1
|
Etebari F, Rezvani ME, Khosravi S, Izadi M, Mangoli E. The effect of in vitro use of FSH on sperm parameters, DNA integrity, and mitochondrial membrane potential in asthenozoospermic men. Int Urol Nephrol 2025:10.1007/s11255-025-04540-z. [PMID: 40338505 DOI: 10.1007/s11255-025-04540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/18/2025] [Indexed: 05/09/2025]
Abstract
Sperm motility is a key indicator of male fertility. Decreased motility, or asthenozoospermia, highlights the need for understanding male fertility challenges. This study was designed to evaluate the effects of in vitro use of follicle-stimulating hormone (FSH) on various sperm parameters, sperm DNA integrity, and mitochondrial membrane potential. Semen samples were obtained from 20 asthenozoospermic men. Each sample was divided into control and case groups. In the case group, samples were incubated with FSH at 30 mIU/mL for 1 h, while in the control group, the samples were incubated for 1 h without treatment. Sperm parameters, DNA fragmentation, and mitochondrial membrane potential were assessed in the two groups based on WHO 2021 criteria. Progressive motility and rapid progressive motility were higher in the case group compared to the control. However, FSH did not have a significant effect on morphology, viability, DNA fragmentation, or mitochondrial membrane potential in either group. In conclusion, FSH effectively enhanced sperm motility without compromising sperm DNA integrity or mitochondrial membrane potential (MMP). Therefore, FSH can be recommended as a safe and effective option for sperm selection in patients with asthenozoospermia.
Collapse
Affiliation(s)
- Faezeh Etebari
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ebrahim Rezvani
- Department of Physiology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sahar Khosravi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Esmat Mangoli
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
2
|
Borowicz KK, Jach ME. Astragalus Membranaceus-Can It Delay Cellular Aging? Nutrients 2025; 17:1299. [PMID: 40284164 PMCID: PMC12029721 DOI: 10.3390/nu17081299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 03/31/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Astragalus membranaceus, a plant that has been utilized in traditional Chinese medicine for centuries, is widely regarded as one of the most valuable herbs in this medicinal tradition. It is commonly referred to as the "yellow leader", a designation that stems from the yellow hue of its most significant organ, the root, and its adaptogenic properties. The plant Astragalus is renowned for its abundance of active components, including polysaccharides, flavonoids, saponins, and an array of trace elements. It has been demonstrated that the administration of Astragalus can prevent cellular aging, owing to its diverse range of actions that provide protection to the body from both external and internal factors. The antioxidant, immunomodulatory, anti-inflammatory, and regenerative properties of this plant contribute to the maintenance of good skin condition, preventing atrophy of subcutaneous tissue and degeneration of facial bones. Systemic actions encompass the maintenance of function and protection of the cardiovascular, nervous, respiratory, digestive, excretory, immune, and endocrine systems. This article reviews the composition of Astragalus membranaceus and the beneficial effects of its root extract and its active substances on the whole body, with a particular focus on the anti-aging effects on the skin.
Collapse
Affiliation(s)
- Kinga K. Borowicz
- Independent Experimental Neuropathophysiology Unit, Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland
| | - Monika E. Jach
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, Konstantynów Street 1I, 20-708 Lublin, Poland;
| |
Collapse
|
3
|
Wang H, Deng L, Huang G. Ultrasound-assisted extraction and value of active substances in Muxu. ULTRASONICS SONOCHEMISTRY 2025; 113:107220. [PMID: 39756197 PMCID: PMC11758399 DOI: 10.1016/j.ultsonch.2024.107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
This article reviews the latest research progress on ultrasound-assisted extraction of active substances from Muxu, including polysaccharides, polyphenols, leaf proteins, anthocyanins, total flavonoids, and total saponins, in order to provide theoretical references for the extraction of active substances from Muxu. At the same time, its medicinal value, feeding value, ecological value, edible value, and ornamental value were analyzed and summarized. Flavonoids, saponins, and polysaccharides in the bioactive substances of Muxu have good effects on improving animal productivity, enhancing immune function, and improving animal health. Especially when applied to broiler chickens and laying hens, it can improve the quality of meat and eggs and increase the economic benefits of breeding. In addition, there are other beneficial substances in Muxu, such as natural pigments, coumarins, leaf protein, and chlorogenic acid, which also play an important role in livestock and poultry production and health status.
Collapse
Affiliation(s)
- Huilin Wang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, PR China
| | - Laiqing Deng
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, PR China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
4
|
Eissa MA, Farag MA, Saleh DO, Shabana ME, Abou El-Ezz RF, El-Kersh DM. Metabolome classification of Tongkat Ali (Eurycoma longifolia jack) and its commercial products via UHPLC-QTOF-MS-MS and its protective effect against 5-flurouracil-Induced testicular toxicity in male rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118904. [PMID: 39369924 DOI: 10.1016/j.jep.2024.118904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tongkat Ali (Eurycoma longifolia Jack) is a chief herbal medicine that is well recognized for its aphrodisiac properties, available in various commercial products worldwide. AIM OF THE STUDY The aim of this work is to identify the different classes of secondary metabolites present in Tongkat Ali commercial products versus authenticated root, and to assess its root extract mitigative effect against 5-flurouracil (5FU)-induced testicular toxicity. MATERIALS AND METHODS High-resolution UHPLC-QTOF-MS/MS metabolites analysis was utilized on the ethanolic Tongkat Ali extract (TAE) parallel to three Mlayasian commercial products, followed by a multivariate data analysis to understand the variability among UHPLC-MS metabolites datasets. Adult male rats were treated with 5-Fluorouracil (5FU) ± Tongkat Ali extract. Semen parameters, serum testosterone, LH, and FSH, and testicular oxidative stress biomarkers like malondialdehyde (MDA) levels, Nuclear factor kappa B (NF-κB) and erythroid 2-related factor 2 (Nrf2) were analyzed. RESULTS The main categories of secondary metabolites identified through UHPLC-MS/MS profiling were quassinoids, alkaloids, fatty acids, lignans and coumarins. Long Jack Plus® ELP-2 clustered alongside authentic roots ELR on the negative side, while Naturelle® ELP-1 and Nu-Prep-LEAKI® ELP-3 were positioned on the opposite side. The OPLS-DA model was used to identify markers for preparations from authentic roots, with commercial products enriching in ailanthone epoxide. In vivo results showed that 5FU reduced sperm parameters by 42%, while TAE improved sperm quality by 35-43% and 58-74% at dose of 400 and 800 mg/kg, respectively. Testosterone, reduced by 74% with 5FU, increased 2.3- to 3.2-fold with TAE. TAE also reduced MDA by 31-62%, NF-κB by 32-55% and increased Nrf2 by 1-2 folds. CONCLUSION The manuscript presents a comparative metabolomics study and in vivo investigation into the potential of Tongkat Ali root to improve testicular function in male rats intoxicated with 5FU, an area not previously explored. Further research is required to understand the mechanisms.
Collapse
Affiliation(s)
- Manar A Eissa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Merit University, New Sohag, 82755, Egypt.
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Dalia O Saleh
- Pharmacology Department, National Research Centre, Giza, 12622, Egypt
| | - Marwa E Shabana
- Pathology Department, National Research Centre, Giza, 12622, Egypt
| | - Rania F Abou El-Ezz
- Pharmacognosy Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Dina M El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt, Cairo 11837, Egypt
| |
Collapse
|
5
|
Jin Y, Dang H, Li M. The Essential Role of Traditional Chinese Medicine Compounds in Regulating Recurrent Spontaneous Abortion by Inhibiting Oxidative Stress. Endocr Metab Immune Disord Drug Targets 2025; 25:353-363. [PMID: 39082177 DOI: 10.2174/0118715303302424240724070133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 04/09/2025]
Abstract
Due to the lack of accurate registration of RSA and miscarriages, many early miscarriages are overlooked and not diagnosed or treated promptly in hospitals. This uncertainty in pathogenesis prevents clinicians from taking targeted therapeutic measures, leading to unsatisfactory treatment outcomes and placing a heavy burden on the patient's family and the healthcare system. Oxidative stress is present in embryonic development and affects the regulation of oxidative stress in pregnancy and the reproductive endocrine system. Oxidative stress injury is a significant pathogenesis of RSA, so improving the body's ability to resist oxidative stress injury is crucial in treating RSA. For patients with RSA, there is an urgent need for safe, efficient, and cost-effective anti-oxidative stress drugs, and there is growing evidence that treatment with Traditional Chinese medicine (TCM) can improve pregnancy success with fewer adverse effects. Many active ingredients for treating RSA are mainly derived from certain components of TCM, including flavonoids, phenols, and other compounds, which have been shown to treat RSA directly or indirectly by targeting anti-oxidative stress-related pathways. This article summarizes the experimental and clinical evidence of several common TCM compounds for treating RSA. It provides ideas and perspectives for further exploring the pathogenesis of RSA and TCM compounds for treating RSA.
Collapse
Affiliation(s)
- Yi Jin
- Department of Renal Transplantation, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huimin Dang
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Meihe Li
- Department of Renal Transplantation, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
6
|
da Silva AAS, de Oliveira SA, Battistone MA, Hinton BT, Cerri PS, Sasso-Cerri E. hACE2 upregulation and participation of macrophages and clear cells in the immune response of epididymis to SARS-CoV-2 in K18-hACE2 mice. Andrology 2024. [PMID: 39363435 DOI: 10.1111/andr.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/11/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus caused the coronavirus disease 2019 pandemic, and the prevalence of deaths among men is higher than among women. The epididymis, divided into caput, corpus, and cauda, shows a region-specific immunity. The K18-hACE2 mouse expresses human angiotensin-converting enzyme 2 (hACE2), the receptor that allows SARS-CoV-2 infection. However, studies using this transgenic mouse to evaluate the impact of this viral infection in epididymis have not yet been performed. OBJECTIVES We evaluated the expression of hACE2 in the epididymis of SARS-CoV-2-infected K18-hACE2 mice, and assessed the epididymal immune response, focusing on F4/80+ mononuclear phagocytes and tumor necrosis factor-alpha expression. MATERIALS AND METHODS The following analyses were performed in the epididymal sections of infected mice: epithelial height and duct diameter, birefringent collagen, Terminal deoxynucleotidyl Transferase-mediated dUTP Nick End Labelling, immunoreactions for detection of hACE2, spike, FGF, V-ATPase, F4/80, tumor necrosis factor-alpha, and iNOS. Viral particles were identified under electron microscopy. hACE2, Rigi, Tgfb1 and Tnfa expression were also evaluated by real-time quantitative polymerase chain reaction. RESULTS All epididymal regions expressed hACE2, which increased in all epididymal regions in the infected mice. However, the caput appeared to be the most infected region. Despite this, the caput region showed minimal changes while the cauda showed significant epithelial changes associated with increased iNOS immunoexpression. The F4/80+ mononuclear phagocyte area increased significantly in both stroma and epithelium. In addition to the epithelial and stromal mononuclear phagocytes, tumor necrosis factor-alpha was also detected in clear cells, whose cytoplasm showed a significant increase of this cytokine in the infected animals. DISCUSSION AND CONCLUSION The K18-hACE2 mouse is a useful model for evaluating the impact of SARS-CoV-2 infection in the epididymis. The infection induced hACE2 upregulation, favoring the virulence in the epididymis. The epididymal regions responded differentially to infection, and the activation of F4/80+ mononuclear phagocytes associated with the increased tumor necrosis factor-alpha immunolabeling in clear cells indicates a role of clear cells/mononuclear phagocytes immunoregulatory mechanisms in the epididymal immune response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | - Maria Agustina Battistone
- Department of Medicine, Program in Membrane Biology, Nephrology Division, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Barry Thomas Hinton
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Paulo Sérgio Cerri
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University (Unesp) School of Dentistry, Araraquara, Brazil
| | - Estela Sasso-Cerri
- Department of Morphology, Genetics, Orthodontics and Pediatric Dentistry, São Paulo State University (Unesp) School of Dentistry, Araraquara, Brazil
| |
Collapse
|
7
|
Pal D, Mitra D, Hazra S, Ghosh D. Protective Effect of Aloe vera (L.) on Diabetes-Induced Oxidative Stress Linked Spermiological Co-Morbidity in Human and Rat: An In-Vitro Analysis. Reprod Sci 2024; 31:2685-2699. [PMID: 38844725 DOI: 10.1007/s43032-024-01605-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/23/2024] [Indexed: 09/14/2024]
Abstract
Diabetes linked reproductive complications are rising problems nowadays. The study focused on the protective efficacy of Aloe vera (L.) on sperm cell damage in an oxidative stress milieu encumbered by a chronic diabetes in human and streptozotocin treated Wistar rat (Rattus norvegicus). Spermatozoa from rat's epididymal washing, and human semen after 3-4 days of abstinence of mating or masturbation were collected from control and diabetes groups. Spermatozoa of human and rat were incubated for 1 or 2 h at 370C in an in-vitro medium separately and considered as normo-glycemic control and diabetes sub-groups. Dose of 1 or, 2 or, 4 mg/ml of Aloe vera (L.) hydro-ethanolic (40:60) extract (AVHE) was given to diabetes samples, considered as sub-sub-group for assessing its protective effect on spermiological and oxidative stress parameters. The motility, viability, plasma membrane integrity, nuclear chromatin decondensation for DNA fragmentation, acrosome cap status, and antioxidative status of human and rat spermatozoa were decreased whereas spermatozoal apoptosis was elevated significantly (p < 0.05), noted by TUNEL assay in diabetes samples compared to the duration-matched control group. Exposure of AVHE to diabetes samples resulted significant rectification (p < 0.05) in the said parameters than the unexposed diabetes group. In control group, AVHE exposure has significant protective effect from spermiological deterioration compared to unexposed control group. Identification of major phytomolecules in AVHE was done by LC-MS study. Diabetes-induced oxidative stress-mediated spermatozoal injuries can be protected by AVHE extract, raise the possibility for potentiating sperm of human for increasing the success rate of in-vitro fertilization-blastocyst implantation.
Collapse
Affiliation(s)
- Dibya Pal
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Paschim Midnapore, Midnapore, West Bengal, India
| | - Dipanwita Mitra
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Paschim Midnapore, Midnapore, West Bengal, India
| | - Sukriti Hazra
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Paschim Midnapore, Midnapore, West Bengal, India
| | - Debidas Ghosh
- Molecular Medicine, Nutrigenomics and Public Health Research Laboratory, Department of Bio-Medical Laboratory Science and Management, Vidyasagar University, Paschim Midnapore, Midnapore, West Bengal, India.
| |
Collapse
|
8
|
Babenko AN, Krepkova LV, Borovkova MV, Kuzina OS, Mkhitarov VA, Job KM, Enioutina EY. Effects of Chicory ( Cichorium intybus L.) Extract on Male Rat Reproductive System, Pregnancy and Offspring Development. Pharmaceuticals (Basel) 2024; 17:700. [PMID: 38931367 PMCID: PMC11206608 DOI: 10.3390/ph17060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND We recently reported that extract prepared from the aerial part of Cichorium intybus L. (CE) possesses hepatoprotective, hypolipidemic, and hypoglycemic properties. This paper focuses on the effects of CE on the male rat reproductive system and the effects of this treatment on pregnancy and offspring development. METHODS The experimental male rats received 100 mg/kg bw/day, 500 mg/kg bw/day, and 1000 mg/kg bw/day of CE orally for 60 consecutive days. Rats that received tap water were used as controls. After treatment, we evaluated the effects of CE on the male reproductive system, fertility, and offspring development. RESULTS For CE-treated male rats, there was a significant increase in the (1) diameter of seminiferous tubules, (2) spermatogenic index, (3) number of total and motile spermatozoa, and (4) testosterone levels. Additionally, there was a decrease in the pre- and post-implantation death of the embryos in the CE-treated group. All pups born from CE-treated males demonstrated normal development. CONCLUSIONS CE treatment significantly improved male reproductive functions. No adverse effects on pregnancy and offspring development were observed when males were treated with CE. Further clinical evaluation of CE should lead to the development of a safe and effective phytodrug for treating male infertility.
Collapse
Affiliation(s)
- Alexandra N. Babenko
- All-Russian Institute of Medicinal and Aromatic Plants (VILAR), Moscow 113628, Russia; (A.N.B.); (L.V.K.); (M.V.B.); (O.S.K.)
| | - Lubov V. Krepkova
- All-Russian Institute of Medicinal and Aromatic Plants (VILAR), Moscow 113628, Russia; (A.N.B.); (L.V.K.); (M.V.B.); (O.S.K.)
| | - Marina V. Borovkova
- All-Russian Institute of Medicinal and Aromatic Plants (VILAR), Moscow 113628, Russia; (A.N.B.); (L.V.K.); (M.V.B.); (O.S.K.)
| | - Olga S. Kuzina
- All-Russian Institute of Medicinal and Aromatic Plants (VILAR), Moscow 113628, Russia; (A.N.B.); (L.V.K.); (M.V.B.); (O.S.K.)
| | | | - Kathleen M. Job
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT 84108, USA;
| | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT 84108, USA;
| |
Collapse
|
9
|
Szałabska-Rąpała K, Zych M, Borymska W, Londzin P, Dudek S, Kaczmarczyk-Żebrowska I. Beneficial effect of honokiol and magnolol on polyol pathway and oxidative stress parameters in the testes of diabetic rats. Biomed Pharmacother 2024; 172:116265. [PMID: 38364735 DOI: 10.1016/j.biopha.2024.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
In diabetes hyperglycemia, excessive production of free radicals and present oxidative stress lead to many complications in the body, including male reproductive system disorders. To prevent the development of diabetic complications in the testes resulting from them, it seems beneficial to include compounds considered as natural antioxidants. Honokiol and magnolol are neolignans obtained from magnolia bark, which possess proven antioxidant properties. The aim of this study was to evaluate the effect of honokiol and magnolol on the parameters of oxidative stress, polyol pathway and glycation products in the testes as well as on selected biochemical parameters in the blood serum of rats with type 2 diabetes. The study was conducted on mature male Wistar rats with high fat diet and streptozotocin-induced type 2 diabetes. Neolignans-treated rats received honokiol or magnolol orally at the doses of 5 or 25 mg/kg, respectively, for 4 weeks. Parameters related to glucose and lipid homeostasis, basic serological parameters and sex hormones level in the serum as well as polyol pathway parameters, antioxidant enzyme activity, endogenous antioxidants level, sumaric parameters for oxidative stress and oxidative damage in the testes were estimated. Oral administration of honokiol and magnolol turned out to be beneficial in combating the effects of oxidative stess in the testes, but showed no favorable effects on serum biochemical parameters. Additionally, magnolol compared to honokiol revealed more advantageous impact indicating the reversal of the effects of diabetic complications in the male reproductive system and counteracted oxidative stress damages and polyol pathway disorders in the testes.
Collapse
Affiliation(s)
- Katarzyna Szałabska-Rąpała
- Doctoral School of the Medical University of Silesia in Katowice, Discipline of Pharmaceutical Sciences, Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland.
| | - Maria Zych
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Weronika Borymska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Piotr Londzin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Sławomir Dudek
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| | - Ilona Kaczmarczyk-Żebrowska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Jagiellońska 4, Sosnowiec 41-200, Poland
| |
Collapse
|
10
|
Saeed M, Munawar M, Bi JB, Ahmed S, Ahmad MZ, Kamboh AA, Arain MA, Naveed M, Chen H. Promising phytopharmacology, nutritional potential, health benefits, and traditional usage of Tribulus terrestris L. herb. Heliyon 2024; 10:e25549. [PMID: 38375303 PMCID: PMC10875386 DOI: 10.1016/j.heliyon.2024.e25549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/21/2024] Open
Abstract
Traditional medicines are becoming more popular as people become more aware of the dangers of synthetic pharmaceuticals. Tribulus terrestris L., (Gokharu) an annual herbaceous plant, has been extensively utilized by herbalists for numerous medicinal purposes. T. terrestris has been studied for its multiple therapeutic effects, including immunomodulatory, aphrodisiac, anti-urolithic, absorption enhancer, cardioprotective, antidiabetic, anti-inflammatory, hypolipidemic, neuro-protective, anticancer, and analgesic properties. Saponins and flavonoids are two examples of beneficial substances that have recently been found in T. terrestris. These chemicals are very important for a variety of therapeutic effects. Numerous studies have shown that T. terrestris products and various parts may have antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, testosterone-boosting, and liver protective effects. According to the published evidence, T. terrestris boosts testosterone secretion, regulates blood pressure, and protects the human body against injuries. The cardiovascular, reproductive, and urinary systems are all severely impacted. Due to its potent bioactive compounds, the literature evaluated from a wide range of sources including books, reports, PubMed, ScienceDirect, Wiley, Springer, and other databases demonstrated the extraordinary potential to treat numerous human and animal ailments. Our review is different from other published articles because we explored its importance for humans and especially in veterinary like poultry health. It could also be used as an aphrodisiac to treat different fertility-related disorders in human and animal science. More research into the pharmacodynamics of herbs like T. terrestris is needed so that it can be used in a wider variety of nutraceutical products for humans and poultry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Mahzaib Munawar
- The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Jannat Bi Bi
- Department of Physical Education, Beijing Sports University, Beijing, China
| | - Shabbir Ahmed
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | | | - Asghar Ali Kamboh
- Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Pakistan
| | - Muhammad Naveed
- Department of Physiology and Pharmacology, College of Medicine, The University of Toledo, Toledo, OH, USA
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Simón L, Mariotti-Celis MS. Bioactive compounds as potential alternative treatments to prevent cancer therapy-induced male infertility. Front Endocrinol (Lausanne) 2024; 14:1293780. [PMID: 38303979 PMCID: PMC10831851 DOI: 10.3389/fendo.2023.1293780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024] Open
Abstract
About 8-12% of couples experience infertility, with male infertility being the cause in 50% of cases. Several congenital and acquired conditions, including chronic diseases and their treatments, can contribute to male infertility. Prostate cancer incidence increases annually by roughly 3%, leading to an increment in cancer treatments that have adverse effects on male fertility. To preserve male fertility post-cancer survival, conventional cancer treatments use sperm cryopreservation and hormone stimulation. However, these techniques are invasive, expensive, and unsuitable in prepubertal patients lacking mature sperm cells. Alternatively, nutritional therapies enriched with bioactive compounds are highlighted as non-invasive approaches to prevent male infertility that are easily implementable and cost-effective. In fact, curcumin and resveratrol are two examples of bioactive compounds with chemo-preventive effects at the testicular level. In this article, we summarize and discuss the literature regarding bioactive compounds and their mechanisms in preventing cancer treatment-induced male infertility. This information may lead to novel opportunities for future interventions.
Collapse
Affiliation(s)
- Layla Simón
- Nutrition and Dietetic School, Facultad de Medicina, Universidad Finis Terrae, Santiago, Chile
| | | |
Collapse
|
12
|
Rotimi DE, Ojo OA, Adeyemi OS. Atrazine exposure caused oxidative stress in male rats and inhibited brain-pituitary-testicular functions. J Biochem Mol Toxicol 2024; 38:e23579. [PMID: 37926918 DOI: 10.1002/jbt.23579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/12/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Exposure to the herbicide atrazine has been shown to have deleterious effects on human and animal reproduction. To determine whether atrazine influences the brain-pituitary-testicular axis directly or indirectly, the present study examined the toxic effects of atrazine on fertility potential by assessing gonadal hormones, testicular function indices, sperm quality, and oxido-inflammatory markers in rats. Twelve animals were grouped into two groups; control and atrazine. The control group received oral administration of olive oil (2 mL/kg), while the atrazine group received 120 mg/kg of atrazine. Treatments were daily and lasted for 7 days. Upon treatment cessation, rats were necropsied for biochemical and histopathological analyses. The biochemical function indices in the rat brain, testis, and epididymis decreased significantly in the atrazine group. Atrazine exposure led to decreases in gonadal hormonal concentrations, semen quality parameters, and testicular function indices compared with the control. Furthermore, there was a marked increase in oxidative stress and inflammatory markers as well as degeneration of the histo-architecture in atrazine-treated rats. Overall, atrazine exposure impaired sperm quality, led to increased inflammation and oxidative stress, and decreased the activity of the brain-pituitary-testicular axis via endocrine disruption.
Collapse
Affiliation(s)
- Damilare E Rotimi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu Aran, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
| | - Oluwafemi A Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Bowen University, Iwo, Nigeria
| | - Oluyomi S Adeyemi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu Aran, Nigeria
- Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
- Department of Biochemistry, Laboratory of Medicinal Biochemistry & Biochemical Toxicology, Bowen University, Iwo, Nigeria
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
| |
Collapse
|
13
|
Annisa S, Wurlina, Srianto P, Kuncorojakti S. Effect of Psidium guajava Juice on The Seminiferous Tubules Diameter and Epithelium Thickness in Rattus norvegicus Exposed by Lead Acetate. JOURNAL OF EXPERIMENTAL BIOLOGY AND AGRICULTURAL SCIENCES 2023; 11:989-996. [DOI: 10.18006/2023.11(6).989.996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Lead is one of humans and animals' most common and hazardous heavy metals. This study aimed to investigate the effect of white guava (Psidium guajava) fruit juice on the seminiferous tubule diameter and epithelium thickness in rats (Rattus norvegicus) exposed to lead acetate. The research design was a completely randomized design (CRD). A total of 25 male rats with an average weight of 200 grams were used for the study, divided into 5 treatment groups, each consisting of 5 rats. The treatments were as follows: the control group (C) was given distilled water orally; the T0 group was induced with lead acetate (50 mg/Kg BW) orally; the T1, T2, T3 groups were induced with lead acetate (50 mg/Kg BW) and then given 25%, 50%, and 100% concentration of white guava fruit juice, respectively. All the treatments were conducted for 14 days. The histopathology slides of the testis were made with HE staining, and the seminiferous tubule diameter and epithelium thickness were measured. The data were analyzed using One Way ANOVA and Duncan test (p<0.05). The results showed that the control group (C) which was given distilled water only had a seminiferous tubule diameter and epithelium thickness of 336.24±23.32 µm and 66.46±4.39 µm, respectively. The T0 group which was induced with lead acetate only showed a reduction in the diameter and epithelium thickness of seminiferous tubules (243.38±49.35 µm and 44.08±14.45 µm). The members of the T1, T2 and T3 groups showed positive effects on the diameter (323.49±22.82 µm; 314.41±13.04 µm; 325.04±16.88 µm, respectively) and epithelium thickness (56.36±3.36 µm; 60.50±3.81 µm; 66.744±9.50 µm, respectively). There was no significant difference reported between each group. The administration of guava juice to rats induced with lead acetate can positively affect the diameter and epithelium thickness of seminiferous tubules.
Collapse
|
14
|
Dossou-Agoin GB, Sangaré-Oumar MM, Sacramento TI, Sindété M, Hougbénou-Houngla EJ, Tossavi ND, Azonbakin S, Gbankoto A. Acute and Repeated Dose 28-Day Oral Toxicity Study of the Aqueous Extracts from the Leafy Stem and Fruit of Pedalium murex D.Royen EX.L in Wistar Rats. J Toxicol 2023; 2023:2962905. [PMID: 37520119 PMCID: PMC10382242 DOI: 10.1155/2023/2962905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/10/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
Background Pedalium murex (P. murex) is used in folk medicine for treatment of male infertility. However, scientific data on its safety are limited. Objective This study was carried out to assess the acute and repeated dose 28-day oral toxicity of the aqueous extracts from P. murex leafy stem and fruit in Wistar rats. Methods The acute toxicity test was performed according to the line 423 of the Organization for Economic Cooperation and Development (OECD) guidelines. The rats were randomly divided into three groups (n = 3). The control group received distilled water, while the experimental groups were given at a single dose, 5000 mg/kg of each extract. The repeated dose 28-day oral toxicity was performed according to the line 407 of the OECD guidelines. 35 rats divided into 7 groups of 5 male rats each were daily treated for 28 days with each extract at 200 mg/kg, 400 mg/kg, and 800 mg/kg, respectively. The in-life parameters were recorded during the follow-up. At the end of this study, organ weights, hematology, biochemistry, and histology parameters were analyzed. Results In the acute oral toxicity test, there was no morbidity or mortality related to the treatments. Both extracts belong therefore to category 5 of the globally harmonized system (GHS) of classification. In the repeated dose 28-day oral toxicity test, both extracts did not alter animal's behavior. However, both extract administration led to proteinuria and renal damages. Conclusion P. murex leafy stem and fruit aqueous extracts exhibited potential nephrotoxicity. Therefore, care should be taken when they are used over an extended period.
Collapse
Affiliation(s)
- Gérard Bessan Dossou-Agoin
- Experimental Physiology and Pharmacology Laboratory, Faculty of Sciences and Technology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Maxime Machioud Sangaré-Oumar
- Experimental Physiology and Pharmacology Laboratory, Faculty of Sciences and Technology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | | | - Mariette Sindété
- Experimental Physiology and Pharmacology Laboratory, Faculty of Sciences and Technology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Egnon Jacques Hougbénou-Houngla
- Experimental Physiology and Pharmacology Laboratory, Faculty of Sciences and Technology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Nounagnon Darius Tossavi
- Experimental Physiology and Pharmacology Laboratory, Faculty of Sciences and Technology, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Simon Azonbakin
- Histology, Biology of Reproduction, Cytogenetics and Medical Genetics Laboratory, Faculty of Health Sciences, University of Abomey-Calavi, Abomey-Calavi, Benin
| | - Adam Gbankoto
- Experimental Physiology and Pharmacology Laboratory, Faculty of Sciences and Technology, University of Abomey-Calavi, Abomey-Calavi, Benin
| |
Collapse
|
15
|
Liao J, Zhang Z, Shang Y, Jiang Y, Su Z, Deng X, Pu X, Yang R, Zhang L. Anatomy and Comparative Transcriptome Reveal the Mechanism of Male Sterility in Salvia miltiorrhiza. Int J Mol Sci 2023; 24:10259. [PMID: 37373407 DOI: 10.3390/ijms241210259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Salvia miltiorrhiza Bunge is an important traditional herb. Salvia miltiorrhiza is distributed in the Sichuan province of China (here called SC). Under natural conditions, it does not bear seeds and its sterility mechanism is still unclear. Through artificial cross, there was defective pistil and partial pollen abortion in these plants. Electron microscopy results showed that the defective pollen wall was caused by delayed degradation of the tapetum. Due to the lack of starch and organelle, the abortive pollen grains showed shrinkage. RNA-seq was performed to explore the molecular mechanisms of pollen abortion. KEGG enrichment analysis suggested that the pathways of phytohormone, starch, lipid, pectin, and phenylpropanoid affected the fertility of S. miltiorrhiza. Moreover, some differentially expressed genes involved in starch synthesis and plant hormone signaling were identified. These results contribute to the molecular mechanism of pollen sterility and provide a more theoretical foundation for molecular-assisted breeding.
Collapse
Affiliation(s)
- Jinqiu Liao
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
- Sichuan Provincial Engineering Research Center for Breeding Technology of Authentic Traditional Chinese Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhizhou Zhang
- Sichuan Provincial Engineering Research Center for Breeding Technology of Authentic Traditional Chinese Medicine, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yukun Shang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
- Sichuan Provincial Engineering Research Center for Breeding Technology of Authentic Traditional Chinese Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Yuanyuan Jiang
- Sichuan Provincial Engineering Research Center for Breeding Technology of Authentic Traditional Chinese Medicine, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zixuan Su
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
- Sichuan Provincial Engineering Research Center for Breeding Technology of Authentic Traditional Chinese Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Xuexue Deng
- Sichuan Provincial Engineering Research Center for Breeding Technology of Authentic Traditional Chinese Medicine, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiang Pu
- Sichuan Provincial Engineering Research Center for Breeding Technology of Authentic Traditional Chinese Medicine, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ruiwu Yang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
- Sichuan Provincial Engineering Research Center for Breeding Technology of Authentic Traditional Chinese Medicine, Sichuan Agricultural University, Ya'an 625014, China
| | - Li Zhang
- Sichuan Provincial Engineering Research Center for Breeding Technology of Authentic Traditional Chinese Medicine, Sichuan Agricultural University, Ya'an 625014, China
- College of Science, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
16
|
Chorosho SH, Malik N, Panesar G, Kumari P, Jangra S, Kaur R, Al-Ghamdi MS, Albishi TS, Chopra H, Singh R, Murthy HCA. Phytochemicals: Alternative for Infertility Treatment and Associated Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1327562. [PMID: 37215366 PMCID: PMC10195183 DOI: 10.1155/2023/1327562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/04/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
Infertility and obstetric complications have become global health issues in the past few years. Infertility is defined as the inability of a couple to conceive even after twelve months or more of regular and unprotected intercourse. According to WHO data published in the year 2020, 186 million people have infertility globally. Factors leading to infertility are variable in both males and females. But some common factors include smoking, alcohol consumption, obesity, and stress. Various synthetic drugs and treatment options are available that are effective in treating infertility, but their prolonged usage produces various unwanted adverse effects like hot flashes, mood swings, headaches, and weight gain. In extreme cases, these may also lead to the development of anxiety and depression. Herbal remedies have gained a lot of popularity over the years, and people's inclination toward them has increased all over the world. The prime reason is that these show significant therapeutic efficacy and have fewer side effects. The therapeutic efficacy of plants can be attributed to the presence of diverse phytochemical classes of constituents like alkaloids, flavonoids, and volatile oils. These secondary metabolites, or phytomolecules, can be used to develop herbal formulations. The review highlights the applications and mechanisms of action of various phytochemicals for treating infertility. Also, it focuses on the various future prospects associated with it.
Collapse
Affiliation(s)
| | - Neha Malik
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gulsheen Panesar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sarita Jangra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rupinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Mariam S. Al-Ghamdi
- Department of Biology, College of Applied Sciences, Umm Al-Qura University, Saudi Arabia
| | - Tasahil S. Albishi
- Department of Biology, College of Applied Sciences, Umm Al-Qura University, Saudi Arabia
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - H. C. Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1d8, Adama, Ethiopia
- Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMAT), Saveetha University, Chennai, 600077 Tamil Nadu, India
| |
Collapse
|
17
|
Banihani SA. Ameliorative effects of propolis upon reproductive toxicity in males. Clin Exp Reprod Med 2023; 50:12-18. [PMID: 36935407 PMCID: PMC10030207 DOI: 10.5653/cerm.2022.05785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/14/2023] [Indexed: 02/25/2023] Open
Abstract
Propolis is a sticky natural product produced by honeybees. Research studies have discussed the effectiveness of propolis, directly or indirectly, for ameliorating reproductive toxicity in males; however, this research has not yet been reviewed. The current paper presents an integrative summary of all research studies in Scopus and PubMed that investigated the effects of propolis on semen quality, and hence on male fertility, in conditions of reproductive toxicity. The consensus indicates that propolis ameliorates reproductive toxicity and enhances semen quality in vivo in test animals. These effects may be attributable to the ability of propolis to reduce testicular oxidative damage, enhance testicular antioxidant defense mechanisms, increase nitric oxide production, reduce testicular apoptotic injury, and boost testosterone production. However, to generalize these effects in humans would require further research.
Collapse
Affiliation(s)
- Saleem Ali Banihani
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
18
|
Intake of Fluted Pumpkin Seeds Rebalances Oxidative Stress Parameters in the Aged Rat’s Testes. Andrologia 2023. [DOI: 10.1155/2023/6745770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The effect of fluted pumpkin seeds (FPS) consumption on the antioxidant status of the testes of aged Wistar rats was evaluated in this study. Sixty (50 aged, 6 months old, and 10 young, 2 months old) rats were divided into six groups of 10 per each group. Testosterone (15 mg kg-1 body weight, once weekly for 40 days) was injected intraperitoneally and used as positive control. FPS intake (50, 100, and 200 mg kg-1 body weight) or vehicle control (corn oil) were administered orally, twice weekly for 40 days and compared with the untreated aged and young control rats. Changes in antioxidant status in the testis of the aged rats was reflected as increased superoxide dismutase and catalase activities and glutathione and decreased lipid peroxidation levels which were attenuated more efficiently by the lowest dose FPS (50 mg kg-1 body weight). Additionally, nitrite concentration that was found to be diminished in the aged rats was raised to the young control values after intake of the FPS (50 mg kg-1 body weight). As expected, testosterone injection increased endogenous testosterone concentration and also remained higher in the untreated aged animals than in young control and treated aged rats. In conclusion, compromised antioxidant defense system of the testes that is associated with ageing could be reversed to the status of the young control by the intake of FPS.
Collapse
|
19
|
Al-Tawalbeh D, Bdeir R, Al-Momani J. The Use of Medicinal Herbs to Treat Male Infertility in Jordan: Evidence-Based Review. INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES 2023. [DOI: 10.51847/42rwhfit62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Shin D, Jeon SH, Piao J, Park HJ, Tian WJ, Moon DG, Ahn ST, Jeon KH, Zhu GQ, Park I, Park HJ, Bae WJ, Cho HJ, Hong SH, Kim SW. Efficacy and Safety of Maca ( Lepidium meyenii) in Patients with Symptoms of Late-Onset Hypogonadism: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. World J Mens Health 2023:41.e11. [PMID: 36593713 DOI: 10.5534/wjmh.220112] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/17/2022] [Accepted: 09/22/2022] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To evaluated the efficacy and safety of gelatinized Maca (Lepidium meyenii) for eugonadal patients with late onset hypogonadism symptoms (LOH). MATERIALS AND METHODS Participants were instructed to receive 1,000 mg of Maca or placebo, two pills at a time, three times per day for 12 weeks before food intake. To evaluate the efficacy of the drug, Aging Males' Symptoms scale (AMS), Androgen Deficiency in the Aging Males (ADAM), International Prostate Symptom Score (IPSS), and International Index of Erectile Function (IIEF) questionnaires, serologic tests (total testosterone and free testosterone, total cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol, triglyceride), body weight, and waist circumference were assessed at 4 and 12 weeks after treatment. RESULTS A total of 80 participants were enrolled and randomly assigned to Maca treated group (n=41) or the placebo group (n=39). AMS, IIEF, and IPSS were significantly (p<0.05) improved in Maca treated group than in the placebo group. ADAM positive rate was also significantly (p<0.0001) decreased in Maca treated group. CONCLUSIONS Maca may be considered an effective and safe treatment for eugonadal patients with late onset hypogonadism symptoms.
Collapse
Affiliation(s)
- Dongho Shin
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Hwan Jeon
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Junjie Piao
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Hyo Jung Park
- Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Wen Jie Tian
- Department of Urology, The Second Hospital of Jilin University, Chang Chun, China
| | - Du Geon Moon
- Department of Urology, Korea University College of Medicine, Seoul, Korea
| | - Sun Tae Ahn
- Department of Urology, Korea University College of Medicine, Seoul, Korea
| | - Kyung-Hwa Jeon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Guan Qun Zhu
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ilbum Park
- Yuhan Care Co., Ltd., Yuhan Care R&D Center, Yongin, Korea
| | - Hyun-Je Park
- Yuhan Care Co., Ltd., Yuhan Natural Product R&D Center, Andong, Korea
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea
| | - Hyuk Jin Cho
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung-Hoo Hong
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Korea.,Catholic Integrative Medicine Research Institute, The Catholic University of Korea, Seoul, Korea.,Green Medicine Co., Ltd, Busan, Korea.
| |
Collapse
|
21
|
Rotimi DE, Singh SK. Interaction between apoptosis and autophagy in testicular function. Andrologia 2022; 54:e14602. [PMID: 36161318 DOI: 10.1111/and.14602] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 11/27/2022] Open
Abstract
Several processes including oxidative stress, apoptosis, inflammation and autophagy are related to testicular function. Recent studies indicate that a crosstalk between apoptosis and autophagy is essential in regulating testicular function. Autophagy and apoptosis communicate with each other in a complex way, allowing them to work for or against each other in testicular cell survival and death. Several xenobiotics especially endocrine-disrupting chemicals (EDCs) have caused reproductive toxicity because of their potential to modify the rate of autophagy and trigger apoptosis. Therefore, the purpose of the present review was to shed light on how autophagy and apoptosis interact together in the testis.
Collapse
Affiliation(s)
- Damilare E Rotimi
- SDG 03 Group - Good Health & Well-being, Landmark University, Omu-Aran, Nigeria.,Department of Biochemistry, Medicinal Biochemistry, Nanomedicine & Toxicology Laboratory, Landmark University, Omu-Aran, Nigeria
| | - Shio Kumar Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
22
|
Choowong-in P, Sattayasai J, Boonchoong P, Poodendaen C, Wu ATH, Tangsrisakda N, Sawatpanich T, Arun S, Uabundit N, Iamsaard S. Protective effects of Thai Mucuna pruriens (L.) DC. var. pruriens seeds on sexual behaviors and essential reproductive markers in chronic unpredictable mild stress mice. J Tradit Complement Med 2022; 12:402-413. [PMID: 35747354 PMCID: PMC9209868 DOI: 10.1016/j.jtcme.2021.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022] Open
Abstract
Background and aims Chronic stress is a major common cause of male infertility. Many species of velvet beans are shown to be rich in l-DOPA. In Thai folklore medicine, seeds of Mucuna pruriens (L.) DC. var. pruriens (Thai Mhamui or T-MP) have been used for treating erectile dysfunction. This study aimed to determine l-DOPA levels in T-MP seed extract and investigate its preventive on sexual behaviors and reproductive parameter damages including essential proteins in chronic unpredictable mild stress (CUMS) mice. Experimental procedure Mice were divided into 4 groups: (I) control, (II) CUMS, (III) T-MP300 + CUMS, and (IV) T-MP600 + CUMS. Groups I and II received DW while groups III and IV were pretreated with the seed extracts (300 and 600 mg/kg BW) for 14 consecutive days before co-treatment with a randomly different CUMS/day (from 12 mild stressors) for 43 days. Results and conclusion T-MP seed extract contained l-DOPA approximately 10% of total dried weight. A dose of 600 mg/kg improved sexual performances and degenerative seminiferous epithelium in CUMS mice. Sperm qualities and testosterone level were elevated while corticosterone was decreased in co-treatment groups. T-MP-CUMS cotreated groups also improved expressions of AKAP4, AR, and TyrPho proteins in testis, epididymis, and sperm. T-MP increased StAR and CYP11A1 expressions in testis. It also suppressed testicular apoptosis via decreased expressions of Hsp70, caspases 3, and 9. T-MP seeds containing l-DOPA could improve sexual behaviors and essential reproductive proteins caused by CUMS. Section Natural Products. Taxonomy classification by evise Traditional Herbal Medicine; Animal Model; Histopathology.
Collapse
Affiliation(s)
- Pannawat Choowong-in
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Institute for Human High Performance and Health Promotion (HHP & HP), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jintana Sattayasai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Preecha Boonchoong
- Department of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Warinchamrab, Ubon Ratchathani, 34190, Thailand
| | - Chanasorn Poodendaen
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Alexander TH. Wu
- International Ph.D. Program for Translational Science, College of Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan
| | - Nareelak Tangsrisakda
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Institute for Human High Performance and Health Promotion (HHP & HP), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Tarinee Sawatpanich
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Supatcharee Arun
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Institute for Human High Performance and Health Promotion (HHP & HP), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nongnut Uabundit
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sitthichai Iamsaard
- Department of Anatomy, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Institute for Human High Performance and Health Promotion (HHP & HP), Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
23
|
Dolatkhah MA, Khezri S, Shokoohi M, Alihemmati A. The effect of Fumaria parviflora on the expression of sexual hormones along with their receptors in testicles of adult rats induced by varicocele. Andrologia 2022; 54:e14512. [PMID: 35753722 DOI: 10.1111/and.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 11/30/2022] Open
Abstract
Varicocele (VCL) is a pathological dilation of the venous pampiniform plexus of the spermatic cord and is also classified as male factor infertility. The current experiment aimed to examine the protective effect of Fumaria parviflora (FP), as a powerful antioxidant, against reproductive damage induced by VCL. In this experimental study, 32 male rats were randomly allocated into four groups, namely sham (simple laparotomy without additional intervention), FP (healthy rats administered 250 mg/kg FP), VCL + FP (underwent VCL and received 250 mg/kg FP), VCL (underwent VCL without receiving any treatment). The results showed that the number of Sertoli and germ cells were markedly reduced in the VCL group in comparison to the FP-treated and sham groups. The VCl + FP group had significantly higher serum levels of testosterone (T), FSH, and LH hormones than the VCL group. The quality and motility of spermatozoa were reduced in the VCL group compared with other groups (p ≤ 0.05). Moreover, our findings demonstrated that the administration of FP considerably enhanced the mRNA levels of CatSper-1 and -2, SF-1, 3β-HSD, 17β-HSD3, LHCGR, and FSHR (p ≤ 0.05). Based on the obtained results, treatment with FP is capable of preventing testicular dysfunction and elevating the concentration of hormones and some crucial genes, such as CatSper1 and 2, SF-1, 3β-HSD, 17β-HSD3, LHCGR, and FSHR that contribute to the spermatogenesis process.
Collapse
Affiliation(s)
- Mohammad Amin Dolatkhah
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Valiasr Hospital, Department of Radiotherapy, Tabriz, Iran
| | - Shiva Khezri
- Department of Biology, Faculty of Science, Urmia, Iran
| | - Majid Shokoohi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Histology and Embryology, Faculty of Medicine, Tabriz, Iran
| |
Collapse
|
24
|
Phytomedicinal therapeutics for male infertility: critical insights and scientific updates. J Nat Med 2022; 76:546-573. [PMID: 35377028 DOI: 10.1007/s11418-022-01619-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Infertility is a significant cause of anxiety, depression, and social stigma among couples and families. In such cases, male reproductive factors contribute widely to the extent of 20-70%. Male infertility is a multifactorial disease with several complications contributing to its diagnosis. Although its management encompasses both modern and traditional medicine arenas, the first line of treatment, adopted by most males, focuses on the reasonably successful medicinal plant-based conventional therapies. Phyto-therapeutics, which relies on active ingredients from traditionally known herbs, influences sexual behavior and male fertility factors. The potency of these phyto-actives depends on their preparation methods and forms of consumption, including decoctions, extracts, semi-purified compounds, etc., as inferred from in vitro and in vivo (laboratory animal models and human) studies. The mechanisms of action therein involve the testosterone pathway for stimulation of spermatogenesis, reduction of oxidative stress, inhibition of inflammation, activation of signaling pathways in the testes [extracellular-regulated kinase (ERK)/protein kinase B(PKB)/transformation of growth factor-beta 1(TGF-β1)/nuclear factor kappa-light-chain-enhancer of activated B cells NF-kB signaling pathways] and mediation of sexual behavior. This review critically focuses on the medicinal plants and their potent actives, along with the biochemical and molecular mechanisms that modulate vital pathways associated with the successful management of male infertility. Such intrinsic knowledge will significantly further studies on medicinal plants that improve male reproductive health.
Collapse
|
25
|
Tarko A, Štochmaľová A, Hrabovszká S, Vachanová A, Harrath AH, Aldahmash W, Grossman R, Sirotkin AV. Potential Protective Effect of Puncture Vine (Tribulus terrestris, L.) Against Xylene Toxicity on Bovine Ovarian Cell Functions. Physiol Res 2022; 71:249-258. [DOI: 10.33549/physiolres.934871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The action of the medicinal plant Tribulus terrestris (TT) on bovine ovarian cell functions, as well as the protective potential of TT against xylene (X) action, remain unknown. The aim of the present in vitro study was to elucidate the influence of TT, X and their combination on basic bovine ovarian cell functions. For this purpose, we examined the effect of TT (at doses of 0, 1, 10, and 100 ng/ml), X (at 20 μg/ml) and the combination of TT + X (at these doses) on proliferation, apoptosis and hormone release by cultured bovine ovarian granulosa cells. Markers of proliferation (accumulation of PCNA), apoptosis (accumulation of Bax) and the release of hormones (progesterone, testosterone and insulin-like growth factor I, IGF-I) were analyzed by quantitative immunocytochemistry and RIA, respectively. TT addition was able to stimulate proliferation and testosterone release and inhibit apoptosis and progesterone output. The addition of X alone stimulated proliferation, apoptosis and IGF-I release and inhibited progesterone and testosterone release by ovarian cells. TT was able to modify X effects: it prevented the antiproliferative effect of X, induced the proapoptotic action of X, and promoted X action on progesterone but not testosterone or IGF-I release. Taken together, our observations represent the first demonstration that TT can be a promoter of ovarian cell functions (a stimulator of proliferation and a suppressor of apoptosis) and a regulator of ovarian steroidogenesis. X can increase ovarian cell proliferation and IGF-I release and inhibit ovarian steroidogenesis. These effects could explain its anti-reproductive and cancer actions. The ability of TT to modify X action on proliferation and apoptosis indicates that TT might be a natural protector against some ovarian cell disorders associated with X action on proliferation and apoptosis, but it can also promote its adverse effects on progesterone release.
Collapse
Affiliation(s)
| | | | | | | | - AH Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | | | | | |
Collapse
|
26
|
Yu CL, Lee HL, Yang SF, Wang SW, Lin CP, Hsieh YH, Chiou HL. Protodioscin Induces Mitochondrial Apoptosis of Human Hepatocellular Carcinoma Cells Through Eliciting ER Stress-Mediated IP3R Targeting Mfn1/Bak Expression. J Hepatocell Carcinoma 2022; 9:327-341. [PMID: 35496076 PMCID: PMC9049873 DOI: 10.2147/jhc.s355027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Protodioscin (PD), a steroidal saponin, has a diverse pharmacological activity including neuroprotection, male fertility improvement, and cytotoxicity against various cancers cell lines of different origins. However, the effect of PD on hepatocellular carcinoma (HCC) is still unclear. Methods Cell viability, colony formation and flow cytometry analysis for apoptosis profile, mitochondrial membrane potential endoplasmic reticulum (ER) expansion were employed to determine the effect of PD against HCC cells. Transient transfection of siRNA, immunofluorescent imaging and immunoprecipitation were used to elucidate the anti-cancer mechanism of PD. The in vivo toxicity and efficacy of PD were assessed by a xenograft mouse model. Results PD induced apoptosis, loss of mitochondrial membrane potential and ER expansion in HCC cells. Either downregulation of Mfn1 or Bak reversed PD-induced apoptosis and loss of mitochondrial membrane potential. Further analysis revealed that Mfn1 and Bak will form a complex with IP3R to facilitate the transfer of Ca2+ from ER to mitochondria and apoptosis. In addition, our tumour xenograft model further verifies the in vivo anti-tumour effect of PD. Conclusion Our study sheds light on the understanding of the anti-HCC effects of PD and may open new aspects for the development of novel treatment for human hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chen-Lin Yu
- Institute of Biomedical Science, Mackay Medical College, New Taipei City, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsiang-Lin Lee
- Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Wei Wang
- Institute of Biomedical Science, Mackay Medical College, New Taipei City, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Pin Lin
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Division of Hepatology and Gastroenterology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Correspondence: Yi-Hsien Hsieh; Hui-Ling Chiou, Tel +886-4-2473-0022, Fax +886-4- 2472-3229, Email ;
| | - Hui-Ling Chiou
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
27
|
Yang FH, Dong XL, Liu GX, Teng L, Wang L, Zhu F, Xu FH, Yang YF, Cao C, Chen G, Li B. The protective effect of C-phycocyanin in male mouse reproductive system. Food Funct 2022; 13:2631-2646. [PMID: 35167640 DOI: 10.1039/d1fo03741b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
C-phycocyanin from Spirulina platensis has pharmacological effects such as anti-oxidation, anti-cancer, anti-inflammatory and anti-atherosclerosis activities as well as liver and kidney protection. However, there is little research on C-phycocyanin applied in the field of reproductive medicine, and it is therefore the focus of the current study. In this study, a GC-1 spg cell model and male mouse reproductive injury model were constructed by TNF α + Smac mimetic + zVAD-fmk (TSZ) and cyclophosphamide (Cy), respectively. It has been proved that C-phycocyanin can increase cell viability and reduce cell death in GC-1 spg cells induced by TSZ. C-phycocyanin could protect the reproductive system of male mice from cyclophosphamide, improve spermatogenesis, sperm quality and fertility, increase the release of testosterone, stabilize the feedback regulation mechanism, and ensure the spermatogenic ability of mice. It could also improve the ability of anti-oxidation. In addition, C-phycocyanin could play a protective role by down-regulating RIPK1, RIPK3, and p-MLKL to inhibit the necroptotic signaling pathway. These results suggest that C-phycocyanin could protect GC-1 spg cells and the reproductive system of male mice from TSZ and cyclophosphamide, and the protective mechanism may be achieved by inhibiting the signal pathway of necroptosis. Therefore, C-phycocyanin could serve as a promising reproductive system protective agent. C-phycocyanin may enter public life as a health product in the future.
Collapse
Affiliation(s)
- Fang-Hao Yang
- Department of genetics and cell biology, Basic medical college, Qingdao University, Qingdao, China, 266071.
| | - Xiao-Lei Dong
- Department of genetics and cell biology, Basic medical college, Qingdao University, Qingdao, China, 266071.
| | - Guo-Xiang Liu
- Department of genetics and cell biology, Basic medical college, Qingdao University, Qingdao, China, 266071.
| | - Lei Teng
- Department of genetics and cell biology, Basic medical college, Qingdao University, Qingdao, China, 266071.
| | - Lin Wang
- Department of Reproduction, The Affiliated Hospital of Qingdao University, Qingdao, China, 266000.
| | - Feng Zhu
- Department of genetics and cell biology, Basic medical college, Qingdao University, Qingdao, China, 266071.
| | - Feng-Hua Xu
- Department of genetics and cell biology, Basic medical college, Qingdao University, Qingdao, China, 266071.
| | - Yi-Fan Yang
- Department of genetics and cell biology, Basic medical college, Qingdao University, Qingdao, China, 266071.
| | - Can Cao
- Department of genetics and cell biology, Basic medical college, Qingdao University, Qingdao, China, 266071.
| | - Guang Chen
- Department of genetics and cell biology, Basic medical college, Qingdao University, Qingdao, China, 266071.
| | - Bing Li
- Department of genetics and cell biology, Basic medical college, Qingdao University, Qingdao, China, 266071. .,Department of hematology, The Affiliated Hospital of Qingdao University, Qingdao, China, 266021.
| |
Collapse
|
28
|
Malik J, Choudhary S, Mandal SC, Sarup P, Pahuja S. Oxidative Stress and Male Infertility: Role of Herbal Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:137-159. [PMID: 36472821 DOI: 10.1007/978-3-031-12966-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infertility is a universal health problem affecting 15% of couples, out of which 20-30% cases are due to male infertility. The leading causes of male infertility include hormonal defects, physical reasons, sexual problems, hazardous environment, stressful lifestyle, genetic factors, epigenetic factors, and oxidative stress. Various physiological functions involve reactive oxygen species (ROS) and nitrogen species at appropriate levels for proper smooth functioning. ROS control critical reproductive processes such as capacitation, acrosomal reaction, hyperactivation, egg penetration, and sperm head decondensation. The excessive free radicals or imbalance between ROS and endogenous antioxidant enzymes damages sperm membrane by inducing lipid peroxidation causing mitochondrial dysfunction and DNA damage that eventually lead to male infertility. Numerous synthetic products are available in the market to treat infertility problems, largely ending in side effects and repressing symptoms. Ayurveda contains a particular group of Rasayana herbs, called vajikarana, that deals with nourishment and stimulation of sexual tissues, improves male reproductive vitality, and deals with oxidative stress via antioxidant mechanism. The present study aims to describe oxidative stress and the role of herbal drugs in treating male infertility.
Collapse
Affiliation(s)
- Jai Malik
- University Institute of Pharmaceutical Sciences - UGC Centre of Advanced Study, Panjab University, Chandigarh, India.
| | - Sunayna Choudhary
- University Institute of Pharmaceutical Sciences - UGC Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Subhash C Mandal
- Pharmacognosy and Phytotherapy Research Laboratory, Department of Pharmaceutical Technology, Faculty of Engineering & Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Prerna Sarup
- Swami Vivekanand College of Pharmacy, Patiala, Punjab, India
| | - Sonia Pahuja
- Swami Vivekanand College of Pharmacy, Patiala, Punjab, India
| |
Collapse
|
29
|
Sirotkin AV, Kolesárová A. Puncture vine (Tribulus Terrestris L.) in control of health and reproduction. Physiol Res 2021; 70:S657-S667. [PMID: 35199550 DOI: 10.33549/physiolres.934711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tribulus terrestris, L. (puncture vine) have been used as a folk medicine for five thousands of years, but its targets, effects, their mechanisms and application requires further studies. This paper reviews the provenance, constituents and properties of Tribulus terrestris, L., its general physiological and health effects, as well as the currently available knowledge concerning its influence on male and female reproductive processes and their dysfunctions. Analysis of the available publications demonstrated the influence of Tribulus terrestris on a wide spectrum of targets and physiological processe and disorders. In particular, Tribulus terrestris can be a stimulator of male and female reproductive processes at the level of central nervous system, sexual behaviour, pituitary and gonadal hormones and their receptors, gonadal functions (including ovarian follicullogenesis and spermatogenesis), improvement of the quality and quantity of gametes (at least of sperm) and fecundity. This ability of puncture vine is applicable for the improvement of man's sexual desire and sperm quality in vivo and in vitro, as well as of women's libido, activation of women's reproductive organs, fecundity, and treatment of infertility, especially that related to the polycystic ovarian syndrome.
Collapse
Affiliation(s)
- A V Sirotkin
- Constantine the Philosopher University in Nitra, Nitra, Slovak Republic, 2Slovak University of Agriculture in Nitra, Nitra, Slovak Republic.
| | | |
Collapse
|
30
|
Sirotkin AV, Kolesarova A. Puncture vine (Tribulus Terrestris L.) in control of health and reproduction. Physiol Res 2021. [DOI: 10.33549//physiolres.934711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tribulus terrestris, L. (puncture vine) have been used as a folk medicine for five thousands of years, but its targets, effects, their mechanisms and application requires further studies. This paper reviews the provenance, constituents and properties of Tribulus terrestris, L., its general physiological and health effects, as well as the currently available knowledge concerning its influence on male and female reproductive processes and their dysfunctions. Analysis of the available publications demonstrated the influence of Tribulus terrestris on a wide spectrum of targets and physiological processe and disorders. In particular, Tribulus terrestris can be a stimulator of male and female reproductive processes at the level of central nervous system, sexual behaviour, pituitary and gonadal hormones and their receptors, gonadal functions (including ovarian follicullogenesis and spermatogenesis), improvement of the quality and quantity of gametes (at least of sperm) and fecundity. This ability of puncture vine is applicable for the improvement of man’s sexual desire and sperm quality in vivo and in vitro, as well as of women’s libido, activation of women’s reproductive organs, fecundity, and treatment of infertility, especially that related to the polycystic ovarian syndrome.
Collapse
Affiliation(s)
- AV Sirotkin
- Constantine the Philosopher University in Nitra, Nitra, Slovak Republic.
| | | |
Collapse
|
31
|
Melnikovova I, Russo D, Fait T, Kolarova M, Tauchen J, Kushniruk N, Falabella R, Milella L, Fernández Cusimamani E. Evaluation of the effect of Lepidium meyenii Walpers in infertile patients: A randomized, double-blind, placebo-controlled trial. Phytother Res 2021; 35:6359-6368. [PMID: 34585449 PMCID: PMC9293450 DOI: 10.1002/ptr.7287] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 01/08/2023]
Abstract
Male infertility refers to the inability to conceive a natural pregnancy in a fertile female, and approximately 15% of reproductive‐aged couples worldwide face this problem. Several plants were used to treat fertility disorders and, among them, Lepidium meyenii, a folk medicament of Andean regions, is still used to enhance vitality and treat sterility in humans and domestic animals. The aim of the study was to evaluate the effects of L. meyenii Walpers on infertile patients by a randomized, double‐blind, placebo‐controlled trial. Fifty patients suffering from various reproductive‐related problems were enrolled for 16 weeks to evaluate the effect of yellow maca on semen quality and serum hormone levels. Treatment with maca improved the percentage of sperm concentration by 40%, whereas the placebo improved by 76% after 8 and 16 weeks of treatment, but the results were statistically non‐significant. No statistically significant change in hormone levels was reported by using maca, except a decrease in the level of free testosterone. Results are not sufficient to assess the efficacy of maca on male fertility. Further investigation and trials are required to obtain conclusive results.
Collapse
Affiliation(s)
- Ingrid Melnikovova
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague 6, Czech Republic
| | - Daniela Russo
- Department of Science, University of Basilicata, Potenza, Italy.,Spinoff BioActiPlants.r.l., Department of Science, University of Basilicata, Potenza, Italy
| | - Tomas Fait
- Department of Obstetrics and Gynecology, Second Faculty of Medicine, Charles University, Prague 5, Czech Republic
| | - Michaela Kolarova
- Department of Agroecology and Biometeorology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague 6, Czech Republic
| | - Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Praha, Czech Republic
| | - Nataliya Kushniruk
- First Medical Faculty of Charles University Prague, Prague 2, Czech Republic
| | - Roberto Falabella
- Urology Unit, San Carlo Hospital, Via Potito Petrone, Potenza, Italy
| | - Luigi Milella
- Department of Science, University of Basilicata, Potenza, Italy
| | - Eloy Fernández Cusimamani
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague 6, Czech Republic
| |
Collapse
|
32
|
Medicinal Use of Testosterone and Related Steroids Revisited. Molecules 2021; 26:molecules26041032. [PMID: 33672087 PMCID: PMC7919692 DOI: 10.3390/molecules26041032] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/31/2022] Open
Abstract
Testosterone derivatives and related compounds (such as anabolic-androgenic steroids—AAS) are frequently misused by athletes (both professional and amateur) wishing to promote muscle development and strength or to cover AAS misuse. Even though these agents are vastly regarded as abusive material, they have important pharmacological activities that cannot be easily replaced by other drugs and have therapeutic potential in a range of conditions (e.g., wasting syndromes, severe burns, muscle and bone injuries, anemia, hereditary angioedema). Testosterone and related steroids have been in some countries treated as controlled substances, which may affect the availability of these agents for patients who need them for therapeutic reasons in a given country. Although these agents are currently regarded as rather older generation drugs and their use may lead to serious side-effects, they still have medicinal value as androgenic, anabolic, and even anti-androgenic agents. This review summarizes and revisits the medicinal use of compounds based on the structure and biological activity of testosterone, with examples of specific compounds. Additionally, some of the newer androgenic-anabolic compounds are discussed such as selective androgen receptor modulators, the efficacy/adverse-effect profiles of which have not been sufficiently established and which may pose a greater risk than conventional androgenic-anabolic agents.
Collapse
|
33
|
Macamides: A review of structures, isolation, therapeutics and prospects. Food Res Int 2020; 138:109819. [DOI: 10.1016/j.foodres.2020.109819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
|
34
|
Barbe A, Mellouk N, Ramé C, Grandhaye J, Anger K, Chahnamian M, Ganier P, Brionne A, Riva A, Froment P, Dupont J. A grape seed extract maternal dietary supplementation improves egg quality and reduces ovarian steroidogenesis without affecting fertility parameters in reproductive hens. PLoS One 2020; 15:e0233169. [PMID: 32407420 PMCID: PMC7224513 DOI: 10.1371/journal.pone.0233169] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
In broiler hens, the genetic selection increased susceptibility to metabolic disorders and reproductive dysfunctions. In human ovarian cells, grape seed extracts (GSE) improved steroid production. Here, we investigated the effects of a GSE dietary supplementation on egg production and quality, fertility parameters, Reactive Oxygen Species (ROS) and steroid content in yolk egg associated to plasma adipokines in broiler hens. For this, we designed two in vivo experiments, the first one included three groups of hens: A (control), B and C (supplemented with GSE at 0.5% and 1% of the total diet composition, respectively, since week 4), and the second one used two groups of hens: A (control) and D (supplemented with GSE at 1% of the total diet composition since hatching). We assessed the egg production from 23th to 40th weeks and quality at 33th week. After artificial inseminations, the fertility parameters were calculated. In egg yolk, Reactive Oxygen Species (ROS) level and steroid production were evaluated by Ros-Glo H202 and ELISA assay, respectively. Expression of steroidogenic enzymes and adipokines and their receptors was determined by RT-qPCR in ovarian cells and plasma adipokines (RARRES2, ADIPOQ and NAMPT) were evaluated by specific ELISA assays. The fertility parameters and egg production were unaffected by GSE supplementation whatever the experiment (exp.). However, the rate of double-yolk eggs decreased for all GSE supplemented groups (exp. 1 P <0.01, exp.2, P<0.02). In exp.1, C group eggs were bigger and larger (P<0.0001) and the shell elasticity was higher for both B and C (P<0.0003) as compared to control. In the egg yolk, GSE supplementation in both exp. reduced ROS content and steroidogenesis consistent with a decrease in P450 aromatase and StAR mRNA expression and basal in vitro progesterone secretion in granulosa cells (P<0.001). Interestingly, in both exp. RARRES2 plasma levels were positively correlated while ADIPOQ and NAMPT plasma levels were negatively correlated, with steroids and ROS in yolk (P<0.0001). Taken together, maternal dietary GSE supplementation did not affect egg production and fertility parameters whereas it reduced ROS content and steroidogenesis in yolk egg. Furthermore, it ameliorated egg quality by decreasing the number of double-yolk eggs and by improving the size of normal eggs and the elasticity of the shell. Taken together, our data suggest the possibility of using dietary maternal GSE to improve egg quality.
Collapse
Affiliation(s)
- Alix Barbe
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE Nouzilly, Nouzilly, France
| | - Namya Mellouk
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE Nouzilly, Nouzilly, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE Nouzilly, Nouzilly, France
| | - Jérémy Grandhaye
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE Nouzilly, Nouzilly, France
| | - Karine Anger
- INRAE - Unité Expérimentale du Pôle d’Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, Nouzilly, France
| | - Marine Chahnamian
- INRAE - Unité Expérimentale du Pôle d’Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, Nouzilly, France
| | - Patrice Ganier
- INRAE - Unité Expérimentale du Pôle d’Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, Nouzilly, France
| | - Aurélien Brionne
- INRAE, UMR0083 Biologie des Oiseaux et Aviculture, Nouzilly, France
| | | | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE Nouzilly, Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France
- Université François Rabelais de Tours, Tours, France
- IFCE Nouzilly, Nouzilly, France
- * E-mail:
| |
Collapse
|