1
|
Martín‐Cruz L, Palomares O. Allergen-Specific Immunotherapy and Trained Immunity. Allergy 2025; 80:677-689. [PMID: 39641571 PMCID: PMC11891420 DOI: 10.1111/all.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
The high prevalence of allergic diseases reached over the last years is attributed to the complex interplay of genetic factors, lifestyle changes, and environmental exposome. Allergen-specific immunotherapy (AIT) is the single therapeutic strategy for allergic diseases with the potential capacity to modify the course of the disease. Our knowledge of the mechanisms involved in allergy and successful AIT has significantly improved. Recent findings indicate that long-term allergen tolerance upon AIT discontinuation not only relies on the generation of proper adaptive immune responses by the generation of allergen-specific regulatory T and B cells enabling the induction of different isotypes of blocking antibodies but also relies on the restoration of proper innate immune responses. Trained immunity (TRIM) is the process by which innate immune cells acquire memory by mechanisms depending on metabolic and epigenetic reprogramming, thus conferring the host with increased broad protection against infection. This concept was initially explored for infectious diseases, as well as for vaccination against infections, but compelling experimental evidence suggests that TRIM might also play a role in allergy and AIT. Hyperinflammatory innate immune responses in early life, likely due to TRIM maladaptations, lead to aberrant type 2 inflammation-enhancing allergy. However, exposure to farming environments and specific microbes prevents recurrent infections and allergy development, likely due to mechanisms partially depending on TRIM. TRIM-based vaccines and next-generation AIT vaccines inducing metabolic and epigenetic reprogramming in innate immune cells and their precursors have shown protective antiallergic effects. A better understanding of the factors involved in early-life TRIM mechanisms in the context of allergy and the identification and characterization of novel tolerance inducers might well enable the design of alternative TRIM-based allergen vaccines for allergic diseases.
Collapse
Affiliation(s)
- Leticia Martín‐Cruz
- School of Chemistry, Department of Biochemistry and Molecular BiologyComplutense UniversityMadridSpain
- School of Pharmacy, Department of Biochemistry and Molecular BiologyComplutense UniversityMadridSpain
| | - Oscar Palomares
- School of Chemistry, Department of Biochemistry and Molecular BiologyComplutense UniversityMadridSpain
| |
Collapse
|
2
|
Al-Shouli ST. Advances in Allergen Immunotherapy and Safety. Vaccines (Basel) 2025; 13:221. [PMID: 40266074 PMCID: PMC11946736 DOI: 10.3390/vaccines13030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 04/24/2025] Open
Abstract
Allergen immunotherapy (AIT) modifies immune responses to treat allergies. AIT treatment is a 3-month to 3-year long-term strategy, and its potential candidates are allergic rhinitis and asthma, food allergy, and insect venom allergy. AIT can be administered through specific routes recognized for allergy treatment strategies. A considerable body of knowledge about AIT is available, and the Food and Drug Administration (FDA) has approved the first peanut oral immunotherapy (OIT). The AIT effective type for other allergens and the route of administration are a real challenge. This paper reviews published literature on AIT mechanisms, administration routes, and safety.
Collapse
Affiliation(s)
- Samia T Al-Shouli
- Immunology Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| |
Collapse
|
3
|
Ebo DG, Bahri R, Eggel A, Sabato V, Tontini C, Elst J. Flow cytometry-based basophil and mast cell activation tests in allergology: State of the art. J Allergy Clin Immunol 2025; 155:286-297. [PMID: 39581294 DOI: 10.1016/j.jaci.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The major challenge in allergy diagnosis is development of accessible and reliable diagnostics that can predict the clinical outcome following exposure to culprit allergen(s) or cross-reactive molecules and identification of safer alternatives than the current state-of-the-art methods. There is accumulating evidence that flow-based analyses for the quantification of activated basophils and mast cells subsequent to in vitro challenge (the basophil and mast cell activation test [BAT/MAT] or basophil activation test [BAT] and mast cell activation test [MAT]) could meet the diagnostic requirements for IgE-dependent allergies, drug hypersensitivities, and subsets of autoimmune urticaria. Furthermore, the BAT and MAT have found application in research and other nondiagnostic fields. However, appropriate use of the BAT and MAT requires understanding of the diversity of the source materials used and degranulation metrics to ensure correct test performance and interpretation of results. In this review, we provide the main applications and limitations of the BAT and MAT, as performed thus far.
Collapse
Affiliation(s)
- Didier G Ebo
- Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp University Hospital, and Infla-Med Centre of Excellence Antwerp University, Antwerp, Belgium; Immunology-Allergology AZ Jan Palfijn Ghent, Ghent, Belgium.
| | - Rajia Bahri
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Core Technology Facility, University of Manchester, Manchester, United Kingdom
| | - Alexander Eggel
- Department of Rheumatology and Immunology, University Hospital Bern, Bern, Switzerland; Department for BioMedical Research, Lung Precision Medicine, University of Bern, Bern, Switzerland
| | - Vito Sabato
- Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp University Hospital, and Infla-Med Centre of Excellence Antwerp University, Antwerp, Belgium
| | - Chiara Tontini
- Lydia Becker Institute of Immunology and Inflammation, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Core Technology Facility, University of Manchester, Manchester, United Kingdom
| | - Jessy Elst
- Immunology-Allergology-Rheumatology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp University Hospital, and Infla-Med Centre of Excellence Antwerp University, Antwerp, Belgium
| |
Collapse
|
4
|
Fu Y, Song YL, Liu ZG. Recent developments in immunotherapy approaches for allergic rhinitis. World J Clin Cases 2024; 12:6451-6461. [PMID: 39507117 PMCID: PMC11438689 DOI: 10.12998/wjcc.v12.i31.6451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/22/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Allergic rhinitis (AR) poses a significant global health burden, with the potential to progress to asthma, thereby impacting patients' quality of life. Immunotherapy has demonstrated effectiveness in mitigating clinical symptoms by altering the underlying disease mechanisms of AR. This article provides a thorough review of the current state of immunotherapy for AR, encompassing various facets of immunotherapeutic strategies, elucidating their mechanisms and clinical implications. By presenting a nuanced understanding of the present landscape of immunotherapy for AR, this review aims to serve as a valuable reference for informing clinical treatment strategies. The subsequent analysis of diverse immunotherapeutic pathways offers a comprehensive understanding of their mechanisms and clinical implications. A meticulous examination is conducted on subcutaneous immunotherapy, sublingual immunotherapy, oral immunotherapy, intralymphatic immunotherapy, and innovative intravenous gold-induced autologous serum injection therapy. Each pathway is systematically elucidated, with its distinctive features and potential contributions to managing AR emphasized. In conclusion, synthesizing epidemiological insights, immunotherapeutic nuances, and pathway-specific analyses encapsulates a profound understanding of immunotherapy for AR.
Collapse
Affiliation(s)
- Yu Fu
- Drug Clinical Trial Unit, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Yi-Lai Song
- Drug Clinical Trial Unit, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| | - Zhong-Guo Liu
- Drug Clinical Trial Unit, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
5
|
Knol EF, van Neerven RJJ. IgE versus IgG and IgA: Differential roles of allergen-specific antibodies in sensitization, tolerization, and treatment of allergies. Immunol Rev 2024; 328:314-333. [PMID: 39285523 PMCID: PMC11659938 DOI: 10.1111/imr.13386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The prevalence of asthma, rhinitis, and food allergies has increased dramatically over the last few decades. This increase originally started in western countries, but is now also evident in many other regions of the world. Given the fact that the increase is so quick, the noted increase cannot be linked to a genetic effect, and many environmental factors have been identified that are associated with increased or reduced prevalence of allergies, like changing dietary habits, increased urbanization, pollution, exposure to microorganisms and LPS, and the farming environment and raw milk consumption. Although the key role of allergen-specific IgE in allergies is well known, the role of allergen-specific IgG and IgA antibodies is less well defined. This review will provide an overview of the functions of allergen-specific IgE in allergy, the role of allergen-specific antibodies (IgG (4) and IgA) in allergen immunotherapy (AIT), the possibility to use allergen-specific antibodies for treatment of ongoing allergies, and the potential role of allergen-specific antibodies in tolerance induction to allergens in a preventive setting. In the last, more speculative, section we will present novel hypotheses on the potential role of allergen-specific non-IgE antibodies in allergies by directing antigen presentation, Th2 development, and innate immune training.
Collapse
Affiliation(s)
- E. F. Knol
- Department of Dermatology/AllergologyUMC UtrechtUtrechtthe Netherlands
| | - R. J. J. van Neerven
- Cell Biology and ImmunologyWageningen University & ResearchWageningenthe Netherlands
| |
Collapse
|
6
|
Ellis AK, Cook V, Keith PK, Mace SR, Moote W, O'Keefe A, Quirt J, Rosenfield L, Small P, Watson W. Focused allergic rhinitis practice parameter for Canada. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2024; 20:45. [PMID: 39118164 PMCID: PMC11311964 DOI: 10.1186/s13223-024-00899-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/21/2024] [Indexed: 08/10/2024]
Abstract
Allergic rhinitis (AR) is a prevalent disease in Canada that affects both children and adults. Several guidelines for the management of AR have been published by professional allergy societies worldwide. However, there are regional differences in the clinical management of AR, and regulatory approval of some AR pharmacotherapies varies among countries. Thus, six research questions specific to the treatment of AR in Canada were identified for this focused practice parameter. Reviews of the literature published since 2016 were conducted to obtain evidence-based support for the responses of the Work Group to each research question. In response to research question 1 "In patients with symptoms indicative of AR, is serum-specific IgE sufficient to identify candidates for immunotherapy or is a skin prick test mandatory?" the Work Group concluded that either sIgE testing or skin prick test are acceptable for diagnosing AR and guiding immunotherapy. In response to research question 2 "When taking into account the preferences of the patient and the prescriber (stakeholder engagement) should second-generation oral antihistamine (OAH) or intranasal corticosteroid (INCS) be first line?" the Work Group concluded that existing guidelines generally agree on the use of INCS as a first-line therapy used for AR, however, patient and provider preferences and considerations can easily shift the first choice to a second-generation OAH. In response to research question 3 "Is a combination intranasal antihistamine (INAH)/INCS formulation superior to INCS plus OAH? Do they become equivalent after prolonged use?" the Work Group concluded that that the combination INAH/INCS is superior to an INCS plus OAH. However, there was insufficient evidence to answer the second question. In response to research question 4 "Do leukotriene receptor antagonists (LTRA) have a greater benefit than OAH in AR for some symptoms to justify a therapeutic trial in those who cannot tolerate INCS?" the Work Group concluded that LTRAs have inferior, or at best equivalent, daytime or overall symptom control compared with OAH, but LTRAs may improve nighttime symptom control and provide benefits in patients with AR and concomitant asthma. In response to research question 5 "Should sublingual immunotherapy (SLIT) tablets be considered first-line immunotherapeutic options over subcutaneous immunotherapy (SCIT) based on the evidence of efficacy?" the Work Group concluded that the choice of SLIT or SCIT cannot be made on efficacy alone, and differences in other factors outweigh any differences in efficacy. In response to research question 6 "Based on efficacy data, should ALL patients seen by an allergist be offered SLIT or SCIT as a treatment option?" the Work Group concluded that the efficacy data suggests that SLIT or SCIT should be used broadly in patients with AR, but other clinical concerns also need to be taken into consideration.
Collapse
Affiliation(s)
- Anne K Ellis
- Division of Allergy & Immunology, Department of Medicine, Queen's University, Kingston, ON, Canada.
| | - Victoria Cook
- Community Allergy Clinic, Victoria, BC, and Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Paul K Keith
- Division of Clinical Immunology and Allergy, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Sean R Mace
- Mace Allergy and Clinical Immunology, Toronto, ON, Canada
| | | | - Andrew O'Keefe
- Department of Pediatrics, Memorial University, St. John's, NL, Canada
| | - Jaclyn Quirt
- Division of Clinical Immunology and Allergy, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Lana Rosenfield
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Peter Small
- Jewish General Hospital, Montreal, QC, Canada
| | - Wade Watson
- Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
7
|
Zemelka-Wiacek M, Agache I, Akdis CA, Akdis M, Casale TB, Dramburg S, Jahnz-Różyk K, Kosowska A, Matricardi PM, Pfaar O, Shamji MH, Jutel M. Hot topics in allergen immunotherapy, 2023: Current status and future perspective. Allergy 2024; 79:823-842. [PMID: 37984449 DOI: 10.1111/all.15945] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
The importance of allergen immunotherapy (AIT) is multifaceted, encompassing both clinical and quality-of-life improvements and cost-effectiveness in the long term. Key mechanisms of allergen tolerance induced by AIT include changes in memory type allergen-specific T- and B-cell responses towards a regulatory phenotype with decreased Type 2 responses, suppression of allergen-specific IgE and increased IgG1 and IgG4, decreased mast cell and eosinophil numbers in allergic tissues and increased activation thresholds. The potential of novel patient enrolment strategies for AIT is taking into account recent advances in biomarkers discoveries, molecular allergy diagnostics and mobile health applications contributing to a personalized approach enhancement that can increase AIT efficacy and compliance. Artificial intelligence can help manage and interpret complex and heterogeneous data, including big data from omics and non-omics research, potentially predict disease subtypes, identify biomarkers and monitor patient responses to AIT. Novel AIT preparations, such as synthetic compounds, innovative carrier systems and adjuvants, are also of great promise. Advances in clinical trial models, including adaptive, complex and hybrid designs as well as real-world evidence, allow more flexibility and cost reduction. The analyses of AIT cost-effectiveness show a clear long-term advantage compared to pharmacotherapy. Important research questions, such as defining clinical endpoints, biomarkers of patient selection and efficacy, mechanisms and the modulation of the placebo effect and alternatives to conventional field trials, including allergen exposure chamber studies are still to be elucidated. This review demonstrates that AIT is still in its growth phase and shows immense development prospects.
Collapse
Affiliation(s)
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Thomas B Casale
- Departments of Medicine and Pediatrics and Division of Allergy and Immunology, Joy McCann Culverhouse Clinical Research Center, University of South Florida, Tampa, Florida, USA
| | - Stephanie Dramburg
- Department of Pediatric Respiratory Care, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Karina Jahnz-Różyk
- Department of Internal Diseases, Pneumonology, Allergology and Clinical Immunology, Military Institute of Medicine-National Research Institute, Warsaw, Poland
| | - Anna Kosowska
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Care, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver Pfaar
- Section of Rhinology and Allergy, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Mohamed H Shamji
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| |
Collapse
|
8
|
Lill D, Bertlich M, Oppel E. [Allergen-specific immunotherapy : A brief overview in association with allergic conjunctivitis]. DIE OPHTHALMOLOGIE 2024; 121:187-195. [PMID: 38324025 DOI: 10.1007/s00347-024-01987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
Allergen-specific immunotherapy (AIT) is the only causal and disease-modifying treatment for immunoglobulin E (IgE)-mediated type I allergies. Regular exposure to the causative allergen results in an immunomodulatory effect by which the predominant T‑helper (Th) 2 lymphocyte response is shifted to a Th1 lymphocyte response and more allergen-specific blocking immunoglobulins are produced. The approval of substances for AIT is regulated by the Therapy Allergens Ordinance (TAV). There are subcutaneous and/or sublingual AITs for the following indications: allergic rhinitis, allergic conjunctivitis, allergic asthma and insect venom allergy. In this article the indications for allergic conjunctivitis are discussed in particular. Clinical symptoms and a relevant type 1 sensitization are the prerequisites for the indications for AIT. The assessment of the indications and carrying out an AIT should only be carried out by physicians who have been trained in allergology.
Collapse
Affiliation(s)
- Diana Lill
- Klinik und Poliklinik für Dermatologie und Allergologie, LMU Klinikum, LMU München, Frauenlobstr. 9-11, 80337, München, Deutschland.
| | - Mattis Bertlich
- Klinik und Poliklinik für Dermatologie und Allergologie, LMU Klinikum, LMU München, Frauenlobstr. 9-11, 80337, München, Deutschland
| | - Eva Oppel
- Klinik und Poliklinik für Dermatologie und Allergologie, LMU Klinikum, LMU München, Frauenlobstr. 9-11, 80337, München, Deutschland
| |
Collapse
|
9
|
Sarfraz Z, Sarfraz A, Cherrez-Ojeda I. Investigating Experimental Treatments for Rhinitis: A State-of-the-Art Systematic Review. EAR, NOSE & THROAT JOURNAL 2024:1455613231222363. [PMID: 38205635 DOI: 10.1177/01455613231222363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
Background: Rhinitis is a common inflammatory condition that affects the nasal passages, significantly impacting quality of life and placing a considerable burden on healthcare systems. While traditional treatments offer limited relief, there is a growing interest in novel therapies. This systematic review aims to analyze investigational new treatments for rhinitis. Methods: A search was conducted in ClinicalTrials.gov, the World Health Organization International Clinical Trials Registry Platform, and the European Union Clinical Trials Register, as well as PubMed, Web of Science, and the Cochrane Library. Both ongoing and completed clinical trials exploring innovative therapies for rhinitis, including immunotherapy, probiotics, and stem cell therapy, were included. Results: This systematic review compiled information from 74 clinical trials-51 completed and 23 ongoing-focused on new treatments for rhinitis. A significant portion of the completed studies (44) focused on various forms of immunotherapy, which showed potential for long-term effectiveness and had a high safety profile. Another seven completed trials investigated probiotics as a treatment method, yielding mixed results, though they did show promise in managing symptoms, particularly when combined with other treatments. The ongoing trials are primarily investigating immunotherapy, with a smaller number looking at probiotics and stem cell therapy. This shows a continued exploration of innovative and diverse therapies for managing rhinitis. Conclusion: This study highlights the potential of emerging rhinitis therapies to improve patient outcomes and enhance quality of life. Continued research is recommended for developing more effective, personalized, and targeted therapeutic strategies for rhinitis.
Collapse
Affiliation(s)
- Zouina Sarfraz
- Department of Medicine, Fatima Jinnah Medical University, Lahore, Pakistan
| | - Azza Sarfraz
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, SD, Pakistan
| | - Ivan Cherrez-Ojeda
- Department of Allergy and Pulmnology, Universidad Espíritu Santo, Samborondón, Guayas, Ecuador
| |
Collapse
|
10
|
Kumar B, Deshmukh R. A Review on Novel Therapeutic Modalities and Evidence-based Drug Treatments against Allergic Rhinitis. Curr Pharm Des 2024; 30:887-901. [PMID: 38486383 DOI: 10.2174/0113816128295952240306072100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/20/2024] [Indexed: 06/21/2024]
Abstract
Allergic rhinitis (AR) is an IgE-mediated atopic disease that occurs due to inhaled antigens in the immediate phase. Misdiagnosis, insufficient treatment, or no treatment at all are frequent problems associated with the widespread condition known as chronic allergic rhinitis. AR symptoms include runny, itchy, stuffy, and sneezing noses. Asthma and nasal polyps, for example, sometimes occur simultaneously in patients. In order for people living with AR to be as comfortable and productive as possible, treatment should center on reducing their symptoms. The online sources and literature, such as Pubmed, ScienceDirect, and Medline, were reviewed to gather information regarding therapeutic modalities of AR and evidence-based treatments for the disease as the objectives of the present study. An increasing number of people are suffering from AR, resulting in a heavy financial and medical burden on healthcare systems around the world. Undertreating AR frequently results in a decline in quality of life. Treatment compliance is a critical challenge in the administration of AR. Innovative therapies are needed for RA to provide patients with symptom alleviation that is less expensive, more effective, and longer duration of action. Evidence-based guidelines are helpful for managing AR illness. Treating AR according to evidence-based standards can help in disease management. AR treatment includes allergen avoidance, drug therapy, immunotherapy, patient education, and follow-up. However, AR treatment with intranasal corticosteroids is more popular. Hence, in this review article, treatment options for AR are discussed in depth. We also discussed the incidence, causes, and new treatments for this clinical condition.
Collapse
Affiliation(s)
- Bhupendra Kumar
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Rohitas Deshmukh
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
11
|
Yao H, Wang L, Zhou X, Jia X, Xiang Q, Zhang W. Predicting the therapeutic efficacy of AIT for asthma using clinical characteristics, serum allergen detection metrics, and machine learning techniques. Comput Biol Med 2023; 166:107544. [PMID: 37866086 DOI: 10.1016/j.compbiomed.2023.107544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023]
Abstract
Bronchial asthma is a prevalent non-communicable disease among children. The study collected clinical data from 390 children aged 4-17 years with asthma, with or without rhinitis, who received allergen immunotherapy (AIT). Combining these data, this paper proposed a predictive framework for the efficacy of mite subcutaneous immunotherapy in asthma based on machine learning techniques. Introducing the dispersed foraging strategy into the Salp Swarm Algorithm (SSA), a new improved algorithm named DFSSA is proposed. This algorithm effectively alleviates the imbalance between search speed and traversal caused by the fixed partitioning pattern in traditional SSA. Utilizing the fusion of boosting algorithm and kernel extreme learning machine, an AIT performance prediction model was established. To further investigate the effectiveness of the DFSSA-KELM model, this study conducted an auxiliary diagnostic experiment using the immunotherapy predictive medical data collected by the hospital. The findings indicate that selected indicators, such as blood basophil count, sIgE/tIgE (Der p) and sIgE/tIgE (Der f), play a crucial role in predicting treatment outcome. The classification results showed an accuracy of 87.18% and a sensitivity of 93.55%, indicating that the prediction model is an effective and accurate intelligent tool for evaluating the efficacy of AIT.
Collapse
Affiliation(s)
- Hao Yao
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Lingya Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xinyu Zhou
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoxiao Jia
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiangwei Xiang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Weixi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
12
|
Wise SK, Damask C, Roland LT, Ebert C, Levy JM, Lin S, Luong A, Rodriguez K, Sedaghat AR, Toskala E, Villwock J, Abdullah B, Akdis C, Alt JA, Ansotegui IJ, Azar A, Baroody F, Benninger MS, Bernstein J, Brook C, Campbell R, Casale T, Chaaban MR, Chew FT, Chambliss J, Cianferoni A, Custovic A, Davis EM, DelGaudio JM, Ellis AK, Flanagan C, Fokkens WJ, Franzese C, Greenhawt M, Gill A, Halderman A, Hohlfeld JM, Incorvaia C, Joe SA, Joshi S, Kuruvilla ME, Kim J, Klein AM, Krouse HJ, Kuan EC, Lang D, Larenas-Linnemann D, Laury AM, Lechner M, Lee SE, Lee VS, Loftus P, Marcus S, Marzouk H, Mattos J, McCoul E, Melen E, Mims JW, Mullol J, Nayak JV, Oppenheimer J, Orlandi RR, Phillips K, Platt M, Ramanathan M, Raymond M, Rhee CS, Reitsma S, Ryan M, Sastre J, Schlosser RJ, Schuman TA, Shaker MS, Sheikh A, Smith KA, Soyka MB, Takashima M, Tang M, Tantilipikorn P, Taw MB, Tversky J, Tyler MA, Veling MC, Wallace D, Wang DY, White A, Zhang L. International consensus statement on allergy and rhinology: Allergic rhinitis - 2023. Int Forum Allergy Rhinol 2023; 13:293-859. [PMID: 36878860 DOI: 10.1002/alr.23090] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/11/2022] [Accepted: 09/13/2022] [Indexed: 03/08/2023]
Abstract
BACKGROUND In the 5 years that have passed since the publication of the 2018 International Consensus Statement on Allergy and Rhinology: Allergic Rhinitis (ICAR-Allergic Rhinitis 2018), the literature has expanded substantially. The ICAR-Allergic Rhinitis 2023 update presents 144 individual topics on allergic rhinitis (AR), expanded by over 40 topics from the 2018 document. Originally presented topics from 2018 have also been reviewed and updated. The executive summary highlights key evidence-based findings and recommendation from the full document. METHODS ICAR-Allergic Rhinitis 2023 employed established evidence-based review with recommendation (EBRR) methodology to individually evaluate each topic. Stepwise iterative peer review and consensus was performed for each topic. The final document was then collated and includes the results of this work. RESULTS ICAR-Allergic Rhinitis 2023 includes 10 major content areas and 144 individual topics related to AR. For a substantial proportion of topics included, an aggregate grade of evidence is presented, which is determined by collating the levels of evidence for each available study identified in the literature. For topics in which a diagnostic or therapeutic intervention is considered, a recommendation summary is presented, which considers the aggregate grade of evidence, benefit, harm, and cost. CONCLUSION The ICAR-Allergic Rhinitis 2023 update provides a comprehensive evaluation of AR and the currently available evidence. It is this evidence that contributes to our current knowledge base and recommendations for patient evaluation and treatment.
Collapse
Affiliation(s)
- Sarah K Wise
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Cecelia Damask
- Otolaryngology-HNS, Private Practice, University of Central Florida, Lake Mary, Florida, USA
| | - Lauren T Roland
- Otolaryngology-HNS, Washington University, St. Louis, Missouri, USA
| | - Charles Ebert
- Otolaryngology-HNS, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Joshua M Levy
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Sandra Lin
- Otolaryngology-HNS, University of Wisconsin, Madison, Wisconsin, USA
| | - Amber Luong
- Otolaryngology-HNS, McGovern Medical School of the University of Texas, Houston, Texas, USA
| | - Kenneth Rodriguez
- Otolaryngology-HNS, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Ahmad R Sedaghat
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Elina Toskala
- Otolaryngology-HNS, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | - Baharudin Abdullah
- Otolaryngology-HNS, Universiti Sains Malaysia, Kubang, Kerian, Kelantan, Malaysia
| | - Cezmi Akdis
- Immunology, Infectious Diseases, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - Jeremiah A Alt
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | | | - Antoine Azar
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Fuad Baroody
- Otolaryngology-HNS, University of Chicago, Chicago, Illinois, USA
| | | | | | - Christopher Brook
- Otolaryngology-HNS, Harvard University, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Raewyn Campbell
- Otolaryngology-HNS, Macquarie University, Sydney, NSW, Australia
| | - Thomas Casale
- Allergy/Immunology, University of South Florida College of Medicine, Tampa, Florida, USA
| | - Mohamad R Chaaban
- Otolaryngology-HNS, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fook Tim Chew
- Allergy/Immunology, Genetics, National University of Singapore, Singapore, Singapore
| | - Jeffrey Chambliss
- Allergy/Immunology, University of Texas Southwestern, Dallas, Texas, USA
| | - Antonella Cianferoni
- Allergy/Immunology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Anne K Ellis
- Allergy/Immunology, Queens University, Kingston, ON, Canada
| | | | - Wytske J Fokkens
- Otorhinolaryngology, Amsterdam University Medical Centres, Amsterdam, Netherlands
| | | | - Matthew Greenhawt
- Allergy/Immunology, Pediatrics, University of Colorado, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Amarbir Gill
- Otolaryngology-HNS, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashleigh Halderman
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Jens M Hohlfeld
- Respiratory Medicine, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Hannover Medical School, German Center for Lung Research, Hannover, Germany
| | | | - Stephanie A Joe
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shyam Joshi
- Allergy/Immunology, Oregon Health and Science University, Portland, Oregon, USA
| | | | - Jean Kim
- Otolaryngology-HNS, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam M Klein
- Otolaryngology-HNS, Emory University, Atlanta, Georgia, USA
| | - Helene J Krouse
- Otorhinolaryngology Nursing, University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Edward C Kuan
- Otolaryngology-HNS, University of California Irvine, Orange, California, USA
| | - David Lang
- Allergy/Immunology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Matt Lechner
- Otolaryngology-HNS, University College London, Barts Health NHS Trust, London, UK
| | - Stella E Lee
- Otolaryngology-HNS, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Victoria S Lee
- Otolaryngology-HNS, University of Illinois Chicago, Chicago, Illinois, USA
| | - Patricia Loftus
- Otolaryngology-HNS, University of California San Francisco, San Francisco, California, USA
| | - Sonya Marcus
- Otolaryngology-HNS, Stony Brook University, Stony Brook, New York, USA
| | - Haidy Marzouk
- Otolaryngology-HNS, State University of New York Upstate, Syracuse, New York, USA
| | - Jose Mattos
- Otolaryngology-HNS, University of Virginia, Charlottesville, Virginia, USA
| | - Edward McCoul
- Otolaryngology-HNS, Ochsner Clinic, New Orleans, Louisiana, USA
| | - Erik Melen
- Pediatric Allergy, Karolinska Institutet, Stockholm, Sweden
| | - James W Mims
- Otolaryngology-HNS, Wake Forest University, Winston Salem, North Carolina, USA
| | - Joaquim Mullol
- Otorhinolaryngology, Hospital Clinic Barcelona, Barcelona, Spain
| | - Jayakar V Nayak
- Otolaryngology-HNS, Stanford University, Palo Alto, California, USA
| | - John Oppenheimer
- Allergy/Immunology, Rutgers, State University of New Jersey, Newark, New Jersey, USA
| | | | - Katie Phillips
- Otolaryngology-HNS, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michael Platt
- Otolaryngology-HNS, Boston University, Boston, Massachusetts, USA
| | | | | | - Chae-Seo Rhee
- Rhinology/Allergy, Seoul National University Hospital and College of Medicine, Seoul, Korea
| | - Sietze Reitsma
- Otolaryngology-HNS, University of Amsterdam, Amsterdam, Netherlands
| | - Matthew Ryan
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Joaquin Sastre
- Allergy, Fundacion Jiminez Diaz, University Autonoma de Madrid, Madrid, Spain
| | - Rodney J Schlosser
- Otolaryngology-HNS, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Theodore A Schuman
- Otolaryngology-HNS, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Marcus S Shaker
- Allergy/Immunology, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Aziz Sheikh
- Primary Care, University of Edinburgh, Edinburgh, Scotland
| | - Kristine A Smith
- Otolaryngology-HNS, University of Utah, Salt Lake City, Utah, USA
| | - Michael B Soyka
- Otolaryngology-HNS, University of Zurich, University Hospital of Zurich, Zurich, Switzerland
| | - Masayoshi Takashima
- Otolaryngology-HNS, Houston Methodist Academic Institute, Houston, Texas, USA
| | - Monica Tang
- Allergy/Immunology, University of California San Francisco, San Francisco, California, USA
| | | | - Malcolm B Taw
- Integrative East-West Medicine, University of California Los Angeles, Westlake Village, California, USA
| | - Jody Tversky
- Allergy/Immunology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Matthew A Tyler
- Otolaryngology-HNS, University of Minnesota, Minneapolis, Minnesota, USA
| | - Maria C Veling
- Otolaryngology-HNS, University of Texas Southwestern, Dallas, Texas, USA
| | - Dana Wallace
- Allergy/Immunology, Nova Southeastern University, Ft. Lauderdale, Florida, USA
| | - De Yun Wang
- Otolaryngology-HNS, National University of Singapore, Singapore, Singapore
| | - Andrew White
- Allergy/Immunology, Scripps Clinic, San Diego, California, USA
| | - Luo Zhang
- Otolaryngology-HNS, Beijing Tongren Hospital, Beijing, China
| |
Collapse
|
13
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, et alDramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Show More Authors] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
14
|
Agache I, Zemelka-Wiącek M, Shamji MH, Jutel M. Immunotherapy: State-of-the-art review of therapies and theratypes. J Allergy Clin Immunol 2022; 150:1279-1288. [PMID: 36328808 DOI: 10.1016/j.jaci.2022.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Through its disease-modifying potential, immunotherapy is the keystone to curing allergic diseases. Allergen immunotherapy, applied for more than a century, is currently supported by novel modalities such as mAb-based therapies or small molecules targeting the key nodes of the allergic inflammation network. In this review, a summary of the most significant advances in immunotherapy is presented, addressing not only novel approaches to stratifying patients but also major controlled clinical trials and real-world evidence that strengthen the role of immunotherapy in the treatment of allergies.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania.
| | | | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; NIHR Imperial Biomedical Research Centre, London, United Kingdom
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland; ALL-MED Medical Research Institute, Wroclaw, Poland
| |
Collapse
|
15
|
Wang C, Bao Y, Chen J, Chen X, Cheng L, Guo YS, Hao C, Lai H, Li H, Li J, Liu C, Liu Y, Liu Z, Lou H, Lv W, Nong G, Qiu Q, Ren X, Shao J, Shen YH, Shi L, Song XC, Song Y, Tang S, Wang H, Wang X, Wang X, Wang Z, Wei Q, Xie H, Xing Z, Xu R, Xu Y, Yang Q, Yao H, Ye J, You Y, Yu H, Yu Y, Zhang H, Zhang G, Zhang Y, Zhi Y, Zhou W, Zhu L, Zhu X, Chai R, Chen D, Guan K, Huang Z, Huang Y, Ma T, Ma Y, Meng Y, Ren L, Wang J, Wang N, Xian M, Xiang R, Zheng M, Zhang L. Chinese Guideline on Allergen Immunotherapy for Allergic Rhinitis: The 2022 Update. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2022; 14:604-652. [PMID: 36426395 PMCID: PMC9709690 DOI: 10.4168/aair.2022.14.6.604] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/23/2022] [Accepted: 11/06/2022] [Indexed: 09/16/2023]
Abstract
In the last few decades, there has been a progressive increase in the prevalence of allergic rhinitis (AR) in China, where it now affects approximately 250 million people. AR prevention and treatment include allergen avoidance, pharmacotherapy, allergen immunotherapy (AIT), and patient education, among which AIT is the only curative intervention. AIT targets the disease etiology and may potentially modify the immune system as well as induce allergen-specific immune tolerance in patients with AR. In 2017, a team of experts from the Chinese Society of Allergy (CSA) and the Chinese Allergic Rhinitis Collaborative Research Group (C2AR2G) produced the first English version of Chinese AIT guidelines for AR. Since then, there has been considerable progress in basic research of and clinical practice for AIT, especially regarding the role of follicular regulatory T (TFR) cells in the pathogenesis of AR and the use of allergen-specific immunoglobulin E (sIgE) in nasal secretions for the diagnosis of AR. Additionally, potential biomarkers, including TFR cells, sIgG4, and sIgE, have been used to monitor the incidence and progression of AR. Moreover, there has been a novel understanding of AIT during the coronavirus disease 2019 pandemic. Hence, there was an urgent need to update the AIT guideline for AR by a team of experts from CSA and C2AR2G. This document aims to serve as professional reference material on AIT for AR treatment in China, thus improving the development of AIT across the world.
Collapse
Affiliation(s)
- Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases and Beijing Laboratory of Allergic Diseases, Beijing Institute of Otorhinolaryngology, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | | | - Jianjun Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaoyang Chen
- Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospitial of Fujian Medical University, Respiratory Medicine Center of Fujian Province, Quanzhou, China
| | - Lei Cheng
- Department of Otorhinolaryngology & Clinical Allergy Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yin Shi Guo
- Department of Allergy & Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chuangli Hao
- Department of Respiratory Diseases, Children's Hospital of Soochow University, Suzhou, China
| | - He Lai
- Department of Allergy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huabin Li
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changshan Liu
- Department of Pediatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yun Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongfei Lou
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Lv
- Department of Otorhinolaryngology, Peking Union Medical College Hospital, Beijing, China
| | - Guangmin Nong
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qianhui Qiu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiumin Ren
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jie Shao
- Department of Pediatrics, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Hong Shen
- Department of Respiratory Diseases, The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, China
| | - Li Shi
- Department of Otolaryngology,The Second Hospital of Shandong University, Jinan, China
| | - Xi-Cheng Song
- Department of Otorhinolaryngology Head and Neck Surgery, Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yuxin Song
- Department of Allergy, Harbin Children's Hospital, Harbin, China
| | - Suping Tang
- Department of Allergy, Fuzhou Children's Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Hongtian Wang
- Department of Allergy, Beijing ShiJiTan Hospital, Capital Medical University, Beijing, China
| | - Xiangdong Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases and Beijing Laboratory of Allergic Diseases, Beijing Institute of Otorhinolaryngology, Beijing, China
| | - Xueyan Wang
- Department of Allergy, Beijing ShiJiTan Hospital, Capital Medical University, Beijing, China
| | - Zhenlin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qingyu Wei
- Department of Allergy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hua Xie
- Department of Allergy, Northern Theatre General Hospital, Shenyang, China
| | - Zhimin Xing
- Department of Otolaryngology-Head and Neck Surgery, Peking University People's Hospital, Beijing, China
| | - Rui Xu
- Department of Allergy of Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yu Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qintai Yang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hongmei Yao
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jing Ye
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiwen You
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Hongmeng Yu
- Department of Otolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yongmei Yu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Huanping Zhang
- Department of Allergy, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Gehua Zhang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuan Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Yuxiang Zhi
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weikang Zhou
- Department of Allergy, Chongqing General Hospital, Chongqing, China
| | - Li Zhu
- Department of Otorhinolaryngology, The Third Hospital of Peking University, Beijing, China
| | - Xinhua Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruonan Chai
- Department of Allergy, Northern Theatre General Hospital, Shenyang, China
| | - Dehua Chen
- Department of Allergy of Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Kai Guan
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zizhen Huang
- Department of Otolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yanran Huang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Tingting Ma
- Department of Allergy, Beijing ShiJiTan Hospital, Capital Medical University, Beijing, China
| | - Yuemei Ma
- Department of Allergy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifan Meng
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Lei Ren
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Jianxing Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Nan Wang
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mo Xian
- Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rong Xiang
- Department of Otorhinolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Zheng
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Zhang Y, Lan F, Zhang L. Update on pathomechanisms and treatments in allergic rhinitis. Allergy 2022; 77:3309-3319. [PMID: 35892225 DOI: 10.1111/all.15454] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/10/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Allergic rhinitis (AR) is a global health problem with increasing prevalence and association with an enormous medical and socioeconomic burden. New recognition of immune cells such as type 2 innate lymphocytes (ILC2s), T helper (Th2) 2 cells, follicular helper T cells, follicular regulatory T cells, regulatory T cells, B cells, dendritic cells, and epithelial cells in AR pathogenesis has been updated in this review paper. An in-depth understanding of the mechanisms underlying AR will aid the identification of biomarkers associated with disease and ultimately provide valuable parameters critical to guide personalized targeted therapy. As the only etiological treatment option for AR, allergen-specific immunotherapy (AIT) has attracted increasing attention, with evidence for effectiveness of AIT recently demonstrated in several randomized controlled trials and long-term real-life studies. The exploration of biologics as therapeutic options has only involved anti-IgE and anti-type 2 inflammatory agents; however, the cost-effectiveness of these agents remains to be elucidated precisely. In the midst of the currently on-going COVID-19 pandemic, a global life-threatening disease, although some studies have indicated that AR is not a risk factor for severity and mortality of COVID-19, this needs to be confirmed in multi-centre, real-life studies of AR patients from different parts of the world.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Feng Lan
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Miyake K, Ito J, Karasuyama H. Role of Basophils in a Broad Spectrum of Disorders. Front Immunol 2022; 13:902494. [PMID: 35693800 PMCID: PMC9186123 DOI: 10.3389/fimmu.2022.902494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Basophils are the rarest granulocytes and have long been overlooked in immunological research due to their rarity and similarities with tissue-resident mast cells. In the last two decades, non-redundant functions of basophils have been clarified or implicated in a broad spectrum of immune responses, particularly by virtue of the development of novel analytical tools for basophils. Basophils infiltrate inflamed tissues of patients with various disorders, even though they circulate in the bloodstream under homeostatic conditions. Depletion of basophils results in the amelioration or exaggeration of inflammation, depending on models of disease, indicating basophils can play either beneficial or deleterious roles in a context-dependent manner. In this review, we summarize the recent findings of basophil pathophysiology under various conditions in mice and humans, including allergy, autoimmunity, tumors, tissue repair, fibrosis, and COVID-19. Further mechanistic studies on basophil biology could lead to the identification of novel biomarkers or therapeutic targets in a broad range of diseases.
Collapse
|
18
|
Feng M, Luo T, Xian M, Shi X, Qin R, Zeng X, Su Q, Li J. Suppression function against environmental dust exposure after Dermatophagoides pteronyssinus immunotherapy is associated with production of specific and cross-reactive immunoglobulin G4. Clin Exp Allergy 2021; 52:878-887. [PMID: 34962673 DOI: 10.1111/cea.14088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/06/2021] [Accepted: 12/25/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Whether Dermatophagoides pteronyssinus (Der-p) allergen immunotherapy (AIT) can induce Dermatophagoides farina (Der-f) specific immunoglobulin (sIg) G4 production and tolerance to environmental allergens has not been fully investigated. OBJECTIVE We aimed to determine serum Der-p-sIgG4 and Der-f-sIgG4 levels in asthma and/or rhinitis patients undergoing Der-p AIT and their ability to reduce immune responses triggered by indoor-dust extracts. METHODS We performed a real-world prospective trial and enrolled patients with allergic rhinitis and/or asthma in Guangzhou, China. These patients received either Der-p AIT (SCIT group) or routine medications (non-SCIT group) for 156 weeks. Clinical outcomes were assessed by the combined symptom medication score (SMS) and FEV1 % changes. House dust samples were collected to analyze allergen levels. Serum levels of Der-p-sIgG4 and Der-f-sIgG4, serum inhibitory capacity against Der-p, Der-f, and indoor dust extract by sIgE-facilitated allergen binding to B cells (IgE-FAB), and serum blocking indoor dust extract-induced basophil activation inhibition assays (BATI) in peripheral blood monocytes were carried out at weeks 0, 4, 12, 16, 52, 104, and 156 after the initiations of the treatments. RESULTS Our study enrolled a total of 60 participants, with 30 patients in each group. Patients in the SCIT group had significantly improved SMS when compared with the baseline and the patients in the non-SCIT group. Median levels of Der-p 1 and Der-f 1 in indoor dust extract were 1.86 μg/g and 4.74 μg/g, respectively. Serum Der-p-sIgG4 and Der-f-IgG4 levels in SCIT patients showed a significant increase from week 12 to week 156. Serum in these SCIT patients could significantly block Der-p, Der-f, and indoor dust extract formation of allergen-sIgE complex and reduced the threshold of IgE-FAB from 16 weeks after the initiation of the treatment. The capacity to inhibit Der-p, Der-f, and indoor dust extract BATI was observed in SCIT serum after 12 weeks. Der-p-sIgG4 and Der-f-sIgG4 had a significant correlation with IgE-FAB and BATI in SCIT patients at all time points. CONCLUSION Single Der-p immunotherapy induced both Der-p-sIgG4 and Der-f-sIgG4 production, which might cross-reactively induce tolerance against environmental allergen exposure in patients with asthma and/or rhinitis.
Collapse
Affiliation(s)
- Mulin Feng
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,People's Hospital of Yangjiang, Yangjiang, China
| | - Tian Luo
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mo Xian
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xu Shi
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rundong Qin
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaohui Zeng
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiujuan Su
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,People's Hospital of Yangjiang, Yangjiang, China.,Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Ogulur I, Pat Y, Ardicli O, Barletta E, Cevhertas L, Fernandez‐Santamaria R, Huang M, Bel Imam M, Koch J, Ma S, Maurer DJ, Mitamura Y, Peng Y, Radzikowska U, Rinaldi AO, Rodriguez‐Coira J, Satitsuksanoa P, Schneider SR, Wallimann A, Zhakparov D, Ziadlou R, Brüggen M, Veen W, Sokolowska M, Baerenfaller K, Zhang L, Akdis M, Akdis CA. Advances and highlights in biomarkers of allergic diseases. Allergy 2021; 76:3659-3686. [PMID: 34519063 PMCID: PMC9292545 DOI: 10.1111/all.15089] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/19/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022]
Abstract
During the past years, there has been a global outbreak of allergic diseases, presenting a considerable medical and socioeconomical burden. A large fraction of allergic diseases is characterized by a type 2 immune response involving Th2 cells, type 2 innate lymphoid cells, eosinophils, mast cells, and M2 macrophages. Biomarkers are valuable parameters for precision medicine as they provide information on the disease endotypes, clusters, precision diagnoses, identification of therapeutic targets, and monitoring of treatment efficacies. The availability of powerful omics technologies, together with integrated data analysis and network‐based approaches can help the identification of clinically useful biomarkers. These biomarkers need to be accurately quantified using robust and reproducible methods, such as reliable and point‐of‐care systems. Ideally, samples should be collected using quick, cost‐efficient and noninvasive methods. In recent years, a plethora of research has been directed toward finding novel biomarkers of allergic diseases. Promising biomarkers of type 2 allergic diseases include sputum eosinophils, serum periostin and exhaled nitric oxide. Several other biomarkers, such as pro‐inflammatory mediators, miRNAs, eicosanoid molecules, epithelial barrier integrity, and microbiota changes are useful for diagnosis and monitoring of allergic diseases and can be quantified in serum, body fluids and exhaled air. Herein, we review recent studies on biomarkers for the diagnosis and treatment of asthma, chronic urticaria, atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, anaphylaxis, drug hypersensitivity and allergen immunotherapy. In addition, we discuss COVID‐19 and allergic diseases within the perspective of biomarkers and recommendations on the management of allergic and asthmatic patients during the COVID‐19 pandemic.
Collapse
|
20
|
Zbären N, Brigger D, Bachmann D, Helbling A, Jörg L, Horn MP, Schmid JM, Hoffmann HJ, Kinet JP, Kaufmann T, Eggel A. A novel functional mast cell assay for the detection of allergies. J Allergy Clin Immunol 2021; 149:1018-1030.e11. [PMID: 34418424 DOI: 10.1016/j.jaci.2021.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Clinical management of allergic diseases has been hampered by the lack of safe and convenient tests to reliably identify culprit allergens and to closely follow changes in disease activity over time. Because allergy diagnosis is a complex and laborious multistep procedure, there is an urgent need for simpler but still functionally accurate ex vivo assays allowing objective diagnosis, substantiating treatment choices, and quantifying therapeutic responses. OBJECTIVE In this study, we sought to develop a novel functional cell-based assay that relies on passive sensitization of allergic effector cells with patient serum, circumventing current limitations in allergy diagnosis. METHODS We genetically engineered a conditional homeobox B8 (Hoxb8)-immortalized progenitor line from the bone marrow of mice that are transgenic for the human high-affinity IgE receptor (FcεRIα). These cells can be reproducibly differentiated into mature Hoxb8 mast cells within 5 days of culture in virtually unlimited numbers. RESULTS We demonstrate that the established Hoxb8 mast cell assay can be used to accurately measure total IgE levels, identify culprit allergens, longitudinally monitor allergen-specific immunotherapy, and potentially determine the time point of tolerance induction upon allergen-specific immunotherapy in patients with allergy. To facilitate the analysis of large testing volumes, we demonstrate a proof-of-concept for a high-throughput screening application based on fluorescent cell barcoding using the engineered Hoxb8 mast cells. CONCLUSIONS Our results indicate that this novel mast cell assay could represent a valuable tool to support clinicians in the identification of IgE-mediated allergies and in the quantification of treatment efficacy as well as duration of therapeutic response.
Collapse
Affiliation(s)
- Noemi Zbären
- Department of BioMedical Research, University of Bern, Bern, Switzerland; Department of Rheumatology, Immunology and Allergology, University Hospital Bern, Bern, Switzerland
| | - Daniel Brigger
- Department of BioMedical Research, University of Bern, Bern, Switzerland; Department of Rheumatology, Immunology and Allergology, University Hospital Bern, Bern, Switzerland
| | - Daniel Bachmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Arthur Helbling
- Division of Allergology and Clinical Immunology, Department of Pneumology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Lukas Jörg
- Division of Allergology and Clinical Immunology, Department of Pneumology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Michael P Horn
- Department of Clinical Chemistry, Inselspital University Hospital, Bern, Switzerland
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Hans Jürgen Hoffmann
- Department of Respiratory Diseases and Allergy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jean-Pierre Kinet
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Mass
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland.
| | - Alexander Eggel
- Department of BioMedical Research, University of Bern, Bern, Switzerland; Department of Rheumatology, Immunology and Allergology, University Hospital Bern, Bern, Switzerland.
| |
Collapse
|
21
|
Santos AF, Alpan O, Hoffmann H. Basophil activation test: Mechanisms and considerations for use in clinical trials and clinical practice. Allergy 2021; 76:2420-2432. [PMID: 33475181 DOI: 10.1111/all.14747] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022]
Abstract
The basophil activation test (BAT) is a functional assay that measures the degree of degranulation following stimulation with allergen or controls by flow cytometry. It correlates directly with histamine release. From the dose-response curve resulting from BAT in allergic patients, basophil reactivity (%CD63+ basophils) and basophil sensitivity (EC50 or similar) are the main outcomes of the test. BAT takes into account all characteristics of IgE and allergen and thus can be more specific than sensitization tests in the diagnosis of allergic disease. BAT reduces the need for in vivo procedures, such as intradermal tests and allergen challenges, which can cause allergic reactions of unpredictable severity. As it closely reflects the patients' phenotype in most cases, it may be used to support the diagnosis of food, venom and drug allergies and chronic urticaria, to monitor the natural resolution of food allergies and to predict and monitor clinical the response to immunomodulatory treatments, such as allergen-specific immunotherapy and biologicals. Clinical application of BAT requires analytical validation, clinical validation, standardization of procedures and quality assurance to ensure reproducibility and reliability of results. Currently, efforts are ongoing to establish a platform that could be used by laboratories in Europe and in the USA for quality assurance and certification.
Collapse
Affiliation(s)
- Alexandra F. Santos
- Department of Women and Children's Health (Pediatric Allergy) School of Life Course Sciences Faculty of Life Sciences and Medicine King's College London London UK
- Peter Gorer Department of Immunobiology School of Immunology and Microbial Sciences King's College London London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma London UK
- Children's Allergy ServiceEvelina London Children's HospitalGuy's and St Thomas' Hospital London UK
| | | | - Hans‐Jürgen Hoffmann
- Department of Clinical Medicine Aarhus University Aarhus Denmark
- Department of Respiratory Diseases and Allergy Aarhus University Hospital Aarhus Denmark
| |
Collapse
|
22
|
Miyake K, Shibata S, Yoshikawa S, Karasuyama H. Basophils and their effector molecules in allergic disorders. Allergy 2021; 76:1693-1706. [PMID: 33205439 DOI: 10.1111/all.14662] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
Basophils are the rarest granulocytes which represent <1% of peripheral blood leukocytes. Basophils bear several phenotypic similarities to tissue-resident mast cells and therefore had been erroneously considered as blood-circulating mast cells. However, recent researches have revealed that basophils play nonredundant roles in allergic inflammation, protective immunity against parasitic infections and regulation of innate and acquired immunity. Basophils are recruited to inflamed tissues and activated in an IgE-dependent or IgE-independent manner to release a variety of effector molecules. Such molecules, including IL-4, act on various types of cells and play versatile roles, including the induction and termination of allergic inflammation and the regulation of immune responses. Recent development of novel therapeutic agents has enabled us to gain further insights into basophil biology in human disorders. In this review, we highlight the recent advances in the field of basophil biology with a particular focus on the role of basophils in allergic inflammation. Further studies on basophils and their effector molecules will help us identify novel therapeutic targets for treating allergic disorders.
Collapse
Affiliation(s)
- Kensuke Miyake
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Sho Shibata
- Department of Respiratory Medicine Graduate School of Medical and Dental Sciences Tokyo Medical and Dental University (TMDU) Tokyo Japan
| | - Soichiro Yoshikawa
- Department of Cell Physiology Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Hajime Karasuyama
- Inflammation, Infection and Immunity Laboratory TMDU Advanced Research Institute Tokyo Medical and Dental University (TMDU) Tokyo Japan
| |
Collapse
|
23
|
Alpan O, Layhadi JA, Ulrik Sønder S, Li H, Shamji MH. Basophil activation test: A diagnostic, predictive and monitoring assay for allergen immunotherapy. Allergy 2021; 76:1321-1324. [PMID: 32909281 DOI: 10.1111/all.14585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Affiliation(s)
| | - Janice A. Layhadi
- Immunomodulation and Tolerance Group, Allergy & Clinical Immunology, National Heart and Lung Institute Imperial College London London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London London UK
| | | | - Henry Li
- Institute for Asthma and Allergy Wheaton MD USA
| | - Mohamed H. Shamji
- Immunomodulation and Tolerance Group, Allergy & Clinical Immunology, National Heart and Lung Institute Imperial College London London UK
- Asthma UK Centre in Allergic Mechanisms of Asthma Imperial College London London UK
| |
Collapse
|
24
|
Incorvaia C, Al‐Ahmad M, Ansotegui IJ, Arasi S, Bachert C, Bos C, Bousquet J, Bozek A, Caimmi D, Calderón MA, Casale T, Custovic A, De Blay F, Demoly P, Devillier P, Didier A, Fiocchi A, Fox AT, Gevaert P, Gomez M, Heffler E, Ilina N, Irani C, Jutel M, Karagiannis E, Klimek L, Kuna P, O'Hehir R, Kurbacheva O, Matricardi PM, Morais‐Almeida M, Mosges R, Novak N, Okamoto Y, Panzner P, Papadopoulos NG, Park H, Passalacqua G, Pawankar R, Pfaar O, Schmid‐Grendelmeier P, Scurati S, Tortajada‐Girbés M, Vidal C, Virchow JC, Wahn U, Worm M, Zieglmayer P, Canonica GW. Personalized medicine for allergy treatment: Allergen immunotherapy still a unique and unmatched model. Allergy 2021; 76:1041-1052. [PMID: 32869882 DOI: 10.1111/all.14575] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/17/2022]
Abstract
The introduction of personalized medicine (PM) has been a milestone in the history of medical therapy, because it has revolutionized the previous approach of treating the disease with that of treating the patient. It is known today that diseases can occur in different genetic variants, making specific treatments of proven efficacy necessary for a given endotype. Allergic diseases are particularly suitable for PM, because they meet the therapeutic success requirements, including a known molecular mechanism of the disease, a diagnostic tool for such disease, and a treatment blocking the mechanism. The stakes of PM in allergic patients are molecular diagnostics, to detect specific IgE to single-allergen molecules and to distinguish the causative molecules from those merely cross-reactive, pursuit of patient's treatable traits addressing genetic, phenotypic, and psychosocial features, and omics, such as proteomics, epi-genomics, metabolomics, and breathomics, to forecast patient's responsiveness to therapies, to detect biomarker and mediators, and to verify the disease control. This new approach has already improved the precision of allergy diagnosis and is likely to significantly increase, through the higher performance achieved with the personalized treatment, the effectiveness of allergen immunotherapy by enhancing its already known and unique characteristics of treatment that acts on the causes.
Collapse
Affiliation(s)
| | - Mona Al‐Ahmad
- Microbiology Department Faculty of Medicine Kuwait University Kuwait
- Drug Allergy Unit Department of Allergy Al‐Rashed Allergy Center Kuwait
| | | | - Stefania Arasi
- Department of Allergy Bambino Gesu' Childrens' Hospital IRCCS Rome Italy
| | - Claus Bachert
- Upper Airways Research Laboratory ENT Dept Ghent University Hospital Ghent Belgium
- Karolinska Institutet Stockholm Sweden
- Department of ENT Diseases Karolinska University Hospital Stockholm Sweden
| | - Catherine Bos
- Stallergenes Greer Medical Affairs Department Antony France
| | - Jean Bousquet
- University Hospital Montpellier France – MACVIA‐France Montpellier France
| | - Andrzéj Bozek
- Clinical Department of Internal Disease, Dermatology and Allergology Medical University of Silesia Katowice Poland
| | - Davide Caimmi
- Department of Pulmonology and Addictology Arnaud de Villeneuve Hospital Montpellier University Montpellier France
| | - Moises A. Calderón
- Imperial College London – National Heart and Lung Institute Royal Brompton Hospital NHS London UK
| | - Thomas Casale
- Division of Allergy/Immunology University of South Florida Tampa FL USA
| | - Adnan Custovic
- Centre for Respiratory Medicine and Allergy Institute of Inflammation and Repair University of Manchester and University Hospital of South Manchester Manchester UK
| | - Frédéric De Blay
- Allergy Division Chest Diseases Department Strasbourg University Hospital Strasbourg France
| | - Pascal Demoly
- Department of Pulmonology and Addictology Arnaud de Villeneuve Hospital Montpellier University Montpellier France
- Sorbonne Université UMR‐S 1136 INSERM IPLESP EPAR Team Paris France
| | - Philippe Devillier
- Laboratoire de Recherche en Pharmacologie Respiratoire Pôle des Maladies des Voies Respiratoires Hôpital Foch Université Paris‐Saclay Suresnes France
| | - Alain Didier
- Respiratory Disease Dept Larrey Hospital University Hospital of Toulouse Paul Sabatier University Toulouse France
| | - Alessandro Fiocchi
- Department of Allergy Bambino Gesu' Childrens' Hospital IRCCS Rome Italy
| | - Adam T. Fox
- Department of Paediatric Allergy Guy's & St Thomas' Hospitals NHS Foundation Trust London UK
| | - Philippe Gevaert
- Upper Airways Research Laboratory ENT Dept Ghent University Hospital Ghent Belgium
| | | | - Enrico Heffler
- Personalized Medicine, Asthma & Allergy – Humanitas Clinical and Research Center IRCCS Rozzano Italy
- Department of Biomedical Science Humanitas University Pieve Emanuele Italy
| | - Natalia Ilina
- Federal Institute of Immunology of Russia Moscow Russia
| | - Carla Irani
- Department of Internal Medicine and Clinical Immunology Faculty of Medicine Hotel Dieu de France Hospital Saint Joseph University Beirut Lebanon
| | - Marek Jutel
- Department of Clinical Immunology Wrocław Medical University Wrocław Poland
| | | | - Ludger Klimek
- Center for Rhinology and Allergology Wiesbaden Germany
| | - Piotr Kuna
- Division of Internal Medicine, Asthma and Allergy Barlicki University Hospital Medical University of Lodz Lodz Poland
| | - Robin O'Hehir
- Alfred Hospital and Monash University Melbourne Australia
| | - Oxana Kurbacheva
- National Research Center – Institute of Immunology Federal Medical‐Biological Agency of Russia Moscow Russia
| | - Paolo M. Matricardi
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine Charité – University Medicine Berlin Berlin Germany
| | - Mario Morais‐Almeida
- Immunoallergy Department of CUF‐Descobertas Hospital Lisbon Portugal
- CUF‐Infante Santo Hospital Lisbon Portugal
| | - Ralph Mosges
- Faculty of Medicine Institute of Medical Statistics and Computational Biology University of Cologne Cologne Germany
- CRI – Clinical Research International Ltd. Cologne Germany
| | - Natalija Novak
- Department of Dermatology and Allergy University Hospital Bonn Bonn Germany
| | - Yoshitaka Okamoto
- Department of Otorhinolaryngology Chiba University Hospital Chiba Japan
| | - Petr Panzner
- Department of Immunology and Allergology Faculty of Medicine in Pilsen Charles University in Prague Pilsen Czech Republic
| | - Nikolaos G. Papadopoulos
- Division of Infection, Immunity & Respiratory Medicine Royal Manchester Children's Hospital University of Manchester Manchester UK
- Allergy Department 2nd Pediatric Clinic Athens General Children's Hospital "P&A Kyriakou" University of Athens Athens Greece
| | - Hae‐Sim Park
- Department of Allergy and Clinical Immunology Ajou University School of Medicine Suwon South Korea
| | - Giovanni Passalacqua
- Allergy and Respiratory Diseases Ospedale Policlino San Martino – University of Genoa Genoa Italy
| | - Ruby Pawankar
- Department of Pediatrics Nippon Medical School Tokyo Japan
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital Marburg Philipps‐Universität Marburg Marburg Germany
| | | | - Silvia Scurati
- Stallergenes Greer Medical Affairs Department Antony France
| | - Miguel Tortajada‐Girbés
- Pediatric Pulmonology and Allergy Unit Department of Pediatrics Dr. Peset University Hospital Valencia Spain
- Department of Pediatrics, Obstetrics and Gynecology University of Valencia Valencia Spain
- IVI Foundation Valencia Spain
| | - Carmen Vidal
- Allergy Service Complejo Hospitalario Universitario de Santiago Santiago de Compostela Spain
| | - J. Christian Virchow
- Department of Pneumology/Intensive Care Medicine University of Rostock Rostock Germany
| | - Ulrich Wahn
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine Charité – University Medicine Berlin Berlin Germany
| | - Margitta Worm
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine Charité – University Medicine Berlin Berlin Germany
| | | | - Giorgio W. Canonica
- Personalized Medicine, Asthma & Allergy – Humanitas Clinical and Research Center IRCCS Rozzano Italy
- Department of Biomedical Science Humanitas University Pieve Emanuele Italy
| |
Collapse
|
25
|
Drazdauskaitė G, Layhadi JA, Shamji MH. Mechanisms of Allergen Immunotherapy in Allergic Rhinitis. Curr Allergy Asthma Rep 2020; 21:2. [PMID: 33313967 PMCID: PMC7733588 DOI: 10.1007/s11882-020-00977-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Allergic rhinitis (AR) is a chronic inflammatory immunoglobulin (Ig) E-mediated disease of the nasal mucosa that can be triggered by the inhalation of seasonal or perennial allergens. Typical symptoms include sneezing, rhinorrhea, nasal itching, nasal congestion and symptoms of allergic conjunctivitis. AR affects a quarter of the population in the United States of America and Europe. RECENT FINDINGS AR has been shown to reduce work productivity in 36-59% of the patients with 20% reporting deteriorated job attendance. Moreover, 42% of children with AR report reduced at-school productivity and lower grades. Most importantly, AR impacts the patient's quality of life, due to sleep deprivation. However, a proportion of patients fails to respond to conventional medication and opts for the allergen immunotherapy (AIT), which currently is the only disease-modifying therapeutic option. AIT can be administered by either subcutaneous (SCIT) or sublingual (SLIT) route. Both routes of administration are safe, effective, and can lead to tolerance lasting years after treatment cessation. Both innate and adaptive immune responses that contribute to allergic inflammation are suppressed by AIT. Innate responses are ameliorated by reducing local mast cell, basophil, eosinophil, and circulating group 2 innate lymphoid cell frequencies which is accompanied by decreased basophil sensitivity. Induction of allergen-specific blocking antibodies, immunosuppressive cytokines, and regulatory T and B cell phenotypes are key pro-tolerogenic adaptive immune responses. CONCLUSION A comprehensive understanding of these mechanisms is necessary for optimal selection of AIT-responsive patients and monitoring treatment efficacy. Moreover, it could inspire novel and more efficient AIT approaches.
Collapse
Affiliation(s)
- Gabija Drazdauskaitė
- Immunomodulation and Tolerance Group, Allergy & Clinical Immunology, Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, 1st Floor, Room 111, Sir Alexander Fleming Building, South Kensington Campus, London, SW7 2AZ, UK
| | - Janice A Layhadi
- Immunomodulation and Tolerance Group, Allergy & Clinical Immunology, Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, 1st Floor, Room 111, Sir Alexander Fleming Building, South Kensington Campus, London, SW7 2AZ, UK
| | - Mohamed H Shamji
- Immunomodulation and Tolerance Group, Allergy & Clinical Immunology, Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, 1st Floor, Room 111, Sir Alexander Fleming Building, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
26
|
Kucuksezer UC, Ozdemir C, Cevhertas L, Ogulur I, Akdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy and allergen tolerance. Allergol Int 2020; 69:549-560. [PMID: 32900655 DOI: 10.1016/j.alit.2020.08.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) is the mainstay treatment for the cure of allergic disorders, with depicted efficacy and safety by several trials and meta-analysis. AIT impressively contributes to the management of allergic rhinitis, asthma and venom allergies. Food allergy is a new arena for AIT with promising results, especially via novel administration routes. Cell subsets with regulatory capacities are induced during AIT. IL-10 and transforming growth factor (TGF)-β are the main suppressor cytokines, in addition to surface molecules such as cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and programmed cell death protein-1 (PD-1) within the micro milieu. Modified T- and B-cell responses and antibody isotypes, increased activity thresholds for eosinophils, basophils and mast cells and consequent limitation of inflammatory cascades altogether induce and maintain a state of sustained allergen-specific unresponsiveness. Established tolerance is reflected into the clinical perspectives as improvement of allergy symptoms together with reduced medication requirements and evolved disease severity. Long treatment durations, costs, reduced patient compliance and risk of severe, even life-threatening adverse reactions during treatment stand as major limiting factors for AIT. By development of purified non-allergenic, highly-immunogenic modified allergen extracts, and combinational usage of them with novel adjuvant molecules via new routes may shorten treatment durations and possibly reduce these drawbacks. AIT is the best model for custom-tailored therapy of allergic disorders. Better characterization of disease endotypes, definition of specific biomarkers for diagnosis and therapy follow-up, as well as precision medicine approaches may further contribute to success of AIT in management of allergic disorders.
Collapse
|
27
|
Eberlein B. Basophil Activation as Marker of Clinically Relevant Allergy and Therapy Outcome. Front Immunol 2020; 11:1815. [PMID: 32973757 PMCID: PMC7472882 DOI: 10.3389/fimmu.2020.01815] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/07/2020] [Indexed: 01/15/2023] Open
Abstract
For some years now the basophil activation test (BAT) using flow cytometry has emerged as a powerful tool and sensitive marker that can be used to detect clinically relevant allergies, provide information on the severity of an allergic reaction, and monitor therapies. Compared to other in vitro diagnostic tests, BAT seems to have a better informative value in terms of clinical relevance. In general, the BAT can be used for the diagnosis of the most common forms of IgE-mediated allergy such as hymenoptera venom allergy, inhalant allergy, food allergy, and drug allergy. Various basophil markers and parameters have been established which, depending on the trigger of the respective allergy, can provide information on the clinical relevance of sensitization, on the development of natural tolerance, on trigger thresholds, and on the severity of the allergic reaction. The BAT also serves as a suitable follow-up instrument for various therapeutic approaches such as specific immunotherapy, desensitization protocols, or use of anti-IgE-antibodies for the various diseases. Quality controls for routine use, standardization, and automatization are expected to expand the range of applications for the above-mentioned indications.
Collapse
Affiliation(s)
- Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technische Universität München, Munich, Germany
| |
Collapse
|