Eosinophils contain a dominant population of cytoplasmic crystalloid granules that store various preformed proteins. Human eosinophils are sources of cysLTs and are known to express the two known cysLTs receptors (CysLTRs). CysLTs can have varied functions on eosinophils, ranging from intracrine regulators of secretion of granule-derived proteins to paracrine/autocrine roles in eosinophil chemotaxis, differentiation, and survival. Lately, it has been recognized the expression of CysLTRs in the membranes of eosinophil granules. Moreover, cysLTs have been shown to evoke secretion from isolated cell-free eosinophil granules operating through their receptors expressed on granule membranes. In this work, we review the functional roles of cysLTs in eosinophil biology. We review cysLTs biosynthesis, their receptors, and argue the intracrine and paracrine/autocrine responses induced by cysLTs in eosinophils and in isolated free extracellular eosinophil granules. We also examine and speculate on the therapeutic relevance of targeting CysLTRs in the treatment of eosinophilic disorders.
Collapse
Affiliation(s)
| | - Isabella Gropillo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Josiane S Neves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|