1
|
Li N, Webb A, Kennelly J, Sharma R, Whitson BA, Mohler PJ, Hummel JD, Zhao J, Fedorov V. Heart Rate Mystery Unveiled: Sex Differences in Human Sinoatrial Node Genes and Female Tachycardia. Circ Arrhythm Electrophysiol 2025:e013534. [PMID: 40265247 DOI: 10.1161/circep.124.013534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Despite over a century of clinical electrocardiographic studies showing that females exhibit a faster resting heart rate (HR), the mechanisms underlying sex differences in HR remain unresolved. Moreover, inappropriate sinus tachycardia primarily affects females, whereas males are at a higher risk for conduction block and atrial fibrillation. We hypothesized that the sexual dimorphism of genes responsible for sinoatrial node (SAN) pacemaking and signaling pathways may contribute to the sex differences in HR and susceptibility to arrhythmias. METHODS Human SAN central pacemaker and right atrial tissue were isolated from nondiseased ex vivo donor hearts. Gene expressions were quantified and validated using the transcriptomic panel and quantitative polymerase chain reaction. Gene set enrichment analysis, Ingenuity Pathway Analysis, and human-specific SAN models were utilized to define regulatory mechanisms and functional impacts of sex-biased gene transcription. RESULTS We identified differentially expressed region- and sex-specific genes, with gene sets enriched in HR regulation (eg, TBX3, HCN1) and metabolism (eg, ADIPOQ, LEP) pathways in female SAN. In contrast, differential genes and gene sets involved in collagen biosynthetic processes, fibrogenesis (eg, EGR1), and immune response (eg, IL6, CXCL8) pathways were enriched in males SAN and right atrial. Ingenuity Pathway Analysis predicted significant roles for TBX3 and estradiol in the sex-specific expression of genes involved in SAN function. Computational simulations showed that the sex-specific SAN differences in If (HCN1) and ICa,L (CACNA1D) can explain the faster HR in females, with females having a lower threshold for inappropriate sinus tachycardia, whereas males are more vulnerable to sinus arrest. CONCLUSIONS The human SAN exhibits region-specific sexual dimorphism in pacemaking gene sets. Higher expression of TBX3 and HCN1 in females may underlie their faster HR and increased susceptibility to inappropriate sinus tachycardia, whereas enriched gene sets related to inflammation and collagen biosynthesis in males may predispose them to conduction impairments and atrial fibrillation risk.
Collapse
Affiliation(s)
- Ning Li
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine Wexner Medical Center, Columbus. (N.L., P.J.M., V.F.)
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine Wexner Medical Center, Columbus. (N.L., P.J.M., J.D.H., V.F.)
| | - Amy Webb
- Biomedical Informatics, The Ohio State University College of Medicine Wexner Medical Center, Columbus. (A.W.)
| | - James Kennelly
- Auckland Bioengineering Institute, The University of Auckland, New Zealand (J.K., R.S., J.Z.)
| | - Roshan Sharma
- Auckland Bioengineering Institute, The University of Auckland, New Zealand (J.K., R.S., J.Z.)
| | - Bryan A Whitson
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University College of Medicine Wexner Medical Center, Columbus. (B.A.W.)
| | - Peter J Mohler
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine Wexner Medical Center, Columbus. (N.L., P.J.M., V.F.)
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine Wexner Medical Center, Columbus. (N.L., P.J.M., J.D.H., V.F.)
- Department of Internal Medicine, The Ohio State University College of Medicine Wexner Medical Center, Columbus. (P.J.M., J.D.H.)
| | - John D Hummel
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine Wexner Medical Center, Columbus. (N.L., P.J.M., J.D.H., V.F.)
- Department of Internal Medicine, The Ohio State University College of Medicine Wexner Medical Center, Columbus. (P.J.M., J.D.H.)
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, New Zealand (J.K., R.S., J.Z.)
| | - Vadim Fedorov
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine Wexner Medical Center, Columbus. (N.L., P.J.M., V.F.)
- Bob and Corrine Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine Wexner Medical Center, Columbus. (N.L., P.J.M., J.D.H., V.F.)
| |
Collapse
|
2
|
Myachina TA, Butova XA, Simonova RA, Volzhaninov DA, Kochurova AM, Kopylova GV, Shchepkin DV, Khokhlova AD. The Contractile Function of Ventricular Cardiomyocytes Is More Sensitive to Acute 17β-Estradiol Treatment Compared to Atrial Cardiomyocytes. Cells 2025; 14:561. [PMID: 40277887 PMCID: PMC12026394 DOI: 10.3390/cells14080561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
17β-estradiol (E2) is the most active metabolite of estrogen with a wide range of physiological action on cardiac muscle. Previous studies have reported E2 effects predominantly for the ventricles, while the E2 impact on the atria has been less examined. In this study, we focused on the direct E2 effects on atrial and ventricular contractility at the cellular and molecular levels. Single atrial and ventricular cardiomyocytes (CM) from adult (24 weeks-old) female Wistar rats were incubated with 10 nM E2 for 15 min. Sarcomere length and cytosolic [Ca2+]i transients were measured in mechanically non-loaded CM, and the tension-length relationship was studied in CM mechanically loaded by carbon fibers. The actin-myosin interaction and sarcomeric protein phosphorylation were analyzed using an in vitro motility assay and gel electrophoresis with Pro-Q Diamond phosphoprotein stain. E2 had chamber-specific effects on the contractile function of CM with a pronounced influence on ventricular CM. The characteristics of [Ca2+]i transients did not change in both atrial and ventricular CM. However, in ventricular CM, E2 reduced the amplitude and maximum velocity of sarcomere shortening and decreased the slope of the passive tension-length relationship that was associated with increased TnI and cMyBP-C phosphorylation. E2 treatment accelerated the cross-bridge cycle of both atrial and ventricular myosin that was associated with increased phosphorylation of the myosin essential light chain. This study shows that E2 impairs the mechanical function of the ventricular myocardium while atrial contractility remains mostly preserved. Hormonal replacement therapy (HRT) with estrogen is by far the most effective therapy for treating climacteric symptoms experienced during menopause. Here we found a chamber specificity of myocardial contractile function to E2 that should be taken into account for the potential side effects of HRT.
Collapse
Affiliation(s)
- Tatiana A. Myachina
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Xenia A. Butova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Raisa A. Simonova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Denis A. Volzhaninov
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Anastasia M. Kochurova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Galina V. Kopylova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Daniil V. Shchepkin
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620026 Yekaterinburg, Russia
| | | |
Collapse
|
3
|
Ekenbäck C, Persson J, Tornvall P, Forsberg L, Spaak J. Sympathetic nerve activity and response to physiological stress in Takotsubo syndrome. Clin Auton Res 2025; 35:205-214. [PMID: 39546154 PMCID: PMC12000160 DOI: 10.1007/s10286-024-01082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024]
Abstract
PURPOSE The prevailing hypothesis posits that Takotsubo syndrome (TTS) is caused by massive sympathetic activation, yet supporting evidence remains inconsistent. The objectives of the present study were to determine whether sympathetic activity and reactivity are enhanced in the recovery phase of TTS, and to evaluate the effect of selective β1-receptor blockade on sympathetic reactivity. METHODS We conducted a case-control study that included 18 female patients with TTS and 13 age- and sex-matched controls. Muscle sympathetic nerve activity was measured through microneurography of the peroneal nerve at rest and during the cold pressor test. In the TTS group, recordings were repeated after randomisation to intravenous metoprolol or placebo. In 10 TTS patients, cardiac sympathetic activity was assessed using iodine 123-metaiodobenzylguanidine scintigraphy. Blood samples were collected during hospitalisation. RESULTS Microneurography was performed a median of 27.5 days after patient admission. There were no significant differences in burst incidence, burst frequency, burst height or burst area between the TTS patients and the controls at rest, during stress or after administration of intravenous metoprolol. Iodine 123-metaiodobenzylguanidine scintigraphy was performed a median of 12.5 days after admission, revealing decreased early 1.54 ± 0.13 and late 1.40 ± 0.13 heart-to-mediastinum ratios, and an increased washout rate of 41.8 ± 12.1%. Catecholamine metabolites were comparable between the study groups. CONCLUSION General sympathetic hyperactivity or hyperreactivity unlikely contributes to TTS, as catecholamine levels and muscle sympathetic nerve activity at rest and during stress were similar between the TTS patients and the controls. As scintigraphy showed increased cardiac sympathetic activity, a pathological cardiac adrenergic response and vulnerability to sympathetic activation may be crucial for the development of the syndrome.
Collapse
Affiliation(s)
- Christina Ekenbäck
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden.
- Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden.
| | - Jonas Persson
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| | - Per Tornvall
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Lena Forsberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Spaak
- Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Brong A, Kontrogianni-Konstantopoulos A. Sex Chromosomes and Sex Hormones: Dissecting the Forces That Differentiate Female and Male Hearts. Circulation 2025; 151:474-489. [PMID: 39960989 PMCID: PMC11839176 DOI: 10.1161/circulationaha.124.069493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The heart is a highly sex-biased organ, as sex shapes innumerable aspects of heart health and disease. Sex chromosomes and sex hormones -testosterone, progesterone, and estrogen- establish and perpetuate the division between male and female myocardium. Of these differentiating factors, the insulating effects of estrogen have been rigorously interrogated and reviewed, whereas the influence of sex chromosomes, testosterone, and progesterone remains in dispute or ill-defined. Here, we synthesize growing evidence that sex chromosomes and sex hormones substantially bias heart form, function, and dysfunction in a context-dependent fashion. The discrete protective functions ascribed to each of the 3 estrogen receptors are also enumerated. Subsequently, we overview obstacles that have historically discouraged the inclusion of female subjects in basic science such as the impact of the female estrus cycle and reproductive senescence on data reliability and reproducibility. Furthermore, we weigh the utility of several common strategies to intercept and rescue sex-specific protection. Last, we warn of common compounds in animal chow and cell culture that interfere with estrogen signaling. In sum, we survey the controversies and challenges that stem from sex-inclusive cardiovascular research, comparing the possible causes of cardiac sex bias, elucidating sex chromosome or hormone-dependent processes in the heart, describing common lapses that imperil female and male cell and animal work, and illuminating facets of the female heart yet unexplored or still uncertain.
Collapse
Affiliation(s)
- Annie Brong
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Aikaterini Kontrogianni-Konstantopoulos
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Szczepanska-Sadowska E, Czarzasta K, Bogacki-Rychlik W, Kowara M. The Interaction of Vasopressin with Hormones of the Hypothalamo-Pituitary-Adrenal Axis: The Significance for Therapeutic Strategies in Cardiovascular and Metabolic Diseases. Int J Mol Sci 2024; 25:7394. [PMID: 39000501 PMCID: PMC11242374 DOI: 10.3390/ijms25137394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
A large body of evidence indicates that vasopressin (AVP) and steroid hormones are frequently secreted together and closely cooperate in the regulation of blood pressure, metabolism, water-electrolyte balance, and behavior, thereby securing survival and the comfort of life. Vasopressin cooperates with hormones of the hypothalamo-pituitary-adrenal axis (HPA) at several levels through regulation of the release of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and multiple steroid hormones, as well as through interactions with steroids in the target organs. These interactions are facilitated by positive and negative feedback between specific components of the HPA. Altogether, AVP and the HPA cooperate closely as a coordinated functional AVP-HPA system. It has been shown that cooperation between AVP and steroid hormones may be affected by cellular stress combined with hypoxia, and by metabolic, cardiovascular, and respiratory disorders; neurogenic stress; and inflammation. Growing evidence indicates that central and peripheral interactions between AVP and steroid hormones are reprogrammed in cardiovascular and metabolic diseases and that these rearrangements exert either beneficial or harmful effects. The present review highlights specific mechanisms of the interactions between AVP and steroids at cellular and systemic levels and analyses the consequences of the inappropriate cooperation of various components of the AVP-HPA system for the pathogenesis of cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Ewa Szczepanska-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | | | | | | |
Collapse
|
6
|
Corbi G, Comegna M, Vinciguerra C, Capasso A, Onorato L, Salucci AM, Rapacciuolo A, Cannavo A. Age and sex mediated effects of estrogen and Β3-adrenergic receptor on cardiovascular pathophysiology. Exp Gerontol 2024; 190:112420. [PMID: 38588751 DOI: 10.1016/j.exger.2024.112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Sex differences are consistently identified in determining the prevalence, manifestation, and response to therapies in several systemic disorders, including those affecting the cardiovascular (CV), skeletal muscle, and nervous system. Interestingly, such differences are often more noticeable as we age. For example, premenopausal women experience a lower risk of CV disease than men of the same age. While at an advanced age, with menopause, the risk of cardiovascular diseases and adverse outcomes increases exponentially in women, exceeding that of men. However, this effect appears to be reversed in diseases such as pulmonary hypertension, where women are up to seven times more likely than men to develop an idiopathic form of the disease with symptoms developing ten years earlier than their male counterparts. Explaining this is a complex question. However, several factors and mechanisms have been identified in recent decades, including a role for sex hormones, particularly estrogens and their related receptors. Furthermore, an emerging role in these sex differences has also been suggested for β-adrenergic receptors (βARs), which are essential regulators of mammalian physiology. It has in fact been shown that βARs interact with estrogen receptors (ER), providing further demonstration of their involvement in determining sexual differences. Based on these premises, this review article focused on the β3AR subtype, which shows important activities in adipose tissue but with new and interesting roles in regulating the function of cardiomyocytes and vascular cells. In detail, we examined how β3AR and ER signaling are intertwined and whether there would be sex- and age-dependent specific effects of these receptor systems.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Marika Comegna
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE-Advanced Biotechnologies - Franco Salvatore, Naples, Italy
| | - Caterina Vinciguerra
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alessio Capasso
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Luigi Onorato
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Antonio Rapacciuolo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
7
|
Li S, Girgla S, Sherman A, Alpay-Savasan Z, Mehta N. Atrial fibrillation considerations in the fourth trimester (postpartum period). J Interv Card Electrophysiol 2024; 67:901-914. [PMID: 38363430 DOI: 10.1007/s10840-023-01611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/18/2023] [Indexed: 02/17/2024]
Abstract
Postpartum atrial fibrillation is an uncommon but increasingly prevalent tachyarrhythmia that merits special management considerations with regards to the safety and efficacy of anticoagulation, rate and rhythm control as well as drug exposure to infants throughout breastfeeding. In this state-of-the-art review, we examine the demographics of postpartum atrial fibrillation with its associated risk factors, describe the safety of commonly used atrial fibrillation therapies, and discuss important considerations for women considering subsequent pregnancies.
Collapse
Affiliation(s)
- Shuo Li
- Internal Medicine Residency, Beaumont Hospital Royal Oak, Royal Oak, MI, USA
| | - Saavia Girgla
- Department of Cardiovascular Medicine, Beaumont Hospital Royal Oak, Royal Oak, MI, USA
| | - Andrew Sherman
- Internal Medicine Residency, Beaumont Hospital Royal Oak, Royal Oak, MI, USA
| | - Zeynep Alpay-Savasan
- Division of Maternal and Fetal Medicine, Beaumont Hospital Royal Oak, Royal Oak, MI, USA
| | - Nishaki Mehta
- Department of Cardiovascular Medicine, Beaumont Hospital Royal Oak, Royal Oak, MI, USA.
| |
Collapse
|
8
|
Dev D, El-Din M, Vijayakumar S, Mitrakrishnan RN. Takotsubo cardiomyopathy following pacemaker insertion complicated with polymorphic ventricular tachycardia: a case report. J Med Case Rep 2024; 18:238. [PMID: 38705996 PMCID: PMC11071207 DOI: 10.1186/s13256-024-04565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/14/2024] [Indexed: 05/07/2024] Open
Abstract
BACKGROUND Takotsubo cardiomyopathy is a novel form of rapidly reversible heart failure occurring secondary to a stressor that mimics an acute coronary event. The underlying etiology of the stressor is highly variable and can include medical procedures. Pacemaker insertion is an infrequent cause of Takotsubo cardiomyopathy. CASE PRESENTATION An 86-year-old Caucasian woman underwent an uncomplicated pacemaker insertion for symptomatic complete heart block in the background of slow atrial fibrillation. A transient episode of polymorphic ventricular tachycardia was noted on day 1 following the procedure; however, her pacemaker was checked and, as she remained stable, she was discharged home. She presented again 5 days later with symptomatic heart failure. Chest X-ray confirmed pulmonary edema. Echocardiography confirmed new onset severe left ventricle dysfunction. Pacemaker checks were normal and lead placement was confirmed. Though her troponin I was elevated, her coronary angiogram was normal. Contrast enhanced echocardiography suggested apical ballooning favoring Takotsubo cardiomyopathy. She was treated for heart failure and made a good recovery. Her follow-up echocardiography a month later showed significant improvement in left ventricle function. CONCLUSIONS Takotsubo cardiomyopathy is mediated by a neuro-cardiogenic mechanism due to hypothalamic-pituitary-adrenal axis activation. It generally has a good prognosis. Complications though uncommon, can occur and include arrhythmias. Pacemaker insertion as a precipitant stressor is an infrequent cause of Takotsubo cardiomyopathy. As pacemaker insertions are more frequent in the elderly age group, this phenomenon should be recognized as a potential complication.
Collapse
Affiliation(s)
- Damanpreet Dev
- Department of Cardiology, Kettering General Hospital, NHS, Kettering, UK.
| | - Mohammed El-Din
- Department of Cardiology, Kettering General Hospital, NHS, Kettering, UK
| | | | | |
Collapse
|
9
|
Krzesiak A, Enea C, Faivre JF, Bescond J, Vanderbrouck C, Cognard C, Sebille S, Bosquet L, Delpech N. Combined cardiovascular effects of ovariectomy and high-intensity interval training in female spontaneously hypertensive rats. J Appl Physiol (1985) 2024; 136:1195-1208. [PMID: 38572539 DOI: 10.1152/japplphysiol.00518.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Hypertensive postmenopausal women are more likely to develop adverse cardiac remodeling and respond less effectively to drug treatment than men. High-intensity interval exercise (HIIE) is a nonpharmacological strategy for the treatment of hypertension; however, the effectiveness in women remains uncertain. This study was designed to evaluate 1) the effects of HIIE training upon morphological and functional markers of cardiovascular health in female SHR and 2) to determine whether the hormonal shift induced by ovariectomy could influence cardiovascular responses to HIIE. Thirty-six SHR were randomly assigned to four groups: ovariectomized sedentary, ovariectomized trained, sham-operated sedentary, and sham-operated trained. The trained rats performed HIIE 5 days/wk for 8 wk. Blood pressure and echocardiographic measurements were performed before and after training in animals. Cardiac response to β-adrenergic stimulation and the expression of calcium regulatory proteins and estrogen receptors in heart samples were assessed. Endothelium-dependent vasorelaxation in response to acetylcholine was evaluated in aortic rings as well as the expression of nitric oxide synthase isoforms (eNOS and P-eNOS) by Western blotting. In both groups of trained SHR, HIIE induced eccentric cardiac remodeling with greater inotropic and chronotropic effects, as well as an increase in SERCA and β1AR expression. However, although the trained rats showed improved endothelial function and expression of eNOS and P-eNOS in the aorta, there was no demonstrated effect on blood pressure. In addition, the responses to HIIE training were not affected by ovariectomy. This work highlights the importance of assessing the cardiovascular efficacy and safety of different exercise modalities in women.NEW & NOTEWORTHY This study reports the effects of high-intensity interval exercise (HIIE) training on cardiac and endothelial function in female hypertensive rats. Despite a lack of effect on blood pressure (BP), HIIE training induces eccentric cardiac remodeling with greater functionals effects. Furthermore, training has beneficial effects on endothelial function. However, ovarian hormones do not seem to modulate cardiac and aortic adaptations to this training modality. All this underlines the need to consider training modalities on the cardiovascular system in women.
Collapse
Affiliation(s)
- Amandine Krzesiak
- Laboratoire MOVE (UR 20296), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
- Laboratoire PRéTI (UR 24184), University of Poitiers, Poitiers, France
| | - Carina Enea
- Laboratoire MOVE (UR 20296), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | | | - Jocelyn Bescond
- Laboratoire PRéTI (UR 24184), University of Poitiers, Poitiers, France
| | | | - Christian Cognard
- Laboratoire PRéTI (UR 24184), University of Poitiers, Poitiers, France
| | - Stéphane Sebille
- Laboratoire PRéTI (UR 24184), University of Poitiers, Poitiers, France
| | - Laurent Bosquet
- Laboratoire MOVE (UR 20296), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | - Nathalie Delpech
- Laboratoire MOVE (UR 20296), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| |
Collapse
|
10
|
Asunción-Alvarez D, Palacios J, Ybañez-Julca RO, Rodriguez-Silva CN, Nwokocha C, Cifuentes F, Greensmith DJ. Calcium signaling in endothelial and vascular smooth muscle cells: sex differences and the influence of estrogens and androgens. Am J Physiol Heart Circ Physiol 2024; 326:H950-H970. [PMID: 38334967 DOI: 10.1152/ajpheart.00600.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Calcium signaling in vascular endothelial cells (ECs) and smooth muscle cells (VSMCs) is essential for the regulation of vascular tone. However, the changes to intracellular Ca2+ concentrations are often influenced by sex differences. Furthermore, a large body of evidence shows that sex hormone imbalance leads to dysregulation of Ca2+ signaling and this is a key factor in the pathogenesis of cardiovascular diseases. In this review, the effects of estrogens and androgens on vascular calcium-handling proteins are discussed, with emphasis on the associated genomic or nongenomic molecular mechanisms. The experimental models from which data were collected were also considered. The review highlights 1) in female ECs, transient receptor potential vanilloid 4 (TRPV4) and mitochondrial Ca2+ uniporter (MCU) enhance Ca2+-dependent nitric oxide (NO) generation. In males, only transient receptor potential canonical 3 (TRPC3) plays a fundamental role in this effect. 2) Female VSMCs have lower cytosolic Ca2+ levels than males due to differences in the activity and expression of stromal interaction molecule 1 (STIM1), calcium release-activated calcium modulator 1 (Orai1), calcium voltage-gated channel subunit-α1C (CaV1.2), Na+-K+-2Cl- symporter (NKCC1), and the Na+/K+-ATPase. 3) When compared with androgens, the influence of estrogens on Ca2+ homeostasis, vascular tone, and incidence of vascular disease is better documented. 4) Many studies use supraphysiological concentrations of sex hormones, which may limit the physiological relevance of outcomes. 5) Sex-dependent differences in Ca2+ signaling mean both sexes ought to be included in experimental design.
Collapse
Affiliation(s)
- Daniel Asunción-Alvarez
- Laboratorio de Bioquímica Aplicada, Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Javier Palacios
- Laboratorio de Bioquímica Aplicada, Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Roberto O Ybañez-Julca
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Cristhian N Rodriguez-Silva
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Perú
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences Physiology Section, Faculty of Medical Sciences, The University of the West Indies, Kingston, Jamaica
| | - Fredi Cifuentes
- Laboratorio de Fisiología Experimental (EphyL), Instituto Antofagasta (IA), Universidad de Antofagasta, Antofagasta, Chile
| | - David J Greensmith
- Biomedical Research Centre, School of Science, Engineering and Environment, The University of Salford, Salford, United Kingdom
| |
Collapse
|
11
|
Moric-Janiszewska E, Smolik S, Szydłowski L, Kapral M. Associations between Selected ADRB1 and CYP2D6 Gene Polymorphisms in Children with Ventricular and Supraventricular Arrhythmias. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2057. [PMID: 38138160 PMCID: PMC10744405 DOI: 10.3390/medicina59122057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Tachycardia is a common cardiovascular disease. Drugs blocking β1-adrenergic receptors (ADRB1) are used in the therapy of arrhythmogenic heart diseases. Disease-related polymorphisms can be observed within the ADRB1 gene. The two most important are Ser49Gly and Arg389Gly, and they influence the treatment efficacy. The family of the cytochrome P450 system consists of the isoenzyme CYP2D6 (Debrisoquine 4-hydroxylase), which is involved in phase I metabolism of almost 25% of clinically important drugs, including antiarrhythmic drugs. A study was conducted to detect the ADRB1 and CYP2D6 gene polymorphisms. Materials and Methods: The material for the test was whole blood from 30 patients with ventricular and supraventricular tachycardia and 20 controls. The samples were obtained from the Department of Pediatric Cardiology. The first to be made was the extraction of DNA using a GeneMATRIX Quick Blood DNA Purification Kit from EURx. The selected ADRB1 and CYP2D6 gene polymorphisms were detected by high-resolution melting polymerase chain reaction (HRM-PCR) analysis. Results: Based on the analysis of melt profile data for each PCR product, the identification of polymorphisms was carried out. Heterozygotes and homozygotes were found in the examined alleles. Conclusions: The frequency of the Arg389Gly polymorphism differs statistically significantly between the control group and patients with supraventricular and ventricular arrhythmias, as well as between these two groups of patients. Moreover, the Arg389Gly polymorphism was statistically more prevalent in the group of girls with SVT arrhythmia compared to girls with VT. A few carriers of homozygous and heterozygous systems of the S49G polymorphism were detected among patients with arrhythmias, as well as control group. The percentage of individuals carrying the CYP2D6 4 allele as either homozygous or heterozygous was observed in the study and control groups. The high prevalence of the CYP2D6*4 allele carriers in both groups prompts the optimization of beta-1 blocker therapy.
Collapse
Affiliation(s)
- Ewa Moric-Janiszewska
- Department of Biochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8B, 41-200 Sosnowiec, Poland
| | - Sławomir Smolik
- Department of Biochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8B, 41-200 Sosnowiec, Poland
| | - Lesław Szydłowski
- Department of Pediatric Cardiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 16, 40-752 Katowice, Poland
| | - Małgorzata Kapral
- Department of Biochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8B, 41-200 Sosnowiec, Poland
| |
Collapse
|
12
|
Ravingerova T, Adameova A, Lonek L, Farkasova V, Ferko M, Andelova N, Kura B, Slezak J, Galatou E, Lazou A, Zohdi V, Dhalla NS. Is Intrinsic Cardioprotection a Laboratory Phenomenon or a Clinically Relevant Tool to Salvage the Failing Heart? Int J Mol Sci 2023; 24:16497. [PMID: 38003687 PMCID: PMC10671596 DOI: 10.3390/ijms242216497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Cardiovascular diseases, especially ischemic heart disease, as a leading cause of heart failure (HF) and mortality, will not reduce over the coming decades despite the progress in pharmacotherapy, interventional cardiology, and surgery. Although patients surviving acute myocardial infarction live longer, alteration of heart function will later lead to HF. Its rising incidence represents a danger, especially among the elderly, with data showing more unfavorable results among females than among males. Experiments revealed an infarct-sparing effect of ischemic "preconditioning" (IPC) as the most robust form of innate cardioprotection based on the heart's adaptation to moderate stress, increasing its resistance to severe insults. However, translation to clinical practice is limited by technical requirements and limited time. Novel forms of adaptive interventions, such as "remote" IPC, have already been applied in patients, albeit with different effectiveness. Cardiac ischemic tolerance can also be increased by other noninvasive approaches, such as adaptation to hypoxia- or exercise-induced preconditioning. Although their molecular mechanisms are not yet fully understood, some noninvasive modalities appear to be promising novel strategies for fighting HF through targeting its numerous mechanisms. In this review, we will discuss the molecular mechanisms of heart injury and repair, as well as interventions that have potential to be used in the treatment of patients.
Collapse
Affiliation(s)
- Tanya Ravingerova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Adriana Adameova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 10 Odbojárov St., 832 32 Bratislava, Slovakia
| | - Lubomir Lonek
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Veronika Farkasova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Miroslav Ferko
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Natalia Andelova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Branislav Kura
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Jan Slezak
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava, Slovakia; (A.A.); (L.L.); (V.F.); (M.F.); (N.A.); (B.K.); (J.S.)
| | - Eleftheria Galatou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
- Department of Life and Health Sciences, University of Nicosia, 2417 Nicosia, Cyprus
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (E.G.); (A.L.)
| | - Vladislava Zohdi
- Department of Anatomy, Faculty of Medicine, Comenius University in Bratislava, 24 Špitalska, 813 72 Bratislava, Slovakia;
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC 3800, Australia
| | - Naranjan S. Dhalla
- Institute of Cardiovascular Sciences St. Boniface Hospital Albrechtsen Research Centre, 351 Tache Avenue, Winnipeg, MB R2H 2A6, Canada;
| |
Collapse
|
13
|
Vriz O, Alzahrani T, Landi I, Mushtaq AH, Shaik A, Elshaer AN. Age-sex effect on in-hospital complications and mortality in patients with Takotsubo syndrome. Insights from the National Inpatient Sample. Monaldi Arch Chest Dis 2023; 94. [PMID: 37070781 DOI: 10.4081/monaldi.2023.2558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/29/2023] [Indexed: 04/19/2023] Open
Abstract
Age and sex differences in Takotsubo syndrome (TTS) are still a matter of debate. The present study aimed to evaluate the difference in cardiovascular (CV) risk factors, CV disease, in-hospital complications, and death within different sex-age groups. Using the National Inpatient Sample database between 2012 and 2016, 32,474 patients older than 18 years of age hospitalized with the primary diagnosis of TTS were identified. A total of 32,474 patients were enrolled; 27,611 (85.04%) were female. CV risk factors were higher in females, while CV diseases and in-hospital complications were significantly higher in males. The mortality in males was twice as high as that of female patients (9.83% versus 4.58%, p<0.01), and in the logistic regression model after adjustment for confounders, the odds ratio (OR) was 1.79, the confidence interval was 1.60-2.02, and p<0.01. After dividing the group based on age, in-hospital complications were inversely related to age in both sexes, and the length of in-hospital stay was double in the youngest group compared to the oldest one. Mortality increased progressively with age in both groups but was constantly higher in males for each age group. Multiple logistic regression analysis for mortality was performed for the two sexes separately and for the three age groups, considering the youngest one as the reference group. In females, the OR was 1.59 and 2.88, respectively, for groups 2 and 3; for males, the OR was 1.92 and 3.15, all of them statistically significant (p<0.01). In-hospital complications were more common in younger patients with TTS, particularly in males. Mortality was positively correlated with age for both sexes, but mortality was higher in males compared to females in all age groups.
Collapse
Affiliation(s)
- Olga Vriz
- Heart Center, King Faisal Specialist Hospital and Research Center, Riyadh.
| | - Talal Alzahrani
- Department of Medicine, College of Medicine, Taibah University, Madinah.
| | - Irene Landi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara.
| | | | | | | |
Collapse
|
14
|
Lakbar I, Einav S, Lalevée N, Martin-Loeches I, Pastene B, Leone M. Interactions between Gender and Sepsis—Implications for the Future. Microorganisms 2023; 11:microorganisms11030746. [PMID: 36985319 PMCID: PMC10058943 DOI: 10.3390/microorganisms11030746] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Sex and gender dimorphisms are found in a large variety of diseases, including sepsis and septic shock which are more prevalent in men than in women. Animal models show that the host response to pathogens differs in females and males. This difference is partially explained by sex polarization of the intracellular pathways responding to pathogen–cell receptor interactions. Sex hormones seem to be responsible for this polarization, although other factors, such as chromosomal effects, have yet to be investigated. In brief, females are less susceptible to sepsis and seem to recover more effectively than males. Clinical observations produce more nuanced findings, but men consistently have a higher incidence of sepsis, and some reports also claim higher mortality rates. However, variables other than hormonal differences complicate the interaction between sex and sepsis, including comorbidities as well as social and cultural differences between men and women. Conflicting data have also been reported regarding sepsis-attributable mortality rates among pregnant women, compared with non-pregnant females. We believe that unraveling sex differences in the host response to sepsis and its treatment could be the first step in personalized, phenotype-based management of patients with sepsis and septic shock.
Collapse
Affiliation(s)
- Ines Lakbar
- Department of Anesthesiology and Intensive Care Unit, Assistance Publique Hôpitaux Universitaires de Marseille, Aix-Marseille University, Hospital Nord, 13015 Marseille, France
- CEReSS, Health Service Research and Quality of Life Centre, School of Medicine-La Timone Medical, Aix-Marseille University, 13015 Marseille, France
| | - Sharon Einav
- Intensive Care Unit, Shaare Zedek Medical Center, Jerusalem 23456, Israel
- Faculty of Medicine, Hebrew University, Jerusalem 23456, Israel
| | - Nathalie Lalevée
- INSERM, INRAE, Centre for Nutrition and Cardiovascular Disease (C2VN), Aix-Marseille University, 13005 Marseille, France
| | - Ignacio Martin-Loeches
- Intensive Care Unit, Trinity Centre for Health Science HRB-Wellcome Trust, St James’s Hospital, D08 NHY1 Dublin, Ireland
| | - Bruno Pastene
- Department of Anesthesiology and Intensive Care Unit, Assistance Publique Hôpitaux Universitaires de Marseille, Aix-Marseille University, Hospital Nord, 13015 Marseille, France
- INSERM, INRAE, Centre for Nutrition and Cardiovascular Disease (C2VN), Aix-Marseille University, 13005 Marseille, France
| | - Marc Leone
- Department of Anesthesiology and Intensive Care Unit, Assistance Publique Hôpitaux Universitaires de Marseille, Aix-Marseille University, Hospital Nord, 13015 Marseille, France
- INSERM, INRAE, Centre for Nutrition and Cardiovascular Disease (C2VN), Aix-Marseille University, 13005 Marseille, France
- Correspondence:
| |
Collapse
|
15
|
Tham YK, Bernardo BC, Claridge B, Yildiz GS, Woon LML, Bond S, Fang H, Ooi JYY, Matsumoto A, Luo J, Tai CMK, Harmawan CA, Kiriazis H, Donner DG, Mellett NA, Abel ED, Khan SA, De Souza DP, Doomun SNE, Liu K, Xiang R, Singh M, Inouye M, Meikle PJ, Weeks KL, Drew BG, Greening DW, McMullen JR. Estrogen receptor alpha deficiency in cardiomyocytes reprograms the heart-derived extracellular vesicle proteome and induces obesity in female mice. NATURE CARDIOVASCULAR RESEARCH 2023; 2:268-289. [PMID: 39196021 DOI: 10.1038/s44161-023-00223-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/30/2023] [Indexed: 08/29/2024]
Abstract
Dysregulation of estrogen receptor alpha (ERα) has been linked with increased metabolic and cardiovascular disease risk. Here, we generate and characterize cardiomyocyte-specific ERα knockout (ERαHKO) mice to assess the role of ERα in the heart. The most striking phenotype was obesity in female ERαHKO but not male ERαHKO mice. Female ERαHKO mice showed cardiac dysfunction, mild glucose and insulin intolerance and reduced ERα gene expression in skeletal muscle and white adipose tissue. Transcriptomic, proteomic, lipidomic and metabolomic analyses revealed evidence of contractile and/or metabolic dysregulation in heart, skeletal muscle and white adipose tissue. We show that heart-derived extracellular vesicles from female ERαHKO mice contain a distinct proteome associated with lipid and metabolic regulation, and have the capacity to metabolically reprogram the target skeletal myocyte proteome with functional impacts on glycolytic capacity and reserve. This multi-omics study uncovers a cardiac-initiated and sex-specific cardiometabolic phenotype regulated by ERα and provides insights into extracellular vesicle-mediated interorgan communication.
Collapse
Affiliation(s)
- Yow Keat Tham
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Bianca C Bernardo
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Bethany Claridge
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Gunes S Yildiz
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Simon Bond
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jenny Y Y Ooi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Aya Matsumoto
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jieting Luo
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Celeste M K Tai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - E Dale Abel
- David Geffen School of Medicine, University of California, Los Angeles, California, CA, USA
| | - Sohaib A Khan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David P De Souza
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Kevin Liu
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Ruidong Xiang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Manika Singh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michael Inouye
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia.
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria, Australia.
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia.
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia.
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia.
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.
- Central Clinical School, Monash University, Melbourne, Victoria, Australia.
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia.
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
16
|
Estevez-Fregoso E, Kilic A, Rodríguez-Vera D, Nicanor-Juárez LE, Romero-Rizo CEM, Farfán-García ED, Soriano-Ursúa MA. Effects of Boron-Containing Compounds on Liposoluble Hormone Functions. INORGANICS 2023; 11:84. [DOI: 10.3390/inorganics11020084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2024] Open
Abstract
Boron-containing compounds (BCC), particularly boronic acids and derivatives, are being increasingly tested as diagnostic and therapeutic agents. Some effects of BCC involve phenomena linked to the action of steroid or thyroid hormones; among these, are the effects on muscle mass or basal metabolism. Additionally, some toxicology reports on mammals, including humans, sound an alert concerning damage to several systems, among which are the negative effects on the induction of male infertility. Systemic and local mechanisms to explain changes in metabolism and impaired fertility were collected and presented. Then, we presented the putative pharmacodynamic and pharmacokinetic mechanisms involved and demonstrated in these events. In addition, it is proposed that there are adducts of some oxygenated BCC with cis-diols in fructose, an essential source of energy for sperm–cell motility, an uncoupling of sex hormone-binding globulin (SHBG) and its ligands, and the modulation of the DNA synthetic rate. These effects share the reactivity of boron-containing compounds on the cis-diols of key molecules. Moreover, data reporting no DNA damage after BCC administration are included. Further studies are required to support the clear role of BCC through these events to disrupt metabolism or fertility in mammals. If such phenomena are confirmed and elucidated, an advance could be useful to design strategies for avoiding BCC toxicity after BCC administration, and possibly for designing metabolism regulators and contraceptive drugs, among other purposes. Boronic derivatives and carboranes have been proposed and studied in this field.
Collapse
Affiliation(s)
- Elizabeth Estevez-Fregoso
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - Ahmet Kilic
- Department of Chemistry, Harran University, 63190 Sanliurfa, Turkey
| | - Diana Rodríguez-Vera
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - Luis E. Nicanor-Juárez
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - C. Elena M. Romero-Rizo
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - Eunice D. Farfán-García
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - Marvin A. Soriano-Ursúa
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| |
Collapse
|
17
|
Fu L, Adu-Amankwaah J, Sang L, Tang Z, Gong Z, Zhang X, Li T, Sun H. Gender differences in GRK2 in cardiovascular diseases and its interactions with estrogen. Am J Physiol Cell Physiol 2023; 324:C505-C516. [PMID: 36622065 DOI: 10.1152/ajpcell.00407.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a multifunctional protein involved in regulating G protein-coupled receptor (GPCR) and non-GPCR signaling in the body. In the cardiovascular system, increased expression of GRK2 has been implicated in the occurrence and development of several cardiovascular diseases (CVDs). Recent studies have found gender differences in GRK2 in the cardiovascular system under physiological and pathological conditions, where GRK2's expression and activity are increased in males than in females. The incidence of CVDs in premenopausal women is lower than in men of the same age, which is related to estrogen levels. Given the shared location of GRK2 and estrogen receptors, estrogen may interact with GRK2 by modulating vital molecules such as calmodulin (CaM), caveolin, RhoA, nitrate oxide (NO), and mouse double minute 2 homolog (Mdm2), via signaling pathways mediated by estrogen's genomic (ERα and ERβ), and non-genomic (GPER) receptors, conferring cardiovascular protection in females. Highlighting the gender differences in GRK2 and understanding its interaction with estrogen in the cardiovascular system is pertinent in treating gender-related CVDs. As a result, this article explores the gender differences of GRK2 in the cardiovascular system and its relationship with estrogen during disease conditions. Estrogen's protective and therapeutic effects and its mechanism on GRK2-related cardiovascular diseases have also been discussed.
Collapse
Affiliation(s)
- Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Lili Sang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ziqing Tang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Zheng Gong
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China.,School of Public Affairs & Governance, Silliman University, Dumaguete, Philippines
| | - Xiaoyan Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Tao Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
18
|
Francis AJ, Firth JM, Sanchez-Alonso JL, Gorelik J, MacLeod KT. GPER limits adverse changes to Ca 2+ signalling and arrhythmogenic activity in ovariectomised guinea pig cardiomyocytes. Front Physiol 2022; 13:1023755. [PMID: 36439245 PMCID: PMC9686394 DOI: 10.3389/fphys.2022.1023755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background: The increased risk of post-menopausal women developing abnormalities of heart function emphasises the requirement to understand the effect of declining oestrogen levels on cardiac electrophysiology and structure, and investigate possible therapeutic targets, namely the G protein-coupled oestrogen receptor 1 (GPER). Methods: Female guinea pigs underwent sham or ovariectomy (OVx) surgeries. Cardiomyocytes were isolated 150-days post-operatively. Membrane structure was assessed using di-8-ANEPPs staining and scanning ion conductance microscopy. Imunnohistochemistry (IHC) determined the localisation of oestrogen receptors. The effect of GPER activation on excitation-contraction coupling mechanisms were assessed using electrophysiological and fluorescence techniques. Downstream signalling proteins were investigated by western blot. Results: IHC staining confirmed the presence of nuclear oestrogen receptors and GPER, the latter prominently localised to the peri-nuclear region and having a clear striated pattern elsewhere in the cells. Following OVx, GPER expression increased and its activation reduced Ca2+ transient amplitude (by 40%) and sarcomere shortening (by 32%). In these cells, GPER activation reduced abnormal spontaneous Ca2+ activity, shortened action potential duration and limited drug-induced early after-depolarisation formation. Conclusion: In an animal species with comparable steroidogenesis and cardiac physiology to humans, we show the expression and localisation of all three oestrogen receptors in cardiac myocytes. We found that following oestrogen withdrawal, GPER expression increased and its activation limited arrhythmogenic behaviours in this low oestrogen state, indicating a potential cardioprotective role of this receptor in post-menopausal women.
Collapse
|
19
|
Queathem ED, Fitzgerald M, Welly R, Rowles CC, Schaller K, Bukhary S, Baines CP, Rector RS, Padilla J, Manrique-Acevedo C, Lubahn DB, Vieira-Potter VJ. Suppression of estrogen receptor beta classical genomic activity enhances systemic and adipose-specific response to chronic beta-3 adrenergic receptor (β3AR) stimulation. Front Physiol 2022; 13:920675. [PMID: 36213237 PMCID: PMC9534559 DOI: 10.3389/fphys.2022.920675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
White adipose tissue (WAT) dysfunction independently predicts cardiometabolic disease, yet there is a lack of effective adipocyte-targeting therapeutics. B3AR agonists enhance adipocyte mitochondrial function and hold potential in this regard. Based on enhanced sensitivity to B3AR-mediated browning in estrogen receptor (ER)alpha-null mice, we hypothesized that ERβ may enhance the WAT response to the B3AR ligand, CL316,243 (CL). Methods: Male and female wild-type (WT) and ERβ DNA binding domain knock-out (ERβDBDKO) mice fed high-fat diet (HFD) to induce obesity were administered CL (1 mg/kg) daily for 2 weeks. Systemic physiological assessments of body composition (EchoMRI), bioenergetics (metabolic chambers), adipocyte mitochondrial respiration (oroboros) and glucose tolerance were performed, alongside perigonadal (PGAT), subcutaneous (SQAT) and brown adipose tissue (BAT) protein expression assessment (Western blot). Mechanisms were tested in vitro using primary adipocytes isolated from WT mice, and from Esr2-floxed mice in which ERβ was knocked down. Statistical analyses were performed using 2 × 2 analysis of variance (ANOVA) for main effects of genotype (G) and treatment (T), as well as GxT interactions; t-tests were used to determine differences between in vitro treatment conditions (SPSS V24). Results: There were no genotype differences in HFD-induced obesity or systemic rescue effects of CL, yet ERβDBDKO females were more sensitive to CL-induced increases in energy expenditure and WAT UCP1 induction (GxT, p < 0.05), which coincided with greater WAT B3AR protein content among the KO (G, p < 0.05). Among males, who were more insulin resistant to begin with (no genotype differences before treatment), tended to be more sensitive to CL-mediated reduction in insulin resistance. With sexes combined, basal WAT mitochondrial respiration trended toward being lower in the ERβDBDKO mice, but this was completely rescued by CL (p < 0.05). Confirming prior work, CL increased adipose tissue ERβ protein (T, p < 0.05, all), an effect that was enhanced in WAT and BAT the female KO (GxT, p < 0.01). In vitro experiments indicated that an inhibitor of ERβ genomic function (PHTPP) synergized with CL to further increase UCP1 mRNA (p = 0.043), whereas full ERβ protein was required for UCP1 expression (p = 0.042). Conclusion: Full ERβ activity appears requisite and stimulatory for UCP1 expression via a mechanism involving non-classical ERβ signaling. This novel discovery about the role of ERβ in adipocyte metabolism may have important clinical applications.
Collapse
Affiliation(s)
- Eric D. Queathem
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Maggie Fitzgerald
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Rebecca Welly
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Candace C. Rowles
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Kylie Schaller
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Shahad Bukhary
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Christopher P. Baines
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States
| | - R. Scott Rector
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Internal Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, MO, United States
- Research Service, Truman VA Memorial Hospital, Columbia, MO, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Camila Manrique-Acevedo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Missouri Columbia School of Medicine, Columbia, MO, United States
| | - Dennis B. Lubahn
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Victoria J. Vieira-Potter
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
20
|
Boldueva SA, Evdokimov DS. Takotsubo cardiomyopathy. Literature review: concept, epidemiology, pathogenesis. Part I. RUSSIAN JOURNAL OF CARDIOLOGY 2022; 27:4993. [DOI: 10.15829/1560-4071-2022-4993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Up-to-date data on the problem of takotsubo cardiomyopathy, including key issues of epidemiology, clinical presentation, diagnostic criteria, and general pathophysiological mechanisms of the disease is presented in review.
Collapse
|
21
|
Sex/Gender- and Age-Related Differences in β-Adrenergic Receptor Signaling in Cardiovascular Diseases. J Clin Med 2022; 11:jcm11154280. [PMID: 35893368 PMCID: PMC9330499 DOI: 10.3390/jcm11154280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Sex differences in cardiovascular disease (CVD) are often recognized from experimental and clinical studies examining the prevalence, manifestations, and response to therapies. Compared to age-matched men, women tend to have reduced CV risk and a better prognosis in the premenopausal period. However, with menopause, this risk increases exponentially, surpassing that of men. Although several mechanisms have been provided, including sex hormones, an emerging role in these sex differences has been suggested for β-adrenergic receptor (β-AR) signaling. Importantly, β-ARs are the most important G protein-coupled receptors (GPCRs), expressed in almost all the cell types of the CV system, and involved in physiological and pathophysiological processes. Consistent with their role, for decades, βARs have been considered the first targets for rational drug design to fight CVDs. Of note, β-ARs are seemingly associated with different CV outcomes in females compared with males. In addition, even if there is a critical inverse correlation between β-AR responsiveness and aging, it has been reported that gender is crucially involved in this age-related effect. This review will discuss how β-ARs impact the CV risk and response to anti-CVD therapies, also concerning sex and age. Further, we will explore how estrogens impact β-AR signaling in women.
Collapse
|
22
|
Harada E, Mizuno Y, Ishii M, Ishida T, Yamada T, Kugimiya F, Yasue H. Beta-blockers are associated with increased B-type natriuretic peptide levels differently in men and women in heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2022; 323:H276-H284. [PMID: 35714176 DOI: 10.1152/ajpheart.00029.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beta-blocker (BB) use is a mainstay for treatment of heart failure (HF) with reduced ejection fraction (HFrEF), whereas its efficacy for heart failure with preserved ejection fraction (HFpEF) remains controversial. Women outnumber men in HFpEF, whereas men outnumber women in HFrEF. Plasma B-type natriuretic peptide (BNP) is established as a biomarker for HF. We examined whether BB use is associated with plasma BNP levels differently in men and women with HFpEF. The study subjects comprised 721 patients with HFpEF (LVEF≥50%) (184 men, mean age 78.2±9.2 and 537 women, mean age 83.1±8.8), 179 on BB (66 men and 113 women) and 542 (118 men and 424 women) not, 583 in sinus rhythm (SR) and 138 in atrial fibrillation (AF). Multivariable logistic regression test was utilized. Plasma BNP levels were higher (P=0.0005), systolic blood pressure and LVEF lower (P=0.0003, and P=0.0059, respectively) on BBs than on no-BBs in women, whereas in men plasma BNP levels, systolic blood pressure, and LVEF were not altered significantly (P=0.0849, P=0.9129, and P=0.4718, respectively) on BBs compared to no-BBs in patients with SR. Multivariable logistic regression analysis revealed that BB use and women were a positive and a negative predictor for high BNP levels (P=0.003 and P=0.032, respectively) in SR but not in AF. BB use was associated with high plasma BNP levels and lower LVEF in women but not in men with HFpEF and SR, suggesting that the pathogenesis and of HFpEF may differ in men and women in SR.
Collapse
Affiliation(s)
- Eisaku Harada
- Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute, Kumamoto, Japan
| | - Yuji Mizuno
- Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute, Kumamoto, Japan
| | - Masanobu Ishii
- Department of Cardiovascular Medicine, Faculty of Life Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto City, Japan
| | - Toshifumi Ishida
- Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute, Kumamoto, Japan
| | - Toshihiro Yamada
- Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute, Kumamoto, Japan
| | - Fumihito Kugimiya
- Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute, Kumamoto, Japan
| | - Hirofumi Yasue
- Division of Cardiovascular Medicine, Kumamoto Kinoh Hospital, Kumamoto Aging Research Institute, Kumamoto, Japan
| |
Collapse
|
23
|
Bora BB, Baruah S, Malakar A, Dey S, Baruah P, Morang I. An Incidental Finding of Congenital Complete Heart Block Presenting in Active Labor: A Multidisciplinary Approach. Cureus 2022; 14:e23393. [PMID: 35494930 PMCID: PMC9037280 DOI: 10.7759/cureus.23393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Congenital complete heart block is a rare occurrence. In some cases, it remains asymptomatic until adulthood or in the case of women until pregnancy. It is usually secondary to placental transfer of maternal antibodies and is associated with high mortality and morbidity. We present a case of a parturient who presented in active labor with premature rupture of membranes and decreased fetal movements. We found that the patient had a complete heart block with mild effort intolerance on evaluation. Markers for metabolic and ischemic causes were negative, and we made a provisional diagnosis of congenital complete heart block. The patient underwent a lower section cesarian section under spinal anesthesia with temporary pacemaker backup. Postoperatively, the patient underwent permanent pacemaker implantation. This case report underlines the importance of standard American Society of Anesthesiologists (ASA) monitoring, including a 12-lead electrocardiogram (ECG), which could prove decisive and life-saving in dire circumstances.
Collapse
|
24
|
Dhanyalayam D, Thangavel H, Lizardo K, Oswal N, Dolgov E, Perlin DS, Nagajyothi JF. Sex Differences in Cardiac Pathology of SARS-CoV2 Infected and Trypanosoma cruzi Co-infected Mice. Front Cardiovasc Med 2022; 9:783974. [PMID: 35369283 PMCID: PMC8965705 DOI: 10.3389/fcvm.2022.783974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/11/2022] [Indexed: 12/03/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2; CoV2) is a deadly contagious infectious disease. For those who survive COVID-19, post-COVID cardiac damage greatly increases the risk of cardiomyopathy and heart failure. Currently, the number of COVID-related cases are increasing in Latin America, where a major COVID comorbidity is Chagas' heart disease, which is caused by the parasite Trypanosoma cruzi. However, the interplay between indeterminate Chagas disease and COVID-19 is unknown. We investigated the effect of CoV2 infection on heart pathology in T. cruzi infected mice (coinfected with CoV2 during the indeterminate stage of T. cruzi infection). We used transgenic human angiotensin-converting enzyme 2 (huACE2/hACE2) mice infected with CoV2, T. cruzi, or coinfected with both in this study. We found that the viral load in the hearts of coinfected mice is lower compared to the hearts of mice infected with CoV2 alone. We demonstrated that CoV2 infection significantly alters cardiac immune and energy signaling via adiponectin (C-ApN) and AMP-activated protein kinase (AMPK) signaling. Our studies also showed that increased β-adrenergic receptor (b-AR) and peroxisome proliferator-activated receptors (PPARs) play a major role in shifting the energy balance in the hearts of coinfected female mice from glycolysis to mitochondrial β-oxidation. Our findings suggest that cardiac metabolic signaling may differently regulate the pathogenesis of Chagas cardiomyopathy (CCM) in coinfected mice. We conclude that the C-ApN/AMPK and b-AR/PPAR downstream signaling may play major roles in determining the progression, severity, and phenotype of CCM and heart failure in the context of COVID.
Collapse
|
25
|
Citro R, Radano I, Bellino M, Mauro C, Okura H, Bossone E, Akashy YJ. Epidemiology, Pathogenesis, and Clinical Course of Takotsubo Syndrome. Heart Fail Clin 2021; 18:125-137. [PMID: 34776074 DOI: 10.1016/j.hfc.2021.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Takotsubo syndrome is an acute reversible heart failure syndrome, most frequently seen in postmenopausal women and precipitated generally by significant emotional stress or physical illness. A sudden sympathetic activation seems to play a key role in the pathophysiology, but growing evidence is emerging about the role of inflammation in the subacute and chronic phases. An incidence of life-threatening complications occurring in the acute phase and at long-term follow-up has been demonstrated, comparable with the acute coronary syndrome. Multimodality imaging could be useful to stratify in-hospital and long-term prognosis. The efficacy of specific medical treatments in long-term follow-up should be investigated.
Collapse
Affiliation(s)
- Rodolfo Citro
- A.O.U. San Giovanni di Dio e Ruggi d'Aragona, Largo Città d'Ippocrate 1, CAP 84131, Salerno, Italy.
| | - Ilaria Radano
- A.O.U. San Giovanni di Dio e Ruggi d'Aragona, Largo Città d'Ippocrate 1, CAP 84131, Salerno, Italy
| | - Michele Bellino
- A.O.U. San Giovanni di Dio e Ruggi d'Aragona, Largo Città d'Ippocrate 1, CAP 84131, Salerno, Italy
| | - Ciro Mauro
- Division of Cardiology, A.O.R.N. Antonio Cardarelli Hospital, Via Antonio cardarelli 9, 80131 Naples, Italy
| | - Hiroyuky Okura
- Department of Cardiology, Gifu University Graduate School of Medicine, Gifu, Yanagido 1-1, Gifu, Gifu 501-1194, Japan
| | - Eduardo Bossone
- Division of Cardiology, A.O.R.N. Antonio Cardarelli Hospital, Via Antonio cardarelli 9, 80131 Naples, Italy
| | - Yoshihiro J Akashy
- Division of Cardiology, Department of Internal Medicine, St. Marianna University School of Medicine, 2 Chome-16-1 Sugao, Miyamae Ward, Kawasaki, Kanagawa 216-8511, Japan
| |
Collapse
|
26
|
Zhang X, Li T, Cheng HJ, Wang H, Ferrario CM, Groban L, Cheng CP. Chronic GPR30 agonist therapy causes restoration of normal cardiac functional performance in a male mouse model of progressive heart failure: Insights into cellular mechanisms. Life Sci 2021; 285:119955. [PMID: 34520767 DOI: 10.1016/j.lfs.2021.119955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/21/2021] [Accepted: 09/08/2021] [Indexed: 01/22/2023]
Abstract
AIMS G protein-coupled estrogen receptor 30 (GPR30) activation by its agonist, G1, exhibits beneficial actions in female with heart failure (HF). Recent evidence indicates its cardiovascular benefits may also include male as well. However, whether and how GPR30 activation may limit HF progression and have a salutary role in males is unknown. We hypothesized that chronic G1 treatment improves LV and cardiomyocyte function, [Ca2+]i regulation and β-adrenergic reserve, thus limiting HF progression in male. MAIN METHODS We compared left ventricle (LV) and myocyte function, [Ca2+]i transient ([Ca2+]iT) and β-AR modulation in control male mice (12/group) and isoproterenol-induced HF (150 mg/kg s.c. for 2 days). Two weeks after isoproterenol injection, HF mice received placebo, or G1 (150 μg/kg/day s.c. mini-pump) for 2 weeks. KEY FINDINGS Isoproterenol-treated mice exhibited HF with preserved ejection fraction (HFpEF) at 2-weeks and progressed to HF with reduced EF (HFrEF) at 4-weeks, manifested by significantly increased LV time constant of relaxation (τ), decreased EF and mitral flow (dV/dtmax), which were accompanied by reduced myocyte contraction (dL/dtmax), relaxation (dR/dtmax) and [Ca2+]iT. Acute isoproterenol-superfusion caused significantly smaller increases in dL/dtmax, dR/dtmax and [Ca2+]iT. G1 treatment in HF increased basal and isoproterenol-stimulated increases in EF and LV contractility of EES. Importantly, G1 improved basal and isoproterenol-stimulated dL/dtmax, dR/dtmax and [Ca2+]iT to control levels and restored normal cardiac β-AR subtypes modulation. SIGNIFICANCE Chronic G1 treatment restores normal myocyte basal and β-AR-stimulated contraction, relaxation, and [Ca2+]iT, thereby reversing LV dysfunction and playing a rescue role in a male mouse model of HF.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Cardiology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America
| | - Tiankai Li
- Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America; Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Heng-Jie Cheng
- Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.
| | - Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.
| | - Che Ping Cheng
- Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States of America.
| |
Collapse
|
27
|
Young D, Shravan Turaga NS, Amisha FNU, Hayes K, Paydak H, Devabhaktuni SR. Recurrence of complete heart block in pregnancy. HeartRhythm Case Rep 2021; 7:679-682. [PMID: 34712564 PMCID: PMC8530940 DOI: 10.1016/j.hrcr.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Daniel Young
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - F N U Amisha
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kevin Hayes
- Texarkana Cardiology Associates, Texarkana, Texas
| | - Hakan Paydak
- University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | |
Collapse
|
28
|
Adekunle AO, Adzika GK, Mprah R, Ndzie Noah ML, Adu-Amankwaah J, Rizvi R, Akhter N, Sun H. Predominance of Heart Failure With Preserved Ejection Fraction in Postmenopausal Women: Intra- and Extra-Cardiomyocyte Maladaptive Alterations Scaffolded by Estrogen Deficiency. Front Cell Dev Biol 2021; 9:685996. [PMID: 34660569 PMCID: PMC8511782 DOI: 10.3389/fcell.2021.685996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) remains a public health concern as it is associated with high morbidity and death rates. In particular, heart failure with preserved ejection fraction (HFpEF) represents the dominant (>50%) form of HF and mostly occurring among postmenopausal women. Hence, the initiation and progression of the left ventricular diastolic dysfunctions (LVDD) (a typically clinical manifestation of HFpEF) in postmenopausal women have been attributed to estrogen deficiency and the loss of its residue cardioprotective effects. In this review, from a pathophysiological and immunological standpoint, we discuss the probable multiple pathomechanisms resulting in HFpEF, which are facilitated by estrogen deficiency. The initial discussions recap estrogen and estrogen receptors (ERs) and β-adrenergic receptors (βARs) signaling under physiological/pathological states to facilitate cardiac function/dysfunction, respectively. By reconciling these prior discussions, attempts were made to explain how the loss of estrogen facilitates the disruptions both ERs and βARs-mediated signaling responsible for; the modulation of intra-cardiomyocyte calcium homeostasis, maintenance of cardiomyocyte cytoskeletal and extracellular matrix, the adaptive regulation of coronary microvascular endothelial functions and myocardial inflammatory responses. By scaffolding the disruption of these crucial intra- and extra-cardiomyocyte physiological functions, estrogen deficiency has been demonstrated to cause LVDD and increase the incidence of HFpEF in postmenopausal women. Finally, updates on the advancements in treatment interventions for the prevention of HFpEF were highlighted.
Collapse
Affiliation(s)
| | | | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | | | | | - Nazma Akhter
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China.,Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
29
|
Costa SP, Domingues TE, Rodrigues CM, Silva SB, Diniz E Magalhães CO, Costa-Pereira LV, Peixoto MFD, da Fonseca SF, Sampaio KH, Mendonça VA, Lacerda ACR. Does endurance training prior to ovariectomy protect against myocardial contractility dysfunction in rats? Exp Gerontol 2021; 155:111556. [PMID: 34537279 DOI: 10.1016/j.exger.2021.111556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Endurance training prevents cardiac dysfunction induced by menopause, but to date, no studies compared the effects of endurance training prior to menopause versus estrogen replacement therapy during menopause on heart function of rats. METHODS Female Wistar rats aged three months were randomly assigned into three groups: Untrained ovariectomized rats (UN-OVX), untrained ovariectomized rats treated with estradiol (UN-OVX-E2), and ovariectomized rats previously exercised (EX-OVX). The endurance training protocol consisted of running on a treadmill at 60-70% of maximal aerobic capacity, 60 min per day, five days per week, for eight weeks. Estradiol replacement therapy consisted of silastic capsules containing the hormone for twelve days. After euthanasia, hearts were harvested, weighed and cardiac function was evaluated by the Langendorff technique. RESULTS Both cardiac contractility and relaxation indexes improved similarly in the EX-OVX and UN-OVX-E2 rats compared to UN-OVX. CONCLUSION Our findings reveal similar beneficial effects between endurance training previously to menopause and estradiol replacement therapy during menopause on cardiac function of rats.
Collapse
Affiliation(s)
- Sabrina Paula Costa
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Talita Emanuela Domingues
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Cíntia Maria Rodrigues
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Sara Barros Silva
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil
| | - Caíque Olegário Diniz E Magalhães
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Liliane Vanessa Costa-Pereira
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Marco Fabricio Dias Peixoto
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil; Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, (UFVJM), Diamantina, Brazil
| | - Sueli Ferreira da Fonseca
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Kinulpe Honorato Sampaio
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil; Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, (UFVJM), Diamantina, Brazil
| | - Vanessa Amaral Mendonça
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil; Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil; Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, (UFVJM), Diamantina, Brazil
| | - Ana Cristina Rodrigues Lacerda
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil; Programa de Pós-Graduação em Reabilitação e Desempenho Funcional (PPGReab), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Brazil; Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, (UFVJM), Diamantina, Brazil.
| |
Collapse
|
30
|
Role of β-Adrenergic Receptors and Estrogen in Cardiac Repair after Myocardial Infarction: An Overview. Int J Mol Sci 2021; 22:ijms22168957. [PMID: 34445662 PMCID: PMC8396463 DOI: 10.3390/ijms22168957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022] Open
Abstract
Acute myocardial infarction (MI) is associated with an intense inflammatory response that is critical for cardiac repair but is also involved in the pathogenesis of adverse cardiac remodeling, i.e., the set of size, geometry, and structure changes that represent the structural substrate for the development of post-MI heart failure. Deciphering the pathophysiological mechanisms underlying cardiac repair after MI is, therefore, critical to favorably regulate cardiac wound repair and to prevent development of heart failure. Catecholamines and estrogen play an active role in regulating the inflammatory response in the infarcted area. For example, stress-induced catecholamines alter recruitment and trafficking of leukocytes to the heart. Additionally, estrogen affects rate of cardiac rupture during the acute phase of MI, as well as infarct size and survival in animal models of MI. In this review, we will summarize the role of β-adrenergic receptors and estrogen in cardiac repair after infarction in preclinical studies.
Collapse
|
31
|
Deegan DF, Nigam P, Engel N. Sexual Dimorphism of the Heart: Genetics, Epigenetics, and Development. Front Cardiovasc Med 2021; 8:668252. [PMID: 34124200 PMCID: PMC8189176 DOI: 10.3389/fcvm.2021.668252] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
The democratization of genomic technologies has revealed profound sex biases in expression patterns in every adult tissue, even in organs with no conspicuous differences, such as the heart. With the increasing awareness of the disparities in cardiac pathophysiology between males and females, there are exciting opportunities to explore how sex differences in the heart are established developmentally. Although sexual dimorphism is traditionally attributed to hormonal influence, expression and epigenetic sex biases observed in early cardiac development can only be accounted for by the difference in sex chromosome composition, i.e., XX in females and XY in males. In fact, genes linked to the X and Y chromosomes, many of which encode regulatory factors, are expressed in cardiac progenitor cells and at every subsequent developmental stage. The effect of the sex chromosome composition may explain why many congenital heart defects originating before gonad formation exhibit sex biases in presentation, mortality, and morbidity. Some transcriptional and epigenetic sex biases established soon after fertilization persist in cardiac lineages, suggesting that early epigenetic events are perpetuated beyond early embryogenesis. Importantly, when sex hormones begin to circulate, they encounter a cardiac genome that is already functionally distinct between the sexes. Although there is a wealth of knowledge on the effects of sex hormones on cardiac function, we propose that sex chromosome-linked genes and their downstream targets also contribute to the differences between male and female hearts. Moreover, identifying how hormones influence sex chromosome effects, whether antagonistically or synergistically, will enhance our understanding of how sex disparities are established. We also explore the possibility that sexual dimorphism of the developing heart predicts sex-specific responses to environmental signals and foreshadows sex-biased health-related outcomes after birth.
Collapse
Affiliation(s)
| | | | - Nora Engel
- Lewis Katz School of Medicine, Fels Institute for Cancer Research, Temple University, Philadelphia, PA, United States
| |
Collapse
|
32
|
Lyon AR, Citro R, Schneider B, Morel O, Ghadri JR, Templin C, Omerovic E. Pathophysiology of Takotsubo Syndrome: JACC State-of-the-Art Review. J Am Coll Cardiol 2021; 77:902-921. [PMID: 33602474 DOI: 10.1016/j.jacc.2020.10.060] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023]
Abstract
Takotsubo syndrome (TTS) has been a recognized clinical entity for 31 years, since its first description in 1990. TTS is now routinely diagnosed in patients who present with acute chest pain, electrocardiographic changes, troponin elevation, unobstructed coronary arteries, and a typical pattern of circumferential left ventricular wall motion abnormalities that usually involve the apical and midventricular myocardium. Increasing understanding of this intriguing syndrome stems from wider recognition, possible increasing frequency, and a rising number of publications focused on the pathophysiology in clinical and laboratory studies. A comprehensive understanding of TTS pathophysiology and evidence-based treatments are lacking, and specific and effective treatments are urgently required. This paper reviews the pathophysiology of this fascinating syndrome; what is known from both clinical and preclinical studies, including review of the evidence for microvascular dysfunction, myocardial beta-adrenergic signaling, inflammation, and electrophysiology; and where focused research needs to fill gaps in understanding TTS.
Collapse
Affiliation(s)
- Alexander R Lyon
- Department of Cardiology, Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| | - Rodolfo Citro
- Cardio-Thoracic and Vascular Department, University Hospital "San Giovanni di Dio e Ruggi d'Aragona," Salerno, Italy
| | | | - Olivier Morel
- Department of Cardiology, University of Strasbourg, UMR INSERM 1260 Regenerative Nanomedicine, Strasbourg, France
| | - Jelena R Ghadri
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Christian Templin
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine/Cardiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. https://twitter.com/ElmirOmerovic2
| |
Collapse
|
33
|
Ndzie Noah ML, Adzika GK, Mprah R, Adekunle AO, Adu-Amankwaah J, Sun H. Sex-Gender Disparities in Cardiovascular Diseases: The Effects of Estrogen on eNOS, Lipid Profile, and NFATs During Catecholamine Stress. Front Cardiovasc Med 2021; 8:639946. [PMID: 33644139 PMCID: PMC7907444 DOI: 10.3389/fcvm.2021.639946] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) characterized by sex-gender differences remain a leading cause of death globally. Hence, it is imperative to understand the underlying mechanisms of CVDs pathogenesis and the possible factors influencing the sex-gender disparities in clinical demographics. Attempts to elucidate the underlying mechanisms over the recent decades have suggested the mechanistic roles of estrogen in modulating cardioprotective and immunoregulatory effect as a factor for the observed differences in the incidence of CVDs among premenopausal and post-menopausal women and men. This review from a pathomechanical perspective aims at illustrating the roles of estrogen (E2) in the modulation of stimuli signaling in the heart during chronic catecholamine stress (CCS). The probable mechanism employed by E2 to decrease the incidence of hypertension, coronary heart disease, and pathological cardiac hypertrophy in premenopausal women are discussed. Initially, signaling via estrogen receptors and β-adrenergic receptors (βARs) during physiological state and CCS were summarized. By reconciling the impact of estrogen deficiency and hyperstimulation of βARs, the discussions were centered on their implications in disruption of nitric oxide synthesis, dysregulation of lipid profiles, and upregulation of nuclear factor of activated T cells, which induces the aforementioned CVDs, respectively. Finally, updates on E2 therapies for maintaining cardiac health during menopause and suggestions for the advancement treatments were highlighted.
Collapse
Affiliation(s)
| | | | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | | | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
34
|
Early β adrenoceptor dependent time window for fear memory persistence in APPswe/PS1dE9 mice. Sci Rep 2021; 11:870. [PMID: 33441593 PMCID: PMC7807071 DOI: 10.1038/s41598-020-79487-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023] Open
Abstract
In this study we demonstrate that 2 month old APPswe/PS1dE9 mice, a transgenic model of Alzheimer's disease, exhibited intact short-term memory in Pavlovian hippocampal-dependent contextual fear learning task. However, their long-term memory was impaired. Intra-CA1 infusion of isoproterenol hydrochloride, the β-adrenoceptor agonist, to the ventral hippocampus of APPswe/PS1dE9 mice immediately before fear conditioning restored long-term contextual fear memory. Infusion of the β-adrenoceptor agonist + 2.5 h after fear conditioning only partially rescued the fear memory, whereas infusion at + 12 h post conditioning did not interfere with long-term memory persistence in this mouse model. Furthermore, Intra-CA1 infusion of propranolol, the β-adrenoceptor antagonist, administered immediately before conditioning to their wildtype counterpart impaired long-term fear memory, while it was ineffective when administered + 4 h and + 12 h post conditioning. Our results indicate that, long-term fear memory persistence is determined by a unique β-adrenoceptor sensitive time window between 0 and + 2.5 h upon learning acquisition, in the ventral hippocampal CA1 of APPswe/PS1dE9 mice. On the contrary, β-adrenoceptor agonist delivery to ventral hippocampal CA1 per se did not enhance innate anxiety behaviour in open field test. Thus we conclude that, activation of learning dependent early β-adrenoceptor modulation underlies and is necessary to promote long-term fear memory persistence in APPswe/PS1dE9.
Collapse
|
35
|
Moore CL, Henry DS, McClenahan SJ, Ball KK, Rusch NJ, Rhee SW. Metoprolol Impairs β1-Adrenergic Receptor-Mediated Vasodilation in Rat Cerebral Arteries: Implications for β-Blocker Therapy. J Pharmacol Exp Ther 2021; 376:127-135. [PMID: 33100271 PMCID: PMC7788352 DOI: 10.1124/jpet.120.000176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022] Open
Abstract
The practice of prescribing β-blockers to lower blood pressure and mitigate perioperative cardiovascular events has been questioned because of reports of an increased risk of stroke. The benefit of β-blocker therapy primarily relies on preventing activation of cardiac β1-adrenergic receptors (ARs). However, we reported that β1ARs also mediate vasodilator responses of rat cerebral arteries (CAs), implying that β-blockers may impair cerebral blood flow under some conditions. Here, we defined the impact of metoprolol (MET), a widely prescribed β1AR-selective antagonist, on adrenergic-elicited diameter responses of rat CAs ex vivo and in vivo. MET (1-10 µmol/l) prevented β1AR-mediated increases in diameter elicited by dobutamine in cannulated rat CAs. The β1AR-mediated dilation elicited by the endogenous adrenergic agonist norepinephrine (NE) was reversed to a sustained constriction by MET. Acute oral administration of MET (30 mg/kg) to rats in doses that attenuated resting heart rate and dobutamine-induced tachycardia also blunted β1AR-mediated dilation of CAs. In the same animals, NE-induced dilation of CAs was reversed to sustained constriction. Administration of MET for 2 weeks in drinking water (2 mg/ml) or subcutaneously (15 mg/kg per day) also resulted in NE-induced constriction of CAs in vivo. Thus, doses of MET that protect the heart from adrenergic stimulation also prevent β1AR-mediated dilation of CAs and favor anomalous adrenergic constriction. Our findings raise the possibility that the increased risk of ischemic stroke in patients on β-blockers relates in part to adrenergic dysregulation of cerebrovascular tone. SIGNIFICANCE STATEMENT: β-Blocker therapy using second-generation, cardioselective β-blockers is associated with an increased risk of stroke, but the responsible mechanisms are unclear. Here, we report that either acute or chronic systemic administration of a cardioselective β-blocker, metoprolol, mitigates adrenergic stimulation of the heart as an intended beneficial action. However, metoprolol concomitantly eliminates vasodilator responses to adrenergic stimuli of rat cerebral arteries in vivo as a potential cause of dysregulated cerebral blood flow predisposing to ischemic stroke.
Collapse
Affiliation(s)
- Christopher L Moore
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - David S Henry
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Samantha J McClenahan
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kelly K Ball
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sung W Rhee
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
36
|
An acute estrogen receptor agonist enhances protective effects of cardioplegia in hearts from aging male and female mice. Exp Gerontol 2020; 141:111093. [DOI: 10.1016/j.exger.2020.111093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 01/01/2023]
|
37
|
MacDonald EA, Rose RA, Quinn TA. Neurohumoral Control of Sinoatrial Node Activity and Heart Rate: Insight From Experimental Models and Findings From Humans. Front Physiol 2020; 11:170. [PMID: 32194439 PMCID: PMC7063087 DOI: 10.3389/fphys.2020.00170] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
The sinoatrial node is perhaps one of the most important tissues in the entire body: it is the natural pacemaker of the heart, making it responsible for initiating each-and-every normal heartbeat. As such, its activity is heavily controlled, allowing heart rate to rapidly adapt to changes in physiological demand. Control of sinoatrial node activity, however, is complex, occurring through the autonomic nervous system and various circulating and locally released factors. In this review we discuss the coupled-clock pacemaker system and how its manipulation by neurohumoral signaling alters heart rate, considering the multitude of canonical and non-canonical agents that are known to modulate sinoatrial node activity. For each, we discuss the principal receptors involved and known intracellular signaling and protein targets, highlighting gaps in our knowledge and understanding from experimental models and human studies that represent areas for future research.
Collapse
Affiliation(s)
- Eilidh A. MacDonald
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
| | - Robert A. Rose
- Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
38
|
Jiao L, Machuki JO, Wu Q, Shi M, Fu L, Adekunle AO, Tao X, Xu C, Hu X, Yin Z, Sun H. Estrogen and calcium handling proteins: new discoveries and mechanisms in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2020; 318:H820-H829. [PMID: 32083972 DOI: 10.1152/ajpheart.00734.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estrogen deficiency is considered to be an important factor leading to cardiovascular diseases (CVDs). Indeed, the prevalence of CVDs in postmenopausal women exceeds that of premenopausal women and men of the same age. Recent research findings provide evidence that estrogen plays a pivotal role in the regulation of calcium homeostasis and therefore fine-tunes normal cardiomyocyte contraction and relaxation processes. Disruption of calcium homeostasis is closely associated with the pathological mechanism of CVDs. Thus, this paper maps out and summarizes the effects and mechanisms of estrogen on calcium handling proteins in cardiac myocytes, including L-type Ca2+ channel, the sarcoplasmic reticulum Ca2+ release channel named ryanodine receptor, sarco(endo)plasmic reticulum Ca2+-ATPase, and sodium-calcium exchanger. In so doing, we provide theoretical and experimental evidence for the successful design of estrogen-based prevention and treatment therapies for CVDs.
Collapse
Affiliation(s)
- Lijuan Jiao
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Qi Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingjin Shi
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Xi Tao
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenxi Xu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xide Hu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zeyuan Yin
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
39
|
Li J, Wang L, Tian J, Zhou Z, Li J, Yang H. Nongenetic engineering strategies for regulating receptor oligomerization in living cells. Chem Soc Rev 2020; 49:1545-1568. [DOI: 10.1039/c9cs00473d] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nongenetic strategies for regulating receptor oligomerization in living cells based on DNA, protein, small molecules and physical stimuli.
Collapse
Affiliation(s)
- Jingying Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Liping Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Jinmiao Tian
- Institute of Molecular Medicine
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Zhilan Zhou
- Institute of Molecular Medicine
- Renji Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
| |
Collapse
|
40
|
Tran TT, Mathieu C, Torres M, Loriod B, Lê LT, Nguyen C, Bernard M, Leone M, Lalevée N. Effect of landiolol on sex-related transcriptomic changes in the myocardium during sepsis. Intensive Care Med Exp 2019; 7:50. [PMID: 31428883 PMCID: PMC6701793 DOI: 10.1186/s40635-019-0263-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/05/2019] [Indexed: 11/27/2022] Open
Abstract
Objectives The aims of this study are to better understand phenotypic differences between male and female rats during sepsis, to characterise the contribution of the beta1-adrenergic blocker landiolol to septic cardiomyopathy and to determine why landiolol induces divergent effects in males and females. Methods The myocardial transcriptional profiles in male and female Wistar rats were assessed after the induction of sepsis by cecal ligation and puncture and addition of landiolol. Results Our results showed major differences in the biological processes activated during sepsis in male and female rats. In particular, a significant decrease in processes related to cell organisation, contractile function, ionic transport and phosphoinositide-3-kinase/AKT (PI3K/AKT) signalling was observed only in males. The transcript of ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 3 (SERCA3) was sex-differently regulated. In males, landiolol reversed several signalling pathways dysregulated during sepsis. The expression level of genes encoding tubulin alpha 8 (TUBA8) and myosin heavy chain 7B (MYH7) contractile proteins, phosphatase 2 catalytic subunit alpha (PPP2CA), G protein-coupled receptor kinase 5 (GRK5) and A-kinase anchoring protein 6 (AKAP6) returned to their basal levels. In contrast, in females, landiolol had limited effects. Conclusion In males, landiolol reversed the expression of many genes that were deregulated in sepsis. Conversely, sepsis-induced deregulation of gene expression was less pronounced in females than in males, and was maintained in the landiolol-treated females. These findings highlight important sex-related differences and confirm previous observations on the important benefit of landiolol intake on cardiac function in male rats. Electronic supplementary material The online version of this article (10.1186/s40635-019-0263-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thi Thom Tran
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France
| | - Calypso Mathieu
- Aix Marseille Univ, Service d'anesthésie et de réanimation, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Chemin des Bourrely, 13015, Marseille, France
| | - Magali Torres
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France
| | - Béatrice Loriod
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France.,Aix-Marseille Univ, INSERM UMR 1090, TGML, Marseille, France
| | - Linh Thuy Lê
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France
| | - Catherine Nguyen
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France
| | | | - Marc Leone
- Aix Marseille Univ, Service d'anesthésie et de réanimation, Hôpital Nord, Assistance Publique Hôpitaux de Marseille, Chemin des Bourrely, 13015, Marseille, France.
| | - Nathalie Lalevée
- Aix-Marseille Univ, INSERM UMR 1090, TAGC, Campus de Luminy, Case 928, 13288, Marseille Cedex 9, France.
| |
Collapse
|
41
|
Machuki JO, Zhang HY, Geng J, Fu L, Adzika GK, Wu L, Shang W, Wu J, Kexue L, Zhao Z, Sun H. Estrogen regulation of cardiac cAMP-L-type Ca 2+ channel pathway modulates sex differences in basal contraction and responses to β 2AR-mediated stress in left ventricular apical myocytes. Cell Commun Signal 2019; 17:34. [PMID: 30987657 PMCID: PMC6466778 DOI: 10.1186/s12964-019-0346-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
Backgrounds/Aim Male and female hearts have many structural and functional differences. Here, we investigated the role of estrogen (E2) in the mechanisms of sex differences in contraction through the cAMP-L-type Ca2+channel pathway in adult mice left ventricular (LV) apical myocytes at basal and stress state. Methods Isolated LV apical myocytes from male, female (Sham) and ovariectomised mice (OVX) were used to investigate contractility, Ca2+ transients and L-type Ca2+ channel (LTCC) function. The levels of β2AR, intracellular cAMP, phosphodiesterase (PDE 3 and PDE 4), RyR2, PLB, SLN, and SERCA2a were compared among the experimental groups. Results We found that (1) intracellular cAMP, ICaL density, contraction and Ca2+ transient amplitudes were larger in Sham and OVX + E2 myocytes compared to male and OVX. (2) The mRNA expression of PDE 3 and 4 were lower in Sham and OVX + E2 groups compared with male and OVX groups. Treatment of myocytes with IBMX (100 μM) increased contraction and Ca2+ transient amplitude in both sexes and canceled differences between them. (3) β2AR-mediated stress decreased cAMP concentration and peak contraction and Ca2+ transient amplitude only in male and OVX groups but not in Sham or OVX + E2 groups suggesting a cardioprotective role of E2 in female mice. (4) Pretreatment of OVX myocytes with GPR30 antagonist G15 (100 nM) abolished the effects of E2, but ERα and ERβ antagonist ICI 182,780 (1 μM) did not. Moreover, activation of GPR30 with G1 (100 nM) replicated the effects of E2 on cAMP, contraction and Ca2+ transient amplitudes suggesting that the acute effects of E2 were mediated by GPR30 via non-genomic signaling. (5) mRNA expression of RyR2 was higher in myocytes from Sham than those of male while PLB and SLN were higher in male than Sham but no sex differences were observed in the mRNA of SERCA2a. Conclusion Collectively, these results demonstrate that E2 modulates the expression of genes related to the cAMP-LTCC pathway and contributes to sex differences in cardiac contraction and responses to stress. We also show that estrogen confers cardioprotection against cardiac stress by non-genomic acute signaling via GPR30.
Collapse
Affiliation(s)
| | - Hong-Yuan Zhang
- Physiology Department, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, 221002, China
| | - Juan Geng
- Physiology Department, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, 221002, China
| | - Lu Fu
- Physiology Department, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Gabriel Komla Adzika
- Physiology Department, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Lijuan Wu
- Physiology Department, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, 221002, China
| | - Wenkang Shang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, 221002, China
| | - Jinxia Wu
- Physiology Department, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Li Kexue
- Physiology Department, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Zhiwei Zhao
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, 221002, China
| | - Hong Sun
- Physiology Department, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
42
|
Groban L, Tran QK, Ferrario CM, Sun X, Cheng CP, Kitzman DW, Wang H, Lindsey SH. Female Heart Health: Is GPER the Missing Link? Front Endocrinol (Lausanne) 2019; 10:919. [PMID: 31993020 PMCID: PMC6970950 DOI: 10.3389/fendo.2019.00919] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
The G Protein-Coupled Estrogen Receptor (GPER) is a novel membrane-bound receptor that mediates non-genomic actions of the primary female sex hormone 17β-estradiol. Studies over the past two decades have elucidated the beneficial actions of this receptor in a number of cardiometabolic diseases. This review will focus specifically on the cardiac actions of GPER, since this receptor is expressed in cardiomyocytes as well as other cells within the heart and most likely contributes to estrogen-induced cardioprotection. Studies outlining the impact of GPER on diastolic function, mitochondrial function, left ventricular stiffness, calcium dynamics, cardiac inflammation, and aortic distensibility are discussed. In addition, recent data using genetic mouse models with global or cardiomyocyte-specific GPER gene deletion are highlighted. Since estrogen loss due to menopause in combination with chronological aging contributes to unique aspects of cardiac dysfunction in women, this receptor may provide novel therapeutic effects. While clinical studies are still required to fully understand the potential for pharmacological targeting of this receptor in postmenopausal women, this review will summarize the evidence gathered thus far on its likely beneficial effects.
Collapse
Affiliation(s)
- Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
- *Correspondence: Leanne Groban
| | - Quang-Kim Tran
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, United States
| | - Carlos M. Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Che Ping Cheng
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Dalane W. Kitzman
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
43
|
Du Y, Yan T, Zhou L, Yin W, Lu J. A single-nucleotide polymorphism of the beta 2-adrenergic receptor gene can predict pathological complete response to taxane- and platinum-based neoadjuvant chemotherapy in breast cancer. BREAST CANCER-TARGETS AND THERAPY 2018; 10:201-206. [PMID: 30568487 PMCID: PMC6267711 DOI: 10.2147/bctt.s189197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background Germline genetic polymorphisms in certain genes are associated with the response to anthracycline- and taxane-based neoadjuvant chemotherapy in breast cancer (BC). This translational study aims to evaluate the potential role of rs1042713 in the beta 2-adrenergic receptor (ADRB2) gene in predicting pathological complete responses (pCRs) to taxane- and platinum-based neoadjuvant chemotherapy in locally advanced breast cancer (LABC). Materials and methods The distribution frequencies of rs1042713 were genotyped in LABC patients who received taxane- and platinum-based neoadjuvant chemotherapy. Associations between tumor-relevant biomarkers, genotypes and pCRs were evaluated using Student’s t-test for continuous variables and Chi-square or Fisher’s exact test for categorical variables. For univariate analysis, the relationship between the rs1042713 polymorphism and pCR was analyzed by Chi-square or Fisher’s exact test. The modified ORs with their 95% CIs were calculated by a multivariate logistic regression analysis to explore the association between genotype and pCR. Results There was a significant correlation of the rs1042713 genotype with estrogen receptor (ER) status (P=0.008). Significant differences were detected in the rs1042713 genotypes of pCR and non-pCR patients (P=0.046). The pCR rate was 18.2% in patients with ADRB2 rs1042713 AA genotypes and 38.7% in AG+GG genotypes. Women carrying the AG+GG (OR=2.91, 95% CI: 1.02–8.29, P=0.046) genotype had a higher pCR rate than those with the AA genotype. Conclusion rs1042713, which is located in the ADRB2 gene, could predict pCR to taxane-and platinum-based neoadjuvant chemotherapy in LABC. This finding suggests that rs1042713 could play a potential role as a predictive marker in clinical settings.
Collapse
Affiliation(s)
- Yueyao Du
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China, ;
| | - Tingting Yan
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China, ;
| | - Liheng Zhou
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China, ;
| | - Wenjin Yin
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China, ;
| | - Jinsong Lu
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China, ;
| |
Collapse
|
44
|
Jovanović A. Cardioprotective signalling: Past, present and future. Eur J Pharmacol 2018; 833:314-319. [PMID: 29935170 DOI: 10.1016/j.ejphar.2018.06.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 11/29/2022]
Abstract
A few decades ago, cardiac muscle was discovered to possess signalling pathways that, when activated, protect the myocardium against the damage induced by ischaemia-reperfusion. The ability of cardiac muscle to protect itself against injury has been termed 'cardioprotection'. Many compounds and procedures can trigger cardioprotection including conditionings (exposure to brief episodes of ischaemia-reperfusion to protect against sustained ischaemia-reperfusion), hypoxia, adenosine, acetylcholine, adrenomedullin, angiotensin, bradykinin, catecholamines, endothelin, estrogens, phenylephrine, opioids, testosterone, and many more. These triggers activate many intracellular signalling factors including protein kinases, different enzymes, transcription factors and defined signalling pathways to target structures in mitochondria, sarcoplasmic reticulum, nucleus and sarcolemma to mediate cardioprotection. Although a lot of information about cardioprotection has been acquired, there are still two major outstanding issues to be addressed in the future 1) better understanding of spatio-temporal relationships between signalling elements, and; 2) devising therapeutic strategies against myocardial diseases based on cardioprotective signalling. Further research is required to paint integral picture of cardioprotective signalling and more clinical studies are required to properly test clinical efficacy and safety of potential cardioprotective strategies. Therapies against cardiac diseases based on cardioprotective strategies would be a perfect adjunct to current therapeutic strategies based on restitution of coronary blood flow and regulation of myocardial metabolic demands.
Collapse
Affiliation(s)
- Aleksandar Jovanović
- University of Nicosia Medical School, 21 Ilia Papakyriakou, 2414 Engomi, P.O. Box 24005, CY-1700 Nicosia, Cyprus.
| |
Collapse
|
45
|
Rosa GM, Baccino D, Valbusa A, Scala C, Barra F, Brunelli C, Ferrero S. Cardiovascular effects of antimuscarinic agents and beta3-adrenergic receptor agonist for the treatment of overactive bladder. Expert Opin Drug Saf 2018. [PMID: 29542337 DOI: 10.1080/14740338.2018.1453496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Overactive bladder (OAB) syndrome is common in the general population, particularly in elderly patients. Antimuscarinic drugs (AMs) are considered the mainstay pharmaceutical treatment of OAB whereas β3-adrenoceptor agonists, such as mirabegron, represent a good alternative. Owing to the important role of muscarinic and β3 receptors in cardiovascular (CV) tissue and to the fact that OAB patients often have CV comorbidities, the safety-profile of these drugs constitute an important challenge. AREAS COVERED The aim of this review is to evaluate the CV effects of AMs and mirabegron in OAB. A systematic literature search from inception until December 2017 was performed on PubMed and Medline. EXPERT OPINION AMs are generally considered to have good CV safety profile but, however, they may cause undesirable adverse events, such as dry mouth, constipation. CV AEs are rare but noteworthy, the most common CV consequences related to the use of these drugs are constituted by an increase in HR and QT interval. Mirabegron has similar efficacy and tolerability to AMs but causes less adverse events, with either modest hypertension and modest increase in HR (<5 bpm) being the most commonly reported.
Collapse
Affiliation(s)
- Gian Marco Rosa
- a Department of Internal Medicine, Cardiology , Ospedale Policlinico San Martino , Genoa , Italy
| | - Danilo Baccino
- a Department of Internal Medicine, Cardiology , Ospedale Policlinico San Martino , Genoa , Italy
| | - Alberto Valbusa
- a Department of Internal Medicine, Cardiology , Ospedale Policlinico San Martino , Genoa , Italy
| | - Carolina Scala
- b Academic Unit of Obstetrics and Gynecology , Ospedale Policlinico San Martino , Genoa , Italy.,c Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) , University of Genoa , Genoa , Italy
| | - Fabio Barra
- b Academic Unit of Obstetrics and Gynecology , Ospedale Policlinico San Martino , Genoa , Italy.,c Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) , University of Genoa , Genoa , Italy
| | - Claudio Brunelli
- a Department of Internal Medicine, Cardiology , Ospedale Policlinico San Martino , Genoa , Italy
| | - Simone Ferrero
- b Academic Unit of Obstetrics and Gynecology , Ospedale Policlinico San Martino , Genoa , Italy.,c Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) , University of Genoa , Genoa , Italy
| |
Collapse
|
46
|
Machuki J, Zhang H, Harding S, Sun H. Molecular pathways of oestrogen receptors and β-adrenergic receptors in cardiac cells: Recognition of their similarities, interactions and therapeutic value. Acta Physiol (Oxf) 2018; 222. [PMID: 28994249 PMCID: PMC5813217 DOI: 10.1111/apha.12978] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/07/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022]
Abstract
Oestrogen receptors (ERs) and β-adrenergic receptors (βARs) play important roles in the cardiovascular system. Moreover, these receptors are expressed in cardiac myocytes and vascular tissues. Numerous experimental observations support the hypothesis that similarities and interactions exist between the signalling pathways of ERs (ERα, ERβ and GPR30) and βARs (β1 AR, β2 AR and β3 AR). The recently discovered oestrogen receptor GPR30 shares structural features with the βARs, and this forms the basis for the interactions and functional overlap. GPR30 possesses protein kinase A (PKA) phosphorylation sites and PDZ binding motifs and interacts with A-kinase anchoring protein 5 (AKAP5), all of which enable its interaction with the βAR pathways. The interactions between ERs and βARs occur downstream of the G-protein-coupled receptor, through the Gαs and Gαi proteins. This review presents an up-to-date description of ERs and βARs and demonstrates functional synergism and interactions among these receptors in cardiac cells. We explore their signalling cascades and the mechanisms that orchestrate their interactions and propose new perspectives on the signalling patterns for the GPR30 based on its structural resemblance to the βARs. In addition, we explore the relevance of these interactions to cell physiology, drugs (especially β-blockers and calcium channel blockers) and cardioprotection. Furthermore, a receptor-independent mechanism for oestrogen and its influence on the expression of βARs and calcium-handling proteins are discussed. Finally, we highlight promising therapeutic avenues that can be derived from the shared pathways, especially the phosphatidylinositol-3-OH kinase (PI3K/Akt) pathway.
Collapse
Affiliation(s)
- J.O. Machuki
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| | - H.Y. Zhang
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| | - S.E. Harding
- National Heart and Lung Institute; Imperial College; London UK
| | - H. Sun
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| |
Collapse
|
47
|
Estrogen deficiency compromised the β 2AR-Gs/Gi coupling: implications for arrhythmia and cardiac injury. Pflugers Arch 2018; 470:559-570. [PMID: 29297096 DOI: 10.1007/s00424-017-2098-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/24/2017] [Accepted: 12/17/2017] [Indexed: 01/03/2023]
Abstract
Estrogen and β2-adrenergic receptors (β2AR) play important roles in the processes that protect the heart. Here, we investigated how ovariectomy influenced the β2AR downstream pathways in the context of catecholaminergic stress. In vivo and in vitro stress models were developed in female Sprague-Dawley (SD) rats by epinephrine (Epi) treatments. The cardiac function was evaluated at in vivo and in vitro levels in terms of contraction, rhythm, and injury. We found that myocardial contractility was not significantly different between Sham and ovariectomized (OVX) group rats in the normal state. However, Epi pretreatment decreased the contractility and increased abnormal rhythms especially in OVX group, which were attributed to lack of estrogen. Inhibition of the β2AR-Gi-PI3K/p38MAPK pathway with ICI118,551, PTX or LY294002 increased contractility and aggravated Epi-induced injury on cardiomyocytes, decreased p38MAPK phosphorylation, and only increased arrhythmia in Sham group. These results indicated that OVX exacerbated cardiac injury and abnormal rhythms through β2AR-Gi-PI3K and β2AR-Gi-p38MAPK pathways, respectively. In normal state, the levels of activated Gi were similar in both groups, but those of cAMP and activated Gs were higher in OVX group. Epi treatment increased activated Gi (especially in Sham group) and activated Gs and cAMP in Sham group but decreased it in OVX group. These results suggested that estrogen increased the Gi activity in normal and stress states and Gs activity in stress state. These results indicated that lack of estrogen impaired the β2AR-Gs/Gi coupling during stress which compromised cardiac contractility and increased abnormal rhythms.
Collapse
|