1
|
Jahanbakhsh M, Mirzapour T, Asgari F, Fadakar H, Ghasemian F, Koruji M. Enhancing spermatogonial stem cell differentiation: The role of alpha-ketoglutarate in in-Vitro cultures. Theriogenology 2025; 237:61-69. [PMID: 39970551 DOI: 10.1016/j.theriogenology.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/06/2025] [Accepted: 02/09/2025] [Indexed: 02/21/2025]
Abstract
Spermatogonial stem cells (SSCs) have the unique ability to self-renew and differentiate into mature spermatozoa. In vitro culture of SSCs, however, presents several challenges, particularly in promoting efficient differentiation. This study investigates the role of metabolic intermediates, such as alpha-ketoglutarate (AKG), on the differentiation of SSCs isolated from the testes of 3-6 day-old mice. SSCs and sertoli cells were extracted using collagenase ІV and trypsin and co-cultured in DMEM/F12 supplemented with 20 % fetal bovine serum (FBS) and glial cell-derived neurotrophic factor (GDNF) for one week. The survival rate of cells was evaluated under influence of different dosages of AKG (0.04, 0.1, 0.4, 4, 10 mM) after 1 and 7 days of culture using the MTT test. The cell viability was significantly increased at the 0.1 mM dose of AKG rather than other groups. This dosage was selected for adding to culture system. In the control group, the cells cultured for three weeks in DMEM/F12 with 10 % FBS, 10⁻6 M retinoic acid, and 40 ng/mL bone morphogenetic protein-4 (BMP-4). The treatment group received the same medium with the addition of 0.1 mM AKG. The presence of Sertoli cell in the culture system was confirmed by SOX9-positive immunocytochemistry. The Colonies that formed on the Sertoli cells exhibited positive alkaline phosphatase activity and reacted positively for Oct4 and GFRa1 immunocytochemistry. The expression of testicular-specific genes (Acrosin and Sycp3) and anti-apoptosis-related genes (Nrf2 and Bcl2) was evaluated after 7 days (as the zero group) and again after 21 days of culture, in treatment (0.1 mM AKG) and control groups. A high expression of Acrosin and Sycp3 expression was observed in AKG-treated group compared to control and zero groups (p ≤ 0.05). The expression of Nrf2 and Bcl2 genes was also significantly increased in the treatment group (p ≤ 0.05). These findings suggest that AKG activates mechanisms of cellular antioxidant response and subsequently increase the expression of differentiation genes in SSCs.
Collapse
Affiliation(s)
- Mahdi Jahanbakhsh
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran; Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Tooba Mirzapour
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Fatemeh Asgari
- Avicenna Infertility Clinic, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hediyeh Fadakar
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Fatemeh Ghasemian
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Gawish MF, Abd El-Baset SA, Shalabi SS, Ibrahem NE. Efficacy of ozone versus mesenchymal stem cell-derived microvesicles in ameliorating testicular changes after hypothyroidism in adult albino rats: a histological and immunohistochemical study. Ultrastruct Pathol 2024; 48:496-525. [PMID: 39552092 DOI: 10.1080/01913123.2024.2423863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
This study was performed to: detect the histological, immunohistochemical, and biochemical alterations that may occur in the testes of adult rats in induced hypothyroidism. And to investigate which one, ozone or MSCs-MVs have better therapeutic effect on testicular changes after hypothyroidism. Eighty-four male adult rats were separated into: control group, hypothyroidism group: rats will be given carbimazole for 30 days, ozone group: rats treated as hypothyroidism group then will be injected with ozone intraperitoneal for 7 days. MSC-MVs group: rats treated as hypothyroidism group then will be injected with a single intravenous dose MSC-MVs. Specimens of testes were handled for light, electron microscope, and immunohistochemical of vimentin and S100. Biochemical analysis for; MDA and TNFα; serum testosterone, TSH, T3, and T4 was done, also, sperm count and morphology assay. Morphometric and statistical analysis were performed. Hypothyroidism group showed disorganized seminiferous tubules. A noticeable gap was between the basement membrane and the germinal epithelium. Wide interstitium had congested vessels and acidophilic homogenous material. Vacuolated germinal epithelium and few germ cells had dark nuclei with noticeable separation of between the basement membrane and the germinal epithelium. Ozone and MSCs-MVs induced improvement in all the previous parameters and restoration of spermatogenesis. In Conclusion MSCs-MVs has better ameliorative effect than ozone on hypothyroidism-exposed testes.
Collapse
Affiliation(s)
- Magdy F Gawish
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | | | - Nahla E Ibrahem
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Elsheikh AA, Shalaby AM, Alabiad MA, Abd-Almotaleb NA, Alorini M, Alnasser SM, Elhasadi I, El-Nagdy SA. Trigonelline Chloride Ameliorated Triphenyltin-Induced Testicular Autophagy, Inflammation, and Apoptosis: Role of Recovery. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2024; 30:133-150. [PMID: 38156731 DOI: 10.1093/micmic/ozad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
Triphenyltin chloride (TPT-Cl) is an organometallic organotin. This study aimed to investigate the role of trigonelline (TG) along with the impact of TPT withdrawal on the testicular toxicity induced by TPT-Cl. Thirty-six adult male albino rats were divided into control, TG (40 mg/kg/day), TPT-Cl (0.5 mg/kg/day), TG + TPT-Cl, and recovery groups. Animals were daily gavaged for 12 weeks. Both TG and TPT-Cl withdrawal improved TPT-Cl-induced testicular toxicity features involving testis and relative testis weight reduction, luteinizing hormone, follicular stimulating hormone, and sex hormone-binding globulin elevation, reduction of inhibin B, free testosterone levels, and sperm count reduction with increased abnormal sperm forms. Moreover, both TG and TPT-Cl withdrawal reduced inflammatory activin A, follistatin, tumor necrosis factor α, interleukin-1β, and proapoptotic Bax and elevated antiapoptotic Bcl2 in testicular tissues mediated by TPT-Cl. TG and TPT-Cl withdrawal restored the excessive autophagy triggered by TPT-Cl via elevation of mTOR, AKT, PI3K, and P62/SQSTM1 and reduction of AMPK, ULK1, Beclin1, and LC3 mRNA gene expressions and regained the deteriorated testicular structure. In conclusion, TG and TPT-Cl withdrawal had an ameliorative role in partially reversing TPT-Cl-induced testicular toxicity. However, the findings indicated that the use of TG as an adjunctive factor is more favorable than TPT-Cl withdrawal, suggesting the capability of the testis for partial self-improvement.
Collapse
Affiliation(s)
- Arwa A Elsheikh
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Mohamed Shalaby
- Histology and Cell Biology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Mohamed Ali Alabiad
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Noha Ali Abd-Almotaleb
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed Alorini
- Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah 51911, Saudi Arabia
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 51911, Saudi Arabia
| | - Ibtesam Elhasadi
- Department of Pathology, Faculty of Medicine, University of Benghazi, Benghazi, Libya
| | - Samah A El-Nagdy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
4
|
Bashiri Z, Movahedin M, Pirhajati V, Asgari H, Koruji M. Ultrastructural study: in vitro and in vivo differentiation of mice spermatogonial stem cells. ZYGOTE 2024; 32:87-95. [PMID: 38149356 DOI: 10.1017/s096719942300062x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Mouse testicular tissue is composed of seminiferous tubules and interstitial tissue. Mammalian spermatogenesis is divided into three stages: spermatocytogenesis (mitotic divisions) in which spermatogonial stem cells (SSCs) turn into spermatocytes, followed by two consecutive meiotic divisions in which spermatocytes form spermatids. Spermatids differentiate into spermatozoa during spermiogenesis. Various factors affect the process of spermatogenesis and the organization of cells in the testis. Any disorder in different stages of spermatogenesis will have negative effects on male fertility. The aim of the current study was to compare the in vitro and in vivo spermatogenesis processes before and after transplantation to azoospermic mice using ultrastructural techniques. In this study, mice were irradiated with single doses of 14 Gy 60Co radiation. SSCs isolated from neonatal mice were cultured in vitro for 1 week and were injected into the seminiferous tubule recipient's mice. Testicular cells of neonatal mice were cultured in the four groups on extracellular matrix-based 3D printing scaffolds. The transplanted testes (8 weeks after transplantation) and cultured testicular cells in vitro (after 3 weeks) were then processed for transmission electron microscopy studies. Our study's findings revealed that the morphology and ultrastructure of testicular cells after transplantation and in vitro culture are similar to those of in vivo spermatogenesis, indicating that spermatogenic cell nature is unaltered in vitro.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Omid Fertility & Infertility Clinic, Hamedan, Iran
| | - Mansoureh Movahedin
- Department of Anatomical Sciences, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Vahid Pirhajati
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Asgari
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
van Maaren J, Alves LF, van Wely M, van Pelt AMM, Mulder CL. Favorable culture conditions for spermatogonial propagation in human and non-human primate primary testicular cell cultures: a systematic review and meta-analysis. Front Cell Dev Biol 2024; 11:1330830. [PMID: 38259514 PMCID: PMC10800969 DOI: 10.3389/fcell.2023.1330830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Autologous transplantation of spermatogonial stem cells (SSCs) isolated from cryopreserved testicular biopsies obtained before oncological treatment could restore fertility in male childhood cancer survivors. There is a clear necessity for in vitro propagation of the limited SSCs from the testicular biopsy prior to transplantation due to limited numbers of spermatogonia in a cryopreserved testicular biopsy. Still, there is no consensus regarding their optimal culture method. Methods: We performed a systematic review and meta-analysis of studies reporting primary testicular cell cultures of human and non-human primate origin through use of Pubmed, EMBASE, and Web of Science core collection databases. Of 760 records, we included 42 articles for qualitative and quantitative analysis. To quantify in vitro spermatogonial propagation, spermatogonial colony doubling time (CDT) was calculated, which measures the increase in the number of spermatogonial colonies over time. A generalized linear mixed model analysis was used to assess the statistical effect of various culture conditions on CDT. Results: Our analysis indicates decreased CDTs, indicating faster spermatogonial propagation in cultures with a low culture temperature (32°C); with use of non-cellular matrices; use of StemPro-34 medium instead of DMEM; use of Knockout Serum Replacement; and when omitting additional growth factors in the culture medium. Discussion: The use of various methods and markers to detect the presence of spermatogonia within the reported cultures could result in detection bias, thereby potentially influencing comparability between studies. However, through use of CDT in the quantitative analysis this bias was reduced. Our results provide insight into critical culture conditions to further optimize human spermatogonial propagation in vitro, and effectively propagate and utilize these cells in a future fertility restoration therapy and restore hope of biological fatherhood for childhood cancer survivors.
Collapse
Affiliation(s)
- Jillis van Maaren
- Reproductive Biology Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Luis F. Alves
- Reproductive Biology Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Madelon van Wely
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Centre for Reproductive Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ans M. M. van Pelt
- Reproductive Biology Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Callista L. Mulder
- Reproductive Biology Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Salem M, Feizollahi N, Jabari A, Golmohammadi MG, Shirinsokhan A, Ghanami Gashti N, Bashghareh A, Nikmahzar A, Abbasi Y, Naji M, Abbasi M. Differentiation of human spermatogonial stem cells using a human decellularized testicular scaffold supplemented by platelet-rich plasma. Artif Organs 2023; 47:840-853. [PMID: 36721957 DOI: 10.1111/aor.14505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/02/2023]
Abstract
BACKGROUND Effective culture systems for attachment, migration, proliferation, and differentiation of spermatogonial stem cells (SSCs) can be a promising therapeutic modality for preserving male fertility. Decellularized extracellular matrix (ECM) from native testis tissue creates a local microenvironment for testicular cell culture. Furthermore, platelet-rich plasma (PRP) contains various growth factors for the proliferation and differentiation of SSCs. METHODS In this study, human testicular cells were isolated and cultured for 4 weeks, and SSCs were characterized using immunocytochemistry (ICC) and flow cytometry. Human testicular tissue was decellularized (0.3% SDS, 1% Triton), and the efficiency of the decellularization process was confirmed by histological staining and DNA content analysis. SSCs were cultured on the human decellularized testicular matrix (DTM) for 4 weeks. The viability and the expression of differentiation genes were evaluated by MTT and real-time polymerase chain reaction (PCR), respectively. RESULTS Histological evaluation and DNA content analysis showed that the components of ECM were preserved during decellularization. Our results showed that after 4 weeks of culture, the expression levels of BAX, BCL-2, PLZF, and SCP3 were unchanged, while the expression of PRM2 significantly increased in the cells cultured on DTM supplemented with PRP (ECM-PRP). In addition, the expression of GFRA1 was significantly decreased in the ECM group compared to the control and PRP groups. Furthermore, the MTT test indicated that viability was significantly enhanced in cells plated on DTM supplemented with PRP. CONCLUSION Our study demonstrated that DTM supplemented with PRP can provide an effective culture system for the differentiation and viability of SSCs.
Collapse
Affiliation(s)
- Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narjes Feizollahi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ayob Jabari
- Department of Obstetrics and Gynecology, Molud Infertility Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Armaghan Shirinsokhan
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Nasrin Ghanami Gashti
- Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland, Limerick, Ireland
| | - Alieh Bashghareh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aghbibi Nikmahzar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Abbasi
- Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland, Limerick, Ireland.,School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Naji
- School of Engineering, University of Limerick, Limerick, Ireland, Limerick, Ireland.,School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Binsila B, Selvaraju S, Ranjithkumaran R, Archana SS, Krishnappa B, Ghosh SK, Kumar H, Subbarao RB, Arangasamy A, Bhatta R. Current scenario and challenges ahead in application of spermatogonial stem cell technology in livestock. J Assist Reprod Genet 2021; 38:3155-3173. [PMID: 34661801 DOI: 10.1007/s10815-021-02334-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Spermatogonial stem cells (SSCs) are the source for the mature male gamete. SSC technology in humans is mainly focusing on preserving fertility in cancer patients. Whereas in livestock, it is used for mining the factors associated with male fertility. The review discusses the present status of SSC biology, methodologies developed for in vitro culture, and challenges ahead in establishing SSC technology for the propagation of superior germplasm with special reference to livestock. METHOD Published literatures from PubMed and Google Scholar on topics of SSCs isolation, purification, characterization, short and long-term culture of SSCs, stemness maintenance, epigenetic modifications of SSCs, growth factors, and SSC cryopreservation and transplantation were used for the study. RESULT The fine-tuning of SSC isolation and culture conditions with special reference to feeder cells, growth factors, and additives need to be refined for livestock. An insight into the molecular mechanisms involved in maintaining stemness and proliferation of SSCs could facilitate the dissemination of superior germplasm through transplantation and transgenesis. The epigenetic influence on the composition and expression of the biomolecules during in vitro differentiation of cultured cells is essential for sustaining fertility. The development of surrogate males through gene-editing will be historic achievement for the foothold of the SSCs technology. CONCLUSION Detailed studies on the species-specific factors regulating the stemness and differentiation of the SSCs are required for the development of a long-term culture system and in vitro spermatogenesis in livestock. Epigenetic changes in the SSCs during in vitro culture have to be elucidated for the successful application of SSCs for improving the productivity of the animals.
Collapse
Affiliation(s)
- Balakrishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India.
| | - Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Rajan Ranjithkumaran
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Santhanahalli Siddalingappa Archana
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Balaganur Krishnappa
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Subrata Kumar Ghosh
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Harendra Kumar
- Animal Reproduction Division, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Izatnagar, 243 122, India
| | - Raghavendra B Subbarao
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Arunachalam Arangasamy
- Reproductive Physiology Laboratory, Animal Physiology Division, Indian Council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| | - Raghavendra Bhatta
- Indian council of Agricultural Research-National Institute of Animal Nutrition and Physiology, Bengaluru, 560 030, India
| |
Collapse
|
8
|
Anbara H, Sheibani MT, Razi M, Kian M. Insight into the mechanism of aspartame-induced toxicity in male reproductive system following long-term consumption in mice model. ENVIRONMENTAL TOXICOLOGY 2021; 36:223-237. [PMID: 32951320 DOI: 10.1002/tox.23028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/29/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Aspartame is one of the most common consumed artificial sweeteners utilized in many food products and beverages. It has been indicated that long-term consumption of aspartame leads to reproductive toxicity but its mechanism is not well-clear. In this study we investigated mechanism of aspartame-induced reproductive toxicity in male mice. For this purpose, 36 NMRI mature male mice received three doses of 40, 80, and 160 mg/kg body weight of aspartame, respectively per day by gavage for 90 days and also a control group was considered which received 0.5 mL of normal saline as the same route. The results revealed that long-term administration of aspartame at high doses significantly (P < .05) reduced gonadosomatic index, serum concentration of pituitary-testicular axis hormones (FSH, LH, and testosterone). It also decreased sperm parameters and total antioxidant capacity, antioxidant enzyme activities (superoxide dismutase, catalase, and glutathione peroxidase), while it caused increase in nitric oxide and malondialdehyde levels in testis tissue and sperm samples. Also, it decreased attenuated testicular histomorphometric indices (tubular differentiation index, spermiogenesis index, and repopulation index), and steroidogenic foci, while increased mRNA damages and apoptosis rate, downregulated antiapoptotic (Bcl-2) and upregulated proapoptotic (P53, BAX, and caspase-3) mediators respectively in testis. These findings indicated that consumption of aspartame for a long period results in male reproductive toxicity by decrease in serum concentration of pituitary-testis axis hormones and induction of oxidative stress and apoptosis in testis.
Collapse
Affiliation(s)
- Hojat Anbara
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Taghi Sheibani
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mazdak Razi
- Department of Comparative Histology & Embryology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mehdi Kian
- Department of Comparative Biomedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
9
|
Bashiri Z, Amiri I, Gholipourmalekabadi M, Falak R, Asgari H, Maki CB, Moghaddaszadeh A, Koruji M. Artificial testis: a testicular tissue extracellular matrix as a potential bio-ink for 3D printing. Biomater Sci 2021; 9:3465-3484. [DOI: 10.1039/d0bm02209h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A summary of the study design showing the extraction of extracellular matrix of testicular tissue and the printing of hydrogel scaffolds and the interaction of testicular cells on three-dimensional scaffolds.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Anatomy
| | - Iraj Amiri
- Research Center for Molecular Medicine
- Hamadan University of Medical Sciences
- Hamadan
- Iran
- Endometrium and Research Center
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Tissue Engineering & Regenerative Medicine
| | - Reza Falak
- Immunology Research Center (IRC)
- Institute of Immunology and Infectious Diseases
- Iran University of Medical Sciences
- Tehran
- Iran
| | - Hamidreza Asgari
- Stem Cell and Regenerative Medicine Research Center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Anatomy
| | | | - Ali Moghaddaszadeh
- Departement of Biomedical Engineering
- Science and Research Branch
- Islamic Azad University
- Tehran
- Iran
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center
- Iran University of Medical Sciences
- Tehran
- Iran
- Department of Anatomy
| |
Collapse
|
10
|
Application of platelet-rich plasma (PRP) improves self-renewal of human spermatogonial stem cells in two-dimensional and three-dimensional culture systems. Acta Histochem 2020; 122:151627. [PMID: 33002788 DOI: 10.1016/j.acthis.2020.151627] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/17/2020] [Accepted: 09/14/2020] [Indexed: 12/20/2022]
Abstract
Spermatogonial stem cells (SSCs) are very sensitive to chemotherapy and radiotherapy, so male infertility is a great challenge for prepubertal cancer survivors. Cryoconservation of testicular cells before cancer treatment can preserve SSCs from treatment side effects. Different two-dimensional (2D) and three-dimensional (3D) culture systems of SSCs have been used in many species as a useful technique to in vitro spermatogenesis. We evaluated the proliferation of SSCs in 2D and 3D culture systems of platelet-rich plasma (PRP). testicular cells of four brain-dead patients cultivated in 2D pre-culture system, characterization of SSCs performed by RT-PCR, flow cytometry, immunocytochemistry and their functionality assessed by xenotransplantation to azoospermia mice. PRP prepared and dosimetry carried out to determine the optimized dose of PRP. After preparation of PRP scaffold, cytotoxic and histological evaluation performed and SSCs cultivated into three groups: control, 2D culture by optimized dose of PRP and PRP scaffold. The diameter and number of colonies measured and relative expression of GFRa1 and c-KIT evaluated by real-time PCR. Results indicated the expression of PLZF, VASA, OCT4, GFRa1 and vimentin in colonies after 2D pre-culture, xenotransplantation demonstrated proliferated SSCs have proper functionality to homing in mouse testes. The relative expression of c-KIT showed a significant increase as compared to the control group (*: p < 0.05) in PRP- 2D group, expression of GFRa1 and c-KIT in PRP scaffold group revealed a significant increase as compared to other groups (***: p < 0.001). The number and diameter of colonies in the PRP-2D group showed a considerable increase (p < 0.01) as compared to the control group. In PRP- scaffold group, a significant increase (p < 0.01) was seen only in the number of colonies related to the control group. Our results suggested that PRP scaffold can reconstruct a suitable structure to the in vitro proliferation of SSCs.
Collapse
|
11
|
Jabari A, Sadighi Gilani MA, Koruji M, Gholami K, Mohsenzadeh M, Rastegar T, Khadivi F, Ghanami Gashti N, Nikmahzar A, Mojaverrostami S, Talebi A, Ashouri Movassagh S, Rezaie MJ, Abbasi M. Three-dimensional co-culture of human spermatogonial stem cells with Sertoli cells in soft agar culture system supplemented by growth factors and Laminin. Acta Histochem 2020; 122:151572. [PMID: 32622422 DOI: 10.1016/j.acthis.2020.151572] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022]
Abstract
Application of a three-dimensional (3D) culture system for in vitro proliferation and differentiation of human spermatogonial stem cells (SSCs) is a useful tool for the investigation of the spermatogenesis process and the management of male infertility particularly in prepubertal cancer patients. The main purpose of this study was to investigate the proliferation of human SSCs co-cultured with Sertoli cells in soft agar culture system (SACS) supplemented by Laminin and growth factors. Testicular cells were isolated from testes of brain-dead patients and cultured in two-dimensional (2D) culture system for 3 weeks. After 3 weeks, functional SSCs were evaluated by xenotransplantation and also identification of cells was assessed by immunocytochemistry, flow cytometry, and RT-PCR. Then, SSCs and Sertoli cells were transferred to the upper layer of SACS for 3 weeks. After 3 weeks, the number of colonies and the expression of specific SSCs and Sertoli cell markers, as well as apoptotic genes were evaluated. Our results showed that transplanted SSCs, migrated into the basement membrane of seminiferous tubules of recipient mice. The expression of PLZF, α6-Integrin, and Vimentin proteins in SSCs and Sertoli cells were observed in 2D and 3D culture systems. The expression rate of PLZF, α6-Integrin, Bcl2, and colony number in SACS supplemented by Laminin and growth factors group were significantly higher than non-supplemented groups (P ≤ 0.01), but the expression rate of c-kit and Bax in supplemented group were significantly lower than non-supplemented groups (P ≤ 0.05). This 3D co-culture system decreased apoptosis and increased propagation of human SSCs. Therefore, this designed system can be utilized to increase the proliferation of human SSCs in prepubertal male cancer and azoospermic men to obtain an adequate SSCs number to outotransplant success and in vitro spermatogenesis.
Collapse
Affiliation(s)
- Ayob Jabari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Morteza Koruji
- Cellular and Molecular Research Center & Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Keykavos Gholami
- Gametogenesis Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mojtaba Mohsenzadeh
- Iranian Tissue Bank and Research Center of Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Ghanami Gashti
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aghbibi Nikmahzar
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Talebi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Sepideh Ashouri Movassagh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Human and Animal Cell Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Mohammad Jafar Rezaie
- Department of Embryology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|