1
|
Celik Atalay E, Er Demirhan B, Sagdıcoglu Celep AG. Low-Calorie Sweeteners and Reproductive Health: Evidence and Debates. CURRENT NUTRITION & FOOD SCIENCE 2025; 21:309-332. [DOI: 10.2174/0115734013315621240802055207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 01/04/2025]
Abstract
The reduction in sugar consumption has led to increased use of low-calorie artificial
sweeteners. This coincides with an increase in infertility rates, suggesting that low-calorie artificial
sweeteners may negatively affect reproductive health. Low-calorie sweeteners may affect
oxidative stress, glucose regulation, and the microbiota, which are associated with reproductive
health. Therefore, a review was conducted to examine the effects of commonly used low-calorie
sweeteners on reproductive health through potential biological mechanisms. This review addresses
the effects of low-calorie sweeteners in a wide range of areas, such as infertility, pregnancy and
neonatal health, and early menarche. Recent studies have indicated potential adverse effects of artificial
sweeteners on reproductive health. Research has examined the potential impacts of artificial
sweeteners on various parameters, such as hormone levels, sperm quality, sperm motility, ovarian
function, and pregnancy outcomes. However, the findings of current studies are inconsistent, and
these disparate results may stem from metabolic differences among different types of artificial
sweeteners, variations in research methodologies, diversity in sample sizes, and fluctuations in
study populations. Therefore, further research is needed to comprehensively understand the effects
of artificial sweeteners on reproductive health.
Collapse
Affiliation(s)
- Ece Celik Atalay
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Buket Er Demirhan
- Department of
Pharmaceutical Basic Science, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | | |
Collapse
|
2
|
Amoah BY, Yao Bayamina S, Gborsong C, Owusu H, Asare GA, Yeboah EK, Ablakwa J, Hammond G. Modifiable life style factors and male reproductive health: a cross-sectional study in IVF clinic attendees in Ghana. FRONTIERS IN REPRODUCTIVE HEALTH 2025; 7:1520938. [PMID: 40008399 PMCID: PMC11850308 DOI: 10.3389/frph.2025.1520938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
Background Male infertility is a significant global public health issue, with modifiable lifestyle factors such as smoking, obesity, and psychological stress contributing to impaired semen quality and hormonal dysregulation. This study investigates the relationships between modifiable lifestyle factors, reproductive hormones, and semen quality in Ghanaian males attending an IVF clinic. Methods A cross-sectional study was conducted with 212 male participants recruited from a fertility clinic in Ghana. Lifestyle factors were assessed using standardized questionnaires, and semen samples were analyzed following WHO guidelines. Hormonal profiles (LH, FSH, testosterone, estradiol) were measured using the enzyme-linked fluorescent assay (ELFA). Statistical analyses included Pearson's product-moment correlation and Bonferroni correction. Results Smoking and psychological stress were significantly associated with reduced sperm motility, viability, and concentration (p < 0.05). Elevated BMI correlated negatively with sperm concentration and testosterone levels (p < 0.05). Alcoholic bitters was linked to decreased semen quality, while caffeine consumption showed a positive association with progressive sperm motility. Conclusion Modifiable lifestyle factors, such as smoking, psychological stress, and increased body mass index (BMI), play a crucial role in male reproductive health by adversely affecting semen parameters and hormonal balance. These findings emphasize the need for public health interventions targeting modifiable behaviors to improve fertility outcomes.
Collapse
Affiliation(s)
- Brodrick Yeboah Amoah
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Saliah Yao Bayamina
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Cosmos Gborsong
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Hubert Owusu
- Department of Molecular Medicine, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - George Awuku Asare
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Emmanuel Kwabena Yeboah
- Department of Medical Sciences, Royal Melbourne Institute of Technology, Melbourne, VIC, Australia
| | - Josephine Ablakwa
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Georgina Hammond
- Department of Anatomy and Physiology, Institute for Cardiovascular Prevention, IPEK, University of Munich, Munich, Germany
| |
Collapse
|
3
|
Liu G, Liu D, Zhu M, Zhang M, Li C, Xu X, Pan F. Insulin-like growth factor-1 promotes the testicular sperm production by improving germ cell survival and proliferation in high-fat diet-treated male mice. Andrology 2025; 13:342-358. [PMID: 38639009 PMCID: PMC11815545 DOI: 10.1111/andr.13645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 03/16/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND A decrease in semen volume among men is comparable to the rising prevalence of obesity worldwide. The anabolic hormone insulin-like growth factor-1 (IGF-1) can promote proliferation and differentiation in cultured mouse spermatogonial stem cells and alleviate abnormal in vitro spermatogenesis. Additionally, serum IGF-1 level is negatively correlated with body mass index. Whereas the role of IGF-1 in the sperm production in obese men remains unclear. OBJECTIVE To investigate the therapeutic effect and potential mechanism of IGF-1 on spermatogenesis of high-fat diet (HFD)-induced obesity mice. METHODS An HFD-induced obesity mouse model was established. Alterations in testicular morphology, sperm count, proliferation, and apoptosis were observed by H&E staining,immunohistochemistry, immunofluorescence, and Western blotting. Exogenous recombinant IGF-1 was administered to obese mice to investigate the correlations between altered testicular IGF-1 levels and sperm production. RESULTS The sperm count was reduced, the testicular structure was disordered, and sex hormone levels were abnormal in HFD-fed mice compared with normal diet-fed mice. The expression of proliferation-related antigens such as proliferating cell nuclear antigen (PCNA) and Ki-67 was decreased, while that of proapoptotic proteins such as c-caspase3 was increased in testes from HFD-fed mice. Most importantly, the phosphorylation of insulin-like growth factor-1 receptor (IGF-1R) in testes was decreased due to reductions in IGF-1 from hepatocytes and Sertoli cells. Recombinant IGF-1 alleviated these functional impairments by promoting IGF-1R, Akt, and Erk1/2 phosphorylation in the testes. CONCLUSIONS Insufficient IGF-1/IGF-1R signaling is intimately linked to damaged sperm production in obese male mice. Exogenous IGF-1 can improve survival and proliferation as well as sperm production. This study provides a novel theoretical basis and a target for the treatment of obese men with oligozoospermia.
Collapse
Affiliation(s)
- Guoqiang Liu
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Di Liu
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Minggang Zhu
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Mingrui Zhang
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Chunyang Li
- Department of PathophysiologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyKey Laboratory ofMinistry of Education for Neurological DisordersWuhanHubeiChina
| | - Xiaohong Xu
- Department of PathophysiologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyKey Laboratory ofMinistry of Education for Neurological DisordersWuhanHubeiChina
| | - Feng Pan
- Department of UrologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
4
|
Adthapanyawanich K, Aitsarangkun Na Ayutthaya K, Kreungnium S, Mark PJ, Nakata H, Chen W, Chinda K, Amatyakul P, Tongpob Y. Molecular Mechanisms and Therapeutic Potential of Mulberry Fruit Extract in High-Fat Diet-Induced Male Reproductive Dysfunction: A Comprehensive Review. Nutrients 2025; 17:273. [PMID: 39861403 PMCID: PMC11767445 DOI: 10.3390/nu17020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
High-fat diet (HFD)-induced obesity represents a significant challenge to male reproductive health, affecting approximately 13% of the global adult population. This comprehensive review synthesizes current evidence regarding mulberry (Morus alba L.) fruit extract's therapeutic potential for HFD-induced male reproductive dysfunction. Through comprehensive analysis of the peer-reviewed literature from multiple databases (PubMed, Web of Science, Scopus, and Google Scholar; 2005-2024), we evaluated mulberry extract's effects on testicular morphology, spermatogenesis, sperm parameters, and the underlying molecular mechanisms. Mechanistic studies reveal that standardized mulberry extract mediates protective effects through multiple pathways: enhanced antioxidant enzyme activities (SOD: +45%, Catalase: +38%, GPx: +35%), reduced inflammatory markers (TNF-α: -64%, IL-6: -58%), and modulated NF-κB signaling (-42.3%). These effects are facilitated by mulberry's rich phytochemical profile, particularly anthocyanins (2.92-5.35 mg/g dry weight) and polyphenols (4.23-6.38 mg/g). The extract demonstrates particular efficacy in preserving seminiferous tubule integrity and maintaining blood-testis barrier function, with treated groups maintaining up to 85% of normal tubular architecture compared to HFD controls. Key molecular mechanisms include AMPK/SIRT1 pathway activation (2.3-fold increase), enhanced mitochondrial function (67% increase in mtDNA copy number), and epigenetic regulation of metabolic pathways. Temporal analysis indicates optimal therapeutic effects after 28 days of treatment, with initial improvements observable within 14 days. While current evidence is promising, limitations include predominant reliance on rodent models and lack of standardized extraction protocols. Future research priorities include well-designed human clinical trials, standardization of preparation methods, and investigation of potential synergistic effects with other therapeutic agents. This comprehensive review indicates that mulberry extract is a promising therapeutic candidate for obesity-related male infertility, warranting further clinical investigation.
Collapse
Affiliation(s)
- Kannika Adthapanyawanich
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (K.A.); (K.A.N.A.); (S.K.)
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | | | - Siriporn Kreungnium
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (K.A.); (K.A.N.A.); (S.K.)
| | - Peter J. Mark
- School of Human Sciences, The University of Western Australia, Perth 6009, Australia
| | - Hiroki Nakata
- Department of Clinical Engineering, Faculty of Health Sciences, Komatsu University, Komatsu 923-8511, Ishikawa, Japan
| | - Wai Chen
- Curtin Medical School, and Curtin enAble Institute, Curtin University, Perth 6102, Australia
- Fiona Stanley Hospital, Perth 6150, Australia
| | - Kroekkiat Chinda
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Patcharada Amatyakul
- Department of Obstetrics and Gynecology, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand;
| | - Yutthapong Tongpob
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (K.A.); (K.A.N.A.); (S.K.)
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| |
Collapse
|
5
|
Jahan-Mihan A, Leftwich J, Berg K, Labyak C, Nodarse RR, Allen S, Griggs J. The Impact of Parental Preconception Nutrition, Body Weight, and Exercise Habits on Offspring Health Outcomes: A Narrative Review. Nutrients 2024; 16:4276. [PMID: 39770898 PMCID: PMC11678361 DOI: 10.3390/nu16244276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
An increasing number of studies highlight the critical role of both maternal and paternal nutrition and body weight before conception in shaping offspring health. Traditionally, research has focused on maternal factors, particularly in utero exposures, as key determinants of chronic disease development. However, emerging evidence underscores the significant influence of paternal preconception health on offspring metabolic outcomes. While maternal health remains vital, with preconception nutrition playing a pivotal role in fetal development, paternal obesity and poor nutrition are linked to increased risks of metabolic disorders, including type 2 diabetes and cardiovascular disease in children. This narrative review aims to synthesize recent findings on the effects of both maternal and paternal preconception health, emphasizing the need for integrated early interventions. The literature search utilized PubMed, UNF One Search, and Google Scholar, focusing on RCTs; cohort, retrospective, and animal studies; and systematic reviews, excluding non-English and non-peer-reviewed articles. The findings of this review indicate that paternal effects are mediated by epigenetic changes in sperm, such as DNA methylation and non-coding RNA, which influence gene expression in offspring. Nutrient imbalances during preconception in both parents can lead to low birth weight and increased metabolic disease risk, while deficiencies in folic acid, iron, iodine, and vitamin D are linked to developmental disorders. Additionally, maternal obesity elevates the risk of chronic diseases in children. Future research should prioritize human studies to explore the influence of parental nutrition, body weight, and lifestyle on offspring health, ensuring findings are applicable across diverse populations. By addressing both maternal and paternal factors, healthcare providers can better reduce the prevalence of metabolic syndrome and its associated risks in future generations.
Collapse
Affiliation(s)
- Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Jamisha Leftwich
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Kristin Berg
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Corinne Labyak
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Reniel R. Nodarse
- Department of Nutrition and Dietetics, University of North Florida, 1 UNF Dr., Jacksonville, FL 32224, USA; (J.L.); (K.B.); (C.L.); (R.R.N.)
| | - Sarah Allen
- Greenleaf Behavioral Health, 2209 Pineview Dr., Valdosta, GA 31602, USA;
| | | |
Collapse
|
6
|
Li Y, Lin Y, Ou C, Xu R, Liu T, Zhong Z, Liu L, Zheng Y, Hou S, Lv Z, Huang S, Duan YG, Wang Q, Zhang X, Liu Y. Association between body mass index and semen quality: a systematic review and meta-analysis. Int J Obes (Lond) 2024; 48:1383-1401. [PMID: 39003321 DOI: 10.1038/s41366-024-01580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
The continuous decline of human semen quality during the past decades has drawn much concern globally. Previous studies have suggested a link between abnormal BMI and semen quality decline, but the results remain inconsistent. This systematic review and meta-analysis aimed to evaluate the association between body mass index (BMI) and semen quality. We searched PubMed, Embase, and Web of Science for eligible studies from inception to April 17, 2022. We considered men with BMI < 25.0 kg/m2 as the reference and calculated the pooled weighted mean difference of men with overweight (BMI 25.0-29.9 kg/m2), obesity (BMI ≥ 30.0 kg/m2), class I obesity (BMI 30.0-34.9 kg/m2), and class II/III obesity (BMI ≥ 35.0 kg/m2). A total of 5070 articles were identified, of which 50 studies were included (71,337 subjects). Compared with men with BMI < 25.0 kg/m2, men with obesity had an average reduction of 0.24 ml in semen volume, 19.56 × 106 in total sperm number, 2.21% in total motility, 5.95% in progressive motility, and 1.08% in normal forms, respectively, while men with overweight had an average reduction of 0.08 ml in semen volume and 2.91% in progressive motility, respectively. The reduction of semen quality was more pronounced among men with obesity than that among men with overweight. Moreover, significant reductions in semen quality were identified in men with different classes of obesity, which were more pronounced in men with class II/III obesity than that in men with class I obesity. Across men from the general population, infertile or subfertile men, and suspiciously subfertile men, we identified significant semen quality reductions in men with obesity/overweight. In conclusion, obesity and overweight were significantly associated with semen quality reductions, suggesting that maintaining normal weight may help prevent semen quality decline.
Collapse
Affiliation(s)
- Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Changkui Ou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tingting Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zihua Zhong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Likun Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sihan Hou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziquan Lv
- Department of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Centre of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Qiling Wang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, Guangdong, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, Guangdong, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Yuan S, Zhang Y, Dong PY, Chen Yan YM, Liu J, Zhang BQ, Chen MM, Zhang SE, Zhang XF. A comprehensive review on potential role of selenium, selenoproteins and selenium nanoparticles in male fertility. Heliyon 2024; 10:e34975. [PMID: 39144956 PMCID: PMC11320318 DOI: 10.1016/j.heliyon.2024.e34975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Selenium (Se), a component of selenoproteins and selenocompounds in the human body, is crucial for the development of male reproductive organs, DNA synthesis, thyroid hormone, metabolism, and defence against infections and oxidative damage. In the testis, it must exceed a desirable level since either a shortage or an overabundance causes aberrant growth. The antioxidant properties of selenium are essential for preserving human reproductive health. Selenoproteins, which have important structural and enzymatic properties, control the biological activities of Se primarily. These proteins specifically have a role in metabolism and a variety of cellular processes, such as the control of selenium transport, thyroid hormone metabolism, immunity, and redox balance. Selenium nanoparticles (SeNPs) are less hazardous than selenium-based inorganic and organic materials. Upon being functionalized with active targeting ligands, they are both biocompatible and capable of efficiently delivering combinations of payloads to particular cells. In this review, we discuss briefly the chemistry, structure and functions of selenium and milestones of selenium and selenoproteins. Next we discuss the various factors influences male infertility, biological functions of selenium and selenoproteins, and role of selenium and selenoproteins in spermatogenesis and male fertility. Furthermore, we discuss the molecular mechanism of selenium transport and protective effects of selenium on oxidative stress, apoptosis and inflammation. We also highlight critical contribution of selenium nanoparticles on male fertility and spermatogenesis. Finally ends with conclusion and future perspectives.
Collapse
Affiliation(s)
- Shuai Yuan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ye Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong, 250014, China
| | - Pei-Yu Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu-Mei Chen Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Liu
- Analytical & Testing Center of Qingdao Agricultural University, Qingdao, 266100, China
| | - Bing-Qiang Zhang
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Meng-Meng Chen
- Qingdao Restore Biotechnology Co., Ltd., Qingdao, 266111, China
- Key Laboratory of Cancer and Immune Cells of Qingdao, Qingdao, 266111, China
| | - Shu-Er Zhang
- Animal Husbandry General Station of Shandong Province, Jinan, 250010, China
| | - Xi-Feng Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
8
|
Alfaiate MI, Tavares RS, Ramalho-Santos J. A ripple effect? The impact of obesity on sperm quality and function. Reprod Fertil Dev 2024; 36:RD23215. [PMID: 38589340 DOI: 10.1071/rd23215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
Infertility affects approximately 15% of couples trying to conceive. Male-related causes account for roughly 50% of cases, with obesity emerging as a possible significant factor. Obesity, defined as a body mass index of 30.0 or higher, has become a widespread epidemic associated with numerous health issues, including a decrease of fertility. This review discusses the relationship between obesity and male infertility, particularly focusing on sperm quality and function. An overview of the literature suggests that obesity may influence the male reproductive system via disruptions in hormonal profiles, oxidative stress, and inflammation, leading to changes in sperm parameters. Several studies have discussed if obesity causes a decrease in sperm concentration, motility, and normal morphology, so far without a consensus being reached. However, available evidence suggests an impairment of sperm function in obese men, due to an increase in DNA damage and oxidative stress, impaired mitochondrial function and acrosome reaction in response to progesterone. Finally, the relationship between obesity and assisted reproductive technologies outcomes remains debatable, with conflicting evidence regarding the influence on fertilisation, pregnancy, and live birth rates. Therefore, the actual impact of obesity on human spermatozoa still needs to be clarified, due to the multiple factors potentially in play.
Collapse
Affiliation(s)
- Maria Inês Alfaiate
- University of Coimbra, CNC-UC, Center for Neuroscience and Cell Biology, CIBB, Coimbra, Portugal; and University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Coimbra, Portugal
| | - Renata Santos Tavares
- University of Coimbra, CNC-UC, Center for Neuroscience and Cell Biology, CIBB, Coimbra, Portugal; and Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| | - João Ramalho-Santos
- University of Coimbra, CNC-UC, Center for Neuroscience and Cell Biology, CIBB, Coimbra, Portugal; and Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
| |
Collapse
|
9
|
Wang T, Wang Q, Fan Z, Xu R, Deng X, Li Y, Liang S, Lv Z, Huang S, Duan YG, Zhang X, Liu Y. Association between central obesity and semen quality: A cross-sectional study in 4513 Chinese sperm donation volunteers. Andrology 2024; 12:316-326. [PMID: 37282772 DOI: 10.1111/andr.13471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND General obesity classified by body mass index has been linked to a reduction in semen quality; however, evidence on the adverse effect of central obesity on semen quality remains limited. OBJECTIVES To investigate the association between central obesity and semen quality. MATERIALS AND METHODS We conducted a cross-sectional study of 4513 sperm donation volunteers in Guangdong Provincial Human Sperm Bank during 2018-2021. Three central obesity indicators, including waist circumference, waist-to-hip ratio, and waist-to-height ratio, were measured using a multi-frequency bioelectrical impedance analysis for each subject. Semen analysis was conducted according to the World Health Organization laboratory manual for the examination and processing of human semen 5th edition. Linear regression models and unconditional logistic regression models were used to quantify the association between central obesity and semen parameters. RESULTS With adjustment for age, race, education level, marital status, fertility status, occupation, year of semen collection, abstinence period, ambient temperature, and relative humidity, central obesity defined as waist circumference ≥90 cm, waist-to-hip ratio ≥0.9, or waist-to-height ratio ≥0.5 was significantly associated with a 0.27 (95% confidence interval: 0.15, 0.38) mL, 14.47 (3.60, 25.34) × 106 , 7.06 (0.46, 13.76) × 106 , and 6.80 (0.42, 13.18) × 106 reduction in semen volume, total sperm number, total motile sperm number, and total progressive motile sperm number, respectively, and a 53% (10%, 112%) increase in odds of below the World Health Organization 2010 reference value for semen volume. These associations did not significantly vary across age. Similar results were observed for central obesity defined using each of the three indicators, except that subjects with a waist circumference ≥90 cm had a slightly higher total motility (estimated change: 1.30%; 95% confidence interval: 0.27%, 2.34%) and progressive motility (estimated change: 1.27%; 95% confidence interval: 0.23%, 2.31%). DISCUSSION AND CONCLUSION We found that central obesity was significantly associated with a reduction in semen volume, total sperm number, total motile sperm number, and total progressive motile sperm number. Future studies are warranted to confirm our results in other regions and populations.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiling Wang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, Guangdong, China
| | - Zhaoyu Fan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyi Deng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sihan Liang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ziquan Lv
- Central Laboratory of Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Centre of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, Guangdong, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Santi D, Lotti F, Sparano C, Rastrelli G, Isidori AM, Pivonello R, Barbonetti A, Salonia A, Minhas S, Krausz C, Vignozzi L, Maggi M, Corona G. Does an increase in adipose tissue 'weight' affect male fertility? A systematic review and meta-analysis based on semen analysis performed using the WHO 2010 criteria. Andrology 2024; 12:123-136. [PMID: 37226894 DOI: 10.1111/andr.13460] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
INTRODUCTION Obesity negatively impact on the metabolism of sex hormones, leading to reduced testosterone serum levels. However, how the obesity could negatively impact on the overall gonadal function, particularly on male fertility, remained unclear so far. OBJECTIVE To systematically review evidences regarding the influence of body weight excess on the sperm production. METHODS A meta-analysis was conducted, searching all prospective and retrospective observational studies reporting male subjects older than 18 years old, with body weight excess from overweight to severe obesity were considered. Only studies using the V edition of the World Health Organization (WHO) manual for semen analysis interpretation were considered. No specific interventions were considered. Search was focused on studies comparing overweight/obese to normal weight subjects. RESULTS Twenty-eight studies were considered. Total sperm count and sperm progressive motility were significantly lower in overweight compared to normal weight subjects. Meta-regression analyses demonstrated that patients' age impacted on sperm parameters. Similarly, obese men showed lower sperm concentration, total sperm number, progressive and total motilities, and normal morphology lower than normal weight subjects. Reduced sperm concentration in obese men was influenced by age, smoking habit, varicocele, and total testosterone serum levels at meta-regression analyses. CONCLUSIONS The male potential fertility is reduced in subjects with increased body weight, compared to normal weight men. The higher was the increased body weight, the worst was the sperm quantity/quality. This result comprehensively included obesity among non-communicable risk factor for male infertility, shedding new lights on the negative impact of increased body weight on overall gonadal function.
Collapse
Affiliation(s)
- Daniele Santi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Unit of Endocrinology, Department of Medical Specialties, AziendaOspedaliero-Universitaria of Modena, Modena, Italy
| | - Francesco Lotti
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi Hospital, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Clotilde Sparano
- Endocrinology Unit, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giulia Rastrelli
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi Hospital, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, "Sapienza" University of Rome, Centre for Rare Diseases (Endo-ERN accredited), Policlinico Umberto I Hospital, Rome, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Diabetologia, Andrologia e Nutrizione, Unità di Andrologia e Medicina della Riproduzione e della Sessualità Maschile e Femminile, Università Federico II di Napoli, Naples, Italy
- UNESCO, Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Arcangelo Barbonetti
- Andrology Unit, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Suks Minhas
- Department of Urology, Imperial College NHS Healthcare, London, UK
| | - Csilla Krausz
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi Hospital, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Linda Vignozzi
- Andrology, Women's Endocrinology and Gender Incongruence Unit, Center for Prevention, Diagnosis and Treatment of Infertility, Careggi Hospital, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Mario Maggi
- Endocrinology Unit, Mario Serio Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | |
Collapse
|
11
|
Moustakli E, Zikopoulos A, Skentou C, Bouba I, Tsirka G, Stavros S, Vrachnis D, Vrachnis N, Potiris A, Georgiou I, Zachariou A. Sperm Mitochondrial Content and Mitochondrial DNA to Nuclear DNA Ratio Are Associated with Body Mass Index and Progressive Motility. Biomedicines 2023; 11:3014. [PMID: 38002013 PMCID: PMC10669626 DOI: 10.3390/biomedicines11113014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction is a risk factor in the pathogenesis of metabolic disorders. According to the energy requirements, oxidative phosphorylation and the electron transport chain work together to produce ATP in sufficient quantities in the mitochondria of eukaryotic cells. Abnormal mitochondrial activity causes fat accumulation and insulin resistance as cells require a balance between the production of ATP by oxidative phosphorylation (OXPHOS) in the mitochondria and the dissipation of the proton gradient to reduce damage from reactive oxygen species (ROS). This study aims to explore the relationship between the mitochondrial content of sperm and the ratio of mitochondrial DNA to nuclear DNA in relation to body mass index (BMI) and how it may affect the progressive motility of sperm cell. Understanding the relationships between these important variables will help us better understand the possible mechanisms that could connect sperm motility and quality to BMI, as well as further our understanding of male fertility and reproductive health. METHODS Data were collected from 100 men who underwent IVF/ICSI at the University Hospital of Ioannina's IVF Unit in the Obstetrics and Gynecology Department. The body mass index (BMI) of the males tested was used to classify them as normal weight; overweight; and obese. Evaluations included sperm morphology; sperm count; sperm motility; and participant history. RESULTS In the group of men with normal BMI, both BMI and progressive motility displayed a statistically significant association (p < 0.05) with mitochondrial DNA content, relative mitochondrial DNA copy number, and the mtDNA/nDNA ratio. Similar to this, there was a positive association between BMI and motility in the groups of men who were overweight and obese, as well as between the expression of mitochondrial DNA and the mtDNA/nDNA ratio, with statistically significant differences (p < 0.05). There was not a statistically significant difference observed in the association between the relative mtDNA copy number and BMI or motility for the overweight group. Finally, the relative mtDNA copy number in the obese group was only associated with motility (p = 0.034) and not with BMI (p = 0.24). CONCLUSIONS We found that in all three groups, BMI and progressive motility exhibited comparable relationships with mitochondrial DNA expression and the mtDNA/nDNA ratio. However, only in the normal group and in the obese group, the relative mitochondrial DNA copy number showed a positive association with BMI and progressive motility.
Collapse
Affiliation(s)
- Efthalia Moustakli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (I.B.); (G.T.); (I.G.)
| | | | - Charikleia Skentou
- Department of Obstetrics and Gynecology, Medical School of Ioannina, University General Hospital, 45110 Ioannina, Greece;
| | - Ioanna Bouba
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (I.B.); (G.T.); (I.G.)
| | - Georgia Tsirka
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (I.B.); (G.T.); (I.G.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (N.V.); (A.P.)
| | - Dionysios Vrachnis
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (N.V.); (A.P.)
- Vascular Biology, Molecular, and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (N.V.); (A.P.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (I.B.); (G.T.); (I.G.)
| | - Athanasios Zachariou
- Department of Urology, School of Medicine, Ioannina University, 45110 Ioannina, Greece;
| |
Collapse
|
12
|
Peel A, Saini A, Deluao JC, McPherson NO. Sperm DNA damage: The possible link between obesity and male infertility, an update of the current literature. Andrology 2023; 11:1635-1652. [PMID: 36789664 DOI: 10.1111/andr.13409] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Obesity prevalence worldwide is increasing significantly. Whilst maternal obesity has clear detrimental impacts on fertility, pregnancy and foetal outcomes, more recently there has been an increasing focus on the role of paternal obesity in human fertility. Recent meta-analyses have indicated that obesity in men negatively affects basic sperm parameters such as sperm count, concentration and motility, increases the incidence of infertility and reduces the chances of conception. Sperm DNA damage, typically characterised by DNA strand breaks and oxidation of DNA nucleotides, is a specialised marker of sperm quality that has been independently associated with recurrent miscarriage, reduced assisted reproduction success and increased mutational loads in subsequent offspring. Whilst, there are still conflicting data in humans as to the association of obesity in men with sperm DNA damage, evidence from rodent models is clear, indicating that male obesity increases sperm DNA damage. Human data are often conflicting because of the large heterogeneity amongst studies, the use of body mass index as the indicator of obesity and the methods used for detection of sperm DNA damage. Furthermore, comorbidities of obesity (i.e., heat stress, adipokines, insulin resistance, changes in lipids, hypogonadism and obstructive sleep apnoea) are also independently associated with increased sperm DNA damage that is not always modified in men with obesity, and as such may provide a causative link to the discrepancies amongst human studies. In this review, we provide an update on the literature regarding the associations between obesity in men and fertility, basic sperm parameters and sperm DNA damage. We further discuss potential reasons for the discrepancies in the literature and outline possible direct and indirect mechanisms of increased sperm DNA damage resulting from obesity. Finally, we summarise intergenerational obesity through the paternal linage and how sperm DNA damage may contribute to the transmission.
Collapse
Affiliation(s)
- Andrew Peel
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anmol Saini
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Joshua C Deluao
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nicole O McPherson
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide, South Australia, Australia
- Repromed IVF Adelaide, Dulwich, South Australia, Australia
| |
Collapse
|
13
|
Li Y, Lu T, Wu Z, Wang Z, Yu T, Wang H, Tang C, Zhou Y. Trends in sperm quality by computer-assisted sperm analysis of 49,189 men during 2015-2021 in a fertility center from China. Front Endocrinol (Lausanne) 2023; 14:1194455. [PMID: 37529601 PMCID: PMC10390301 DOI: 10.3389/fendo.2023.1194455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/07/2023] [Indexed: 08/03/2023] Open
Abstract
Background Sperm quality, including semen volume, sperm count, concentration, and total and progressive motility (collectively, "semen parameters"), has declined in the recent decades. Computer-assisted sperm analysis (CASA) provides sperm kinematic parameters, and the temporal trends of which remain unclear. Our objective is to examine the temporal trend of both semen parameters and kinematic parameters in Shanghai, China, in the recent years. Methods This retrospective study analyzed semen parameters and kinematic parameters of 49,819 men attending our reproductive center by using CASA during 2015-2021. The total sample was divided into two groups: samples that surpassed the WHO guideline (2010) low reference limits ("above reference limit" group, ARL; n = 24,575) and samples that did not ("below reference limit" group, BRL; n = 24,614). One-way analysis of variance, Kruskal-Wallis test, independent samples t-test, and covariance analysis were used to assess the differences among groups. Year, age, and abstinence time were included in the multiple linear regression model of the ARL group to adjust the confounders and depict the trends in sperm quality. Results Among all the total sample and the ARL and BRL groups, the age of subjects increased in recent years. Semen volume and sperm count showed declined tendency with years in the total sample, the ARL and BRL groups, and the subgroup of age or abstinence time, whereas sperm velocities showed increased tendency with years on the contrary. The multiple linear regression model of the ARL group, adjusting for age and abstinence time, confirmed these trends. Semen volume (β1= -0.162; CI: -0.172, -0.152), sperm count (β1= -9.97; CI: -10.813, -9.128), sperm concentration (β1 = -0.535; CI: -0.772, -0.299), motility (β1 = -1.751; CI: -1.830, -1.672), and progressive motility (β1 = -1.12; CI: -0.201, -0.145) decreased with year, whereas curvilinear line velocity (VCL) (β1 = 3.058; CI: 2.912, 3.203), straight line velocity (VSL) (β1 = 2.075; CI: 1.990, 2.161), and average path velocity (VAP) (β1 = 2.305; CI: 2.224, 2.386) increased over time (all p < 0.001). In addition, VCL, VSL, and VAP significantly declined with age and abstinence time. Conclusion The semen parameters declined, whereas the kinematic parameters increased over the recent years. We propose that, although sperm count and motility declined over time, sperm motion velocity increased, suggesting a possible compensatory mechanism of male fertility.
Collapse
Affiliation(s)
- Yanquan Li
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Tingting Lu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Zhengmu Wu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengquan Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Yu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Hanshu Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Chunhua Tang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yuchuan Zhou
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
14
|
Jing J, Peng Y, Fan W, Han S, Peng Q, Xue C, Qin X, Liu Y, Ding Z. Obesity-induced oxidative stress and mitochondrial dysfunction negatively affect sperm quality. FEBS Open Bio 2023; 13:763-778. [PMID: 36866962 PMCID: PMC10068321 DOI: 10.1002/2211-5463.13589] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/04/2023] Open
Abstract
Obesity is a systemic metabolic disease that can induce male infertility or subfertility through oxidative stress. The aim of this study was to determine how obesity impairs sperm mitochondrial structural integrity and function, and reduces sperm quality in both overweight/obese men and mice on a high-fat diet (HFD). Mice fed the HFD demonstrated higher body weight and increased abdominal fat content than those fed the control diet. Such effects accompanied the decline in antioxidant enzymes, such as glutathione peroxidase (GPX) and catalase and superoxide dismutase (SOD) in testicular and epidydimal tissues. Moreover, malondialdehyde (MDA) content significantly increased in sera. Mature sperm in HFD mice demonstrated higher oxidative stress, including increased mitochondrial reactive oxygen species (ROS) levels and decreased protein expression of GPX1, which may impair mitochondrial structural integrity and reduce mitochondrial membrane potential (MMP) and ATP production. Moreover, cyclic AMPK phosphorylation status increased, whereas sperm motility declined in the HFD mice. Clinical studies demonstrated that being overweight/obese reduced SOD enzyme activity in the seminal plasma and increased ROS in sperm, accompanied by lower MMP and low-quality sperm. Furthermore, ATP content in the sperm was negatively correlated with increases in the BMI of all clinical subjects. In conclusion, our results suggest that excessive fat intake had similar disruptive effects on sperm mitochondrial structure and function, as well as oxidative stress levels in humans and mice, which in turn induced lower sperm motility. This agreement strengthens the notion that fat-induced increases in ROS and impaired mitochondrial function contribute to male subfertility.
Collapse
Affiliation(s)
- Jia Jing
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Yuanhong Peng
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Weimin Fan
- Reproductive Medical Center of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Siyang Han
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Qihua Peng
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Chunran Xue
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Xinran Qin
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
15
|
Compound Heterozygous Mutations in FSIP2 Cause Morphological Abnormalities in Sperm Flagella Leading to Male Infertility. Andrologia 2023. [DOI: 10.1155/2023/9222954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
Multiple morphological abnormalities of sperm flagella (MMAF) indicate severe teratozoospermia. The fibrous sheath interacting protein 2 (FSIP2) plays an important role in the normal construction of the flagella. In this study, a novel compound heterozygous mutation site of FSIP2, involving c.272_275delinsAGGTTTTTATA (p.L92Vfster74) and c.16788_16791del (p.E5596fs), was identified using whole-exome sequencing in a 32-year-old male. Electron microscope images revealed thick sperm neck, scattered sperm mitochondria, and short sperm tail. In addition, FSIP2 could not be visualized in sperm cells via immunofluorescence staining. Moreover, we used a protein domain prediction tool to identify a potential FSIP2 functional domain (5901-6774), the corresponding deletion of which was responsible for the MMAF phenotype in the infertile man. Finally, we reviewed the literature on FSIP2 and found that FSIP2 mutations are relatively concentrated, with high-frequency mutation regions in exon 16 and exon 17 accounting for 50% (10/20) and 35% (7/20) of cases, respectively. In conclusion, FISP2 is a common pathogenic gene of MMAF, which may provide a rationale for genetic counseling in the next generation of patients with male infertility.
Collapse
|
16
|
Abstract
The essence of enterotypes is stratifying the entire human gut microbiome, which modulates the association between diet and disease risk. A study was designed at the Center of Reproductive Medicine, Shengjing Hospital of China Medical University and Jinghua Hospital of Shenyang. Prevotella and Bacteroides were analyzed in 407 samples of stool, including 178 men with enterotype B (61 normal, 117 overweight/obese) and 229 men with enterotype P (74 normal, 155 overweight/obese). The ratio between Prevotella and Bacteroides abundance, P/B, was used as a simplified way to distinguish the predominant enterotype. In enterotype P group (P/B ≥ 0.01), obesity was a risk factor for a reduced rate of forward progressive sperm motility (odds ratio [OR] 3.350; 95% confidence interval [CI] 1.881-5.966; P < 0.001), and a reduced rate of total sperm motility (OR 4.298; 95% CI 2.365-7.809; P < 0.001). Obesity was also an independent risk factor (OR 3.131; 95% CI 1.749-5.607; P < 0.001) after adjusting follicle-stimulating hormone. In enterotype P, body mass index, as a diagnostic indicator of a reduced rate of forward progressive sperm motility and a decreased rate of decreased total sperm motility, had AUC values of 0.627 (P = 0.001) and 0.675 (P < 0.0001), respectively, which were significantly higher than the predicted values in all patients. However, in enterotype B group (P < 0.01), obesity was not a risk factor for asthenospermia, where no significant difference between obesity and sperm quality parameters was observed. This study is tried to introduce enterotypes as a population-based individualized classification index to investigate the correlation between BMI and asthenospermia. In our study, overweight/obese men with enterotype P were found to have poorer sperm quality. however, sperm quality was not associated with overweight/obese in men with enterotype B. Thereof, BMI is a risk factor for asthenospermia only in men with enterotype P, but not in men with enterotype B.
Collapse
|
17
|
Batra V, Norman E, Morgan HL, Watkins AJ. Parental Programming of Offspring Health: The Intricate Interplay between Diet, Environment, Reproduction and Development. Biomolecules 2022; 12:biom12091289. [PMID: 36139133 PMCID: PMC9496505 DOI: 10.3390/biom12091289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
As adults, our health can be influenced by a range of lifestyle and environmental factors, increasing the risk for developing a series of non-communicable diseases such as type 2 diabetes, heart disease and obesity. Over the past few decades, our understanding of how our adult health can be shaped by events occurring before birth has developed into a well-supported concept, the Developmental Origins of Health and Disease (DOHaD). Supported by epidemiological data and experimental studies, specific mechanisms have been defined linking environmental perturbations, disrupted fetal and neonatal development and adult ill-health. Originally, such studies focused on the significance of poor maternal health during pregnancy. However, the role of the father in directing the development and well-being of his offspring has come into recent focus. Whereas these studies identify the individual role of each parent in shaping the long-term health of their offspring, few studies have explored the combined influences of both parents on offspring well-being. Such understanding is necessary as parental influences on offspring development extend beyond the direct genetic contributions from the sperm and oocyte. This article reviews our current understanding of the parental contribution to offspring health, exploring some of the mechanisms linking parental well-being with gamete quality, embryo development and offspring health.
Collapse
|
18
|
Billah MM, Khatiwada S, Morris MJ, Maloney CA. Effects of paternal overnutrition and interventions on future generations. Int J Obes (Lond) 2022; 46:901-917. [PMID: 35022547 PMCID: PMC9050512 DOI: 10.1038/s41366-021-01042-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023]
Abstract
In the last two decades, evidence from human and animal studies suggests that paternal obesity around the time of conception can have adverse effects on offspring health through developmental programming. This may make significant contributions to the current epidemic of obesity and related metabolic and reproductive complications like diabetes, cardiovascular disease, and subfertility/infertility. To date, changes in seminal fluid composition, sperm DNA methylation, histone composition, small non-coding RNAs, and sperm DNA damage have been proposed as potential underpinning mechanism to program offspring health. In this review, we discuss current human and rodent evidence on the impact of paternal obesity/overnutrition on offspring health, followed by the proposed mechanisms, with a focus on sperm DNA damage underpinning paternal programming. We also summarize the different intervention strategies implemented to minimize effects of paternal obesity. Upon critical review of literature, we find that obesity-induced altered sperm quality in father is linked with compromised offspring health. Paternal exercise intervention before conception has been shown to improve metabolic health. Further work to explore the mechanisms underlying benefits of paternal exercise on offspring are warranted. Conversion to healthy diets and micronutrient supplementation during pre-conception have shown some positive impacts towards minimizing the impact of paternal obesity on offspring. Pharmacological approaches e.g., metformin are also being applied. Thus, interventions in the obese father may ameliorate the potential detrimental impacts of paternal obesity on offspring.
Collapse
Affiliation(s)
| | - Saroj Khatiwada
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Margaret J Morris
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | | |
Collapse
|
19
|
Bariatric Surgery Does Not Improve Semen Quality: Evidence from a Meta-analysis. Obes Surg 2022; 32:1341-1350. [PMID: 35143010 DOI: 10.1007/s11695-022-05901-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 12/29/2022]
Abstract
The meta-analysis aimed to explore the possible relationship between bariatric surgery and semen quality. PubMed, EMBASE, and CENTRAL were searched from database inception through October 28, 2021. Articles were eligible for inclusion if they evaluated the impact pre- and post-bariatric surgery on semen parameters. A total of 9 studies with 218 patients were found. The mean preoperative age distribution of the patients included centralized from 18 to 50 years, and the mean pre-op BMI ranged from 36.7 to 70.5 kg/m2. The follow-up period ranged from 6 to 24 months. The results revealed that bariatric surgery had no significant effect on sperm volume, concentration, total count, morphology, total motility, progressive motility, viability, semen pH, and semen leukocytes. Bariatric surgery does not improve semen quality in obese males.
Collapse
|
20
|
Dashti G, Pooladi M, Sharifi M, Abbasi Y. Correlation of obesity and serum vitamin D levels with sperm DNA integrity, sperm quality, and sperm viability in normozoospermia men. Adv Biomed Res 2022; 11:80. [DOI: 10.4103/abr.abr_261_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/04/2022] Open
|
21
|
|
22
|
Bisconti M, Simon JF, Grassi S, Leroy B, Martinet B, Arcolia V, Isachenko V, Hennebert E. Influence of Risk Factors for Male Infertility on Sperm Protein Composition. Int J Mol Sci 2021; 22:13164. [PMID: 34884971 PMCID: PMC8658491 DOI: 10.3390/ijms222313164] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/22/2022] Open
Abstract
Male infertility is a common health problem that can be influenced by a host of lifestyle risk factors such as environment, nutrition, smoking, stress, and endocrine disruptors. These effects have been largely demonstrated on sperm parameters (e.g., motility, numeration, vitality, DNA integrity). In addition, several studies showed the deregulation of sperm proteins in relation to some of these factors. This review inventories the literature related to the identification of sperm proteins showing abundance variations in response to the four risk factors for male infertility that are the most investigated in this context: obesity, diabetes, tobacco smoking, and exposure to bisphenol-A (BPA). First, we provide an overview of the techniques used to identify deregulated proteins. Then, we summarise the main results obtained in the different studies and provide a compiled list of deregulated proteins in relation to each risk factor. Gene ontology analysis of these deregulated proteins shows that oxidative stress and immune and inflammatory responses are common mechanisms involved in sperm alterations encountered in relation to the risk factors.
Collapse
Affiliation(s)
- Marie Bisconti
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| | - Jean-François Simon
- Fertility Clinic, CHU Ambroise Paré Hospital, Boulevard Kennedy 2, 7000 Mons, Belgium; (J.-F.S.); (V.A.)
| | - Sarah Grassi
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| | - Baptiste Leroy
- Laboratory of Proteomics and Microbiology, CISMa, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium;
| | - Baptiste Martinet
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, Avenue Paul Héger, CP 160/12, 1000 Brussels, Belgium;
| | - Vanessa Arcolia
- Fertility Clinic, CHU Ambroise Paré Hospital, Boulevard Kennedy 2, 7000 Mons, Belgium; (J.-F.S.); (V.A.)
| | - Vladimir Isachenko
- Department of Obstetrics and Gynecology, University of Cologne, Kerpener Strasse 34, 50931 Cologne, Germany
| | - Elise Hennebert
- Laboratory of Cell Biology, Research Institute for Biosciences, University of Mons, Place du Parc 20, 7000 Mons, Belgium; (M.B.); (S.G.); (E.H.)
| |
Collapse
|
23
|
Feferkorn I, Shrem G, Azani L, Son WY, Nehushtan T, Salmon-Divon M, Dahan MH. Hope for male fecundity: clinically insignificant changes in semen parameters over 10 years at a single clinic while assessing an infertility population. J Assist Reprod Genet 2021; 38:2995-3002. [PMID: 34386934 PMCID: PMC8609088 DOI: 10.1007/s10815-021-02298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE What is the trend in sperm parameters in a group of men attending a single reproductive center, over a 10-year period? METHODS A retrospective study was conducted on 12,188 semen samples obtained from unique individuals who attended a university reproductive clinic from 2009 to 2018, inclusively. Semen analysis was done using computer-assisted sperm analysis and verified by an andrologist. Analysis was done after dividing the dataset into two groups: above WHO 2010 lower reference limits (ARL) (N = 6325) and below the reference limits (BRL) (N = 5521). RESULTS Volume increased slightly (ARL, p = 0.049) before returning to baseline or was stable (BRL, p = 0.59). Sperm concentration and total count of the BRL and ARL group declined initially and then recovered slightly (p < 0.0001, in all cases). Although these changes were statistically significant, this was due to the large study population; clinically, these changes were quite mild and would not have been significant for fertility. Sperm total motility and progressive motility of both the BRL group and the ARL group increased slightly from 2009 until 2015 and then decreased back to baseline (p < 0.0001). This change offset the decrease in count seen in those years. A spurious change was observed with sperm morphology that declined after the first 2 years and remained stable thereafter (p < 0.0001, in both groups). However, this change was attributed to a contemporaneous change in the method of analyzing strict morphology which happened when the change occurred. CONCLUSION While statistically significant changes were found, clinically, these changes were quite mild and would not have been significant for fertility.
Collapse
Affiliation(s)
- Ido Feferkorn
- Division of Reproductive Endocrinology and Infertility, McGill University Health Care Center, 888 Boul. de Maisonneuve E #200, Montréal, QC, H2L 4S8, Canada.
| | - Guy Shrem
- Division of Reproductive Endocrinology and Infertility, McGill University Health Care Center, 888 Boul. de Maisonneuve E #200, Montréal, QC, H2L 4S8, Canada
- IVF Unit, Department of Obstetrics and Gynecology, Kaplan Medical Center, 1 Derech Pasternak, Rehovot, Israel
| | - Liat Azani
- Department of Molecular Biology, Ariel University, 65 Ramat HaGolan St, Ariel, Israel
| | - Weon-Young Son
- Division of Reproductive Endocrinology and Infertility, McGill University Health Care Center, 888 Boul. de Maisonneuve E #200, Montréal, QC, H2L 4S8, Canada
| | - Tamar Nehushtan
- Department of Molecular Biology, Ariel University, 65 Ramat HaGolan St, Ariel, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Ariel University, 65 Ramat HaGolan St, Ariel, Israel
- Adelson School of Medicine, Ariel University, 65 Ramat HaGolan St, Ariel, Israel
| | - Michael Haim Dahan
- Division of Reproductive Endocrinology and Infertility, McGill University Health Care Center, 888 Boul. de Maisonneuve E #200, Montréal, QC, H2L 4S8, Canada
| |
Collapse
|
24
|
Zhong O, Ji L, Wang J, Lei X, Huang H. Association of diabetes and obesity with sperm parameters and testosterone levels: a meta-analysis. Diabetol Metab Syndr 2021; 13:109. [PMID: 34656168 PMCID: PMC8520257 DOI: 10.1186/s13098-021-00728-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The present study performed two distinct meta-analyses with common outcomes (sperm parameters); one was performed in obese individuals (and non-obese controls) and the other in diabetic individuals (and non-diabetic controls). METHODS PubMed, Embase, The Cochrane library, Web of Science, Scopus databases were searched to collect clinical studies related to the effects of obesity and diabetes on male sperm from inception to on 1st February 2021. Statistical meta-analyses were performed using the RevMan 5.4 software. Stata16 software was used to detect publication bias. The methodological quality of the included studies was assessed with the Ottawa-Newcastle scale using a star-based system. RESULTS A total of 44 studies were finally included in the present study, which enrolled 20,367 obese patients and 1386 patients with diabetes. The meta-analysis results showed that both obesity and diabetes were associated with reduced semen volume (obese versus non-obese controls: mean difference (MD) = - 0.25, 95% CI = (- 0.33, - 0.16), p < 0.001; diabetes versus non-diabetic controls: MD = - 0.45, 95% CI = (- 0.63, - 0.27), p < 0.001), reduced sperm count (obese versus non-obese controls: MD = - 23.84, 95% CI = (- 30.36, - 17.33), p < 0.001; diabetes versus non-diabetic controls: MD = - 13.12, 95% CI = (- 18.43, - 7.82), p < 0.001), reduced sperm concentration (obese versus non-obese controls: MD = - 7.26, 95% CI = (- 10.07, - 4.46), p < 0.001; diabetes versus non-diabetic controls: MD = - 11.73, 95% CI = (- 21.44, - 2.01), p = 0.02), reduced progressive motility (obese versus non-obese controls: MD = - 5.68, 95% CI = (- 8.79, - 2.56), p < 0.001; diabetes versus non-diabetic controls: MD = - 14.37, 95% CI = (- 21.79, - 6.96), p = 0.001), and decreased testosterone levels (obese versus non-obese controls: MD = - 1.11, 95% CI = (- 1.92, - 0.30), p = 0.007; diabetes versus non-diabetic controls: MD = - 0.37, 95% CI = (- 0.63, - 0.12), p = 0.004). CONCLUSIONS Current evidence suggests that obesity and diabetes negatively affect sperm parameters in men and are associated with low testosterone levels. Due to the limitation of the number and quality of included studies, the above conclusions need to be verified by more high-quality studies.
Collapse
Affiliation(s)
- Ou Zhong
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, China
| | - Lin Ji
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, 530021 Nanning, China
| | - Jinyuan Wang
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, China
| | - Xiaocan Lei
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, China
| | - Hua Huang
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, 530021 Nanning, China
| |
Collapse
|
25
|
The relationship between major dietary patterns and fertility status in iranian men: a case-control study. Sci Rep 2021; 11:18861. [PMID: 34552156 PMCID: PMC8458458 DOI: 10.1038/s41598-021-98355-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/07/2021] [Indexed: 02/08/2023] Open
Abstract
In this case-control study, we aimed to investigate the association between major dietary patterns and fertility status in Iranian men. The study population included 400 newly diagnosed infertile men and 537 healthy individuals without a history of infertility in Yazd, Iran. Infertility was confirmed clinically, based on the World Health Organization (WHO) criteria. Dietary intake was assessed using a 168-item semi-quantitative food frequency questionnaire (FFQ), and dietary patterns were determined based on a principal component analysis. Four major dietary patterns were found in this study, including healthy, Western, mixed, and traditional dietary patterns. After adjustments for potential confounders, men above the median of a healthy dietary pattern showed a reduced risk of infertility compared to those below the median (OR 0.52; 95% CI 0.33-0.83). In contrast, men with greater adherence to Western and mixed dietary patterns were more likely to be infertile (OR 2.66; 95% CI 1.70-4.17 and OR 2.82; 95% CI 1.75-4.56, respectively). Also, there was no significant association between the traditional dietary pattern and the odds of infertility. The present study suggests that greater adherence to a healthy dietary pattern may have an inverse association with the odds of infertility; however, Western and mixed dietary patterns may be associated with an increased risk of infertility.
Collapse
|
26
|
Xie L, Xiao Y, Meng F, Li Y, Shi Z, Qian K. Functions and Mechanisms of Lysine Glutarylation in Eukaryotes. Front Cell Dev Biol 2021; 9:667684. [PMID: 34249920 PMCID: PMC8264553 DOI: 10.3389/fcell.2021.667684] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
Lysine glutarylation (Kglu) is a newly discovered post-translational modification (PTM), which is considered to be reversible, dynamic, and conserved in prokaryotes and eukaryotes. Recent developments in the identification of Kglu by mass spectrometry have shown that Kglu is mainly involved in the regulation of metabolism, oxidative damage, chromatin dynamics and is associated with various diseases. In this review, we firstly summarize the development history of glutarylation, the biochemical processes of glutarylation and deglutarylation. Then we focus on the pathophysiological functions such as glutaric acidemia 1, asthenospermia, etc. Finally, the current computational tools for predicting glutarylation sites are discussed. These emerging findings point to new functions for lysine glutarylation and related enzymes, and also highlight the mechanisms by which glutarylation regulates diverse cellular processes.
Collapse
Affiliation(s)
- Longxiang Xie
- Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yafei Xiao
- Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Huaihe Hospital, Henan University, Kaifeng, China
| | - Fucheng Meng
- Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yongqiang Li
- Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Huaihe Hospital, Henan University, Kaifeng, China
| | - Zhenyu Shi
- Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Huaihe Hospital, Henan University, Kaifeng, China
| | - Keli Qian
- Infection Control Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Wang S, Sun J, Wang J, Ping Z, Liu L. Does obesity based on body mass index affect semen quality?-A meta-analysis and systematic review from the general population rather than the infertile population. Andrologia 2021; 53:e14099. [PMID: 34028074 DOI: 10.1111/and.14099] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Whether obesity affects the quality of semen has become the focus of research. However, there are some deficiencies in the past research, because the vast majority of known infertile patients were included in the study samples. Taking infertile men as the research object to analyse the impact of obesity on semen quality, which cannot accurately prove that the impact on semen quality is caused by obesity, because the impact on semen quality may also be caused by other factors. Therefore, we selected ordinary obese men rather than infertile patients to conduct a systematic review and meta-analysis of the effects of obesity on semen parameters. The results showed that obesity had no effect on sperm concentration (SMD: -0.15, 95% CI: -0.32 ~ 0.02, p = .088) and percentage of normal sperm morphology (SMD: -0.17, 95% CI: -0.66 ~ 0.32, p = .487), but decreased semen volume (SMD: -0.32, 95% CI: -0.52 ~ -0.12, p = .002), total sperm number (SMD: -0.77, 95% CI: -1.31 ~ -0.23, p = .005), percentage of forward progression (SMD: -0.95, 95% CI: -1.7 ~ -0.19, p = .014) and percentage of viability (SMD: -0.812, 95% CI: -1.532 ~ -0.093, p = .027). Therefore, obesity affects semen quality to a certain extent, and maintaining normal weight may be one of the effective ways to improve male fertility.
Collapse
Affiliation(s)
- SuiYan Wang
- School of basic medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jun Sun
- School of basic medical Sciences, Zhengzhou University, Zhengzhou, China
| | - JunYi Wang
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - ZhiGuang Ping
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Li Liu
- School of basic medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Taylor RM, Wolfson JA, Lavelle F, Dean M, Frawley J, Hutchesson MJ, Collins CE, Shrewsbury VA. Impact of preconception, pregnancy, and postpartum culinary nutrition education interventions: a systematic review. Nutr Rev 2020; 79:1186-1203. [PMID: 33249446 DOI: 10.1093/nutrit/nuaa124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CONTEXT Frequent consumption of home-prepared meals is associated with higher diet quality in children and adults. Therefore, increasing the culinary skills of women and couples during their childbearing years may be an effective strategy for the prevention of overweight and obesity. OBJECTIVE To determine the impact of culinary nutrition-education interventions for women with or without their partners during preconception, pregnancy, or postpartum (PPP) on parental cooking skills, nutrition knowledge, parent/child diet quality, or health outcomes. DATA SOURCES Eligibility criteria were defined using a PICOS framework. A systematic search strategy was developed to identify eligible studies and was implemented in 11 electronic databases. Reference lists of selected systematic reviews were manually searched for additional studies. DATA EXTRACTION Study characteristics and outcomes were extracted from eligible studies by 1 reviewer and checked by a second reviewer. DATA ANALYSIS A narrative synthesis of the findings of eligible studies was prepared including descriptive statistics. Reporting was guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement and Synthesis Without Meta-Analysis in systematic reviews reporting guideline. RESULTS A total of 6951 articles were identified from the search strategy and 31 studies during pregnancy or postpartum were included. By category, the number of studies with a favorable outcome per total number of studies measuring outcome were as follows: parental food/cooking skills (n = 5 of 5), nutrition knowledge (n = 6 of 11), parent/child diet quality (n = 10 of 19), infant feeding (n = 6 of 11), eating behavior (n = 2 of 5), maternal (n = 2 of 5) and child anthropometry (n = 6 of 10), mental health and development n = (2 of 3), and clinical indictors (n = 1 of 1). CONCLUSIONS Culinary nutrition-education interventions during pregnancy and the postpartum period show promise in improving cooking skills, diet quality, and a variety of health-related outcomes. The precise effect of these interventions during PPP is limited by the quality and heterogeneity of study designs to date. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number: CRD42020154966.
Collapse
Affiliation(s)
- Rachael M Taylor
- School of Health Sciences, Faculty of Health and Medicine, Priority Research Centre for Physical Activity and Nutrition, The University of Newcastle, Callaghan, New South Wales (NSW), Australia
| | - Julia A Wolfson
- Department of Health Management and Policy, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Fiona Lavelle
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Moira Dean
- School of Health Sciences, Faculty of Health and Medicine, Priority Research Centre for Physical Activity and Nutrition, The University of Newcastle, Callaghan, New South Wales (NSW), Australia.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Julia Frawley
- School of Health Sciences, Faculty of Health and Medicine, Priority Research Centre for Physical Activity and Nutrition, The University of Newcastle, Callaghan, New South Wales (NSW), Australia.,Nutrition & Dietetics Service, Frawley Nutrition, Lambton, NSW, Australia
| | - Melinda J Hutchesson
- School of Health Sciences, Faculty of Health and Medicine, Priority Research Centre for Physical Activity and Nutrition, The University of Newcastle, Callaghan, New South Wales (NSW), Australia
| | - Clare E Collins
- School of Health Sciences, Faculty of Health and Medicine, Priority Research Centre for Physical Activity and Nutrition, The University of Newcastle, Callaghan, New South Wales (NSW), Australia
| | - Vanessa A Shrewsbury
- School of Health Sciences, Faculty of Health and Medicine, Priority Research Centre for Physical Activity and Nutrition, The University of Newcastle, Callaghan, New South Wales (NSW), Australia
| |
Collapse
|
29
|
Abstract
In recent years, a new focus of the Developmental Origins of Health and Disease hypothesis has emerged examining the potential role that paternal health may play in embryo development, fetal growth and long-term offspring health. While the association between male health and sperm quality has been studied in detail, our understanding of the long-term paternal effects on offspring health remains limited. As with studies aimed at understanding maternal programming, animal models are an essential tool with which to define the underlying mechanisms linking paternal health to post-fertilisation development and offspring well-being. Here, new insights into the genetic and epigenetic nature of the sperm, as well as the role seminal plasma plays in modulating the maternal reproductive environment, are demonstrating the significant role a father's wellbeing at the time of conception has for programming the health of his offspring. In this article we will outline the current understanding of the impact of male health on semen quality, reproductive fitness and post-fertilisation offspring development and explore the mechanisms underlying the paternal programming of offspring health.
Collapse
Affiliation(s)
- Adam J Watkins
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
| | - Eleonora Rubini
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Elizabeth D Hosier
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Hannah L Morgan
- Division of Child Health, Obstetrics and Gynaecology, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
30
|
Wang F, Chen H, Chen Y, Cheng Y, Li J, Zheng L, Zeng X, Luo T. Diet-induced obesity is associated with altered expression of sperm motility-related genes and testicular post-translational modifications in a mouse model. Theriogenology 2020; 158:233-238. [PMID: 32980686 DOI: 10.1016/j.theriogenology.2020.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 07/23/2020] [Accepted: 09/14/2020] [Indexed: 01/27/2023]
Abstract
Obesity is a metabolic disease and its relation with male subfertility has aroused a growing concern. However, it is unclear whether gene expression and post-translational modifications (PTMs), two vital molecular mechanisms regulating cellular functions, are associated with obesity-induced male reproductive dysfunction. In this study, male obesity with compromised sperm motility was induced by a high-fat diet (HFD) using a mouse model. The expression of motility related-genes, the level of histone modifications, and the global profiles of post-translational modifications (PTMs), were examined in testes of HFD and control mice by quantitative real-time PCR and western blot, respectively. Outer dense fiber protein 2, a major component of outer dense fibers in the sperm tail, is the most obviously down-regulated gene out of 11 evaluated genes, showing a reduction of about 50% RNA level in testes of obese male mice compared with that in control mice. Semi-quantitative analysis of the western blot demonstrated that ∼56% enrichment of di-methylated histone (H)3 lysine (K)36, ∼59% enrichment of 2-hydroxyisobutyrylated H4K8, ∼32% decrease of propionylated H3K23, ∼33% decrease of crotonylated H4K8, and ∼45% decrease of acetylated H3K122 and H4K8 were detected in testes of male HFD mice compared with that in control mice. In addition, male obesity up-regulated the testicular levels of ubiquitination by ∼18%, tyrosine nitration by ∼20%, lysine succinylation by ∼25%, lysine benzoylation by ∼28%, lysine malonylation by ∼32%, lysine glutarylation by ∼36%, lysine propionylation by ∼42%, lysine 2-hydroxyisobutyrylation by ∼45%, and SUMO1 modification by ∼59%, and down-regulated the testicular levels of O-GlcNAcylation by ∼12%, lysine crotonylation by ∼22%, and lysine acetylation by 35%. These findings indicate that altered gene expression and PTMs are associated with the obesity-induced male reproductive dysfunction.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, 330006, China
| | - Ying Chen
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China; Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Jiangxi Medical College of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Yimin Cheng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Jia Li
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Jiangxi Medical College of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Liping Zheng
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Jiangxi Medical College of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330031, China
| | - Xuhui Zeng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China; Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu, 226000, PR China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, China; Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Jiangxi Medical College of Nanchang University, Nanchang University, Nanchang, Jiangxi, 330031, China.
| |
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW The association between obesity and infertility has gained increasing provider and public awareness. The purpose of this review is to outline the recent research into the pathophysiology regarding obesity and its impact of reproductive function in both women and men. RECENT FINDINGS A BMI more than 25 has a detrimental impact on the hypothalamus-pituitary-gonadal (HPG) axis in both men and women, leading to alterations of HPG hormones, gametogenesis, as well as an increase in inflammation and lipotoxicity from excessive adipose tissue. Additionally, BMI likely impacts assisted reproductive technology (ART) outcomes, with a greater influence on women than men. Studies regarding weight loss interventions are heterogenous in methods and outcomes, and it is difficult to extrapolate from current data if weight loss truly leads to improved outcomes. SUMMARY Elevated BMI induces changes in the HPG axis, hormone levels, gametogenesis, and adverse ART outcomes. Inconsistencies regarding weight loss interventions make it difficult to assess the impact on outcomes after weight loss interventions.
Collapse
|
32
|
Maghsoumi-Norouzabad L, Zare Javid A, Aiiashi S, Hosseini SA, Dadfar M, Bazyar H, Dastoorpur M. The Impact of Obesity on Various Semen Parameters and Sex Hormones in Iranian Men with Infertility: A Cross-Sectional Study. Res Rep Urol 2020; 12:357-365. [PMID: 32944568 PMCID: PMC7481269 DOI: 10.2147/rru.s258617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022] Open
Abstract
Objective The aim of this study was to examine the correlations between body mass index (BMI) and waist circumference (WC) and semen parameters (semen volume, sperm count, motility, and morphology) and sex hormones in Iranian men with infertility. Materials and Methods In this cross-sectional study, a total of 119 male patients who had lived as a partner in an infertile couple for at least 1 year, after regular unprotected sexual intercourse in their married life were investigated. BMI and WC were assessed, and a morning blood sample was taken assessing serum levels of testosterone (T), sex hormone-binding globulin (SHBG), prolactin (PRL), luteinizing hormone (LH), follicle-stimulating hormone (FSH), estradiol (E2) and leptin. Semen-analysis parameters were also measured. Results Based on BMI and WC, the sperm count, total motility and progressive sperm were significantly lower in overweight and obese infertile males compared to that in normal weight infertile males and those with WC<102 cm. In addition, the fraction of sperm with abnormal morphology was significantly higher in infertile men with WC>102 cm compared to that in those with WC<102 cm. Moreover serum levels of LH, FSH, and leptin were significantly higher in overweight and obese infertile males compared to that in normal weight infertile males and those with WC<102 cm. Moreover serum level of E2 was significantly higher in obese infertile males compared to the normal weight infertile males and in those with WC>102 cm compared to the WC<102 cm. Furthermore, serum level of T was significantly lower in obese infertile males compared to the overweight infertile males and in those with WC>102 cm compared to the WC<102 cm. The mean of T/E2 ratio also was significantly lower in obese infertile males vs overweight and normal weight infertile males and in those with WC>102 cm compared to the WC<102 cm. Conclusion We concluded that overweight and obesity in infertile men compared to those with normal weight may worsen the infertility situation.
Collapse
Affiliation(s)
| | - Ahmad Zare Javid
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saleh Aiiashi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Dadfar
- Department of Urology, Imam Khomeini Hospital, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Bazyar
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Dastoorpur
- Department of Biostatistics and Epidemiology, Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
33
|
Tao DY, Zhu JL, Xie CY, Kuang YP, Chai WR, Lo ECM, Ye W, Li F, Feng XP, Lu HX. Relationship between periodontal disease and male infertility: A case-control study. Oral Dis 2020; 27:624-631. [PMID: 32702140 DOI: 10.1111/odi.13552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/31/2020] [Accepted: 07/02/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To compare the prevalence of chronic periodontitis between men who had semen abnormalities and those who had normozoospermia through a case-control study. MATERIALS AND METHODS Male patients who visited the assisted reproduction clinic of a large general hospital and were diagnosed with semen abnormalities were included in the case group. The control group was composed of patients of the same clinic with normozoospermia. The semen analysis included sperm concentration, count and progressive and total motility, which were measured in the laboratory. A questionnaire and clinical periodontal examination were conducted for all participants. Logistic regression was performed to explore the relationship between chronic periodontitis and male infertility. RESULTS A total of 192 participants were included: 63 participants (32.8%) had some type of semen abnormality (case group), while 129 participants (67.2%) had normozoospermia (control group). The case group had a significantly higher prevalence of moderate/severe periodontitis than the control group (33.3% vs. 17.8%, p = .012). The logistic regression showed that participants who had moderate/severe periodontitis had a greater chance of having semen abnormalities after adjusting for other confounding factors (OR = 3.377, p = .005). CONCLUSIONS Periodontitis is associated with semen abnormalities and sperm motility in men.
Collapse
Affiliation(s)
- Dan-Ying Tao
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Jia-Lin Zhu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Chun-Yu Xie
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yan-Ping Kuang
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Ran Chai
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Edward Chin Man Lo
- Dental Public Health, Faculty of Dentistry, University of Hong Kong, Hong Kong, China
| | - Wei Ye
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Fei Li
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Xi-Ping Feng
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hai-Xia Lu
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| |
Collapse
|
34
|
Suleiman JB, Nna VU, Othman ZA, Zakaria Z, Bakar ABA, Mohamed M. Orlistat attenuates obesity‐induced decline in steroidogenesis and spermatogenesis by up‐regulating steroidogenic genes. Andrology 2020; 8:1471-1485. [DOI: 10.1111/andr.12824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/26/2020] [Accepted: 05/17/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Joseph Bagi Suleiman
- Department of Physiology School of Medical Sciences Universiti Sains Malaysia Kubang Kerian Kelantan Malaysia
- Department of Physiology
- Faculty of Basic Medical Sciences
- College of Medical Sciences Akanu Ibiam Federal Polytechnic Unwana Nigeria
| | - Victor Udo Nna
- Department of Physiology Faculty of Basic Sciences College of Medical Sciences University of Calabar Calabar Nigeria
| | - Zaidatul Akmal Othman
- Department of Physiology School of Medical Sciences Universiti Sains Malaysia Kubang Kerian Kelantan Malaysia
- Unit of Physiology Faculty of Medicine Universiti Sultan Zainal Abidin Kuala Terengganu Terengganu Malaysia
| | - Zaida Zakaria
- Department of Physiology School of Medical Sciences Universiti Sains Malaysia Kubang Kerian Kelantan Malaysia
| | - Ainul Bahiyah Abu Bakar
- Department of Physiology School of Medical Sciences Universiti Sains Malaysia Kubang Kerian Kelantan Malaysia
| | - Mahaneem Mohamed
- Department of Physiology School of Medical Sciences Universiti Sains Malaysia Kubang Kerian Kelantan Malaysia
- Unit of Integrative Medicine School of Medical Sciences Universiti Sains Malaysia Kubang Kerian Kelantan Malaysia
| |
Collapse
|
35
|
Pini T, Parks J, Russ J, Dzieciatkowska M, Hansen KC, Schoolcraft WB, Katz-Jaffe M. Obesity significantly alters the human sperm proteome, with potential implications for fertility. J Assist Reprod Genet 2020; 37:777-787. [PMID: 32026202 PMCID: PMC7183029 DOI: 10.1007/s10815-020-01707-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/30/2020] [Indexed: 11/25/2022] Open
Abstract
PURPOSE In men, obesity may lead to poor semen parameters and reduced fertility. However, the causative links between obesity and male infertility are not totally clear, particularly on a molecular level. As such, we investigated how obesity modifies the human sperm proteome, to elucidate any important implications for fertility. METHODS Sperm protein lysates from 5 men per treatment, classified as a healthy weight (body mass index (BMI) ≤ 25 kg/m2) or obese (BMI ≥ 30 kg/m2), were FASP digested, submitted to liquid chromatography tandem mass spectrometry, and compared by label-free quantification. Findings were confirmed for several proteins by qualitative immunofluorescence and a quantitative protein immunoassay. RESULTS A total of 2034 proteins were confidently identified, with 24 proteins being significantly (p < 0.05) less abundant (fold change < 0.05) in the spermatozoa of obese men and 3 being more abundant (fold change > 1.5) compared with healthy weight controls. Proteins with altered abundance were involved in a variety of biological processes, including oxidative stress (GSS, NDUFS2, JAGN1, USP14, ADH5), inflammation (SUGT1, LTA4H), translation (EIF3F, EIF4A2, CSNK1G1), DNA damage repair (UBEA4), and sperm function (NAPA, RNPEP, BANF2). CONCLUSION These results suggest that oxidative stress and inflammation are closely tied to reproductive dysfunction in obese men. These processes likely impact protein translation and folding during spermatogenesis, leading to poor sperm function and subfertility. The observation of these changes in obese men with no overt andrological diagnosis further suggests that traditional clinical semen assessments fail to detect important biochemical changes in spermatozoa which may compromise fertility.
Collapse
Affiliation(s)
- T Pini
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA.
| | - J Parks
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - J Russ
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - M Dzieciatkowska
- School of Medicine Biological Mass Spectrometry Facility, University of Colorado, Aurora, CO, 80045, USA
| | - K C Hansen
- School of Medicine Biological Mass Spectrometry Facility, University of Colorado, Aurora, CO, 80045, USA
| | - W B Schoolcraft
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| | - M Katz-Jaffe
- Colorado Center for Reproductive Medicine, Lone Tree, CO, 80124, USA
| |
Collapse
|
36
|
Baydilli N, Selvi İ, Akınsal EC, Zararsız GE, Ekmekçioğlu O. How does body mass index affect semen parameters and reproductive hormones in infertile males? Turk J Urol 2020; 46:101-107. [PMID: 32053100 DOI: 10.5152/tud.2020.19243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/30/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to invastigate the effect of body mass index (BMI) on semen parameters and reproductive hormone levels in infertile males. MATERIAL AND METHODS Overall, 858 infertile male patients, aged between 18 and 55 years, referred to our infertility clinic were included in the study. Patients without risk factors, besides obesity, that could affect semen parameters or reproductive hormones were evaluated. Patients were separated into the following three groups: non-obese (<25 kg/m2), overweight (25-29.9 kg/m2), and obese (≥30 kg/m2). Age, semen parameters, and reproductive hormones were evaluated and compared among the groups. In addition, subgroups based on sperm concentration were compared. RESULTS Total testosterone and testosterone-estradiol ratio negatively correlated with BMI (p<0.001). A positive correlation was observed between BMI and age (p<0.001). Even when adjusted for age, the decrease in total testosterone was significant in all groups parallel to the increase in BMI. Although age, prolactin level, and total testosterone had a significant relationship in univariate analysis, the only significant parameters were prolactin and total testosterone according to multivariate analysis. There were no significant differences between BMI and semen parameters. No significant difference related to BMI was observed among the infertile groups [severe oligospermia (34.3%), oligospermia (18.2%), and normospermia (47.6%)]. CONCLUSION A significant negative correlation was observed between increasing BMI and total testosterone. No relationship was observed between BMI and semen parameters except progressive motility. Nevertheless, prospective longitudinal clinical trials with larger sample sizes involving weight loss are needed to understand the precise relationship of BMI with reproductive hormones and semen parameters in the same individual.
Collapse
Affiliation(s)
- Numan Baydilli
- Department of Urology, Erciyes University School of Medicine, Kayseri, Turkey
| | - İsmail Selvi
- Department of Urology, Karabük University Training and Research Hospital, Karabük, Turkey
| | - Emre Can Akınsal
- Department of Urology, Erciyes University School of Medicine, Kayseri, Turkey
| | | | - Oğuz Ekmekçioğlu
- Department of Urology, Erciyes University School of Medicine, Kayseri, Turkey
| |
Collapse
|
37
|
Yang X, Zhao Y, Sun Q, Yang Y, Gao Y, Ge W, Liu J, Xu X, Zhang J. Adenosine accumulation causes metabolic disorders in testes and associates with lower testosterone level in obese mice. Mol Reprod Dev 2020; 87:241-250. [PMID: 32026564 DOI: 10.1002/mrd.23321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 01/05/2020] [Indexed: 12/27/2022]
Abstract
Overweight and obese men face numerous health problems, including type 2 diabetes, subfertility, and even infertility. However, few studies have focused on the effects of nutritional status and obesity-related regulatory signals on fertility deficiency. Our previous observations have shown that the elevation of plasma 5'-adenosine monophosphate (5'-AMP) and the accumulation of adenosine in liver and muscle of obese diabetic db/db mice are related to insulin resistance. Here, we found that adenosine accumulation in testis is a common marker of both genetic obesity and high-fat-diet induced obese mice. An messenger RNA sequencing analysis indicated that 78 upregulated genes and 155 downregulated genes in the testis of 5'-AMP-treated mice overlapped with the same genes in the testis of ob/ob mice, and these genes belonged to the clusters of steroid metabolic process and regulation of hormone levels, respectively. Serum testosterone was reduced in ob/ob and 5'-AMP-treated mice. Metabolomic analysis based on 1 H nuclear magnetic resonance showed that the testicular metabolic profiles of ob/ob mice were similar to those of 5'-AMP treated mice. Exogenous 5'-AMP inhibited the phosphorylation of AKT and mammalian target of rapamycin signal transduction and reduced the proliferating cell nuclear antigen expressions in testes. Our results suggest that the accumulation of adenosine causes metabolic disorders in testes and associates lower testosterone level in obese mice.
Collapse
Affiliation(s)
- Xiao Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Yang Zhao
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Qi Sun
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Yunxia Yang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Yan Gao
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Wenhao Ge
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Junhao Liu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Xi Xu
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
38
|
Swanson GM, Estill M, Diamond MP, Legro RS, Coutifaris C, Barnhart KT, Huang H, Hansen KR, Trussell JC, Coward RM, Zhang H, Goodrich R, Krawetz SA. Human chromatin remodeler cofactor, RNA interactor, eraser and writer sperm RNAs responding to obesity. Epigenetics 2020; 15:32-46. [PMID: 31354029 PMCID: PMC6961666 DOI: 10.1080/15592294.2019.1644880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/23/2022] Open
Abstract
In the United States almost 33% of adults are considered obese (BMI > 30 kg/m2). Both animal models and to a lesser extent human studies, have associated BMI, a measure of obesity, with alterations in sperm DNA methylation and RNAs. Sperm RNAs from the Assessment of Multiple Gestations from Ovarian Stimulation trial, were isolated and sequenced. A Generalized Linear Model identified 487 BMI associated human sperm RNA elements (short exon-sized sequences). They partitioned into four patterns; a continual increase with BMI, increase once obese (BMI>30 kg/m2); a steady decrease with BMI; and decrease once overweight (BMI 25 - 30 kg/m2). Gene Ontology revealed a unique relationship between BMI and transcripts associated with chromosome organization, adipogenesis, cellular stress and obesity-related inflammation. Coregulatory networks linked by Chromatin remodeler cofactors, RNA interactors, Erasers and Writers (CREWs) were uncovered to reveal a hierarchical epigenetic response pathway.
Collapse
Affiliation(s)
- Grace M. Swanson
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, USA
| | - Molly Estill
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, USA
| | - Michael P. Diamond
- Department of Obstetrics and Gynecology, Augusta University, Augusta, USA
| | - Richard S. Legro
- Department of Obstetrics and Gynecology, Pennsylvania State University, Hershey, USA
| | - Christos Coutifaris
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Kurt T. Barnhart
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Hao Huang
- Department of Biostatistics, Yale University School of Public Health, New Haven, USA
| | - Karl R. Hansen
- Department of Obstetrics and Gynecology, University of Oklahoma College of Medicine, Oklahoma City, USA
| | - J. C. Trussell
- Urology Department, Upstate Medical University, Syracuse, USA
| | - R. Matthew Coward
- Department of Urology, University of North Carolina School of Medicine, Chapel Hill, USA
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Public Health, New Haven, USA
| | - Robert Goodrich
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, USA
| | - Stephen A. Krawetz
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, USA
| |
Collapse
|
39
|
Nätt D, Kugelberg U, Casas E, Nedstrand E, Zalavary S, Henriksson P, Nijm C, Jäderquist J, Sandborg J, Flinke E, Ramesh R, Örkenby L, Appelkvist F, Lingg T, Guzzi N, Bellodi C, Löf M, Vavouri T, Öst A. Human sperm displays rapid responses to diet. PLoS Biol 2019; 17:e3000559. [PMID: 31877125 PMCID: PMC6932762 DOI: 10.1371/journal.pbio.3000559] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/18/2019] [Indexed: 11/25/2022] Open
Abstract
The global rise in obesity and steady decline in sperm quality are two alarming trends that have emerged during recent decades. In parallel, evidence from model organisms shows that paternal diet can affect offspring metabolic health in a process involving sperm tRNA-derived small RNA (tsRNA). Here, we report that human sperm are acutely sensitive to nutrient flux, both in terms of sperm motility and changes in sperm tsRNA. Over the course of a 2-week diet intervention, in which we first introduced a healthy diet followed by a diet rich in sugar, sperm motility increased and stabilized at high levels. Small RNA-seq on repeatedly sampled sperm from the same individuals revealed that tsRNAs were up-regulated by eating a high-sugar diet for just 1 week. Unsupervised clustering identified two independent pathways for the biogenesis of these tsRNAs: one involving a novel class of fragments with specific cleavage in the T-loop of mature nuclear tRNAs and the other exclusively involving mitochondrial tsRNAs. Mitochondrial involvement was further supported by a similar up-regulation of mitochondrial rRNA-derived small RNA (rsRNA). Notably, the changes in sugar-sensitive tsRNA were positively associated with simultaneous changes in sperm motility and negatively associated with obesity in an independent clinical cohort. This rapid response to a dietary intervention on tsRNA in human sperm is attuned with the paternal intergenerational metabolic responses found in model organisms. More importantly, our findings suggest shared diet-sensitive mechanisms between sperm motility and the biogenesis of tsRNA, which provide novel insights about the interplay between nutrition and male reproductive health.
Collapse
Affiliation(s)
- Daniel Nätt
- Linköping University, Department of Clinical and Experimental Medicine, Division of Neurobiology, Linkoping, Sweden
| | - Unn Kugelberg
- Linköping University, Department of Clinical and Experimental Medicine, Division of Neurobiology, Linkoping, Sweden
| | - Eduard Casas
- Josep Carreras Leukaemia Research Institute (IJC), Program for Predictive and Personalized Medicine of Cancer (PMPPC-IGTP), Barcelona, Spain
| | - Elizabeth Nedstrand
- Linköping University, Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, Linköping, Sweden
| | - Stefan Zalavary
- Linköping University, Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, Linköping, Sweden
| | - Pontus Henriksson
- Karolinska Institute, Department of Biosciences and Nutrition, Huddinge, Sweden
- Linköping University, Department of Medical and Health Sciences, Division of Community Medicine, Linköping, Sweden
| | - Carola Nijm
- Linköping University, Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, Linköping, Sweden
| | - Julia Jäderquist
- Linköping University, Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, Linköping, Sweden
| | - Johanna Sandborg
- Karolinska Institute, Department of Biosciences and Nutrition, Huddinge, Sweden
- Linköping University, Department of Medical and Health Sciences, Division of Community Medicine, Linköping, Sweden
| | - Eva Flinke
- Linköping University, Department of Medical and Health Sciences, Division of Community Medicine, Linköping, Sweden
| | - Rashmi Ramesh
- Linköping University, Department of Clinical and Experimental Medicine, Division of Neurobiology, Linkoping, Sweden
| | - Lovisa Örkenby
- Linköping University, Department of Clinical and Experimental Medicine, Division of Neurobiology, Linkoping, Sweden
| | - Filip Appelkvist
- Linköping University, Department of Clinical and Experimental Medicine, Division of Neurobiology, Linkoping, Sweden
| | - Thomas Lingg
- Linköping University, Department of Clinical and Experimental Medicine, Division of Neurobiology, Linkoping, Sweden
| | - Nicola Guzzi
- Lund University, Stem Cell Center, Department of Laboratory Medicine, Division of Molecular Hematology, Lund, Sweden
| | - Cristian Bellodi
- Lund University, Stem Cell Center, Department of Laboratory Medicine, Division of Molecular Hematology, Lund, Sweden
| | - Marie Löf
- Karolinska Institute, Department of Biosciences and Nutrition, Huddinge, Sweden
- Linköping University, Department of Medical and Health Sciences, Division of Community Medicine, Linköping, Sweden
| | - Tanya Vavouri
- Josep Carreras Leukaemia Research Institute (IJC), Program for Predictive and Personalized Medicine of Cancer (PMPPC-IGTP), Barcelona, Spain
| | - Anita Öst
- Linköping University, Department of Clinical and Experimental Medicine, Division of Neurobiology, Linkoping, Sweden
| |
Collapse
|
40
|
Almabhouh FA, Md Mokhtar AH, Malik IA, Aziz NAAA, Durairajanayagam D, Singh HJ. Leptin and reproductive dysfunction in obese men. Andrologia 2019; 52:e13433. [DOI: 10.1111/and.13433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | - Ifrah Alam Malik
- Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Malaysia
| | | | | | - Harbindar Jeet Singh
- Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Malaysia
- I‐PerFForm Faculty of Medicine Universiti Teknologi MARA Sungai Buloh Malaysia
| |
Collapse
|
41
|
Luo Q, Li Y, Huang C, Cheng D, Ma W, Xia Y, Liu W, Chen Z. Soy Isoflavones Improve the Spermatogenic Defects in Diet-Induced Obesity Rats through Nrf2/HO-1 Pathway. Molecules 2019; 24:E2966. [PMID: 31443330 PMCID: PMC6719105 DOI: 10.3390/molecules24162966] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 01/12/2023] Open
Abstract
Soy isoflavones (SIF) are biologically active compounds of non-steroidal and phenolic properties that are richly present in soybeans, which can reduce the body weight and blood lipids of obese animals. Recently, SIF have been reported to affect reproductive ability in obese male rats. However, the specific mechanism has not been well defined. The aim of the current study was to study the possible mechanisms for the effect of SIF administration on obesity induced spermatogenic defects. Obese rats model induced by high-fat diets were established and gavage treated with 0, 50,150 or 450 mg of SIF/kg body weight/day for 4 weeks. Here, our research shows that obesity resulted in spermatogenic degeneration, imbalance of reproductive hormone, testicular oxidative stress and germ cell apoptosis, whereas evidently recovery effects were observed at 150 and 450 mg/kg SIF. We also have discovered that 150 and 450 mg/kg SIF can activate Nrf2/HO-1 pathway in control of Bcl-2, BAX and cleaved caspase-3 expression with implications in antioxidant protection. Our study indicates the potential mechanism of SIF regulating spermatogenic function in obese rats, and provides a scientific experimental basis for the regulation of biological function of obese male reproductive system by SIF.
Collapse
Affiliation(s)
- Qihui Luo
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yifan Li
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Huang
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dongjing Cheng
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenjing Ma
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Xia
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Wentao Liu
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengli Chen
- Laboratory of Experimental Animal Disease Model, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
42
|
Riesco MF, Valcarce DG, Martínez-Vázquez JM, Robles V. Effect of low sperm quality on progeny: a study on zebrafish as model species. Sci Rep 2019; 9:11192. [PMID: 31371755 PMCID: PMC6671952 DOI: 10.1038/s41598-019-47702-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/22/2019] [Indexed: 12/23/2022] Open
Abstract
Nowadays a decrease tendency in human sperm quality has been reported mainly in developed countries. Reproductive technologies have been very valuable in achieving successful pregnancies with low quality sperm samples. However, considering that spermatozoa molecular contribution is increasingly important in recent studies, it is crucial to study whether fertilization with low sperm quality could leave a molecular mark on progeny. This study explores the consequences that fertilization with low sperm quality may have on progeny, using zebrafish as a model. Good and bad breeders were established attending to sperm quality analyses and were individually tracked. Significant differences in fertilization and malformation rates were obtained in progenies between high and low quality sperm samples. Moreover an altered miR profile was found in the progenies of bad zebrafish breeders (upregulation of miR-141 and miR -122 in 24 hpf embryos) and as a consequence, some of their targets involved in male sex development such as dmrt1, suffered downregulation. Our results indicate that fertilizing with high sperm quality samples becomes relevant from a new perspective: to avoid molecular alterations in the progeny that could remain masked and therefore produce unexpected consequences in it.
Collapse
Affiliation(s)
- Marta F Riesco
- IEO, Spanish Institute of Oceanography, Planta de Cultivos el Bocal, Santander, 39012, Spain
| | - David G Valcarce
- IEO, Spanish Institute of Oceanography, Planta de Cultivos el Bocal, Santander, 39012, Spain
| | | | - Vanesa Robles
- IEO, Spanish Institute of Oceanography, Planta de Cultivos el Bocal, Santander, 39012, Spain.
- MODCELL GROUP, Department of Molecular Biology, Universidad de León, 24071, León, Spain.
| |
Collapse
|
43
|
Samavat J, Cantini G, Lorubbio M, Degl'Innocenti S, Adaikalakoteswari A, Facchiano E, Lucchese M, Maggi M, Saravanan P, Ognibene A, Luconi M. Seminal but not Serum Levels of Holotranscobalamin are Altered in Morbid Obesity and Correlate with Semen Quality: A Pilot Single Centre Study. Nutrients 2019; 11:E1540. [PMID: 31288401 PMCID: PMC6682947 DOI: 10.3390/nu11071540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 11/24/2022] Open
Abstract
Vitamin B12 (cobalamin) is an essential cofactor in the one-carbon metabolism. One-carbon metabolism is a set of complex biochemical reactions, through which methyl groups are utilised or generated, and thus plays a vital role to many cellular functions in humans. Low levels of cobalamin have been associated to metabolic/reproductive pathologies. However, cobalamin status has never been investigated in morbid obesity in relation with the reduced semen quality. We analysed the cross-sectional data of 47-morbidly-obese and 21 lean men at Careggi University Hospital and evaluated total cobalamin (CBL) and holotranscobalamin (the active form of B12; holoTC) levels in serum and semen. Both seminal and serum concentrations of holoTC and CBL were lower in morbidly obese compared to lean men, although the difference did not reach any statistical significance for serum holoTC. Seminal CBL and holoTC were significantly higher than serum levels in both groups. Significant positive correlations were observed between seminal holoTC and total sperm motility (r = 0.394, p = 0.012), sperm concentration (r = 0.401, p = 0.009), total sperm number (r = 0.343, p = 0.028), and negative correlation with semen pH (r = -0.535, p = 0.0001). ROC analysis supported seminal holoTC as the best predictor of sperm number (AUC = 0.769 ± 0.08, p = 0.006). Our findings suggest that seminal rather than serum levels of holoTC may represent a good marker of semen quality in morbidly obese subjects.
Collapse
Affiliation(s)
- Jinous Samavat
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Giulia Cantini
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio"-University of Florence, 50139 Florence, Italy
| | - Maria Lorubbio
- Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
| | | | - Antonysunil Adaikalakoteswari
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham NG11 8NS, UK
| | | | | | - Mario Maggi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio"-University of Florence, 50139 Florence, Italy
- Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), viale delle Medaglie d'Oro 305, 00136 Rome, Italy
| | - Ponnusamy Saravanan
- Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
- Diabetes and Endocrinology Centre, George Eliot Hospital NHS Trust, College Street, Nuneaton, Warwickshire CV10 7DJ, UK.
| | | | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio"-University of Florence, 50139 Florence, Italy.
- Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy.
| |
Collapse
|
44
|
Chen D, Cao S, Chang B, Ma T, Gao H, Tong Y, Li T, Han J, Yi X. Increasing hypothalamic nucleobindin 2 levels and decreasing hypothalamic inflammation in obese male mice via diet and exercise alleviate obesity-associated hypogonadism. Neuropeptides 2019; 74:34-43. [PMID: 30503692 DOI: 10.1016/j.npep.2018.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/26/2018] [Accepted: 10/30/2018] [Indexed: 02/08/2023]
Abstract
To explore the role of nesfatin-1 in regulating male reproductive function during energy balance variation, we employed an obese mouse model which was first induced by a high-fat diet (HFD) and followed by interventions of a normal diet (ND) and/or moderate exercise, and then serum reproductive hormones of male mice, hypothalamic nucleobindin 2 (NUCB2)/nesfatin-1, inflammatory factors, and gonadotropin-releasing hormone (GnRH) levels were tested. Our findings showed that both serum nesfatin-1, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) levels and hypothalamic NUCB2/nesfatin-1 and Gnrh mRNA levels were reduced, whereas, the mRNA and protein levels of hypothalamic tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, inhibitor kappa B kinase β (IKKβ), and nuclear factor (NF)-κB were increased in obese male mice. Diet, exercise, and diet combined with exercise interventions reversed the decreases in serum nesfatin-1, FSH, LH, and T levels; increased hypothalamic NUCB2/nesfatin-1 and Gnrh mRNA levels; and reduced hypothalamic TNF-α, IL-1β, IKKβ, and NF-κB levels. These changes were accompanied by reduced adiposity, and these effects were more obvious in the diet combined with exercise group. Overall, our findings suggested that the hypogonadotropic hypogonadism associated with obesity may be induced by reduced hypothalamic NUCB2/nesfatin-1 levels, which attenuated the stimulatory effect on GnRH directly or indirectly by suppressing its anti-inflammatory effect in the brain. Diet and/or exercise interventions were able to alleviate the hypogonadotropic hypogonadism associated with obesity, potentially by increasing hypothalamic NUCB2/nesfatin-1 levels.
Collapse
Affiliation(s)
- Dequan Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; School of Physical Education, Minnan Normal Universtiy, Zhangzhou, Fujian 363000, PR China
| | - Shicheng Cao
- Department of Sport Medicine, School of Fundamental Sciences, China Medical University, Shenyang, Liaoning 110001, PR China
| | - Bo Chang
- School of Kinesiology, Shenyang Sport University, Shenyang, Liaoning 110102, PR China
| | - Tie Ma
- School of Kinesiology, Shenyang Sport University, Shenyang, Liaoning 110102, PR China
| | - Haining Gao
- School of Kinesiology, Shenyang Sport University, Shenyang, Liaoning 110102, PR China
| | - Yao Tong
- School of Kinesiology, Shenyang Sport University, Shenyang, Liaoning 110102, PR China
| | - Tao Li
- School of Kinesiology, Shenyang Sport University, Shenyang, Liaoning 110102, PR China
| | - Junchao Han
- School of Kinesiology, Shenyang Sport University, Shenyang, Liaoning 110102, PR China
| | - Xuejie Yi
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; School of Kinesiology, Shenyang Sport University, Shenyang, Liaoning 110102, PR China.
| |
Collapse
|
45
|
Hyaluronan bound mature sperm count (HB-MaSC) is a more informative indicator of fertility than conventional sperm parameters: Correlations with Body Mass Index (BMI). Reprod Biol 2019; 19:38-44. [DOI: 10.1016/j.repbio.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/22/2022]
|
46
|
Zhang J, Yang B, Cai Z, Li H, Han T, Wang Y. The Negative Impact of Higher Body Mass Index on Sperm Quality and Erectile Function: A Cross-Sectional Study Among Chinese Males of Infertile Couples. Am J Mens Health 2019; 13:1557988318822572. [PMID: 30602337 PMCID: PMC6440062 DOI: 10.1177/1557988318822572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The objective of the current study was to explore the role of body mass index (BMI) in sperm quality and erectile function in Chinese males of infertile couples. A total of 28 fertility centers in different regions of China were enrolled. Patient data were collected from June 1, 2017, through October 31, 2017. Semen analyses and demographic data were collected and the five-item International Index of Erectile Function (IIEF-5) questionnaire was used to evaluate the erectile function in participants with different BMIs. In total, 3,174 Chinese men of infertile couples with an average age of 33.11 ± 6.08 years were enrolled. The occurrence of obesity, overweight, normal weight, and underweight were 5.4%, 36.6%, 56.8%, and 1.2%, respectively. In addition to hypertension and diabetes, primary infertility, a longer course of infertility, and chronic prostatitis were risk factors for obesity. Compared with men of normal weight, adjusted odds ratios (ORs) for men with obesity, overweight, and underweight for semen volume <2 ml were 2.53 (95% CI [1.61, 3.97]), 1.33 (95% CI [1.09, 1.62]), and 0.84 (95% CI [0.29, 2.43]); for sperm progressive motility (A + B) (%) <32, the ORs were 1.60 (95% CI [1.16, 2.22]), 1.30 (95% CI [1.12, 1.51]), and 1.03 (95% CI [0.54, 1.98]); and for IIEF-5 ≤ 21, the ORs were 1.52 (95% CI [1.10, 2.10]), 1.11 (95% CI [0.96, 1.30]), and 0.62 (95% CI [0.31, 1.26]), respectively. Obesity was associated with lower semen volume, lower sperm motility, and erectile dysfunction in Chinese males of infertile couples.
Collapse
Affiliation(s)
- Jianzhong Zhang
- 1 Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bin Yang
- 1 Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,2 Department of Urology, Affiliated Hospital of the Qingdao University, Qingdao, China
| | - Zhonglin Cai
- 1 Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongjun Li
- 1 Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Taoli Han
- 3 National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, China
| | - Ying Wang
- 3 National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, China
| |
Collapse
|
47
|
Dupree JM. Insurance coverage of male infertility: what should the standard be? Transl Androl Urol 2018; 7:S310-S316. [PMID: 30159237 PMCID: PMC6087851 DOI: 10.21037/tau.2018.04.25] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
Infertility is a disease, and the male partner plays a role in approximately 50% of infertility cases. For most patients, infertility care does not receive insurance coverage like other diseases, leaving them to pay out of pocket for their treatments. Because of the lack of insurance coverage, evaluations and treatments are expensive for patients, with costs often approaching the median annual US income. These increased costs reduce access to care and limit the ability to diagnose the cause of infertility, treat the underlying causes, and downgrade the intensity of the intervention needed to achieve the pregnancy. This leaves much of the burden for infertility care on the female partner. In an ideal health care system, evaluations and interventions for male infertility would receive the same insurance coverage as evaluations and interventions for other diseases.
Collapse
Affiliation(s)
- James M. Dupree
- Division of Andrology, Division of Health Services Research, Department of Urology, University of Michigan, Ann Arbor, MI 48109-5330, USA
| |
Collapse
|