1
|
Perez-Garcia J, Cardenas A, Lorenzo-Diaz F, Pino-Yanes M. Precision medicine for asthma treatment: Unlocking the potential of the epigenome and microbiome. J Allergy Clin Immunol 2025; 155:298-315. [PMID: 38906272 PMCID: PMC12002393 DOI: 10.1016/j.jaci.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Asthma is a leading worldwide biomedical concern. Patients can experience life-threatening worsening episodes (exacerbations) usually controlled by anti-inflammatory and bronchodilator drugs. However, substantial heterogeneity in treatment response exists, and a subset of patients with unresolved asthma carry the major burden of this disease. The study of the epigenome and microbiome might bridge the gap between human genetics and environmental exposure to partially explain the heterogeneity in drug response. This review aims to provide a critical examination of the existing literature on the microbiome and epigenetic studies examining associations with asthma treatments and drug response, highlight convergent pathways, address current challenges, and offer future perspectives. Current epigenetic and microbiome studies have shown the bilateral relationship between asthma pharmacologic interventions and the human epigenome and microbiome. These studies, focusing on corticosteroids and to a lesser extent on bronchodilators, azithromycin, immunotherapy, and mepolizumab, have improved the understanding of the molecular basis of treatment response and identified promising biomarkers for drug response prediction. Immune and inflammatory pathways (eg, IL-2, TNF-α, NF-κB, and C/EBPs) underlie microbiome-epigenetic associations with asthma treatment, representing potential therapeutic pathways to be targeted. A comprehensive evaluation of these omics biomarkers could significantly contribute to precision medicine and new therapeutic target discovery.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain.
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, Calif
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Tenerife, Spain; CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Ptacin JL, Ma L, Caffaro CE, Acuff NV, Germar K, Severy P, Qu Y, Vela JL, Cai X, San Jose KM, Aerni HR, Chen DB, Esche E, Ismaili TK, Herman R, Pavlova Y, Pena MJ, Nguyen J, Koriazova LK, Shawver LK, Joseph IB, Mooney J, Peakman M, Milla ME. A CD25-biased interleukin-2 for autoimmune therapy engineered via a semi-synthetic organism. COMMUNICATIONS MEDICINE 2024; 4:58. [PMID: 38532017 DOI: 10.1038/s43856-024-00485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Natural cytokines are poorly suited as therapeutics for systemic administration due to suboptimal pharmacological and pharmacokinetic (PK) properties. Recombinant human interleukin-2 (rhIL-2) has shown promise for treatment of autoimmune (AI) disorders yet exhibits short systemic half-life and opposing immune responses that negate an appropriate therapeutic index. METHODS A semi-synthetic microbial technology platform was used to engineer a site-specifically pegylated form of rhIL-2 with enhanced PK, specificity for induction of immune-suppressive regulatory CD4 + T cells (Tregs), and reduced stimulation of off-target effector T and NK cells. A library of rhIL-2 molecules was constructed with single site-specific, biorthogonal chemistry-compatible non-canonical amino acids installed near the interface where IL-2 engages its cognate receptor βγ (IL-2Rβγ) signaling complex. Biorthogonal site-specific pegylation and functional screening identified variants that retained engagement of the IL-2Rα chain with attenuated potency at the IL-2Rβγ complex. RESULTS Phenotypic screening in mouse identifies SAR444336 (SAR'336; formerly known as THOR-809), rhIL-2 pegylated at H16, as a potential development candidate that specifically expands peripheral CD4+ Tregs with upregulation of markers that correlate with their suppressive function including FoxP3, ICOS and Helios, yet minimally expands CD8 + T or NK cells. In non-human primate, administration of SAR'336 also induces dose-dependent expansion of Tregs and upregulated suppressive markers without significant expansion of CD8 + T or NK cells. SAR'336 administration reduces inflammation in a delayed-type hypersensitivity mouse model, potently suppressing CD4+ and CD8 + T cell proliferation. CONCLUSION SAR'336 is a specific Treg activator, supporting its further development for the treatment of AI diseases.
Collapse
Affiliation(s)
- Jerod L Ptacin
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Lina Ma
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Carolina E Caffaro
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Nicole V Acuff
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | | | - Peter Severy
- Sanofi, 350 Water St., Cambridge, MA, 02141, USA
| | - Yanyan Qu
- Sanofi, 350 Water St., Cambridge, MA, 02141, USA
| | | | - Xinming Cai
- Sanofi, 350 Water St., Cambridge, MA, 02141, USA
| | - Kristine M San Jose
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Hans R Aerni
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - David B Chen
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Ean Esche
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Taylor K Ismaili
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Rob Herman
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Yelena Pavlova
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Michael J Pena
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Jasmine Nguyen
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Lilia K Koriazova
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Laura K Shawver
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Ingrid B Joseph
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Jill Mooney
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA
| | - Mark Peakman
- Sanofi, 350 Water St., Cambridge, MA, 02141, USA
| | - Marcos E Milla
- Synthorx, a Sanofi Company, 11099 N. Torrey Pines Rd. Suite 190, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Wang X, Liu Z, Wang D, Zhang Y, Zhang H, Xue F, Wang X, Tang Z, Han X. Immunoswitch Nanomodulators Enable Active Targeting and Selective Proliferation of Regulatory T Cells for Multiple Sclerosis Therapy. ACS NANO 2024; 18:770-782. [PMID: 38113242 DOI: 10.1021/acsnano.3c09225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Interleukin-2 (IL-2) used in multiple sclerosis (MS) therapy modulates the balance between regulatory T (Treg) cells and effector T (Teff) cells. However, the off-target activation of Teff cells by IL-2 limits its clinical application. Therefore, a rapidly prepared immunoswitch nanomodulator termed aT-IL2C NPs was developed, which specifically recognized Treg cells with high TIGIT expression thanks to the presence of an anti-TIGIT and an IL-2/JES6-1 complex (IL2C) being delivered to Treg cells but not to Teff cells with low TIGIT expression. Then, IL2C released IL-2 due to the specific expression of the high-affinity IL-2 receptor on Treg cells, thus enabling the active targeting and selective proliferation of Treg cells. Moreover, the anti-TIGIT of aT-IL2C NPs selectively inhibited the proliferation of Teff cells while leaving the proliferation of Treg cells unaffected. In addition, since the IL-2 receptor on Teff cells had medium-affinity, the IL2C hardly released IL-2 to Teff cells, thus enabling the inhibition of Teff cell proliferation. The treatment of experimental autoimmune encephalomyelitis (EAE) mice with aT-IL2C NPs ameliorated the severity of the EAE and restored white matter integrity. Collectively, this work described a potential promising agent for effective MS therapy.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
| | - Zhilin Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
| | - Di Wang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
| | - Yingyu Zhang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
| | - Honglei Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Fuxin Xue
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
| | - Xuemei Han
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
| |
Collapse
|
4
|
Zhong B, Seah JJ, Liu F, Ba L, Du J, Wang DY. The role of hypoxia in the pathophysiology of chronic rhinosinusitis. Allergy 2022; 77:3217-3232. [PMID: 35603933 DOI: 10.1111/all.15384] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/19/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023]
Abstract
Chronic rhinosinusitis (CRS) is a chronic inflammatory disease of the nasal cavity characterized by excessive nasal mucus secretion and nasal congestion. The development of CRS is related to pathological mechanisms induced by hypoxia. Under hypoxic conditions, the stable expression of both Hypoxia inducible factor-1 (HIF-1) α and HIF-2α are involved in the immune response and inflammatory pathways of CRS. The imbalance in the composition of nasal microbiota may affect the hypoxic state of CRS and perpetuate existing inflammation. Hypoxia affects the differentiation of nasal epithelial cells such as ciliated cells and goblet cells, induces fibroblast proliferation, and leads to epithelial-mesenchymal transition (EMT) and tissue remodeling. Hypoxia also affects the proliferation and differentiation of macrophages, eosinophils, basophils, and mast cells in sinonasal mucosa, and thus influences the inflammatory state of CRS by regulating T cells and B cells. Given the multifactorial nature in which HIF is linked to CRS, this study aims to elucidate the effect of hypoxia on the pathogenic mechanisms of CRS.
Collapse
Affiliation(s)
- Bing Zhong
- Upper Airways Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China.,Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jun Jie Seah
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Feng Liu
- Upper Airways Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Luo Ba
- Department of Otolaryngology, People's Hospital of Tibet Autonomous Region, Lhasa, China
| | - Jintao Du
- Upper Airways Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - De Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
5
|
Hernandez R, Põder J, LaPorte KM, Malek TR. Engineering IL-2 for immunotherapy of autoimmunity and cancer. Nat Rev Immunol 2022; 22:614-628. [PMID: 35217787 DOI: 10.1038/s41577-022-00680-w] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 12/22/2022]
Abstract
Preclinical studies of the T cell growth factor activity of IL-2 resulted in this cytokine becoming the first immunotherapy to be approved nearly 30 years ago by the US Food and Drug Administration for the treatment of cancer. Since then, we have learnt the important role of IL-2 in regulating tolerance through regulatory T cells (Treg cells) besides promoting immunity through its action on effector T cells and memory T cells. Another pivotal event in the history of IL-2 research was solving the crystal structure of IL-2 bound to its tripartite receptor, which spurred the development of cell type-selective engineered IL-2 products. These new IL-2 analogues target Treg cells to counteract the dysregulated immune system in the context of autoimmunity and inflammatory disorders or target effector T cells, memory T cells and natural killer cells to enhance their antitumour responses. IL-2 biologics have proven to be effective in preclinical studies and clinical assessment of some is now underway. These studies will soon reveal whether engineered IL-2 biologics are truly capable of harnessing the IL-2-IL-2 receptor pathway as effective monotherapies or combination therapies for autoimmunity and cancer.
Collapse
Affiliation(s)
- Rosmely Hernandez
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Janika Põder
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Kathryn M LaPorte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Thomas R Malek
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
6
|
Li Y, Li X, Geng X, Zhao H. The IL-2A receptor pathway and its role in lymphocyte differentiation and function. Cytokine Growth Factor Rev 2022; 67:66-79. [DOI: 10.1016/j.cytogfr.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|
7
|
Bellinghausen I, Khatri R, Saloga J. Current Strategies to Modulate Regulatory T Cell Activity in Allergic Inflammation. Front Immunol 2022; 13:912529. [PMID: 35720406 PMCID: PMC9205643 DOI: 10.3389/fimmu.2022.912529] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, atopic diseases, including allergic rhinitis, asthma, atopic dermatitis, and food allergy, increased strongly worldwide, reaching up to 50% in industrialized countries. These diseases are characterized by a dominating type 2 immune response and reduced numbers of allergen-specific regulatory T (Treg) cells. Conventional allergen-specific immunotherapy is able to tip the balance towards immunoregulation. However, in mouse models of allergy adaptive transfer of Treg cells did not always lead to convincing beneficial results, partially because of limited stability of their regulatory phenotype activity. Besides genetic predisposition, it has become evident that environmental factors like a westernized lifestyle linked to modern sanitized living, the early use of antibiotics, and the consumption of unhealthy foods leads to epithelial barrier defects and dysbiotic microbiota, thereby preventing immune tolerance and favoring the development of allergic diseases. Epigenetic modification of Treg cells has been described as one important mechanism in this context. In this review, we summarize how environmental factors affect the number and function of Treg cells in allergic inflammation and how this knowledge can be exploited in future allergy prevention strategies as well as novel therapeutic approaches.
Collapse
Affiliation(s)
- Iris Bellinghausen
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Rahul Khatri
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Joachim Saloga
- Department of Dermatology, University Medical Center, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|