1
|
Wretman C, Risberg A, Grönlund H, Edner A. Negligible Allergen Presence in Hospital Dogs After Washing. Acta Paediatr 2025. [PMID: 40265220 DOI: 10.1111/apa.70112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/24/2025]
Abstract
AIM Allergies are a potential risk when introducing dogs in health care. Therefore, I chose to evaluate if allergen levels in Hospital Dogs can be reduced by washing the dogs and thereby develop patient-safe guidelines when implicating Hospital Dogs in Swedish hospitals. METHODS Samples (n = 29) were taken from the dog's fur before and after washing and after the Hospital Dog/child meeting to investigate change in allergens. Further samples were taken when washing with two different shampoos, measuring how long decreased levels of allergens lasted. The dog allergens Can f 1 and Can f 4 were analysed by competitive ELISA. RESULTS The mean allergen concentration of Can f 1 decreased from 21.8 ± 11.2 ng/mL before wash to 5.8 ± 3.7 ng/mL (p < 0.0001) after wash. Both types of shampoo resulted in a reduction of Can f 1 and Can f 4 and remained low for three days. CONCLUSION By washing the Hospital Dogs with shampoo, we have found a significant reduction of the dog allergen Can f 1 and Can f 4 lasting for at least three days. In the work of introducing certified Hospital Dogs into Swedish hospitals, which so far has not been possible in Sweden, this is an important finding.
Collapse
Affiliation(s)
- C Wretman
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - A Risberg
- Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - H Grönlund
- Therapeutic Immune Design Unit, Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - A Edner
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Hsin L, Hew M, Aui PM, Deckert K, Hogarth PM, O'Hehir RE, van Zelm MC. A Single Multiplex CytoBas Assay Incorporating Eight Major Components for Accurate Detection of Allergen Sensitization in Asthma and Allergic Rhinitis. Allergy 2025; 80:1047-1059. [PMID: 40052465 PMCID: PMC11969309 DOI: 10.1111/all.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 04/05/2025]
Abstract
BACKGROUND Allergic rhinitis and asthma can be triggered by a variety of aeroallergens, including house dust mites (HDM), tree and grass pollen, and household pets. Identification of the relevant allergen is critical for lifestyle changes and treatments, including allergen immunotherapy. We here assessed the diagnostic performance and clinical utility of a single flow cytometry staining of basophils with major aeroallergen components (AeroDiff CytoBas). METHODS In 156 atopic patients with allergic rhinitis/asthma and 21 non-atopic individuals, allergen-specific IgE levels were determined by ImmunoCAP, and component-specific IgE by ELISA. PBMCs were analyzed by flow cytometry with basophil markers and eight fluorochrome-conjugated allergen component tetramers. RESULTS Patients were stratified for sensitization to each of the four allergens. Allergen-component staining in a single multiplex CytoBas assay and component-specific IgE serology performed similarly for Der p 2, Lol p 1, Fel d 1, and Can f 1 (ROC AUC: 0.76-0.97 vs. 0.73-0.93). CytoBas had greater diagnostic accuracy than component-specific IgE serology (p < 0.001) for HDM sensitization using Der f 1 or Der p 1, and grass pollen using Lol p 5 or Phl p 1. Furthermore, the combined evaluation of Der p 1 and Der p 2 with CytoBas was 96.3% sensitive and 90.7% specific for HDM sensitization. The combined evaluation of Lol p 1 and Lol p 5 achieved 95.4% sensitivity and 96.4% specificity for ryegrass pollen sensitization. CONCLUSION AeroDiff CytoBas has similar to superior diagnostic accuracy compared to singleplex IgE serology, with the additional advantage of a single assay to evaluate multiple allergens. This enables precise and efficient component-resolved diagnosis of aeroallergen sensitization to guide personalized treatment for patients with allergic rhinitis and/or asthma.
Collapse
Affiliation(s)
- Lin Hsin
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Mark Hew
- Allergy, Asthma and Clinical ImmunologyAlfred HealthMelbourneVictoriaAustralia
- Public Health & Preventive MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Pei Mun Aui
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
| | - Kirsten Deckert
- Allergy, Asthma and Clinical ImmunologyAlfred HealthMelbourneVictoriaAustralia
| | - P. Mark Hogarth
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
- Immune Therapies GroupBurnet InstituteMelbourneVictoriaAustralia
- Department of Clinical PathologyThe University of MelbourneParkvilleVictoriaAustralia
| | - Robyn E. O'Hehir
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
- Allergy, Asthma and Clinical ImmunologyAlfred HealthMelbourneVictoriaAustralia
| | - Menno C. van Zelm
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVictoriaAustralia
- Allergy, Asthma and Clinical ImmunologyAlfred HealthMelbourneVictoriaAustralia
- Department of Immunology, Erasmus MCUniversity Medical CenterRotterdamthe Netherlands
| |
Collapse
|
3
|
Dvareckienė J, Žvirblis G, Zaveckas M, Petraitytė-Burneikienė R. Enhancing production and assessing IgE reactivity of dog allergen Can f 6 in Pichia pastoris and Escherichia coli. Appl Microbiol Biotechnol 2025; 109:78. [PMID: 40156625 PMCID: PMC11954706 DOI: 10.1007/s00253-025-13465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Pet allergies are increasingly prevalent in developed nations, significantly affecting humans and strongly linked with asthma and rhinitis. Allergic reactions to cats and dogs affect 15.7% of Americans and 27.2% of Europeans, with sensitization rates to dog allergens reaching 56.0% in Denmark. Despite these concerns, dog ownership remains widespread, with 25% of European and 45.5% of US households owning at least one dog. With sensitization on the rise and current diagnostic and therapeutic approaches predominantly relying on inherently inconsistent allergen extracts derived from natural sources, recombinant allergen production offers a pathway to component-resolved diagnostics, improving specificity and reliability in allergy diagnosis. The present research explored, for the first time, the production of the allergen component glycoprotein Can f 6 in the eukaryotic expression system Pichia pastoris and compared its IgE antigenicity to recombinant Can f 6 (rCan f 6) variants produced in Escherichia coli. Yields were significantly increased by fusing Can f 6 with the maltose binding protein (MBP), resulting in a 1.8-fold increase in production in E. coli and a threefold increase in P. pastoris. Antigenicity analysis showed that N-glycosylation is not critical for folding or IgE recognition of Can f 6, making both systems equally suitable for producing the allergen. Notably, P. pastoris-produced MBP fused protein purified through cation exchange chromatography yielded a lower protein quantity. Still, it exhibited stronger IgE reactivity than the same protein purified using anion exchange chromatography.
Collapse
Affiliation(s)
- Juta Dvareckienė
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Sauletekio Av. 7, 10257, Vilnius, Lithuania.
| | - Gintautas Žvirblis
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Sauletekio Av. 7, 10257, Vilnius, Lithuania
| | - Mindaugas Zaveckas
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Sauletekio Av. 7, 10257, Vilnius, Lithuania
| | - Rasa Petraitytė-Burneikienė
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Sauletekio Av. 7, 10257, Vilnius, Lithuania
| |
Collapse
|
4
|
Kozlov E, Trifonova D, Dubovets A, Usanova A, Tulaeva I, Gattinger P, Fomina D, Hemmer W, Gorokhovets N, Valenta R, Karaulov A. Recombinant IgE-Reactive Functional Can f 5 Devoid of Cross-Reactive Carbohydrate Determinants. Allergy 2025. [PMID: 39836011 DOI: 10.1111/all.16465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/10/2024] [Accepted: 12/22/2024] [Indexed: 01/22/2025]
Affiliation(s)
- Evgenii Kozlov
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, First Moscow State Medical University Sechenov, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| | - Daria Trifonova
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, First Moscow State Medical University Sechenov, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Alexandra Dubovets
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, First Moscow State Medical University Sechenov, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| | - Anastasia Usanova
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, First Moscow State Medical University Sechenov, Moscow, Russia
| | - Inna Tulaeva
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, First Moscow State Medical University Sechenov, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Pia Gattinger
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Daria Fomina
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, First Moscow State Medical University Sechenov, Moscow, Russia
- Moscow Clinical and Research Center of Allergy and Immunology, Clinical City Hospital, Moscow, Russia
- Department of Pulmonology, Astana Medical University, Kazakhstan
| | | | - Neonila Gorokhovets
- Center of Synthetic Biotechnology of the Institute of Translational Medicine and Biotechnology, First Moscow State Medical University Sechenov, Moscow, Russia
| | - Rudolf Valenta
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, First Moscow State Medical University Sechenov, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- Center for Molecular Allergology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Alexander Karaulov
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, First Moscow State Medical University Sechenov, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| |
Collapse
|
5
|
Solé D, Kuschnir FC, Pastorino AC, Constantino CF, Galvão C, Chong E Silva DC, Baptistella E, Goudouris ES, Sakano E, Ejzenbaum F, Matsumoto FY, Mizoguchi FM, Aarestrup FM, Wandalsen GF, Chong Neto HJ, Brito de Oliveira JV, Lubianca Neto JF, Rizzo MCV, Silva Chavarria MLF, Urrutia-Pereira M, Filho NAR, de Paula Motta Rubini N, Mion O, Piltcher OB, Ramos RT, Francesco RD, Roithmann R, Anselmo-Lima WT, Romano FR, de Mello Júnior JF. V Brazilian Consensus on Rhinitis - 2024. Braz J Otorhinolaryngol 2025; 91:101500. [PMID: 39388827 PMCID: PMC11497470 DOI: 10.1016/j.bjorl.2024.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 10/12/2024] Open
Abstract
Since we published the "IV Brazilian Consensus on Rhinitis", in2017, several advances have been achieved and have enabled a further understanding of the different aspects of "Rhinitis". This new guideline, developed jointly by ASBAI, SBP and SBORL, represents a relevant milestone in the updated and integrated management of the different forms of the disease, and it aims to unify evidence-based approaches to improve the diagnosis and treatment of this common and often underestimated condition. The document covers a wide range of topics, including clear definitions of the different phenotypes and endotypes of rhinitis, risk factors, updated diagnostic criteria, and recommended methods for clinical and laboratory investigation. We stress the importance of detailed clinical history and objective assessment, as well as tools for control and assessing severity tools an accurate diagnostic approach to the disease. Regarding treatment, it emphasizes the treatment customization, considering the severity of symptoms, the presence of comorbidities and the impact on the patient's quality of life. We discuss different drug treatment, in addition to non-pharmacological measures, such as environmental control and specific immunotherapy; and the possible role of immunobiological agents. Furthermore, the consensus addresses issues related to patient education, prevention and management of special situations, such as rhinitis in children, in pregnant women and in the elderly. In short, the "V Brazilian Consensus on Rhinitis" represents a comprehensive and updated guide for healthcare professionals involved in the diagnosis and management of rhinitis, aiming to improve patients' quality of life through an integrated and evidence-based approach.
Collapse
Affiliation(s)
- Dirceu Solé
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Fábio Chigres Kuschnir
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antônio Carlos Pastorino
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Clóvis F Constantino
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de Santo Amaro, São Paulo, SP, Brazil
| | - Clóvis Galvão
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Débora Carla Chong E Silva
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | - Eduardo Baptistella
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Ekaterini Simões Goudouris
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eulália Sakano
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Fábio Ejzenbaum
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP, Brazil
| | - Fausto Yoshio Matsumoto
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Flavio Massao Mizoguchi
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Fernando Monteiro Aarestrup
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Gustavo F Wandalsen
- Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, SP, Brazil; Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil
| | - Herberto José Chong Neto
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | | | - José Faibes Lubianca Neto
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Fundação Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | | | | | - Marilyn Urrutia-Pereira
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Nelson Augusto Rosário Filho
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Paraná́, Curitiba, PR, Brazil
| | - Norma de Paula Motta Rubini
- Associação Brasileira de Alergia e Imunologia, São Paulo, SP, Brazil; Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Olavo Mion
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - Otávio Bejzman Piltcher
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazi
| | - Regina Terse Ramos
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Renata Di Francesco
- Sociedade Brasileira de Pediatria, Rio de Janeiro, RJ, Brazil; Universidade de São Paulo, São Paulo, SP, Brazil
| | - Renato Roithmann
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade Luterana do Brasil, Canos, RS, Brazil
| | - Wilma Terezinha Anselmo-Lima
- Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil; Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Fabrizio Ricci Romano
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil
| | - João Ferreira de Mello Júnior
- Universidade de São Paulo, São Paulo, SP, Brazil; Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Sekerel BE, Aliyeva G. Advancing diagnostic precision: Unveiling sensitization relationships between cat, dog, and horse allergen molecules. Pediatr Allergy Immunol 2024; 35:e14177. [PMID: 38881167 DOI: 10.1111/pai.14177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Recent advancements in molecular diagnostics have unveiled a multitude of allergen molecules (AMs) associated with animal sensitizations, revealing significant cross- and co-sensitization patterns among these seemingly distinct allergens. METHOD We investigated the sensitization profiles of 120 children, sensitized to at least one of the 14 AMs from cat, dog, or horse using the Alex test, employing correlations and hierarchical clusters to explore relationship between sensitizations. RESULTS Sensitizations to Fel d 1, Can f 4/5, and Equ c 4 differ from other cat, dog, and horse AM sensitizations, suggesting they may represent genuine sensitizations for their respective animals. High correlations were observed among various AMs, including lipocalins (Can f 1/2/6, Fel d 4/7, and Equ c 1), serum albumins (Fel d 2, Can f 3, and Equ c 3), and uteroglobins (Fel d 1 and Can f_Fd1). Hierarchical clustering of sensitizations identified two similarity clusters and one dissimilarity cluster, providing an estimation of the likelihood of cross-reactivity. Additionally, our method facilitated speculation regarding cross-, co-, or genuine sensitization. Moreover, we noted a potential increase in the number and level of sensitized animal AMs concurrent with increased sensitization to other aeroallergens with advancing age. No significant difference was detected for the presence or absence of various types of allergic comorbidities. CONCLUSION Correlations and hierarchical clustering can unveil the extent and magnitude of cross-, co-, and genuine sensitization relationships among animal AMs. These insights can be leveraged to enhance artificial intelligence algorithms, improving diagnostic accuracy through the integration of other measures of sensitization.
Collapse
Affiliation(s)
- Bulent Enis Sekerel
- Division of Pediatric Allergy, Hacettepe University School of Medicine, Ankara, Turkey
| | - Gulnar Aliyeva
- Division of Pediatric Allergy, Hacettepe University School of Medicine, Ankara, Turkey
| |
Collapse
|
7
|
Wise SK, Damask C, Roland LT, Ebert C, Levy JM, Lin S, Luong A, Rodriguez K, Sedaghat AR, Toskala E, Villwock J, Abdullah B, Akdis C, Alt JA, Ansotegui IJ, Azar A, Baroody F, Benninger MS, Bernstein J, Brook C, Campbell R, Casale T, Chaaban MR, Chew FT, Chambliss J, Cianferoni A, Custovic A, Davis EM, DelGaudio JM, Ellis AK, Flanagan C, Fokkens WJ, Franzese C, Greenhawt M, Gill A, Halderman A, Hohlfeld JM, Incorvaia C, Joe SA, Joshi S, Kuruvilla ME, Kim J, Klein AM, Krouse HJ, Kuan EC, Lang D, Larenas-Linnemann D, Laury AM, Lechner M, Lee SE, Lee VS, Loftus P, Marcus S, Marzouk H, Mattos J, McCoul E, Melen E, Mims JW, Mullol J, Nayak JV, Oppenheimer J, Orlandi RR, Phillips K, Platt M, Ramanathan M, Raymond M, Rhee CS, Reitsma S, Ryan M, Sastre J, Schlosser RJ, Schuman TA, Shaker MS, Sheikh A, Smith KA, Soyka MB, Takashima M, Tang M, Tantilipikorn P, Taw MB, Tversky J, Tyler MA, Veling MC, Wallace D, Wang DY, White A, Zhang L. International consensus statement on allergy and rhinology: Allergic rhinitis - 2023. Int Forum Allergy Rhinol 2023; 13:293-859. [PMID: 36878860 DOI: 10.1002/alr.23090] [Citation(s) in RCA: 176] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 09/13/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND In the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated. The executive summary highlights key evidence-based findings and recommendation from the full document. METHODS ICAR-Allergic Rhinitis 2023 employed established evidence-based review with recommendation (EBRR) methodology to individually evaluate each topic. Stepwise iterative peer review and consensus was performed for each topic. The final document was then collated and includes the results of this work. RESULTS ICAR-Allergic Rhinitis 2023 includes 10 major content areas and 144 individual topics related to AR. For a substantial proportion of topics included, an aggregate grade of evidence is presented, which is determined by collating the levels of evidence for each available study identified in the literature. For topics in which a diagnostic or therapeutic intervention is considered, a recommendation summary is presented, which considers the aggregate grade of evidence, benefit, harm, and cost. CONCLUSION The ICAR-Allergic Rhinitis 2023 update provides a comprehensive evaluation of AR and the currently available evidence. It is this evidence that contributes to our current knowledge base and recommendations for patient evaluation and treatment.
Collapse
Affiliation(s)
- Sarah K Wise
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Cecelia Damask
- Otolaryngology-HNS, Private Practice, University of Central Florida, Lake Mary, Florida, USA
| | - Lauren T Roland
- Otolaryngology-HNS, Washington University, St. Louis, Missouri, USA
| | - Charles Ebert
- Otolaryngology-HNS, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua M Levy
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Sandra Lin
- Otolaryngology-HNS, University of Wisconsin, Madison, Wisconsin, USA
| | - Amber Luong
- Otolaryngology-HNS, McGovern Medical School of the University of Texas, Houston, Texas, USA
| | - Kenneth Rodriguez
- Otolaryngology-HNS, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ahmad R Sedaghat
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Elina Toskala
- Otolaryngology-HNS, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Baharudin Abdullah
- Otolaryngology-HNS, Universiti Sains Malaysia, Kubang, Kerian, Kelantan, Malaysia
| | - Cezmi Akdis
- Immunology, Infectious Diseases, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Jeremiah A Alt
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fuad Baroody
- Otolaryngology-HNS, University of Chicago, Chicago, Illinois, USA
| | | | | | - Christopher Brook
- Otolaryngology-HNS, Harvard University, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Raewyn Campbell
- Otolaryngology-HNS, Macquarie University, Sydney, NSW, Australia
| | - Thomas Casale
- Allergy/Immunology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Mohamad R Chaaban
- Otolaryngology-HNS, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fook Tim Chew
- Allergy/Immunology, Genetics, National University of Singapore, Singapore, Singapore
| | - Jeffrey Chambliss
- Allergy/Immunology, University of Texas Southwestern, Dallas, Texas, USA
| | - Antonella Cianferoni
- Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Anne K Ellis
- Allergy/Immunology, Queens University, Kingston, ON, Canada
| | | | - Wytske J Fokkens
- Otorhinolaryngology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | | | - Matthew Greenhawt
- Allergy/Immunology, Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Amarbir Gill
- Otolaryngology-HNS, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashleigh Halderman
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Jens M Hohlfeld
- Respiratory Medicine, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | | | - Stephanie A Joe
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shyam Joshi
- Allergy/Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Jean Kim
- Otolaryngology-HNS, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam M Klein
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Helene J Krouse
- Otorhinolaryngology Nursing, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Edward C Kuan
- Otolaryngology-HNS, University of California Irvine, Orange, California, USA
| | - David Lang
- Allergy/Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Matt Lechner
- Otolaryngology-HNS, University College London, Barts Health NHS Trust, London, UK
| | - Stella E Lee
- Otolaryngology-HNS, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Victoria S Lee
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Patricia Loftus
- Otolaryngology-HNS, University of California San Francisco, San Francisco, California, USA
| | - Sonya Marcus
- Otolaryngology-HNS, Stony Brook University, Stony Brook, New York, USA
| | - Haidy Marzouk
- Otolaryngology-HNS, State University of New York Upstate, Syracuse, New York, USA
| | - Jose Mattos
- Otolaryngology-HNS, University of Virginia, Charlottesville, Virginia, USA
| | - Edward McCoul
- Otolaryngology-HNS, Ochsner Clinic, New Orleans, Louisiana, USA
| | - Erik Melen
- Pediatric Allergy, Karolinska Institutet, Stockholm, Sweden
| | - James W Mims
- Otolaryngology-HNS, Wake Forest University, Winston Salem, North Carolina, USA
| | - Joaquim Mullol
- Otorhinolaryngology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Jayakar V Nayak
- Otolaryngology-HNS, Stanford University, Palo Alto, California, USA
| | - John Oppenheimer
- Allergy/Immunology, Rutgers, State University of New Jersey, Newark, New Jersey, USA
| | | | - Katie Phillips
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Platt
- Otolaryngology-HNS, Boston University, Boston, Massachusetts, USA
| | | | | | - Chae-Seo Rhee
- Rhinology/Allergy, Seoul National University Hospital and College of Medicine, Seoul, Korea
| | - Sietze Reitsma
- Otolaryngology-HNS, University of Amsterdam, Amsterdam, Netherlands
| | - Matthew Ryan
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Joaquin Sastre
- Allergy, Fundacion Jiminez Diaz, University Autonoma de Madrid, Madrid, Spain
| | - Rodney J Schlosser
- Otolaryngology-HNS, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Theodore A Schuman
- Otolaryngology-HNS, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marcus S Shaker
- Allergy/Immunology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Aziz Sheikh
- Primary Care, University of Edinburgh, Edinburgh, Scotland
| | - Kristine A Smith
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | - Michael B Soyka
- Otolaryngology-HNS, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Masayoshi Takashima
- Otolaryngology-HNS, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Monica Tang
- Allergy/Immunology, University of California San Francisco, San Francisco, California, USA
| | | | - Malcolm B Taw
- Integrative East-West Medicine, University of California Los Angeles, Westlake Village, California, USA
| | - Jody Tversky
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew A Tyler
- Otolaryngology-HNS, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria C Veling
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Dana Wallace
- Allergy/Immunology, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - De Yun Wang
- Otolaryngology-HNS, National University of Singapore, Singapore, Singapore
| | - Andrew White
- Allergy/Immunology, Scripps Clinic, San Diego, California, USA
| | - Luo Zhang
- Otolaryngology-HNS, Beijing Tongren Hospital, Beijing, China
| |
Collapse
|
8
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, et alDramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Show More Authors] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
9
|
Stark JM, Liu J, Tibbitt CA, Christian M, Ma J, Wintersand A, Dunst J, Kreslavsky T, Murrell B, Adner M, Grönlund H, Gafvelin G, Coquet JM. Recombinant multimeric dog allergen prevents airway hyperresponsiveness in a model of asthma marked by vigorous T H 2 and T H 17 cell responses. Allergy 2022; 77:2987-3001. [PMID: 35657107 PMCID: PMC9796107 DOI: 10.1111/all.15399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Allergy to dogs affects around 10% of the population in developed countries. Immune therapy of allergic patients with dog allergen extracts has shown limited therapeutic benefit. METHODS We established a mouse model of dog allergy by repeatedly administering dog dander and epithelium extracts via the intranasal route. We also assessed the efficacy of a recombinant multimeric protein containing Can f 1, f 2, f 4 and f 6 in preventing inflammatory responses to dog extracts. RESULTS Repeated inhalation of dog extracts induced infiltration of the airways by TH 2 cells, eosinophils and goblet cells, reminiscent of the house dust mite (HDM) model of asthma. Dog extracts also induced robust airway hyperresponsiveness and promoted TH 17 cell responses, which was associated with a high neutrophilic infiltration of the airways. scRNA-Seq analysis of T helper cells in the airways pinpointed a unique gene signature for TH 17 cells. Analysis of T-cell receptors depicted a high frequency of clones that were shared between TH 17, TH 2 and suppressive Treg cells, indicative of a common differentiation trajectory for these subsets. Importantly, sublingual administration of multimeric Can f 1-2-4-6 protein prior to sensitization reduced airway hyperresponsiveness and type 2-mediated inflammation in this model. CONCLUSION Dog allergen extracts induce robust TH 2 and TH 17 cell-mediated responses in mice. Recombinant Can f 1-2-4-6 can induce tolerance to complex dog allergen extracts.
Collapse
Affiliation(s)
- Julian M. Stark
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Jielu Liu
- Institute of Environmental Medicine and Centre for Allergy ResearchKarolinska InstitutetStockholmSweden
| | | | - Murray Christian
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Junjie Ma
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Anna Wintersand
- Department of Clinical Neuroscience, Karolinska InstitutetCentre for Molecular MedicineStockholmSweden
| | - Josefine Dunst
- Department of Medicine, Division of Immunology and Allergy, Karolinska InstitutetKarolinska University HospitalStockholmSweden,Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Taras Kreslavsky
- Department of Medicine, Division of Immunology and Allergy, Karolinska InstitutetKarolinska University HospitalStockholmSweden,Center for Molecular MedicineKarolinska InstitutetStockholmSweden
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| | - Mikael Adner
- Institute of Environmental Medicine and Centre for Allergy ResearchKarolinska InstitutetStockholmSweden
| | - Hans Grönlund
- Department of Clinical Neuroscience, Karolinska InstitutetCentre for Molecular MedicineStockholmSweden
| | - Guro Gafvelin
- Department of Clinical Neuroscience, Karolinska InstitutetCentre for Molecular MedicineStockholmSweden
| | - Jonathan M. Coquet
- Department of Microbiology, Tumor and Cell BiologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
10
|
Käck U, van Hage M, Grönlund H, Lilja G, Asarnoj A, Konradsen JR. Allergic sensitization to lipocalins reflects asthma morbidity in dog dander sensitized children. Clin Transl Allergy 2022; 12:e12149. [PMID: 35510076 PMCID: PMC9058535 DOI: 10.1002/clt2.12149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/20/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Background Sensitization to dog is an important risk factor for asthma in children, but the clinical relevance of IgE to available dog‐ and furry animal allergen molecules is uncertain. Methods Spirometry, methacholine challenge, fraction of exhaled nitric oxide, nasal challenge with dog extract and questionnaires were performed in 59 dog‐sensitized children (age 10–18 years). Serum IgE to dog‐, cat‐, horse extracts and the allergen molecules Can f 1–6, Fel d 1, Fel d 2, Fel d 4 and Equ c 1 were evaluated. Results Median numbers of positive IgE results to furry animal allergen molecules among children without asthma was 3, with asthma 5.5 and with troublesome asthma 9 (asthma vs. no asthma; p = 0.039; troublesome asthma vs. no asthma; p = 0.009). The odds ratio for asthma if sensitized to any lipocalin was 7.2 (95% confidence Interval: 1.44–35.9). Children with troublesome asthma had higher IgE levels to the lipocalins Can f 2, Can f 4 and Can f 6 compared to the rest of the study population (44 vs. 4.1 kUA/L, p = 0.015; 5.8 vs. 0.9 kUA/L, p = 0.018 and 1.3 vs. 0.7 kUA/L, p = 0.03 respectively). Furthermore, a positive nasal challenge was more common among children with troublesome asthma (83% vs. 36%, p = 0.036). Conclusions Polysensitization to furry animal allergens and lipocalins is associated with asthma in dog‐sensitized children. Children with troublesome asthma have higher IgE levels to several dog lipocalins than other dog sensitized children. Key message Polysensitization to furry animal allergens and high IgE levels to the dog lipocalins Can f 2, Can f 4 and Can f 6 is associated with asthma severity in dog dander sensitized children. Molecular allergy diagnostics may thus help the clinicians to evaluate the impact of allergic sensitization on asthma morbidity.
Collapse
Affiliation(s)
- Ulrika Käck
- Department of Clinical Science and Education Södersjukhuset Karolinska Institutet Stockholm Sweden.,Sachs' Children and Youth Hospital Södersjukhuset Stockholm Sweden
| | - Marianne van Hage
- Department of Medicine Solna Division of Immunology and Allergy Karolinska Institutet and Karolinska University Hospital Stockholm Sweden
| | - Hans Grönlund
- Department of Clinical Neuroscience Karolinska Institutet Stockholm Sweden
| | - Gunnar Lilja
- Department of Clinical Science and Education Södersjukhuset Karolinska Institutet Stockholm Sweden.,Sachs' Children and Youth Hospital Södersjukhuset Stockholm Sweden
| | - Anna Asarnoj
- Astrid Lindgren Children's Hospital Karolinska University Hospital Stockholm Sweden.,Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| | - Jon R Konradsen
- Astrid Lindgren Children's Hospital Karolinska University Hospital Stockholm Sweden.,Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
| |
Collapse
|
11
|
Barber D, Diaz‐Perales A, Escribese MM, Kleine‐Tebbe J, Matricardi PM, Ollert M, Santos AF, Sastre J. Molecular allergology and its impact in specific allergy diagnosis and therapy. Allergy 2021; 76:3642-3658. [PMID: 34057744 DOI: 10.1111/all.14969] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Progressive knowledge of allergenic structures resulted in a broad availability of allergenic molecules for diagnosis. Component-resolved diagnosis allowed a better understanding of patient sensitization patterns, facilitating allergen immunotherapy decisions. In parallel to the discovery of allergenic molecules, there was a progressive development of a regulation framework that affected both in vitro diagnostics and Allergen Immunotherapy products. With a progressive understanding of underlying mechanisms associated to Allergen immunotherapy and an increasing experience of application of molecular diagnosis in daily life, we focus in analyzing the evidences of the value provided by molecular allergology in daily clinical practice, with a focus on Allergen Immunotherapy decisions.
Collapse
Affiliation(s)
- Domingo Barber
- Departamento de Ciencias Médicas Básicas Facultad de Medicina IMMA, Universidad San Pablo CEU, CEU Universities Madrid Spain
- ARADyAL‐RD16/0006/0015 RD16/0006/0003 Thematic Network and Cooperative Research Centers ISCIII Madrid Spain
| | - Araceli Diaz‐Perales
- ARADyAL‐RD16/0006/0015 RD16/0006/0003 Thematic Network and Cooperative Research Centers ISCIII Madrid Spain
- Center for Plant Biotechnology and Genomic Universidad Politécnica de Madrid Pozuelo de Alarcon Spain
| | - Maria M. Escribese
- Departamento de Ciencias Médicas Básicas Facultad de Medicina IMMA, Universidad San Pablo CEU, CEU Universities Madrid Spain
- ARADyAL‐RD16/0006/0015 RD16/0006/0003 Thematic Network and Cooperative Research Centers ISCIII Madrid Spain
| | | | - Paolo M. Matricardi
- Department of Pediatric Pneumology and Immunology Charitè Medical University of Berlin Berlin Germany
| | - Markus Ollert
- Department of Infection and Immunity Luxembourg Institute of Health Esch‐sur‐Alzette Luxembourg
- Department of Dermatology and Allergy Centre Odense University Hospital Odense Denmark
| | - Alexandra F. Santos
- Department of Women and Children's Health (Pediatric Allergy School of Life Course Sciences Faculty of Life Sciences and Medicine King's College London London UK
- Peter Gorer Department of Immunobiology School of Immunology and Microbial Sciences King's College London London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
- Children's Allergy Service Guy's and St Thomas' Hospital London UK
| | - Joaquin Sastre
- Fundación Jiménez Diaz AllergyDepartment Universidad Autonomade Madrid, CIBERES, Instituto de Salud Carlos III Madrid Spain
| |
Collapse
|
12
|
Wintersand A, Alsved M, Jakobsson J, Sadrizadeh S, Grönlund H, Löndahl J, Gafvelin G. Individual airborne characteristics of dog allergens. Clin Exp Allergy 2021; 51:1221-1224. [PMID: 33705579 DOI: 10.1111/cea.13863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/01/2022]
Affiliation(s)
- Anna Wintersand
- Department of Clinical Neuroscience, Therapeutic Immune Design, Karolinska Institutet, Stockholm, Sweden
| | - Malin Alsved
- Department of Design Sciences, Lund University, Lund, Sweden
| | - Jonas Jakobsson
- Department of Design Sciences, Lund University, Lund, Sweden
| | - Sasan Sadrizadeh
- Department of Civil and Architectural Engineering, KTH University, Stockholm, Sweden
| | - Hans Grönlund
- Department of Clinical Neuroscience, Therapeutic Immune Design, Karolinska Institutet, Stockholm, Sweden
| | - Jakob Löndahl
- Department of Design Sciences, Lund University, Lund, Sweden
| | - Guro Gafvelin
- Department of Clinical Neuroscience, Therapeutic Immune Design, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Bousquet J, Grattan CE, Akdis CA, Eigenmann PA, Hoffmann-Sommergruber K, Agache I, Jutel M. Highlights and recent developments in allergic diseases in EAACI journals (2019). Clin Transl Allergy 2020; 10:56. [PMID: 33292572 PMCID: PMC7712618 DOI: 10.1186/s13601-020-00366-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
The European Academy of Allergy and Clinical Immunology (EAACI) owns three journals: Allergy, Pediatric Allergy and Immunology and Clinical and Translational Allergy. One of the major goals of EAACI is to support health promotion in which prevention of allergy and asthma plays a critical role and to disseminate the knowledge of allergy to all stakeholders including the EAACI junior members. There was substantial progress in 2019 in the identification of basic mechanisms of allergic and respiratory disease and the translation of these mechanisms into clinics. Better understanding of molecular and cellular mechanisms, efforts for the development of biomarkers for disease prediction, novel prevention and intervention studies, elucidation of mechanisms of multimorbidities, entrance of new drugs in the clinics as well as recently completed phase three clinical studies and publication of a large number of allergen immunotherapy studies and meta-analyses have been the highlights of the last year.
Collapse
Affiliation(s)
- J Bousquet
- MACVIA-France, Montpellier, France. .,CHRU Arnaud de Villeneuve, 371 Avenue du Doyen Gaston Giraud, 34295, Montpellier Cedex 5, France.
| | - C E Grattan
- St John's Institute of Dermatology, Guy's Hospital, London, UK
| | - C A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - P A Eigenmann
- Pediatric Allergy Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - K Hoffmann-Sommergruber
- Depart of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - I Agache
- Transylvania University Brasov, Brasov, Romania
| | - M Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wrocław, Poland.,ALL-MED Medical Research Institute, Wrocław, Poland
| |
Collapse
|
14
|
Kang SY, Yang MS, Park SY, Kim JH, Won HK, Kwon OY, Lee JH, Kang YW, Jung JW, Song WJ, Kim SH, Lee SM, Lee SP. The role of allergen-specific IgE in predicting allergic symptoms on dog and cat exposure among Korean pet exhibition participants. World Allergy Organ J 2020; 13:100488. [PMID: 33312333 PMCID: PMC7702179 DOI: 10.1016/j.waojou.2020.100488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The values of the skin prick test (SPT) and allergen-specific IgE (sIgE) measurement in predicting dog and cat allergies remain unclear. We aimed to evaluate the usefulness of SPT and sIgE measurement in predicting self-reported allergic symptoms during exposure to dogs and cats in Korean adults. METHODS A total of 552 participants in a pet exhibition in Korea completed questionnaires regarding exposure to dog or cat and the development of allergic symptoms during exposure. Study participants also underwent SPT using 3 different commercially available reagents, and had their blood drawn for measurement of serum total IgE and dog/cat-dander-IgE using ImmunoCAP®. RESULTS Measurement of sIgE for dog and cat dander allergens provided the highest positive and negative predictive values and sensitivity, but not specificity (58%, 87.2%, 67.9%, and 93.1% for allergic symptoms on dog exposure; 64.7%, 83.2%, 74.8%, and 88.9% for those on cat exposure, respectively), in predicting self-reported allergic symptoms on dog and cat exposure. The sIgE level consistently exhibited the highest area under the receiver operating characteristic curve (0.749 and 0.719 for allergic symptoms on dog and cat exposure, respectively). Careful interpretation of SPT and sIgE measurements maximized the positive and negative predictive values, sensitivity, and specificity for predicting allergic symptoms on dog exposure (71.4%, 87.3%, 75.3%, and 99.3%) and those on cat exposure (71.4%, 85.3%, 79.3%, and 98.9%). CONCLUSIONS The measurement of dog and cat dander sIgE levels may be useful for the exclusion of allergic symptoms related to pet exposure. Collective interpretation of SPT and sIgE tests facilitates identification of allergic symptoms on dog or cat exposure, giving a better rule-in test result.
Collapse
Key Words
- A/H ratio, Allergen-to-histamine ratio
- AUC, Area under the curve
- Allergy
- Cats
- Dogs
- MWD, Mean wheal diameter
- NPV, Negative predictive value
- PPV, Positive predictive value
- ROC, Receiver-operating characteristic
- SN, Sensitivity
- SP, Specificity
- SPT, Skin prick test
- Skin prick test
- Specific IgE
- sIgE, Allergen-specific IgE
Collapse
Affiliation(s)
- Sung-Yoon Kang
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Min-Suk Yang
- Department of Internal Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - So-Young Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jung-Hyun Kim
- Department of Internal Medicine, Armed Forces Capital Hospital, Seongnam, Republic of Korea
| | - Ha-Kyeong Won
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Oh Young Kwon
- DreamKwon Internal Medicine Allergy Clinic, Seoul, Republic of Korea
| | - Ji-Hyang Lee
- Department of Allergy and Clinical Immunology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ye-Won Kang
- Department of Internal Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Busan, Republic of Korea
| | - Jae-Woo Jung
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sae-Hoon Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sang Min Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Sang Pyo Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| |
Collapse
|
15
|
Caraballo L, Valenta R, Puerta L, Pomés A, Zakzuk J, Fernandez-Caldas E, Acevedo N, Sanchez-Borges M, Ansotegui I, Zhang L, van Hage M, Abel-Fernández E, Karla Arruda L, Vrtala S, Curin M, Gronlund H, Karsonova A, Kilimajer J, Riabova K, Trifonova D, Karaulov A. The allergenic activity and clinical impact of individual IgE-antibody binding molecules from indoor allergen sources. World Allergy Organ J 2020; 13:100118. [PMID: 32373267 PMCID: PMC7195550 DOI: 10.1016/j.waojou.2020.100118] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
A large number of allergens have been discovered but we know little about their potential to induce inflammation (allergenic activity) and symptoms. Nowadays, the clinical importance of allergens is determined by the frequency and intensity of their IgE antibody binding (allergenicity). This is a rather limited parameter considering the development of experimental allergology in the last 20 years and the criteria that support personalized medicine. Now it is known that some allergens, in addition to their IgE antibody binding properties, can induce inflammation through non IgE mediated pathways, which can increase their allergenic activity. There are several ways to evaluate the allergenic activity, among them the provocation tests, the demonstration of non-IgE mediated pathways of inflammation, case control studies of IgE-binding frequencies, and animal models of respiratory allergy. In this review we have explored the current status of basic and clinical research on allergenic activity of indoor allergens and confirm that, for most of them, this important property has not been investigated. However, during recent years important advances have been made in the field, and we conclude that for at least the following, allergenic activity has been demonstrated: Der p 1, Der p 2, Der p 5 and Blo t 5 from HDMs; Per a 10 from P. americana; Asp f 1, Asp f 2, Asp f 3, Asp f 4 and Asp f 6 from A. fumigatus; Mala s 8 and Mala s 13 from M. sympodialis; Alt a 1 from A. alternata; Pen c 13 from P. chrysogenum; Fel d 1 from cats; Can f 1, Can f 2, Can f 3, Can f 4 and Can f 5 from dogs; Mus m 1 from mice and Bos d 2 from cows. Defining the allergenic activity of other indoor IgE antibody binding molecules is necessary for a precision-medicine-oriented management of allergic diseases.
Collapse
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
- Corresponding author. Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia.
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, Moscow, Russian Federation
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Leonardo Puerta
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Anna Pomés
- Indoor Biotechnologies, Inc. Charlottesville, VA, USA
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Mario Sanchez-Borges
- Allergy and Clinical Immunology Department, Centro Médico Docente La Trinidad, Caracas, Venezuela
| | - Ignacio Ansotegui
- Department of Allergy & Immunology Hospital Quironsalud Bizkaia, Bilbao, Spain
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Eva Abel-Fernández
- Inmunotek, Madrid, Spain and University of South Florida College of Medicine, Tampa, USA
| | - L. Karla Arruda
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hans Gronlund
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Antonina Karsonova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jonathan Kilimajer
- Inmunotek, Madrid, Spain and University of South Florida College of Medicine, Tampa, USA
| | - Ksenja Riabova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Daria Trifonova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
16
|
Carmona-Gil AM, Sánchez J, Maldonado-Estrada J. Evaluation of Skin Prick-Test Reactions for Allergic Sensitization in Dogs With Clinical Symptoms Compatible With Atopic Dermatitis. A Pilot Study. Front Vet Sci 2019; 6:448. [PMID: 31921909 PMCID: PMC6927991 DOI: 10.3389/fvets.2019.00448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/26/2019] [Indexed: 11/13/2022] Open
Abstract
Skin prick-test is the first choice for the detection of type I hypersensitivity in human atopic dermatitis. Canine atopic dermatitis resembles several symptoms of the disease in the human counterpart. In canine atopic dermatitis, intradermal testing is the test of choice, and there are few reports on the use of skin prick test (SPT) in dogs. The purpose of this study was to evaluate SPT reactions in atopic dogs and a healthy control group to 11 environmental allergens. Eleven glycerinated allergens were applied on the left lateral thorax of nine atopic dogs and nine healthy dogs. The skin was pricked with a feather lancet and evaluated for the positive percutaneous reaction at 5, 10, 15, and 20 min after the application of the allergens. Data were analyzed by the Shapiro-Wilk test to test for normal distribution. Data that did not meet normality were analyzed by a one-sided Wilcoxon ranked sum test with a p-value of 0.05. Six out of 9 atopic dogs tested positive for at least one of the allergens tested. None of the dogs in the control group showed a positive reaction to the allergens included in the test. Blomia tropicalis, Dermatophagoides farine, and Dermatophagoides pteronyssinus exhibited the highest reaction rate among the group of atopic dogs. There was not a statistical difference in the histamine reaction (positive control) between both groups. In this set of dogs, the test exhibited a 100% specificity and a sensitivity of 66%. The use of skin prick-test in the detection of causative allergens of human atopic dermatitis has proved to be a sensitive and specific tool frequently used by human allergists. Due to the number of similarities in canine and human atopic dermatitis, this could be a valuable tool that needs intensive research in veterinary medicine. The published research so far correlates to the results obtained in this investigation. However, future studies evaluating the concordance between in vitro specific IgE antibody assays and SPT must be carried out simultaneously to validate the test.
Collapse
Affiliation(s)
- Ana M Carmona-Gil
- One Health and Veterinary Innovative Research and Development Group, Faculty of Agrarian Sciences, School of Veterinary Medicine, University of Antioquia, Medellin, Colombia.,Centro de Dermatología Veterinaria DermaVet, Medellin, Colombia
| | - Jorge Sánchez
- Grupo de Alergología Clínica y Experimental, Facultad de Medicina, IPS Universitaria, Universidad de Antioquia, Medellin, Colombia
| | - Juan Maldonado-Estrada
- One Health and Veterinary Innovative Research and Development Group, Faculty of Agrarian Sciences, School of Veterinary Medicine, University of Antioquia, Medellin, Colombia
| |
Collapse
|