1
|
Zhang B, Wang J, Wang Y, Jiang Y, Zhao YE. Association analyses of the measurements of the photopic negative response evoked by two ISCEV protocols. Graefes Arch Clin Exp Ophthalmol 2025; 263:1005-1013. [PMID: 39710709 DOI: 10.1007/s00417-024-06718-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024] Open
Abstract
PURPOSE To perform association analyses between the measurements of photopic negative response (PhNR) evoked by two ISCEV protocols. METHODS A total of 172 eyes from 72 post-operative pediatric cataract patients and 24 healthy children were enrolled. The amplitude and peak time of PhNR were analyzed in three eye groups, 1. healthy controls; 2. fellow eyes of unilaterally affected patients; 3. affected eyes. PhNR responses were measured with skin-electrodes and evoked by the ISCEV standard protocols of PhNR and light-adapted 3.0, referred to as PhNR1 and PhNR2. The correlation coefficients between PhNR1 and PhNR2 measurements were calculated. The generalized estimating equation (GEE) model of PhNR1, with PhNR2 as a predictor, was evaluated after adjusting for correlation between paired eyes. RESULTS Both the amplitude (P = 0.025) and the peak time (P = 0.036) of PhNR1 showed a significant difference among the three eye groups, which was not observed in PhNR2. The four correlation coefficients (Pearson, Intraclass, Lin's and Kendall's) between z-score transformed PhNR1 and PhNR2 measurements were generally moderate: 0.52, 0.52, 0.52, 0.36 for amplitude (P < 0.001), and 0.57, 0.57, 0.57, 0.36 for peak time (P < 0.001). The amplitude of PhNR1 cannot be precisely predicted by PhNR2, with a mean absolute percentage error (MAPE) of 36.7%, while the peak time of PhNR1 can be precisely predicted with a MAPE of 3.9%. CONCLUSIONS PhNR1 appears to be a more sensitive measure than PhNR2 for detecting eye group differences. Further research is needed to confirm this and explore its clinical applications. PhNR1 may not be entirely replaced by PhNR2 due to moderate correlation and low prediction precision in amplitude.
Collapse
Affiliation(s)
- Bing Zhang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Jiajun Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Yalan Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Yilin Jiang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China
| | - Yun-E Zhao
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- National Clinical Research Center for Ocular Diseases, Wenzhou, Zhejiang, China.
- Zhejiang Eye Hospital, Fengqidong Road #618, Hangzhou, 310020, Zhejiang, China.
| |
Collapse
|
2
|
Zhang B, Wang J, Wang Y, Jiang Y, Zhao YE. Associations of light-adapted electroretinogram in paediatric amblyopia. Ophthalmic Physiol Opt 2025; 45:471-479. [PMID: 39625280 DOI: 10.1111/opo.13430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 02/14/2025]
Abstract
PURPOSE The aim of this study was to investigate changes in the light-adapted (LA) electroretinogram (ERG) associated with paediatric amblyopia. METHOD A total of 220 eyes from 81 postoperative paediatric cataract patients and 29 healthy children were enrolled in four groups, namely controls, unilaterally amblyopic eyes, non-amblyopic fellow eyes and bilaterally affected eyes. Differences in LA ERG variables (peak time and amplitude of a- and b-waves and photopic negative response [PhNR]) were compared across groups, as well as their associations with visual acuity and changes in axial length. RESULTS The peak time of both the a-wave (p < 0.001) and b-wave (p < 0.001), as well as the amplitude of the b-wave (p < 0.001) and the PhNR (p = 0.04) differed significantly across groups. Compared to controls, affected eyes in both unilateral and bilateral groups showed significantly lower b-wave amplitude and longer a- and b-wave peak times (p < 0.008, Bonferroni-corrected). Additionally, fellow eyes in the unilateral group exhibited significantly longer b-wave peak times (p = 0.008). For all eyes, poorer visual acuity was associated with a longer peak time for both the a- (p = 0.006) and b-waves (p = 0.003), as well as lower amplitudes of the b-wave (p = 0.006) and PhNR (p = 0.02). CONCLUSIONS Changes in LA ERG components suggest alteration of retinal physiology in deprivation amblyopia. Thus, the LA ERG may provide additional information to help understand the mechanisms underlying deprivation amblyopia.
Collapse
Affiliation(s)
- Bing Zhang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Centre for Ocular Diseases, Wenzhou, China
| | - Jiajun Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Centre for Ocular Diseases, Wenzhou, China
| | - Yalan Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Centre for Ocular Diseases, Wenzhou, China
| | - Yilin Jiang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Centre for Ocular Diseases, Wenzhou, China
| | - Yun-E Zhao
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Centre for Ocular Diseases, Wenzhou, China
| |
Collapse
|
3
|
Wang J, Wang Y, Guan W, Zhao YE. Full-field electroretinogram recorded with skin electrodes in 6- to 12-year-old children. Doc Ophthalmol 2023; 147:179-188. [PMID: 37530953 PMCID: PMC10638173 DOI: 10.1007/s10633-023-09944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 07/04/2023] [Indexed: 08/03/2023]
Abstract
PURPOSE To determine the full-field electroretinogram (ffERG) parameters, including the light-adapted (LA) 3 ERG and the photopic negative response (PhNR), in 6- to 12-year-old children. METHODS ffERG data were obtained from 214 eyes of 214 healthy subjects. The amplitudes and peak time of the ffERG responses were obtained from children divided into 6- to 8-year-old and 9- to 12-year-old groups. Using a skin electrode, electrical signals were measured in response to white stimulating light and white background light (LA 3 ERG). A blue background light and red flashes were then used to elicit the PhNR. RESULTS The a-wave amplitude ranged from 0.40 to 9.20 μV, the b-wave ranged from 4.70 to 30.80 μV, and the PhNR ranged from 1.30 to 39.90 μV. The b-wave peak time (33.20 ms) of 6- to 8-year-old groups was slightly shorter than that of the 9- to 12-year-old groups (33.60 ms, P = 0.01), but no differences in amplitudes or in peak time of other components. There were significant correlations between the amplitudes (a-wave and b-wave: r = 0.43, p < 0.001; a-wave and PhNR: r = 0.25, p < 0.001; b-wave and PhNR: r = 0.45, p < 0.001). There was a moderate correlation between the a-wave and b-wave peak time (r = 0.31, P < 0.001). CONCLUSIONS We determined the largest dataset of the LA 3 ERG and PhNR parameters in a population of healthy children, aged 6-12 years, which may provide a useful reference value when evaluating children with potential retinal defects.
Collapse
Affiliation(s)
- Jiajun Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Disease, Wenzhou, Zhejiang, China
| | - Yalan Wang
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Disease, Wenzhou, Zhejiang, China
| | - Weichen Guan
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China
- National Clinical Research Center for Ocular Disease, Wenzhou, Zhejiang, China
| | - Yun-E Zhao
- Eye Hospital and School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- National Clinical Research Center for Ocular Disease, Wenzhou, Zhejiang, China.
| |
Collapse
|
4
|
Sun W, Gu S, Zhang F, Xu M, Chang P, Zhao Y. Congenital cataracts affect the retinal visual cycle and mitochondrial function: A multi-omics study of GJA8 knockout rabbits. J Proteomics 2023; 287:104972. [PMID: 37467890 DOI: 10.1016/j.jprot.2023.104972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/30/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Congenital cataracts are a threat to visual development in children, and the visual impairment persists after surgical treatment; however, the mechanisms involved remain unclear. Previous clinical studies have identified the effect of congenital cataracts on retinal morphology and function. To further understand the molecular mechanisms by which congenital cataracts affect retinal development, we analyzed retina samples from 7-week-old GJA8-knockout rabbits with congenital cataracts and controls by four-dimensional label-free quantification proteomics and untargeted metabolomics. Bioinformatics analysis of proteomic data showed that retinol metabolism, oxidative phosphorylation, and fatty acid degradation pathways were downregulated in the retinas of rabbits with congenital cataracts, indicating that their visual cycle and mitochondrial function were affected. Additional validation of differentially abundant proteins related to the visual cycle and mitochondrial function was performed using Parallel reaction monitoring and western blot experiments. Untargeted metabolome analysis showed significant upregulation of the antioxidant glutathione and ascorbic acid in the retinas of rabbits with congenital cataracts, indicating that their oxidative stress balance was not dysregulated. SIGNIFICANCE: Congenital cataracts in children can alter retinal structure and function, yet the mechanisms are uncertain. Here is the first study to use proteomics and metabolomics approaches to investigate the effects of congenital cataracts on retinal development in the early postnatal period. Our findings suggest that congenital cataracts have an impact on the retinal visual cycle and mitochondrial function. These findings give insight on the molecular pathways behind congenital cataract-induced visual function impairment in the early postnatal period.
Collapse
Affiliation(s)
- Weijie Sun
- Wenzhou Medical University School of Optometry and Ophthalmology, Eye Hospital, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; The State Key Laboratory of Optometry, Ophthalmology and Vision Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; National Center for Clinical and Medical Research, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China
| | - Siyi Gu
- Wenzhou Medical University School of Optometry and Ophthalmology, Eye Hospital, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; The State Key Laboratory of Optometry, Ophthalmology and Vision Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; National Center for Clinical and Medical Research, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China
| | - Fan Zhang
- Wenzhou Medical University School of Optometry and Ophthalmology, Eye Hospital, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; The State Key Laboratory of Optometry, Ophthalmology and Vision Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; National Center for Clinical and Medical Research, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China
| | - Mengxiang Xu
- Wenzhou Medical University School of Optometry and Ophthalmology, Eye Hospital, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; The State Key Laboratory of Optometry, Ophthalmology and Vision Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; National Center for Clinical and Medical Research, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China
| | - Pingjun Chang
- Wenzhou Medical University School of Optometry and Ophthalmology, Eye Hospital, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; The State Key Laboratory of Optometry, Ophthalmology and Vision Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; National Center for Clinical and Medical Research, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China.
| | - Yune Zhao
- Wenzhou Medical University School of Optometry and Ophthalmology, Eye Hospital, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; The State Key Laboratory of Optometry, Ophthalmology and Vision Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China; National Center for Clinical and Medical Research, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China.
| |
Collapse
|
5
|
Magli A, Esposito Veneruso P, Rinaldi M, Caputo R, Tranfa F, Costagliola C. Long-term effects of early/late-onset visual deprivation on macular and retinal nerve fibers layer structure: A pilot study. PLoS One 2023; 18:e0283423. [PMID: 36952524 PMCID: PMC10035877 DOI: 10.1371/journal.pone.0283423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/08/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND/AIMS Tomographic analysis of macular and peripapillary retinal nerve fibers layer (RNFL) thickness in patients with history of congenital (CC) and developmental cataract (DC). METHODS Analysis of macular and RNFL thickness using a spectral-domain optical coherence tomography was performed. Retinal layers thickness was measured using the internal segmentation software. Measurements of affected (unilateral and bilateral), contralateral eyes and control eyes were compared. RESULTS Patients with history of CC or DC (n = 13 and 11 respectively) and 35 healthy control subjects were enrolled. Thicker inner and outer nuclear layers (INL, ONL) and thicker ONL were found when CC and DC group when compared to controls respectively. Bilateral CC showed the most relevant differences. Slight thickening of CC inner retinal layers were found when compared to DC. Increased superonasal RNFL thickness was found in CC group when compared to DC and controls. Thickening of RNFL of contralateral unaffected eyes of unilateral CC were found when compared to controls. CONCLUSION Significant macular and RNFL thickness changes between CC, DC patients and controls that partially involve also contralateral unaffected eyes of unilateral congenital cataract were found. CC and DC groups show significant differences only in inner retinal layers thickness. Our data suggest that early visual deprivation may influence retinal arrangements occurring during development involving predominantly the outer nuclear layer and para/perifoveal inner retinal layers, and confirm that early treatment of CC allow to achieve better long-term visual outcome. Moreover functional and structural data support the hypothesis that unilateral amblyopia is not exclusively an unilateral issue.
Collapse
Affiliation(s)
- Adriano Magli
- Department of Ophthalmology, Orthoptic and Pediatric Ophthalmology, University of Salerno, Salerno, Italy
| | | | - Michele Rinaldi
- Pediatric Ophthalmology Unit, A. Meyer Children's Hospital, Florence, Italy
| | - Roberto Caputo
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fausto Tranfa
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| | - Ciro Costagliola
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
6
|
Barbano L, Ziccardi L, Antonelli G, Nicoletti CG, Landi D, Mataluni G, Falsini B, Marfia GA, Centonze D, Parisi V. Multifocal Electroretinogram Photopic Negative Response: A Reliable Paradigm to Detect Localized Retinal Ganglion Cells' Impairment in Retrobulbar Optic Neuritis Due to Multiple Sclerosis as a Model of Retinal Neurodegeneration. Diagnostics (Basel) 2022; 12:diagnostics12051156. [PMID: 35626311 PMCID: PMC9139610 DOI: 10.3390/diagnostics12051156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/28/2022] Open
Abstract
The measure of the full-field photopic negative response (ff-PhNR) of light-adapted full-field electroretinogram (ff-ERG) allows to evaluate the function of the innermost retinal layers (IRL) containing primarily retinal ganglion cells (RGCs) and other non-neuronal elements of the entire retina. The aim of this study was to acquire functional information of localized IRL by measuring the PhNR in response to multifocal stimuli (mfPhNR). In this case-control observational and retrospective study, we assessed mfPhNR responses from 25 healthy controls and from 20 patients with multiple sclerosis with previous history of optic neuritis (MS-ON), with full recovery of visual acuity, IRL morphological impairment, and absence of morpho-functional involvement of outer retinal layers (ORL). MfPhNR response amplitude densities (RADs) were measured from concentric rings (R) with increasing foveal eccentricity: 0−5° (R1), 5−10° (R2), 10−15° (R3), 15−20° (R4), and 20−25° (R5) from retinal sectors (superior-temporal (ST), superior-nasal (SN), inferior-nasal (IN), and inferior-temporal (IT)); between 5° and 20° and from retinal sectors (superior (S), temporal (T), inferior (I), and nasal (N)); and within 5° to 10° and within 10° and 20° from the fovea. The mfPhNR RAD values observed in all rings or sectors in MS-ON eyes were significantly reduced (p < 0.01) with respect to control ones. Our results suggest that mfPhNR recordings may detect localized IRL dysfunction in the pathologic condition of selective RGCs neurodegeneration.
Collapse
Affiliation(s)
- Lucilla Barbano
- IRCCS—Fondazione Bietti, Via Livenza 1, 00198 Rome, Italy; (L.B.); (G.A.); (V.P.)
| | - Lucia Ziccardi
- IRCCS—Fondazione Bietti, Via Livenza 1, 00198 Rome, Italy; (L.B.); (G.A.); (V.P.)
- Correspondence: ; Tel.: +39-06-85356727; Fax: +39-06-84242333
| | - Giulio Antonelli
- IRCCS—Fondazione Bietti, Via Livenza 1, 00198 Rome, Italy; (L.B.); (G.A.); (V.P.)
| | - Carolina Gabri Nicoletti
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy; (C.G.N.); (D.L.); (G.M.); (G.A.M.); (D.C.)
| | - Doriana Landi
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy; (C.G.N.); (D.L.); (G.M.); (G.A.M.); (D.C.)
| | - Giorgia Mataluni
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy; (C.G.N.); (D.L.); (G.M.); (G.A.M.); (D.C.)
| | - Benedetto Falsini
- Ophthalmology Department, IRCCS—Fondazione Policlinico Universitario A. Gemelli, Catholic University, Largo F. Vito 1, 00168 Rome, Italy;
| | - Girolama Alessandra Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy; (C.G.N.); (D.L.); (G.M.); (G.A.M.); (D.C.)
| | - Diego Centonze
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy; (C.G.N.); (D.L.); (G.M.); (G.A.M.); (D.C.)
- Unit of Neurology and Neurorehabilitation, IRCCS—Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Vincenzo Parisi
- IRCCS—Fondazione Bietti, Via Livenza 1, 00198 Rome, Italy; (L.B.); (G.A.); (V.P.)
| |
Collapse
|
7
|
Tufford AR, Onyak JR, Sondereker KB, Lucas JA, Earley AM, Mattar P, Hattar S, Schmidt TM, Renna JM, Cayouette M. Melanopsin Retinal Ganglion Cells Regulate Cone Photoreceptor Lamination in the Mouse Retina. Cell Rep 2019; 23:2416-2428. [PMID: 29791852 DOI: 10.1016/j.celrep.2018.04.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 03/05/2018] [Accepted: 04/17/2018] [Indexed: 10/16/2022] Open
Abstract
Newborn neurons follow molecular cues to reach their final destination, but whether early life experience influences lamination remains largely unexplored. As light is among the first stimuli to reach the developing nervous system via intrinsically photosensitive retinal ganglion cells (ipRGCs), we asked whether ipRGCs could affect lamination in the developing mouse retina. We show here that ablation of ipRGCs causes cone photoreceptors to mislocalize at different apicobasal positions in the retina. This effect is partly mediated by light-evoked activity in ipRGCs, as dark rearing or silencing of ipRGCs leads a subset of cones to mislocalize. Furthermore, ablation of ipRGCs alters the cone transcriptome and decreases expression of the dopamine receptor D4, while injection of L-DOPA or D4 receptor agonist rescues the displaced cone phenotype observed in dark-reared animals. These results show that early light-mediated activity in ipRGCs influences neuronal lamination and identify ipRGC-elicited dopamine release as a mechanism influencing cone position.
Collapse
Affiliation(s)
- Adele R Tufford
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
| | | | | | - Jasmine A Lucas
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Aaron M Earley
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Pierre Mattar
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
| | - Samer Hattar
- National Institute of Mental Health, Bethesda, MD, USA
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Jordan M Renna
- Department of Biology, University of Akron, Akron, OH, USA
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada; Department of Medicine, Université de Montréal, Montréal, QC, Canada; Department of Anatomy and Cell Biology and Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
8
|
Marino V, Dal Cortivo G, Oppici E, Maltese PE, D'Esposito F, Manara E, Ziccardi L, Falsini B, Magli A, Bertelli M, Dell'Orco D. A novel p.(Glu111Val) missense mutation in GUCA1A associated with cone-rod dystrophy leads to impaired calcium sensing and perturbed second messenger homeostasis in photoreceptors. Hum Mol Genet 2019; 27:4204-4217. [PMID: 30184081 DOI: 10.1093/hmg/ddy311] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/24/2018] [Indexed: 01/09/2023] Open
Abstract
Guanylate Cyclase-Activating Protein 1 (GCAP1) regulates the enzymatic activity of the photoreceptor guanylate cyclases (GC), leading to inhibition or activation of the cyclic guanosine monophosphate (cGMP) synthesis depending on its Ca2+- or Mg2+-loaded state. By genetically screening a family of patients diagnosed with cone-rod dystrophy, we identified a novel missense mutation with autosomal dominant inheritance pattern (c.332A>T; p.(Glu111Val); E111V from now on) in the GUCA1A gene coding for GCAP1. We performed a thorough biochemical and biophysical investigation of wild type (WT) and E111V human GCAP1 by heterologous expression and purification of the recombinant proteins. The E111V substitution disrupts the coordination of the Ca2+ ion in the high-affinity site (EF-hand 3, EF3), thus significantly decreasing the ability of GCAP1 to sense Ca2+ (∼80-fold higher Kdapp compared to WT). Both WT and E111V GCAP1 form dimers independently on the presence of cations, but the E111V Mg2+-bound form is prone to severe aggregation over time. Molecular dynamics simulations suggest a significantly increased flexibility of both the EF3 and EF4 cation binding loops for the Ca2+-bound form of E111V GCAP1, in line with the decreased affinity for Ca2+. In contrast, a more rigid backbone conformation is observed in the Mg2+-bound state compared to the WT, which results in higher thermal stability. Functional assays confirm that E111V GCAP1 interacts with the target GC with a similar apparent affinity (EC50); however, the mutant shifts the GC inhibition out of the physiological [Ca2+] (IC50E111V ∼10 μM), thereby leading to the aberrant constitutive synthesis of cGMP under conditions of dark-adapted photoreceptors.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.,Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Elisa Oppici
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | | | - Fabiana D'Esposito
- Imperial College Ophthalmic Research Unit, Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK.,MAGI Euregio, Bolzano, Italy.,Eye Clinic, Department of Neurosciences, Reproductive Sciences and Dentistry, Federico II University, Naples, Italy
| | | | | | - Benedetto Falsini
- Institute of Ophthalmology, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Adriano Magli
- Department of Pediatric Ophthalmology, University of Salerno, Fisciano (SA), Italy
| | - Matteo Bertelli
- MAGI'S Lab s.r.l., Rovereto, Italy.,MAGI Euregio, Bolzano, Italy
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| |
Collapse
|
9
|
Developmental visual deprivation: long term effects on human cone driven retinal function. Graefes Arch Clin Exp Ophthalmol 2017; 255:2481-2486. [PMID: 28831547 DOI: 10.1007/s00417-017-3780-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 07/26/2017] [Accepted: 08/14/2017] [Indexed: 10/19/2022] Open
Abstract
PURPOSE To assess whether infantile visual deprivation induced by developmental cataract may influence the cone-driven retinal function in humans. METHODS A total of 14 patients with history of bilateral developmental cataract (DC), who had undergone uncomplicated cataract extraction surgery and intraocular lens implant, and 14 healthy subjects (HS) were enrolled. All patients underwent complete ophthalmological and orthoptic evaluations and best-corrected visual acuity measurement. Light-adapted full-field electroretinograms (ERG) and photopic negative responses (PhNR) were recorded to obtain a reliable measurement of the outer/inner retinal function and of the retinal ganglion cells' function, respectively. RESULT Mean values of light-adapted ERG a- and b-wave implicit times were slightly delayed when compared to HS values. Light-adapted ERG a-wave amplitude mean values showed borderline values (p = 0.001), whereas a-wave amplitude analysis at 5 ms, b-wave and PhNR amplitude mean values showed no significant differences when compared to control values. No significant correlations were found when age at surgery, time elapsed from surgery, duration of the visual deprivation, age at examination, age at first detection of the opacity, BCVA and electrophysiological parameters were plotted together. Coherently with morphological studies, the extremely light bioelectrical impairment of the cone pathway in our cohort of patients describes minimal functional abnormalities of a well-structured retina that is not completely mature. CONCLUSIONS Our present results, combined to those of our previous work on congenital cataracts, allow us to enhance the comprehension of functional developmental mechanisms of children's retinas and highlight the relevance of the timely treatment of lens opacities during infancy.
Collapse
|