1
|
Kaltsas A, Stavros S, Kratiras Z, Zikopoulos A, Machairiotis N, Potiris A, Dimitriadis F, Sofikitis N, Chrisofos M, Zachariou A. Predictors of Successful Testicular Sperm Extraction: A New Era for Men with Non-Obstructive Azoospermia. Biomedicines 2024; 12:2679. [PMID: 39767586 PMCID: PMC11726830 DOI: 10.3390/biomedicines12122679] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Non-obstructive azoospermia (NOA) is a severe form of male infertility characterized by the absence of sperm in the ejaculate due to impaired spermatogenesis. Testicular sperm extraction (TESE) combined with intracytoplasmic sperm injection is the primary treatment, but success rates are unpredictable, causing significant emotional and financial burdens. Traditional clinical and hormonal predictors have shown inconsistent reliability. This review aims to evaluate current and emerging non-invasive preoperative predictors of successful sperm retrieval in men with NOA, highlighting promising biomarkers and their potential clinical applications. Methods: A comprehensive literature review was conducted, examining studies on clinical and hormonal factors, imaging techniques, molecular biology biomarkers, and genetic testing related to TESE outcomes in NOA patients. The potential role of artificial intelligence and machine learning in enhancing predictive models was also explored. Results: Traditional predictors such as patient age, body mass index, infertility duration, testicular volume, and serum hormone levels (follicle-stimulating hormone, luteinizing hormone, inhibin B) have limited predictive value for TESE success. Emerging non-invasive biomarkers-including anti-Müllerian hormone levels, inhibin B to anti-Müllerian hormone ratio, specific microRNAs, long non-coding RNAs, circular RNAs, and germ-cell-specific proteins like TEX101-show promise in predicting successful sperm retrieval. Advanced imaging techniques like high-frequency ultrasound and functional magnetic resonance imaging offer potential but require further validation. Integrating molecular biomarkers with artificial intelligence and machine learning algorithms may enhance predictive accuracy. Conclusions: Predicting TESE outcomes in men with NOA remains challenging using conventional clinical and hormonal parameters. Emerging non-invasive biomarkers offer significant potential to improve predictive models but require validation through large-scale studies. Incorporating artificial intelligence and machine learning could further refine predictive accuracy, aiding clinical decision-making and improving patient counseling and treatment strategies in NOA.
Collapse
Affiliation(s)
- Aris Kaltsas
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (Z.K.); (M.C.)
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (N.M.); (A.P.)
| | - Zisis Kratiras
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (Z.K.); (M.C.)
| | - Athanasios Zikopoulos
- Department of Obstetrics and Gynecology, Royal Cornwall Hospital, Truro TR1 3LJ, UK;
| | - Nikolaos Machairiotis
- Third Department of Obstetrics and Gynecology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (N.M.); (A.P.)
| | - Anastasios Potiris
- Third Department of Obstetrics and Gynecology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.S.); (N.M.); (A.P.)
| | - Fotios Dimitriadis
- Department of Urology, Faculty of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Nikolaos Sofikitis
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| | - Michael Chrisofos
- Third Department of Urology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.K.); (Z.K.); (M.C.)
| | - Athanasios Zachariou
- Laboratory of Spermatology, Department of Urology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
2
|
Takeshima T, Karibe J, Saito T, Kuroda S, Komeya M, Uemura H, Yumura Y. Clinical management of nonobstructive azoospermia: An update. Int J Urol 2024; 31:17-24. [PMID: 37737473 DOI: 10.1111/iju.15301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
Approximately 1% of the general male population has azoospermia, and nonobstructive azoospermia accounts for the majority of cases. The causes vary widely, including chromosomal and genetic abnormalities, varicocele, drug-induced causes, and gonadotropin deficiency; however, the cause is often unknown. In azoospermia caused by hypogonadotropic hypogonadism, gonadotropin replacement therapy can be expected to produce sperm in the ejaculate. In some cases, upfront varicocelectomy for nonobstructive azoospermia with varicocele may result in the appearance of ejaculated spermatozoa; however, the appropriate indication should be selected. Each guideline recommends microdissection testicular sperm extraction for nonobstructive azoospermia in terms of successful sperm retrieval and avoidance of complications. Sperm retrieval rates generally ranged from 20% to 70% but vary depending on the causative disease. Various attempts have been made to predict sperm retrieval and improve sperm retrieval rates; however, the evidence is insufficient. Further evidence accumulation is needed for salvage treatment in cases of failed sperm retrieval. In Japan, there is inadequate provision on the right to know the origin of children born from artificial insemination of donated sperm and the rights of sperm donors, as well as information on unrelated family members, and the development of these systems is challenging. In the future, it is hoped that the pathogenesis of nonobstructive azoospermia with an unknown cause will be elucidated and that technology for omics technologies, human spermatogenesis using pluripotent cells, and organ culture methods will be developed.
Collapse
Affiliation(s)
- Teppei Takeshima
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
| | - Jurii Karibe
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
| | - Tomoki Saito
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
| | - Shinnosuke Kuroda
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
- Glickman Kidney & Urological Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Mitsuru Komeya
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
| | - Hiroji Uemura
- Department of Urology and Renal Transplantation, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
| | - Yasushi Yumura
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Kanagawa, Yokohama, Japan
| |
Collapse
|
3
|
Li J, Yang F, Dong L, Chang D, Yu X. Seminal plasma biomarkers for predicting successful sperm retrieval in patients with nonobstructive azoospermia: a narrative review of human studies. Basic Clin Androl 2023; 33:9. [PMID: 37076787 PMCID: PMC10116801 DOI: 10.1186/s12610-023-00184-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/08/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Non-obstructive azoospermia (NOA) is considered to be the most severe form of male infertility. Before the emergence of surgical testicular sperm extraction and assisted reproductive technology, NOA patients could hardly become biological fathers of their children. However, failure of the surgery could cause physical and psychological harm to patients such as testicular damage, pain, hopeless of fertility and additional cost. Therefore, predicting the successful sperm retrieval (SSR) is so important for NOA patients to make their choice whether to do the surgery or not. Because seminal plasma is secreted by the testes and accessory gonads, it can reflect the spermatogenic environment, making it a preferential choice for SSR valuation. The purpose of this paper is to summarize the available evidence and provide the reader with a broad overview of biomarkers in seminal plasma for SSR prediction. RESULTS A total of 15,390 studies were searched from PUBMED, EMBASE, CENTRAL and Web of Science, but only 6615 studies were evaluated after duplications were removed. The abstracts of 6513 articles were excluded because they were irrelevant to the topic. The full texts of 102 articles were obtained, with 21 of them being included in this review. The included studies range in quality from medium to high. In the included articles, surgical sperm extraction methods included conventional testicular sperm extraction (TESE) and microdissection testicular sperm extraction (micro-TESE). Currently, the biomarkers in seminal plasma used to predict SSR are primarily RNAs, metabolites, AMH, inhibin B, leptin, survivin, clusterin, LGALS3BP, ESX1, TEX101, TNP1, DAZ, PRM1 and PRM2. CONCLUSION The evidence does not conclusively indicate that AMH and INHB in seminal plasma are valuable to predict the SSR. It is worth noting that RNAs, metabolites and other biomarkers in seminal plasma have shown great potential in predicting SSR. However, existing evidence is insufficient to provide clinicians with adequate decision support, and more prospective, large sample size, and multicenter trials are urgently needed.
Collapse
Affiliation(s)
- Junjun Li
- Chengdu Fifth People's Hospital, The Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine, 611130, Chengdu, China
| | - Fang Yang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu, University of Traditional Chinese Medicine, 610072, Chengdu, China
| | - Liang Dong
- The Reproductive & Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, 610041, Chengdu, China
| | - Degui Chang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu, University of Traditional Chinese Medicine, 610072, Chengdu, China
| | - Xujun Yu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| |
Collapse
|
4
|
Cannarella R, Bertelli M, Condorelli RA, Vilaj M, La Vignera S, Jezek D, Calogero AE. Analysis of 29 Targeted Genes for Non-Obstructive Azoospermia: The Relationship between Genetic Testing and Testicular Histology. World J Mens Health 2023; 41:422-433. [PMID: 36047072 PMCID: PMC10042652 DOI: 10.5534/wjmh.220009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/21/2022] [Accepted: 05/01/2022] [Indexed: 11/15/2022] Open
Abstract
PURPOSE To analyze the presence of potentially pathogenic variants of 29 candidate genes known to cause spermatogenic failure (SPGF) in patients with non-obstructive azoospermia (NOA) who underwent testicular histology. MATERIALS AND METHODS Forty-eight patients with unexplained NOA referred to the Department of Transfusion Medicine and Transplantation Biology, University Hospital Center Zagreb, Zagreb, Croatia for testicular biopsy. They were divided into three groups: those who had cryptorchidism (n=9), those with varicocele (n=14), and those with idiopathic NOA (n=25). All included patients underwent blood withdrawal for next-generation sequencing (NGS) analysis and gene sequencing. RESULTS We found a possible genetic cause in 4 patients with idiopathic NOA (16%) and in 2 with cryptorchidism (22%). No pathogenic or possibly pathogenic mutations were identified in patients with varicocele. Variants of undetermined significance (VUS) were found in 11 patients with idiopathic NOA (44%), 3 with cryptorchidism (33%), and 8 patients with varicocele (57%). VUSs of the USP9Y gene were the most frequently as they were found in 14 out of 48 patients (29%). In particular, the VUS USP9Y c.7434+14del was found in 11 patients. They showed varied histological pictures, including Sertoli cell-only syndrome, mixed atrophy, and hypospermatogenesis, regardless of cryptorchidism or varicocele. No direct correlation was found between the gene mutation/variant and the testicular histological picture. CONCLUSIONS Different mutations of the same gene cause various testicular histological pictures. These results suggest that it is not the gene itself but the type of mutation/variation that determines the testicular histology picture. Based on the data presented above, it remains challenging to design a genetic panel with prognostic value for the outcome of testicular sperm extraction in patients with NOA.
Collapse
Affiliation(s)
- Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marija Vilaj
- Department of Transfusion Medicine and Transplantation Biology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Davor Jezek
- Department of Transfusion Medicine and Transplantation Biology, University Hospital Center Zagreb, Zagreb, Croatia
- Scientific Centre of Excellence for Reproductive and Regenerative Medicine, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
5
|
Kang C, Bertolla R, Pagani R. The '-ics' of male reproduction: genomics, epigenetics, proteomics, metabolomics, and microbiomics. Curr Opin Urol 2023; 33:31-38. [PMID: 36210759 DOI: 10.1097/mou.0000000000001052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To review the most current findings, from the past 2 years, in various '-ics' fields in male infertility, with a specific focus on nonobstructive azoospermia, the most severe form, and varicocele, the most common correctable cause of male infertility. RECENT FINDINGS Recent studies confirm previously identified causes and identify previously unknown genetic mutations as causes for nonobstructive azoospermia and varicocele. SUMMARY Infertility is a common problem for couples with approximately half of cases attributable to male factor infertility. Although advances in assisted reproductive technology have permitted many more men with infertility to father biological children, the majority of infertile men continue to have unknown causes. The recent explosion of the '-ics' fields, including genomics, epigenetics, proteomics, metabolomics, and microbiomics, has shed light on previously unknown causes for various diseases. New information in these fields will not only shed light on the pathogenesis of these conditions but also may shift the paradigm in clinical testing that may allow clinicians to provide more precise counseling and prognostic information for men with infertility.
Collapse
Affiliation(s)
- Caroline Kang
- Department of Urology, Atrium Health Carolinas Medical Center, Charlotte, North Carolina, USA
| | - Ricardo Bertolla
- Division of Urology, Department of Surgery, Universidade Federal de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
6
|
Non-invasive Molecular Biomarkers for Predicting Outcomes of Micro-TESE in Patients with Idiopathic Non-obstructive Azoospermia. Expert Rev Mol Med 2022; 24:e22. [PMID: 35659383 DOI: 10.1017/erm.2022.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Omics and Male Infertility: Highlighting the Application of Transcriptomic Data. Life (Basel) 2022; 12:life12020280. [PMID: 35207567 PMCID: PMC8875138 DOI: 10.3390/life12020280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Male infertility is a multifaceted disorder affecting approximately 50% of male partners in infertile couples. Over the years, male infertility has been diagnosed mainly through semen analysis, hormone evaluations, medical records and physical examinations, which of course are fundamental, but yet inefficient, because 30% of male infertility cases remain idiopathic. This dilemmatic status of the unknown needs to be addressed with more sophisticated and result-driven technologies and/or techniques. Genetic alterations have been linked with male infertility, thereby unveiling the practicality of investigating this disorder from the “omics” perspective. Omics aims at analyzing the structure and functions of a whole constituent of a given biological function at different levels, including the molecular gene level (genomics), transcript level (transcriptomics), protein level (proteomics) and metabolites level (metabolomics). In the current study, an overview of the four branches of omics and their roles in male infertility are briefly discussed; the potential usefulness of assessing transcriptomic data to understand this pathology is also elucidated. After assessing the publicly obtainable transcriptomic data for datasets on male infertility, a total of 1385 datasets were retrieved, of which 10 datasets met the inclusion criteria and were used for further analysis. These datasets were classified into groups according to the disease or cause of male infertility. The groups include non-obstructive azoospermia (NOA), obstructive azoospermia (OA), non-obstructive and obstructive azoospermia (NOA and OA), spermatogenic dysfunction, sperm dysfunction, and Y chromosome microdeletion. Findings revealed that 8 genes (LDHC, PDHA2, TNP1, TNP2, ODF1, ODF2, SPINK2, PCDHB3) were commonly differentially expressed between all disease groups. Likewise, 56 genes were common between NOA versus NOA and OA (ADAD1, BANF2, BCL2L14, C12orf50, C20orf173, C22orf23, C6orf99, C9orf131, C9orf24, CABS1, CAPZA3, CCDC187, CCDC54, CDKN3, CEP170, CFAP206, CRISP2, CT83, CXorf65, FAM209A, FAM71F1, FAM81B, GALNTL5, GTSF1, H1FNT, HEMGN, HMGB4, KIF2B, LDHC, LOC441601, LYZL2, ODF1, ODF2, PCDHB3, PDHA2, PGK2, PIH1D2, PLCZ1, PROCA1, RIMBP3, ROPN1L, SHCBP1L, SMCP, SPATA16, SPATA19, SPINK2, TEX33, TKTL2, TMCO2, TMCO5A, TNP1, TNP2, TSPAN16, TSSK1B, TTLL2, UBQLN3). These genes, particularly the above-mentioned 8 genes, are involved in diverse biological processes such as germ cell development, spermatid development, spermatid differentiation, regulation of proteolysis, spermatogenesis and metabolic processes. Owing to the stage-specific expression of these genes, any mal-expression can ultimately lead to male infertility. Therefore, currently available data on all branches of omics relating to male fertility can be used to identify biomarkers for diagnosing male infertility, which can potentially help in unravelling some idiopathic cases.
Collapse
|
8
|
Caroppo E, Colpi GM. Prediction Models for Successful Sperm Retrieval in Patients with Non-Obstructive Azoospermia Undergoing Microdissection Testicular Sperm Extraction: Is There Any Room for Further Studies? J Clin Med 2021; 10:jcm10235538. [PMID: 34884245 PMCID: PMC8658396 DOI: 10.3390/jcm10235538] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/24/2023] Open
Abstract
Several prediction models for successful sperm retrieval (SSR) in patients with azoospermia due to spermatogenic dysfunction (also termed non-obstructive azoospermia—NOA) have been developed and published in the past years, however their resulting prediction accuracy has never been strong enough to translate their results in the clinical practice. This notwithstanding, the number of prediction models being proposed in this field is growing. We have reviewed the available evidence and found that, although patients with complete AZFc deletion or a history of cryptorchidism may have better probability of SSR compared to those with idiopathic NOA, no clinical or laboratory marker is able to determine whether a patient with NOA should or should not undergo microdissection testicular sperm extraction (mTESE) to have his testicular sperm retrieved. Further research is warranted to confirm the utility of evaluating the expression of noncoding RNAs in the seminal plasma, to individuate patients with NOA with higher probability of SSR.
Collapse
Affiliation(s)
- Ettore Caroppo
- Andrology Outpatients Clinic, Asl Bari, PTA “F Jaia”, Conversano, 70014 Bari, Italy
- Correspondence:
| | | |
Collapse
|
9
|
Rodriguez-Martinez H, Martinez EA, Calvete JJ, Peña Vega FJ, Roca J. Seminal Plasma: Relevant for Fertility? Int J Mol Sci 2021; 22:ijms22094368. [PMID: 33922047 PMCID: PMC8122421 DOI: 10.3390/ijms22094368] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Seminal plasma (SP), the non-cellular component of semen, is a heterogeneous composite fluid built by secretions of the testis, the epididymis and the accessory sexual glands. Its composition, despite species-specific anatomical peculiarities, consistently contains inorganic ions, specific hormones, proteins and peptides, including cytokines and enzymes, cholesterol, DNA and RNA-the latter often protected within epididymis- or prostate-derived extracellular vesicles. It is beyond question that the SP participates in diverse aspects of sperm function pre-fertilization events. The SP also interacts with the various compartments of the tubular genital tract, triggering changes in gene function that prepares for an eventual successful pregnancy; thus, it ultimately modulates fertility. Despite these concepts, it is imperative to remember that SP-free spermatozoa (epididymal or washed ejaculated) are still fertile, so this review shall focus on the differences between the in vivo roles of the SP following semen deposition in the female and those regarding additions of SP on spermatozoa handled for artificial reproduction, including cryopreservation, from artificial insemination to in vitro fertilization. This review attempts, including our own results on model animal species, to critically summarize the current knowledge of the reproductive roles played by SP components, particularly in our own species, which is increasingly affected by infertility. The ultimate goal is to reconcile the delicate balance between the SP molecular concentration and their concerted effects after temporal exposure in vivo. We aim to appraise the functions of the SP components, their relevance as diagnostic biomarkers and their value as eventual additives to refine reproductive strategies, including biotechnologies, in livestock models and humans.
Collapse
Affiliation(s)
- Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
- Correspondence: ; Tel.: +46-132-869-25
| | - Emilio A. Martinez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (E.A.M.); (J.R.)
| | - Juan J. Calvete
- Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, C.S.I.C., 46010 Valencia, Spain;
| | - Fernando J. Peña Vega
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, 10003 Caceres, Spain;
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, International Excellence Campus for Higher Education and Research “Campus Mare Nostrum”, University of Murcia, 30100 Murcia, Spain; (E.A.M.); (J.R.)
| |
Collapse
|
10
|
Omics in Seminal Plasma: An Effective Strategy for Predicting Sperm Retrieval Outcome in Non-obstructive Azoospermia. Mol Diagn Ther 2021; 25:315-325. [PMID: 33860468 DOI: 10.1007/s40291-021-00524-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Non-obstructive azoospermia (NOA) is a severe form of male factor infertility resulting from the impairment of sperm production. Surgical sperm retrieval followed by intracytoplasmic sperm injection (ICSI) is the only alternative for NOA patients to have their own genetic children. Nevertheless, due to an approximately 50% chance of success, harvesting sperm from these patients remains challenging. Thus, discovering noninvasive biomarkers, which are able to reliably predict the probability of sperm acquisition, not only can eliminate the risk of surgery but also can lower the costs of NOA diagnosis and treatment. Seminal plasma is the non-cellular and liquid portion of the ejaculate that consists of the secretions originating from testes and male accessory glands. In past years, a wide range of biomolecules including DNAs, RNAs, proteins, and metabolic intermediates have been identified by omics techniques in human seminal plasma. The current review aimed to briefly describe genomic, transcriptomic, proteomic, and metabolomic profiles of human seminal plasma in an attempt to introduce potential candidate noninvasive biomarkers for sperm-retrieval success in men with NOA.
Collapse
|
11
|
Fang Y, Liu D, Yang Y, Zhang H, Wu H, Jiang H, Zhao L, Zhang Z. Altered gene expression profiles of testicular tissues from azoospermic patients with maturation arrest. Andrologia 2020; 52:e13812. [PMID: 32862460 DOI: 10.1111/and.13812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 11/30/2022] Open
Abstract
Maturation arrest is a common cause of male infertility which has caused worldwide concern, and its pathophysiological process remains further elucidation. Our study aimed to identify genetic characteristics of maturation arrest by comparing gene expression between maturation arrest and normal samples using microarray technology. A total of 6,373 genes were identified differentially expressed (p < .05, fold change > 2.0 or <-2.0) and 1,594 genes were selected as statistically significant after Bonferroni correction, including 419 up-regulated and 1,175 down-regulated genes. Microarray data were validated by quantitative reverse transcriptase-polymerase chain reaction. Bioinformation analysis was performed to explore genetic function of statistically significant genes. Gene Ontology results showed the statistically significant genes enriched in sexual reproduction, spermatogenesis and male gamete generation. Reactome pathway analysis highlighted the olfactory signalling pathway, fertilisation, developmental biology, etc. One module and eight hub genes were found to be involved in ubiquitin-mediated proteolysis and may affect as indicators of spermatogenic process through protein-protein interaction analysis. Our study provided a comprehensive genetic characteristic of differential expressed genes in testicular tissues from maturation arrest patients and speculated several genes as potential indicators of disease.
Collapse
Affiliation(s)
- YanMing Fang
- Department of Urology, Peking University Third Hospital, Beijing, China.,Department of Andrology, Peking University Third Hospital, Beijing, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing, China
| | - DeFeng Liu
- Department of Urology, Peking University Third Hospital, Beijing, China.,Department of Andrology, Peking University Third Hospital, Beijing, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing, China
| | - Yuzhuo Yang
- Department of Urology, Peking University Third Hospital, Beijing, China.,Department of Andrology, Peking University Third Hospital, Beijing, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing, China
| | - Haitao Zhang
- Department of Urology, Peking University Third Hospital, Beijing, China.,Department of Andrology, Peking University Third Hospital, Beijing, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing, China
| | - Han Wu
- Department of Urology, Peking University Third Hospital, Beijing, China.,Department of Andrology, Peking University Third Hospital, Beijing, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Beijing, China.,Department of Andrology, Peking University Third Hospital, Beijing, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing, China
| | - Lianming Zhao
- Department of Urology, Peking University Third Hospital, Beijing, China.,Department of Andrology, Peking University Third Hospital, Beijing, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing, China
| | - Zhe Zhang
- Department of Urology, Peking University Third Hospital, Beijing, China.,Department of Andrology, Peking University Third Hospital, Beijing, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing, China
| |
Collapse
|
12
|
Lv MQ, Zhou L, Ge P, Li YX, Zhang J, Zhou DX. Over-expression of hsa_circ_0000116 in patients with non-obstructive azoospermia and its predictive value in testicular sperm retrieval. Andrology 2020; 8:1834-1843. [PMID: 32735753 DOI: 10.1111/andr.12874] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Non-obstructive azoospermia (NOA), identified in approximately 10% of infertile males, is a multifactorial disease whose molecular mechanisms remain unknown. OBJECTIVES The aim of this study was to identify the role of hsa_circ_0000116 in NOA and illustrate its predictive value in testicular sperm retrieval. MATERIALS AND METHODS The study included 78 individuals, 58 with NOA and 20 with obstructive azoospermia (OA). Serum hormones including testosterone (T), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), and estradiol II (E2) were measured. Testicular histopathology was analyzed by at least two pathologists. The expression of hsa_circ_0000116 in testicular tissue samples was detected using real-time PCR, and the circRNA-miRNA-mRNA networks were predicted using bioinformatics analysis. RESULTS Our study illustrated that the expression of hsa_circ_0000116 was significantly higher in testicular tissue samples of NOA patients than in that of OA patients. Moreover, hsa_circ_0000116 was aberrantly expressed in three different pathological types of NOA: It was significantly up-regulated in patients with Sertoli cell-only syndrome (SCOS) when compared to patients with hypospermatogenesis (HS). In addition, the expression of hsa_circ_0000116 was negatively correlated with Johnsen score, while it was positively correlated with serum FSH level. A multivariate logistic regression model demonstrated that a high level of hsa_circ_0000116 was associated with a low rate of successful testicular sperm retrieval. Bioinformatics analysis and verification experiments showed that one of the most probable potential target miRNA for hsa_circ_0000116 was hsa-miR-449a. Further analysis indicated that hsa_circ_0000116 may be affecting the fertility function through a hsa_circ_0000116-miR-449-autophagy-related competing endogenous RNA (ceRNA) network. DISCUSSION AND CONCLUSION We report for the first time that hsa_circ_0000116 may play pivotal roles in regulating spermatogenesis and may also be a potential biomarker for the diagnosis and treatment of NOA, while acting as a predictive tool for the rate of successful testicular sperm retrieval in NOA patients.
Collapse
Affiliation(s)
- Mo-Qi Lv
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Liang Zhou
- Reproductive Center Medicine, Maternal and Child Care Hospital of Shaanxi Province, Xi'an, China
| | - Pan Ge
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Yi-Xin Li
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Jian Zhang
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Dang-Xia Zhou
- Department of Pathology, Medical School, Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, China
| |
Collapse
|
13
|
Colpi GM, Caroppo E. Re: predictors of surgical sperm retrieval in non-obstructive azoospermia: summary of current literature. Int Urol Nephrol 2020; 52:2039-2041. [DOI: 10.1007/s11255-020-02535-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
|