1
|
Yasumatsu K, Nagai Y, Ueshima F. [Causes of taste hyposensitivity in daily life and health risks: including the taste of fatty acids]. Nihon Yakurigaku Zasshi 2025; 160:73-78. [PMID: 40024708 DOI: 10.1254/fpj.24092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The sensory system detects the internal and external environment of the body and the stimulus trigger feedback loops toward the set point to maintain homeostasis, but if taste sensitivity has changed, we may consume more nutrients or loss of appetite. These can lead metabolic syndrome or malnutrition, which can lead to frailty. In this review, we examined which of the five basic tastes (sweet, umami, bitter, sour, and salty) is affected by aging. Next, we summarize the effects of oral bacteria and tongue coating on taste, which can cause problems such as bad breath and aspiration pneumonia. Even healthy people can change their taste sensitivity and pose health risks if they continue to eat certain taste substances on a daily basis. Furthermore, we summarize research from the discovery of the taste of fatty acids to the present, and discuss how the involvement of taste in food intake regulation contributes to homeostasis through a literature survey. Recently, a gut-brain circuit for fat preference has been identified. In the intestine, fatty acids are sensed by the same receptors as those in the taste buds of the tongue, and nutritional information is sent to the brain via the vagus nerve. It is very interesting that nerves that convey fatty acid-specific information have been discovered. In this way, taste system of the tongue and nutrition-sensing in the digestive tract are very similar, so we think it will be very meaningful to progress research by referring to each other.
Collapse
|
2
|
Muthuswamy K, Vasanthakumar K, Panneerselvan P, Thangamani L, Krishnan V, Piramanayagam S, Subramaniam S. FAHFA promotes intracellular calcium signaling via activating the fat taste receptor, CD36 and Src protein kinases in mice taste bud cells. Biochim Biophys Acta Gen Subj 2024; 1868:130722. [PMID: 39426759 DOI: 10.1016/j.bbagen.2024.130722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Two lipid sensors, CD36 and GPR120, are crucial for the orosensory detection of fat taste and for mediating fat preference. However, the mechanism by which endogenous lipid (FAHFA) binds to CD36 to initiate intracellular signaling remains unexplained. Hence, the primary objective of this study is to investigate the binding mechanism of FAHFA to CD36 and its role in isolated mouse taste bud cells (mTBCs). The Schrodinger platform was used to assess the molecular dynamics of protein and ligand interactions, and an in vitro experiment was used to validate the findings. Based on the docking score of the ligand, the molecular mechanistic activities of the targeted complexes, CD36-5-POHSA (-8.2 kcal/mol), were investigated using the dynamic simulation. In comparison to linoleic acid (LA), POHSA rapidly increased [Ca2+]i via acting on CD36, and 5-POHSA treatment in mTBCs activated src-kinase at 20 μM. CD36 siRNA transfection in TBCs downregulate the CD36 protein expression as well as [Ca2+]i flux. This study suggests that 5-POHSA may help combat taste abnormalities and the adverse effects of obesity by binding to the lingual CD36 receptor and activating the tongue-brain axis.
Collapse
Affiliation(s)
- Karthi Muthuswamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India; Men's Health Research Unit, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Keerthana Vasanthakumar
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Prabha Panneerselvan
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Lokesh Thangamani
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Vasanth Krishnan
- Molecular Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Shanmughavel Piramanayagam
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Selvakumar Subramaniam
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India.
| |
Collapse
|
3
|
Lin F, Masterson E, Gilbertson TA. Adiponectin Signaling Modulates Fat Taste Responsiveness in Mice. Nutrients 2024; 16:3704. [PMID: 39519538 PMCID: PMC11547430 DOI: 10.3390/nu16213704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Adiponectin, the most abundant peptide hormone secreted by adipocytes, is a well-known homeostatic factor regulating lipid metabolism and insulin sensitivity. It has been shown that the adiponectin receptor agonist AdipoRon selectively enhances cellular responses to fatty acids in human taste cells, and adiponectin selectively increases taste behavioral responses to intralipid in mice. However, the molecular mechanism underlying the physiological effects of adiponectin on fat taste in mice remains unclear. CONCLUSIONS Here we define AdipoR1 as the mediator responsible for the enhancement role of adiponectin/AdipoRon on fatty acid-induced responses in mouse taste bud cells. METHODS AND RESULTS Calcium imaging data demonstrate that AdipoRon enhances linoleic acid-induced calcium responses in a dose-dependent fashion in mouse taste cells isolated from circumvallate and fungiform papillae. Similar to human taste cells, the enhancement role of AdipoRon on fatty acid-induced responses was impaired by co-administration of an AMPK inhibitor (Compound C) or a CD36 inhibitor (SSO). Utilizing Adipor1-deficient animals, we determined that the enhancement role of AdipoRon/adiponectin is dependent on AdipoR1, since AdipoRon/adiponectin failed to increase fatty acid-induced calcium responses in taste bud cells isolated from these mice. Brief-access taste tests were performed to determine whether AdipoRon's enhancement role was correlated with any differences in taste behavioral responses to fat. Although AdipoRon enhances the cellular responses of taste bud cells to fatty acids, it does not appear to alter fat taste behavior in mice. However, fat-naïve Adipor1-/- animals were indifferent to increasing concentrations of intralipid, suggesting that adiponectin signaling may have profound effects on the ability of mice to detect fatty acids in the absence of previous exposure to fatty acids and fat-containing diets.
Collapse
Affiliation(s)
- Fangjun Lin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (F.L.); (E.M.)
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Emeline Masterson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (F.L.); (E.M.)
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Timothy A. Gilbertson
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
4
|
Wang W, Sun B, Deng J, Ai N. Addressing flavor challenges in reduced-fat dairy products: A review from the perspective of flavor compounds and their improvement strategies. Food Res Int 2024; 188:114478. [PMID: 38823867 DOI: 10.1016/j.foodres.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
In recent years, the demand for reduced-fat dairy products (RFDPs) has increased rapidly as the health risks associated with high-fat diets have become increasingly apparent. Unfortunately, lowering the fat content in dairy products would reduce the flavor perception of fat. Fat-derived flavor compounds are the main contributor to appealing flavor among dairy products. However, the contribution of fat-derived flavor compounds remains underappreciated among the flavor improvement factors of RFDPs. Therefore, this review aims to summarize the flavor perception mechanism of fat and the profile of fat-derived flavor compounds in dairy products. Furthermore, the characteristics and influencing factors of flavor compound release are discussed. Based on the role of these flavor compounds, this review analyzed the current and potential flavor improvement strategies for RFDPs, including physical processing, lipolysis, microbial applications, and fat replacement. Overall, promoting the synthesis of milk fat characteristic flavor compounds in RFDPs and aligning the release properties of flavor compounds from the RFDPs with those of equivalent full-fat dairy products are two core strategies to improve the flavor of reduced-fat dairy products. In the future, better modulation of the behavior of flavor compounds by various methods is promising to replicate the flavor properties of fat in RFDPs and meet consumer sensory demands.
Collapse
Affiliation(s)
- Weizhe Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology & Business University) Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology & Business University) Beijing 100048, China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Nasi Ai
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education (Beijing Technology & Business University) Beijing 100048, China.
| |
Collapse
|
5
|
Iwata S, Yoshida R, Takai S, Sanematsu K, Shigemura N, Ninomiya Y. Adrenomedullin Enhances Mouse Gustatory Nerve Responses to Sugars via T1R-Independent Sweet Taste Pathway. Nutrients 2023; 15:2941. [PMID: 37447268 DOI: 10.3390/nu15132941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
On the tongue, the T1R-independent pathway (comprising glucose transporters, including sodium-glucose cotransporter (SGLT1) and the KATP channel) detects only sugars, whereas the T1R-dependent (T1R2/T1R3) pathway can broadly sense various sweeteners. Cephalic-phase insulin release, a rapid release of insulin induced by sensory signals in the head after food-related stimuli, reportedly depends on the T1R-independent pathway, and the competitive sweet taste modulators leptin and endocannabinoids may function on these two different sweet taste pathways independently, suggesting independent roles of two oral sugar-detecting pathways in food intake. Here, we examined the effect of adrenomedullin (ADM), a multifunctional regulatory peptide, on sugar sensing in mice since it affects the expression of SGLT1 in rat enterocytes. We found that ADM receptor components were expressed in T1R3-positive taste cells. Analyses of chorda tympani (CT) nerve responses revealed that ADM enhanced responses to sugars but not to artificial sweeteners and other tastants. Moreover, ADM increased the apical uptake of a fluorescent D-glucose derivative into taste cells and SGLT1 mRNA expression in taste buds. These results suggest that the T1R-independent sweet taste pathway in mouse taste cells is a peripheral target of ADM, and the specific enhancement of gustatory nerve responses to sugars by ADM may contribute to caloric sensing and food intake.
Collapse
Affiliation(s)
- Shusuke Iwata
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- Department of Oral Physiology, Asahi University School of Dentistry, Gifu 501-0296, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan
| | - Ryusuke Yoshida
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Shingo Takai
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- Dent-Craniofacial Development and Regeneration Center, Graduate School of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Keisuke Sanematsu
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan
- OBT Research Center, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan
| | - Yuzo Ninomiya
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka 819-0395, Japan
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Oral Science Research Center, Tokyo Dental College, Tokyo 101-0061, Japan
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Araújo de Vasconcelos MH, Tavares RL, Dutra MLDV, Batista KS, D'Oliveira AB, Pinheiro RO, Pereira RDA, Lima MDS, Salvadori MGDSS, de Souza EL, Magnani M, Alves AF, Aquino JDS. Extra virgin coconut oil ( Cocos nucifera L.) intake shows neurobehavioural and intestinal health effects in obesity-induced rats. Food Funct 2023. [PMID: 37318515 DOI: 10.1039/d3fo00850a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The present study aimed to evaluate the effect of E-VCO on the neurobehaviour and intestinal health parameters of obesity-induced rats, focusing on food consumption, body composition, bacterial and faecal organic acids and histological analyses in the hippocampus and colon. A total of 32 male Wistar rats were randomized into healthy (HG, n = 16) and obese groups (OG, n = 16), which consumed a control or cafeteria diet for eight weeks, respectively. After this period, they were subdivided into four groups: healthy (HG, n = 8); healthy treated with E-VCO (HGCO, n = 8); obese (OG, n = 8); obese treated with E-VCO (OGCO, n = 8), continuing for another eight weeks with their respective diets. The treated groups received 3000 mg kg-1 of E-VCO and control groups received water via gavage. Food preference, body weight gain, body composition, anxiety- and depression-like behaviour were evaluated. Bacteria and organic acids were evaluated in faeces, and histological analyses of the hippocampus and M1 and M2 macrophages in the colon were performed. E-VCO reduced energy intake (16.68%) and body weight gain (16%), although it did not reduce the fat mass of obese rats. E-VCO showed an antidepressant effect, increased lactic acid bacteria counts and modulated organic acids in obese rats. Furthermore, E-VCO protected the hippocampus from neuronal degeneration caused by the obesogenic diet, decreased the M1 macrophage and increased the M2 macrophage population in the gut. The results suggest neurobehavioural modulation and improved gut health by E-VCO, with promising effects against obesity-related comorbidities.
Collapse
Affiliation(s)
- Maria Helena Araújo de Vasconcelos
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Renata Leite Tavares
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Maria Letícia da Veiga Dutra
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Kamila Sabino Batista
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Aline Barbosa D'Oliveira
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
| | - Rafael Oliveira Pinheiro
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Ramon de Alencar Pereira
- Laboratory of Leishmaniasis Pathology, Department of Pathology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Marcos Dos Santos Lima
- Laboratory of Food and Beverage Analysis, Department of Food Technology, Institute Federal of Sertão Pernambucano (IF-Sertão PE), Petrolina, Pernambuco, Brazil
| | | | - Evandro Leite de Souza
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
- Laboratory of Food Microbiology and Biochemistry, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Marciane Magnani
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
- Laboratory of Microbial Processes in Food, Department of Food Engineering, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Adriano Francisco Alves
- Laboratory of General Pathology, Department of Physiology and Pathology, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| | - Jailane de Souza Aquino
- Experimental Nutrition Laboratory, Department of Nutrition, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil.
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba (UFPB), Cidade Universitária, s/n-Castelo Branco III, João Pessoa, Paraíba, Brazil
| |
Collapse
|
7
|
Martin LE, Andrewson TS, Penner MH, Lim J. Taste Detection of Maltooligosaccharides with Varying Degrees of Polymerization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6699-6705. [PMID: 37083361 PMCID: PMC10561598 DOI: 10.1021/acs.jafc.3c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Previous studies have shown that humans can taste maltooligosaccharides [MOS; degree of polymerization (DP) of 3-20] but not maltopolysaccharides (MPS; DP of >20) and that their taste detection is independent of the canonical sweet taste receptor. The objectives of this study were to determine the DP ranges of target stimuli that are tasted and further to investigate the impact of DP on taste detectability. To achieve this goal, we prepared three food-grade MOS samples with narrow DP ranges using flash chromatography: low (4-6), medium (7-12), and high (14-21) DP samples. Following sample preparation, we asked subjects to discriminate the MOS stimuli from blanks after the stimuli were swabbed on the tip of tongue. All stimuli were initially presented at 75 mM. Acarbose, an α-glucosidase inhibitor, was added to all stimuli, including blanks, to prevent oral hydrolysis of MOS. After determining that all three MOS samples were detected at a significant degree, we conducted follow-up studies to explore whether the detection of these samples differed at a range of concentrations (18-56 mM). The results showed that detection rates of medium- and high-DP MOS varied in a concentration-dependent manner (p < 0.05). In contrast, low-DP MOS showed a consistent detection rate across concentrations tested. These results demonstrate that humans can taste MOS stimuli of all chain lengths and that relative taste detection rates are generally similar across MOS with varying chain lengths.
Collapse
Affiliation(s)
- Laura E. Martin
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
- These authors contributed equally
| | - Toren S. Andrewson
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
- These authors contributed equally
| | - Michael H. Penner
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Juyun Lim
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
8
|
Doyle ME, Premathilake HU, Yao Q, Mazucanti CH, Egan JM. Physiology of the tongue with emphasis on taste transduction. Physiol Rev 2023; 103:1193-1246. [PMID: 36422992 PMCID: PMC9942923 DOI: 10.1152/physrev.00012.2022] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
Collapse
Affiliation(s)
- Máire E Doyle
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hasitha U Premathilake
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Qin Yao
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Caio H Mazucanti
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
9
|
Lin F, Liu Y, Rudeski-Rohr T, Dahir N, Calder A, Gilbertson TA. Adiponectin Enhances Fatty Acid Signaling in Human Taste Cells by Increasing Surface Expression of CD36. Int J Mol Sci 2023; 24:ijms24065801. [PMID: 36982874 PMCID: PMC10059208 DOI: 10.3390/ijms24065801] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Adiponectin, a key metabolic hormone, is secreted into the circulation by fat cells where it enhances insulin sensitivity and stimulates glucose and fatty acid metabolism. Adiponectin receptors are highly expressed in the taste system; however, their effects and mechanisms of action in the modulation of gustatory function remain unclear. We utilized an immortalized human fungiform taste cell line (HuFF) to investigate the effect of AdipoRon, an adiponectin receptor agonist, on fatty acid-induced calcium responses. We showed that the fat taste receptors (CD36 and GPR120) and taste signaling molecules (Gα-gust, PLCβ2, and TRPM5) were expressed in HuFF cells. Calcium imaging studies showed that linoleic acid induced a dose-dependent calcium response in HuFF cells, and it was significantly reduced by the antagonists of CD36, GPR120, PLCβ2, and TRPM5. AdipoRon administration enhanced HuFF cell responses to fatty acids but not to a mixture of sweet, bitter, and umami tastants. This enhancement was inhibited by an irreversible CD36 antagonist and by an AMPK inhibitor but was not affected by a GPR120 antagonist. AdipoRon increased the phosphorylation of AMPK and the translocation of CD36 to the cell surface, which was eliminated by blocking AMPK. These results indicate that AdipoRon acts to increase cell surface CD36 in HuFF cells to selectively enhance their responses to fatty acids. This, in turn, is consistent with the ability of adiponectin receptor activity to alter taste cues associated with dietary fat intake.
Collapse
Affiliation(s)
- Fangjun Lin
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Yan Liu
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Trina Rudeski-Rohr
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Naima Dahir
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Ashley Calder
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Timothy A Gilbertson
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
10
|
Jaime-Lara RB, Brooks BE, Vizioli C, Chiles M, Nawal N, Ortiz-Figueroa RSE, Livinski AA, Agarwal K, Colina-Prisco C, Iannarino N, Hilmi A, Tejeda HA, Joseph PV. A systematic review of the biological mediators of fat taste and smell. Physiol Rev 2023; 103:855-918. [PMID: 36409650 PMCID: PMC9678415 DOI: 10.1152/physrev.00061.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Taste and smell play a key role in our ability to perceive foods. Overconsumption of highly palatable energy-dense foods can lead to increased caloric intake and obesity. Thus there is growing interest in the study of the biological mediators of fat taste and associated olfaction as potential targets for pharmacologic and nutritional interventions in the context of obesity and health. The number of studies examining mechanisms underlying fat taste and smell has grown rapidly in the last 5 years. Therefore, the purpose of this systematic review is to summarize emerging evidence examining the biological mechanisms of fat taste and smell. A literature search was conducted of studies published in English between 2014 and 2021 in adult humans and animal models. Database searches were conducted using PubMed, EMBASE, Scopus, and Web of Science for key terms including fat/lipid, taste, and olfaction. Initially, 4,062 articles were identified through database searches, and a total of 84 relevant articles met inclusion and exclusion criteria and are included in this review. Existing literature suggests that there are several proteins integral to fat chemosensation, including cluster of differentiation 36 (CD36) and G protein-coupled receptor 120 (GPR120). This systematic review will discuss these proteins and the signal transduction pathways involved in fat detection. We also review neural circuits, key brain regions, ingestive cues, postingestive signals, and genetic polymorphism that play a role in fat perception and consumption. Finally, we discuss the role of fat taste and smell in the context of eating behavior and obesity.
Collapse
Affiliation(s)
- Rosario B. Jaime-Lara
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Brianna E. Brooks
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Carlotta Vizioli
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Mari Chiles
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,4Section of Neuromodulation and Synaptic Integration, Division of Intramural Research, National Institute of Mental Health, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Nafisa Nawal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Rodrigo S. E. Ortiz-Figueroa
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Alicia A. Livinski
- 3NIH Library, Office of Research Services, Office of the Director, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Khushbu Agarwal
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Claudia Colina-Prisco
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Natalia Iannarino
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Aliya Hilmi
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Hugo A. Tejeda
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland
| | - Paule V. Joseph
- 1Section of Sensory Science and Metabolism Unit, Division of Intramural Research, National Institutes of Health, National Institute of Alcohol Abuse and Alcoholism, U.S. Department of Health and Human Services, Bethesda, Maryland,2Section of Sensory Science and Metabolism, Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland
| |
Collapse
|
11
|
Wu X, Toko K. Taste sensor with multiarray lipid/polymer membranes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Trautenberg LC, Brankatschk M, Shevchenko A, Wigby S, Reinhardt K. Ecological lipidology. eLife 2022; 11:79288. [PMID: 36069772 PMCID: PMC9451535 DOI: 10.7554/elife.79288] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Dietary lipids (DLs), particularly sterols and fatty acids, are precursors for endogenous lipids that, unusually for macronutrients, shape cellular and organismal function long after ingestion. These functions – cell membrane structure, intracellular signalling, and hormonal activity – vary with the identity of DLs, and scale up to influence health, survival, and reproductive fitness, thereby affecting evolutionary change. Our Ecological Lipidology approach integrates biochemical mechanisms and molecular cell biology into evolution and nutritional ecology. It exposes our need to understand environmental impacts on lipidomes, the lipid specificity of cell functions, and predicts the evolution of lipid-based diet choices. Broad interdisciplinary implications of Ecological Lipidology include food web alterations, species responses to environmental change, as well as sex differences and lifestyle impacts on human nutrition, and opportunities for DL-based therapies.
Collapse
Affiliation(s)
| | - Marko Brankatschk
- Biotechnology Center (BIOTEC), Technische Universität Dresden, Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stuart Wigby
- Applied Zoology, Technische Universität Dresden, Dresden, Germany.,Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Klaus Reinhardt
- Applied Zoology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
13
|
Shinohara K, Izumiya K, Nomura S, Yasoshima Y. Rats learn to prefer the late-consumed flavor over the early-consumed flavor in a multi-flavored meal paired with oral glucose and corn oil. Physiol Behav 2022; 254:113865. [PMID: 35654164 DOI: 10.1016/j.physbeh.2022.113865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 10/18/2022]
Abstract
Conditioned flavor preference (CFP) is established by association: where a neutral flavor (conditioned stimulus, CS) is paired with orosensory and post-ingestive components of nutrients, including sugar and fat (unconditioned stimulus, US). A previous study reported that rats can learn to prefer flavors that they consumed earlier and later in a multi-flavored solution paired with an intragastric infusion of glucose, but they expressed only a preference for a late-consumed flavor when they were tested after feeding (Myers and Whitney, 2011). This paradigm can be a suitable rodent model to explain how humans acquire a selective preference for routinely late-served "dessert" foods and why these foods remain attractive even in the absence of hunger. Here, we examined whether oral glucose (Experiment 1) or fat (Experiment 2) acts as a US for flavor preference learning processes in this paradigm. In Experiment 1, adult female rats under food restriction were trained in 16 daily sessions with two distinct flavor CSs in succession per session; eight CS(+) sessions in which two distinct flavor CSs (early(+), late(+)) were sequentially presented for 8 min each with oral glucose (12%) as a US, and eight CS(-) sessions in which different CSs (early(-), late(-)) were unpaired with the US. In the 30-minute two-bottle choice test, rats preferred late(+) over late(-) only when tested 90 min after consumption of normal chow (fed test) but not after overnight deprivation (hungry test). Early(+) was not preferred over early(-) in both tests. Moreover, a significant preference for late(+) over early(+) was observed only in the fed test, which is a unique feature of oral glucose-CFP. These results indicate that taste sensations of oral glucose promote a rewarding effect of late-onset glucose nutrients. In Experiment 2, separate rats were trained with the same conditioning paradigm, but used a caloric matched fat solution (5.3% corn oil) for a US. The results showed that they expressed stronger preferences for early(+) and late(+) relative to their respective CS(-) flavors in both tests. Similar to Experiment 1, it was observed in the fed test that there was a preference for late(+) over early(+) in oral fat-CFP. Taken together, the present results suggest that routine timing arrangements can cause qualitative differences in conditioned preferences between multiple flavors within a sugar or fat-containing meal in rats, and that rats prefer the late-consumed flavor over the early-consumed flavor in the absence of hunger.
Collapse
Affiliation(s)
- Keisuke Shinohara
- Division of Behavioral Physiology, Department of Behavioral Sciences, Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka, Japan
| | - Kana Izumiya
- Division of Behavioral Physiology, Department of Behavioral Sciences, School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka, Japan
| | - Saki Nomura
- Division of Behavioral Physiology, Department of Behavioral Sciences, School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka, Japan
| | - Yasunobu Yasoshima
- Division of Behavioral Physiology, Department of Behavioral Sciences, Graduate School of Human Sciences, Osaka University, 1-2 Yamadaoka, Suita, Osaka, Japan.
| |
Collapse
|
14
|
Sclafani A, Ackroff K. Fat preference deficits and experience-induced recovery in global taste-deficient Trpm5 and Calhm1 knockout mice. Physiol Behav 2022; 246:113695. [PMID: 34998826 PMCID: PMC8826513 DOI: 10.1016/j.physbeh.2022.113695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 10/19/2022]
Abstract
There is much evidence that gustation mediates the preference for dietary fat in rodents. Several studies indicate that mice have fat taste receptors that activate downstream signaling elements, including TRPM5 and CALHM1 ion channels and P2×2/P2×3 purinergic gustatory nerve receptors. Experiment 1 further documented the involvement of TRPM5 in fat appetite by giving Trpm5 knockout (KO) mice, which show global taste deficits, 24-h two-bottle choice tests with ascending concentrations of soybean oil (0.1 - 10% Intralipid) vs. water. Unlike wildtype (WT) mice, naive Trpm5 KO mice were indifferent to 0.5 - 2.5% fat. They preferred 5-10% fat but consumed much less than WT mice. The same KO mice preferred all fat concentrations in a second test series, which is attributed to a postoral fat conditioned attraction to the non-taste flavor qualities of the Intralipid, although they consumed less fat than the WT mice. The fat preference deficits of the Trpm5 KO mice were as great or greater than those observed in Calhm1 KO mice, another KO line with global taste deficits. Experiment 2 examined experience-enhanced fat preferences in Trpm5 KO and Calhm1 KO mice by giving them one-bottle training with 1%, 2.5%, and 5% fat prior to two-bottle fat vs. water tests. The KO mice displayed increased two-bottle preferences for all concentrations, although they still consumed less 1% and 2.5% fat than WT mice. Thus, the postoral actions of fat induce robust preferences for fat in taste-deficient mice, but do not stimulate the high fat intakes observed in WT mice with normal fat taste signaling.
Collapse
Affiliation(s)
- Anthony Sclafani
- Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America.
| | - Karen Ackroff
- Department of Psychology, Brooklyn College of the City University of New York, Brooklyn, NY 11210, United States of America
| |
Collapse
|
15
|
Ito K. Evaluation and Design of Food Flavor by Cell-based Assay of Chemosensory Receptors. J JPN SOC FOOD SCI 2022. [DOI: 10.3136/nskkk.69.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Keisuke Ito
- School of Food and Nutritional Sciences, University of Shizuoka
| |
Collapse
|
16
|
Abstract
During the last couples of years, a number of studies have increasingly accumulated on the gustatory perception of dietary fatty acids in rodent models and human beings in health and disease. There is still a debate to coin a specific term for the gustatory perception of dietary fatty acids either as the sixth basic taste quality or as an alimentary taste. Indeed, the psycho-physical cues of orosensory detection of dietary lipids are not as distinctly perceived as other taste qualities like sweet or bitter. The cellular and molecular pharmacological mechanisms, triggered by the binding of dietary long-chain fatty acids (LCFAs) to tongue taste bud lipid receptors like CD36 and GPR120, involve Ca2+ signaling as other five basic taste qualities. We have not only elucidated the role of Ca2+ signaling but also identified different components of the second messenger cascade like STIM1 and MAP kinases, implicated in fat taste perception. We have also demonstrated the implication of Calhm1 voltage-gated channels and store-operated Ca2+ (SOC) channels like Orai1, Orai1/3, and TRPC3 in gustatory perception of dietary fatty acids. We have not only employed siRNA technology in vitro and ex vivo on tissues but also used animal models of genetic invalidation of STIM1, ERK1, Orai1, Calhm1 genes to explore their implications in fat taste signal transduction. Moreover, our laboratory has also demonstrated the importance of LCFAs detection dysfunction in obesity in animal models and human beings.
Collapse
Affiliation(s)
- Aziz Hichami
- Physiologie de la Nutrition and Toxicologie (NUTox), UMR1231 INSERM/Université de Bourgogne, Dijon, France
| | - Amira Sayed Khan
- Physiologie de la Nutrition and Toxicologie (NUTox), UMR1231 INSERM/Université de Bourgogne, Dijon, France
| | - Naim Akhtar Khan
- Physiologie de la Nutrition and Toxicologie (NUTox), UMR1231 INSERM/Université de Bourgogne, Dijon, France.
| |
Collapse
|
17
|
Tanaka A, Mochizuki T, Ishibashi T, Akamizu T, Matsuoka TA, Nishi M. Reduced Fat Taste Sensitivity in Obese Japanese Patients and Its Recovery after a Short-Term Weight Loss Program. J Nutr Sci Vitaminol (Tokyo) 2022; 68:504-512. [PMID: 36596548 DOI: 10.3177/jnsv.68.504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fat taste has recently attracted attention as the 'sixth taste.' However, the relationship between fat and sweet taste in Japanese obesity has not yet been examined, and no reports have ascertained whether improvement of fat taste can be obtained by weight loss. Patients were recruited into obesity group (BMI≥30 kg/m2; n=15) or control group (BMI<25 kg/m2; n=11). They answered a questionnaire on smoking, eating behavior, lifestyle, and food frequency, and their taste thresholds were measured (fat, umami, and sweet). The obesity group was tested twice (on admission and before discharge). They showed several eating behavior abnormalities, higher total energy intake, and less physical activity. There were some gender differences: physical inactivity was more prominent in females, and high total energy intake in males, which correlates with fat taste rank. Fat taste rank was significantly higher in obesity group, whereas taste rank of umami and sweet were not significantly different. Gender-specific analysis of fat taste rank revealed only male obesity showed significant difference. Reduced sensitivity of fat may be specific to male gender or obesity by overeating, but not by physical inactivity. Multiple logistic regression analysis revealed that fat taste was a factor relevant to obesity. Fat taste significantly improved after a weight loss program, with average duration of 11.3 d. Japanese obese people, especially males and those who are obese by overeating, have reduced sensitivity to fat taste. This can be recovered by even a short-term weight loss program.
Collapse
Affiliation(s)
- Akiko Tanaka
- Division of Clinical Nutrition and Metabolism, Wakayama Medical University Hospital
- The First Department of Medicine, Wakayama Medical University
| | - Tatsuma Mochizuki
- Division of Clinical Nutrition and Metabolism, Wakayama Medical University Hospital
| | | | | | | | - Masahiro Nishi
- Division of Clinical Nutrition and Metabolism, Wakayama Medical University Hospital
- The First Department of Medicine, Wakayama Medical University
| |
Collapse
|
18
|
Abstract
Many behavioral studies and histological analyses of the sense of taste have been conducted in chickens, as it plays an important role in the ingestion of feed. In recent years, various taste receptors have been analyzed, and the functions of fatty acids, umami, and bitter taste receptors in chickens have become clear. In this review, the bitter taste sense in chickens, which is the taste quality by which animals reject poisons, is discussed among a variety of taste qualities. Chickens have taste buds in the palate, the base of the oral cavity, and the root of the tongue. Bitter taste receptors, taste receptor type 2 members 1, 2, and 7 (T2R1, T2R2, and T2R7) are expressed in these tissues. According to functional analyses of bitter taste receptors and behavioral studies, T2R1 and T2R7 are thought to be especially involved in the rejection of bitter compounds in chickens. Furthermore, the antagonists of these two functional bitter taste receptors were also identified, and it is expected that such antagonists will be useful in improving the taste quality of feed materials and poultry drugs that have a bitter taste. Bitter taste receptors are also expressed in extra-oral tissues, and it has been suggested that gastrointestinal bitter taste receptors may be involved in the secretion of gastrointestinal hormones and pathogen defense mechanisms. Thus, bitter taste receptors in chickens are suspected to play major roles in taste sensing and other physiological systems.
Collapse
|
19
|
Yoshida Y, Nishimura S, Tabata S, Kawabata F. Chicken taste receptors and perception: recent advances in our understanding of poultry nutrient-sensing systems. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2022.2007437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yuta Yoshida
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Ami, Japan
| | - Shotaro Nishimura
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shoji Tabata
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Fuminori Kawabata
- Physiology of Domestic Animals, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
20
|
Gutierrez R, Simon SA. Physiology of Taste Processing in the Tongue, Gut, and Brain. Compr Physiol 2021; 11:2489-2523. [PMID: 34558667 DOI: 10.1002/cphy.c210002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The gustatory system detects and informs us about the nature of various chemicals we put in our mouth. Some of these have nutritive value (sugars, amino acids, salts, and fats) and are appetitive and avidly ingested, whereas others (atropine, quinine, nicotine) are aversive and rapidly rejected. However, the gustatory system is mainly responsible for evoking the perception of a limited number of qualities that humans taste as sweet, umami, bitter, sour, salty, and perhaps fat [free fatty acids (FFA)] and starch (malto-oligosaccharides). The complex flavors and mouthfeel that we experience while eating food result from the integration of taste, odor, texture, pungency, and temperature. The latter three arise primarily from the somatosensory (trigeminal) system. The sensory organs used for detecting and transducing many chemicals are found in taste buds (TBs) located throughout the tongue, soft palate esophagus, and epiglottis. In parallel with the taste system, the trigeminal nerve innervates the peri-gemmal epithelium to transmit temperature, mechanical stimuli, and painful or cooling sensations such as those produced by changes in temperature as well as from chemicals like capsaicin and menthol, respectively. This article gives an overview of the current knowledge about these TB cells' anatomy and physiology and their trigeminal induced sensations. We then discuss how taste is represented across gustatory cortices using an intermingled and spatially distributed population code. Finally, we review postingestion processing (interoception) and central integration of the tongue-gut-brain interaction, ultimately determining our sensations as well as preferences toward the wholesomeness of nutritious foods. © 2021 American Physiological Society. Compr Physiol 11:1-35, 2021.
Collapse
Affiliation(s)
- Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
21
|
Abstract
Gut microbiota has emerged as a major metabolically active organ with critical functions in both health and disease. The trillions of microorganisms hosted by the gastrointestinal tract are involved in numerous physiological and metabolic processes including modulation of appetite and regulation of energy in the host spanning from periphery to the brain. Indeed, bacteria and their metabolic byproducts are working in concert with the host chemosensory signaling pathways to affect both short- and long-term ingestive behavior. Sensing of nutrients and taste by specialized G protein-coupled receptor cells is important in transmitting food-related signals, optimizing nutrition as well as in prevention and treatment of several diseases, notably obesity, diabetes and associated metabolic disorders. Further, bacteria metabolites interact with specialized receptors cells expressed by gut epithelium leading to taste and appetite response changes to nutrients. This review describes recent advances on the role of gut bacteria in taste perception and functions. It further discusses how intestinal dysbiosis characteristic of several pathological conditions may alter and modulate taste preference and food consumption via changes in taste receptor expression.
Collapse
|
22
|
Liu Y, Xu H, Dahir N, Calder A, Lin F, Gilbertson TA. GPR84 Is Essential for the Taste of Medium Chain Saturated Fatty Acids. J Neurosci 2021; 41:5219-5228. [PMID: 33941648 PMCID: PMC8211552 DOI: 10.1523/jneurosci.2530-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/21/2022] Open
Abstract
The ability of mammalian taste cells to respond to fatty acids (FAs) has garnered significant attention of late and has been proposed to represent a sixth primary taste. With few exceptions, studies on FA taste have centered exclusively on polyunsaturated FAs, most notably on linoleic acid. In the current study, we have identified an additional FA receptor, GPR84, in the gustatory system that responds to the medium-chain saturated FAs (MCFAs) in male mice. GPR84 ligands activate both Type II and Type III taste cells in calcium imaging and patch-clamp recording assays. MCFAs depolarize and lead to a rise in intracellular free [Ca2+] in mouse taste cells in a concentration-dependent fashion, and the relative ligand specificity in taste cells is consistent with the response profile of GPR84 expressed in a heterologous system. A systemic Gpr84-/- mouse model reveals a specific deficit in both the neural (via chorda tympani recording) and behavioral responses to administration of oral MCFAs compared with WT mice. Together, we show that the peripheral taste system can respond to an additional class of FAs, the saturated FAs, and that the cognate receptor necessary for this ability is GPR84.
Collapse
Affiliation(s)
- Yan Liu
- Department of Internal Medicine, University of Central Florida, Orlando, Florida 32827
| | - Han Xu
- Department of Biology, Utah State University, Logan, Utah 84322
| | - Naima Dahir
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32827
| | - Ashley Calder
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32827
| | - Fangjun Lin
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32827
| | - Timothy A Gilbertson
- Department of Internal Medicine, University of Central Florida, Orlando, Florida 32827
| |
Collapse
|
23
|
Determination of quasi-primary odors by endpoint detection. Sci Rep 2021; 11:12070. [PMID: 34103566 PMCID: PMC8187439 DOI: 10.1038/s41598-021-91210-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/19/2021] [Indexed: 01/02/2023] Open
Abstract
It is known that there are no primary odors that can represent any other odors with their combination. Here, we propose an alternative approach: "quasi" primary odors. This approach comprises the following condition and method: (1) within a collected dataset and (2) by the machine learning-based endpoint detection. The quasi-primary odors are selected from the odors included in a collected odor dataset according to the endpoint score. While it is limited within the given dataset, the combination of such quasi-primary odors with certain ratios can reproduce any other odor in the dataset. To visually demonstrate this approach, the three quasi-primary odors having top three high endpoint scores are assigned to the vertices of a chromaticity triangle with red, green, and blue. Then, the other odors in the dataset are projected onto the chromaticity triangle to have their unique colors. The number of quasi-primary odors is not limited to three but can be set to an arbitrary number. With this approach, one can first find "extreme" odors (i.e., quasi-primary odors) in a given odor dataset, and then, reproduce any other odor in the dataset or even synthesize a new arbitrary odor by combining such quasi-primary odors with certain ratios.
Collapse
|
24
|
Cheon E, Mattes RD. Perceptual Quality of Nonesterified Fatty Acids Varies with Fatty Acid Chain Length. Chem Senses 2021; 46:6261959. [PMID: 34192309 DOI: 10.1093/chemse/bjab023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonesterified fatty acids (NEFA) are effective taste stimuli. The quality they impart has not been well characterized. Sourness, and "fattiness" have been reported, but an irritation component has also been described and how these transition with gradations of aliphatic chain length has not been systematically studied. This study examined intensity and quality ratings of NEFA ranging from C2 to C18. Oral sites and the time course of sensations were also monitored. Given all NEFA contain carboxylic acid moieties capable of donating hydrogen ions, the primary stimulus for sour taste, testing was conducted with and without sour adaptation to explore the contribution of sour taste across the range of NEFA. Short-chain NEFA (C2-C6) were rated as predominantly sour, and this was diminished in C2 and C4 by sour adaptation. Medium-chain NEFA (C8-C12) were rated as mainly irritating with long-chain NEFA (C18) described mostly as bitter. The latter may reflect the lack of "fatty" lexicon to describe the sensation. Short-chain NEFA were mostly localized to the anterior tongue and were of rapid onset. The sensation from medium-chain NEFA was attributed to the lateral tongue, whereas medium- and long-chain NEFA sensations were predominantly localized to the back of the tongue and throat and had a longer lag time. The findings indicate there is a systematic transition of NEFA taste quality and irritation with increments in chain length and this is consistent with multiple modes of transduction.
Collapse
Affiliation(s)
- Eunjin Cheon
- Department of Nutrition Science, Purdue University, 812 W State Street, West Lafayette, IN 47907-2059, USA
| | - Richard D Mattes
- Department of Nutrition Science, Purdue University, 812 W State Street, West Lafayette, IN 47907-2059, USA
| |
Collapse
|
25
|
Tarragon E, Cases Ceano-Vivas P, Gonzalez-Ogazón P, Moreno JJ. Perceived Intensity and Palatability of Fatty Culinary Preparations is Associated with Individual Fatty Acid Detection Threshold and the Fatty Acid Profile of Oils Used as Ingredients. Chem Senses 2021; 46:6208271. [PMID: 33821988 DOI: 10.1093/chemse/bjab014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The term oleogustus was recently proposed to describe a sixth basic taste that could guide preference for fatty foods and dishes to an extent. However, experimental data on food preference based on fatty acid (FA) content is scarce. Our aim was to examine the role of FA profile of oils and preparations as well as FA sensory thresholds on the palatability of salty and sweet culinary preparations representative of traditional Spanish Mediterranean cooking. In this study, we used three oils with similar texture and odor profile but different in their FA composition (saturated, monounsaturated, and polyunsaturated) and compared subjects in regard to their FA detection threshold and perceived pleasantness and intensity. Our results indicate that whereas saturated FAs cannot be detected at physiological concentrations, individuals can be categorized as tasters and nontasters, according to their sensory threshold to linoleic acid, which is negatively associated with perceived intensity (r = -0.393, P < 0.001) but positively with palatability (r = 0.246, P = 0.018). These differences may be due to a possible response to a fat taste. This sixth taste, or oleogustus. would allow establishing differences in taste intensity/palatability considering the FA profile of the culinary preparations. Given that tasters can detect linoleic and oleic acid at lower concentrations than nontasters, a greater amount of unsaturated FAs in culinary preparations could provoke an unpleasant experience. This finding could be relevant in the context of the culinary sector and to further our understanding of food preference and eating behavior.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Faculty of Health Sciences, Universidad Internacional de La Rioja, Logroño, Spain
| | - Pere Cases Ceano-Vivas
- Department of Nutrition, Food Sciences and Gastronomy, University of Barcelona, Barcelona, Spain
| | - Pol Gonzalez-Ogazón
- Department of Nutrition, Food Sciences and Gastronomy, University of Barcelona, Barcelona, Spain
| | - Juan José Moreno
- Department of Nutrition, Food Sciences and Gastronomy, University of Barcelona, Barcelona, Spain.,Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain.,CIBEROBN Fisiopatologia de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
26
|
Fu O, Minokoshi Y, Nakajima KI. Recent Advances in Neural Circuits for Taste Perception in Hunger. Front Neural Circuits 2021; 15:609824. [PMID: 33603648 PMCID: PMC7884326 DOI: 10.3389/fncir.2021.609824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
Feeding is essential for survival and taste greatly influences our feeding behaviors. Palatable tastes such as sweet trigger feeding as a symbol of a calorie-rich diet containing sugar or proteins, while unpalatable tastes such as bitter terminate further consumption as a warning against ingestion of harmful substances. Therefore, taste is considered a criterion to distinguish whether food is edible. However, perception of taste is also modulated by physiological changes associated with internal states such as hunger or satiety. Empirically, during hunger state, humans find ordinary food more attractive and feel less aversion to food they usually dislike. Although functional magnetic resonance imaging studies performed in primates and in humans have indicated that some brain areas show state-dependent response to tastes, the mechanisms of how the brain senses tastes during different internal states are poorly understood. Recently, using newly developed molecular and genetic tools as well as in vivo imaging, researchers have identified many specific neuronal populations or neural circuits regulating feeding behaviors and taste perception process in the central nervous system. These studies could help us understand the interplay between homeostatic regulation of energy and taste perception to guide proper feeding behaviors.
Collapse
Affiliation(s)
- Ou Fu
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Aichi, Japan
| | - Yasuhiko Minokoshi
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Aichi, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Ken-Ichiro Nakajima
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Aichi, Japan.,Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
27
|
Fatty Acid Taste Receptor GPR120 Activation by Arachidonic Acid, Eicosapentaenoic Acid, and Docosahexaenoic Acid in Chickens. J Poult Sci 2021; 59:282-285. [PMID: 35974876 PMCID: PMC9346598 DOI: 10.2141/jpsa.0210099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022] Open
Abstract
It has been reported that the supplementation of chicken diet with polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA), eicosapentaenoic acid (EPA), or docosahexaenoic acid (DHA) affects the qualities of eggs and meat. Previous studies have shown that a functional fatty acid taste receptor, G protein-coupled receptor 120 (GPR120), is broadly expressed in chicken oral and gastrointestinal tissues, and chickens have a gustatory perception of oleic acid, which is a chicken GPR120 agonist. The aim of this study was to elucidate the role of chicken GPR120 in response to PUFAs in chicken diets. Ca2+ imaging analyses revealed that chicken GPR120 was activated by AA, EPA, and DHA in a concentration-dependent manner. These results suggest that chickens can detect PUFAs via GPR120 in the oral and gastrointestinal tissues, implying that chickens have a gustatory perception of PUFAs.
Collapse
|
28
|
Kawabata F, Yoshida Y, Inoue Y, Kawabata Y, Nishimura S, Tabata S. Research Note: Behavioral preference and conditioned taste aversion to oleic acid solution in chickens. Poult Sci 2021; 100:372-376. [PMID: 33357702 PMCID: PMC7772696 DOI: 10.1016/j.psj.2020.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 11/06/2022] Open
Abstract
A functional fatty acid taste receptor, GPR120, is present in chicken oral tissues, and chickens show a preference for lipid in feed. However, it remains unclear whether chickens can detect fatty acids. To address this issue, we adopted 2 behavioral paradigms: a one-bowl drinking test to evaluate the preference for oleic acid solution and a conditioned taste aversion test to investigate the role of gustation in chickens' ability to detect oleic acid. In the one-bowl drinking test, chickens did not show any preference for solution containing 0.001, 0.01, 0.03, 0.1, or 30 mmol/L oleic acid although 30 mmol/L oleic acid was enough to fully activate GPR120, confirmed by Ca2+ imaging. On the other hand, chickens conditioned to avoid 30 mmol/L oleic acid solution also learned to avoid the solution. These results suggested that chickens have a gustatory perception of oleic acid solution but do not have a preference for it. The present results support the idea that chickens prefer lipid in feed, not only by a postingestive effect but also by sensing the taste of fatty acid.
Collapse
Affiliation(s)
- Fuminori Kawabata
- Physiology of Domestic Animals, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan.
| | - Yuta Yoshida
- Department of Food and Life Sciences, Ibaraki University, Ami, Japan; Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yuki Inoue
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Yuko Kawabata
- Section of Oral Neuroscience, Graduate Shcool of Dental Science, Kyushu University, Fukuoka, Japan
| | - Shotaro Nishimura
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Shoji Tabata
- Laboratory of Functional Anatomy, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
29
|
Ikuta R, Myoenzono K, Wasano J, Hamaguchi-Hamada K, Hamada S, Kurumata-Shigeto M. N-cadherin localization in taste buds of mouse circumvallate papillae. J Comp Neurol 2020; 529:2227-2242. [PMID: 33319419 DOI: 10.1002/cne.25090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/03/2023]
Abstract
Taste buds, the receptor organs for taste, contain 50-100 taste bud cells. Although these cells undergo continuous turnover, the structural and functional integrity of taste buds is maintained. The molecular mechanisms by which synaptic connectivity between taste buds and afferent fibers is formed and maintained remain ambiguous. In the present study, we examined the localization of N-cadherin in the taste buds of the mouse circumvallate papillae because N-cadherin, one of the classical cadherins, is important for the formation and maintenance of synapses. At the light microscopic level, N-cadherin was predominantly detected in type II cells and nerve fibers in the connective tissues in and around the vallate papillae. At the ultrastructural level, N-cadherin immunoreactivity appears along the cell membrane and in the intracellular vesicles of type II cells. N-cadherin immunoreactivity also is evident in the membranes of afferent terminals at the contact sites to N-cadherin-positive type II cells. At channel type synapses between type II cells and nerve fibers, N-cadherin is present surrounding, but not within, the presumed neurotransmitter release zone, identified by large mitochondria apposed to the taste cells. The present results suggest that N-cadherin is important for the formation or maintenance of type II cell afferent synapses in taste buds.
Collapse
Affiliation(s)
- Rio Ikuta
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan
| | - Kanae Myoenzono
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan.,Humanome Lab., Inc., Tokyo, Japan
| | - Jun Wasano
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan
| | | | - Shun Hamada
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan
| | - Mami Kurumata-Shigeto
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, Japan
| |
Collapse
|
30
|
Yasumatsu K, Ohkuri T, Yoshida R, Iwata S, Margolskee RF, Ninomiya Y. Sodium-glucose cotransporter 1 as a sugar taste sensor in mouse tongue. Acta Physiol (Oxf) 2020; 230:e13529. [PMID: 32599649 DOI: 10.1111/apha.13529] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
AIM We investigated potential neuron types that code sugar information and how sodium-glucose cotransporters (SGLTs) and T1Rs are involved. METHODS Whole-nerve recordings in the chorda tympani (CT) and the glossopharyngeal (GL) nerves and single-fibre recordings in the CT were performed in T1R3-KO and wild-type (WT) mice. Behavioural response measurements were conducted in T1R3-KO mice using phlorizin (Phl), a competitive inhibitor of SGLTs. RESULTS Results indicated that significant enhancement occurred in responses to sucrose and glucose (Glc) by adding 10 mmol/L NaCl but not in responses to KCl, monopotassium glutamate, citric acid, quinine sulphate, SC45647(SC) or polycose in both CT and GL nerves. These enhancements were abolished by lingual application of Phl. In single-fibre recording, fibres showing maximal response to sucrose could be classified according to responses to SC and Glc with or without 10 mmol/L NaCl in the CT of WT mice, namely, Phl-insensitive type, Phl-sensitive Glc-type and Mixed (Glc and SC responding)-type fibres. In T1R3-KO mice, Phl-insensitive-type fibres disappeared. Results from behavioural experiments showed that the number of licks and amount of intake for Glc with or without 10 mmol/L NaCl were significantly suppressed by Phl. CONCLUSION We found evidence for the contribution of SGLTs in sugar sensing in taste cells of mouse tongue. Moreover, we found T1R-dependent (Phl-insensitive) type, Glc-type and Mixed (SGLTs and T1Rs)-type fibres. SGLT1 may be involved in the latter two types and may play important roles in the glucose-specific cephalic phase of digestion and palatable food intake.
Collapse
Affiliation(s)
- Keiko Yasumatsu
- Tokyo Dental Junior College Chiyoda‐ku Tokyo Japan
- Division of Sensory Physiology and Medical Application Sensing, Research and Development Centre for Five‐Sense Devices Kyushu University Fukuoka Japan
| | - Tadahiro Ohkuri
- Section of Oral Neuroscience Graduate School of Dental Sciences Kyushu University Fukuoka Japan
| | - Ryusuke Yoshida
- Section of Oral Neuroscience Graduate School of Dental Sciences Kyushu University Fukuoka Japan
- Department of Oral Physiology Graduate School of Medicine, Dentistry and Pharmaceutical Sciences Okayama University Okayama Japan
| | - Shusuke Iwata
- Division of Sensory Physiology and Medical Application Sensing, Research and Development Centre for Five‐Sense Devices Kyushu University Fukuoka Japan
- Section of Oral Neuroscience Graduate School of Dental Sciences Kyushu University Fukuoka Japan
| | | | - Yuzo Ninomiya
- Division of Sensory Physiology and Medical Application Sensing, Research and Development Centre for Five‐Sense Devices Kyushu University Fukuoka Japan
- Monell Chemical Senses Centre Philadelphia PA USA
| |
Collapse
|
31
|
Zhang N, Wei X, Fan Y, Zhou X, Liu Y. Recent advances in development of biosensors for taste-related analyses. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115925] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Fat taste signal transduction and its possible negative modulator components. Prog Lipid Res 2020; 79:101035. [DOI: 10.1016/j.plipres.2020.101035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/26/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
|
33
|
Preference for dietary fat: From detection to disease. Prog Lipid Res 2020; 78:101032. [PMID: 32343988 DOI: 10.1016/j.plipres.2020.101032] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022]
Abstract
Recent advances in the field of taste physiology have clarified the role of different basic taste modalities and their implications in health and disease and proposed emphatically that there might be a distinct cue for oro-sensory detection of dietary long-chain fatty acids (LCFAs). Hence, fat taste can be categorized as a taste modality. During mastication, LCFAs activate tongue lipid sensors like CD36 and GPR120 triggering identical signaling pathways as the basic taste qualities do; however, the physico-chemical perception of fat is not as distinct as sweet or bitter or other taste sensations. The question arises whether "fat taste" is a basic or "alimentary" taste. There is compelling evidence that fat-rich dietary intervention modulates fat taste perception where an increase or a decrease in lipid contents in the diet results, respectively, in downregulation or upregulation of fat taste sensitivity. Evidently, a decrease in oro-sensory detection of LCFAs leads to high fat intake and, consequently, to obesity. In this article, we discuss recent relevant advances made in the field of fat taste physiology with regard to dietary fat preference and lipid sensors that can be the target of anti-obesity strategies.
Collapse
|
34
|
Abstract
In the last few years, single-cell profiling of taste cells and ganglion cells has advanced our understanding of transduction, encoding, and transmission of information from taste buds as relayed to the central nervous system. This review focuses on new knowledge from these molecular approaches and attempts to place this in the context of previous questions and findings in the field. The individual taste cells within a taste bud are molecularly specialized for detection of one of the primary taste qualities: salt, sour, sweet, umami, and bitter. Transduction and transmitter release mechanisms differ substantially for taste cells transducing sour (Type III cells) compared with those transducing the qualities of sweet, umami, or bitter (Type II cells), although ultimately all transmission of taste relies on activation of purinergic P2X receptors on the afferent nerves. The ganglion cells providing innervation to the taste buds also appear divisible into functional and molecular subtypes, and each ganglion cell is primarily but not exclusively responsive to one taste quality.
Collapse
Affiliation(s)
- Sue C. Kinnamon
- Rocky Mountain Taste & Smell Center, Department of Otolaryngology and Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Thomas E. Finger
- Rocky Mountain Taste & Smell Center, Department of Otolaryngology and Department of Cell & Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| |
Collapse
|
35
|
Murtaza B, Hichami A, Khan AS, Shimpukade B, Ulven T, Ozdener MH, Khan NA. Novel GPR120 agonist TUG891 modulates fat taste perception and preference and activates tongue-brain-gut axis in mice. J Lipid Res 2019; 61:133-142. [PMID: 31806728 DOI: 10.1194/jlr.ra119000142] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/21/2019] [Indexed: 12/21/2022] Open
Abstract
GPR120 is implicated as a lipid receptor in the oro-sensory detection of dietary fatty acids. However, the effects of GPR120 activation on dietary fat intake or obesity are not clearly understood. We investigated to determine whether the binding of TUG891, a novel GPR120 agonist, to lingual GPR120 modulates fat preference in mice. We explored the effects of TUG891 on obesity-related hormones and conducted behavioral choice tests on mice to better understand the physiologic relevance of the action of TUG891. In cultured mouse and human taste bud cells (TBCs), TUG891 induced a rapid increase in Ca2+ by acting on GPR120. A long-chain dietary fatty acid, linoleic acid (LA), also recruited Ca2+ via GPR120 in human and mouse TBCs. Both TUG891 and LA induced ERK1/2 phosphorylation and enhanced in vitro release of glucagon-like peptide-1 from cultured human and mouse TBCs. In situ application of TUG891 onto the tongue of anesthetized mice triggered the secretion of pancreatobiliary juice, probably via the tongue-brain-gut axis. Furthermore, lingual application of TUG891 altered circulating concentrations of cholecystokinin and adipokines, associated with decreased circulating LDL, in conscious mice. In behavioral tests, mice exhibited a spontaneous preference for solutions containing either TUG891 or LA instead of a control. However, addition of TUG891 to a solution containing LA significantly curtailed fatty acid preference. Our study demonstrates that TUG891 binds to lingual GPR120 receptors, activates the tongue-brain-gut axis, and modulates fat preference. These findings may support the development of new fat taste analogs that can change the approach to obesity prevention and treatment.
Collapse
Affiliation(s)
- Babar Murtaza
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, Dijon, France
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, Dijon, France
| | - Amira S Khan
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, Dijon, France
| | - Bharat Shimpukade
- Departments of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Trond Ulven
- Departments of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Odense, Denmark.,Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Naim A Khan
- Physiologie de la Nutrition & Toxicologie, U1231 INSERM/Université de Bourgogne-Franche Comté (UBFC)/Agro-Sup, Dijon, France
| |
Collapse
|
36
|
Abstract
Taste is of five basic types, namely, sourness, saltiness, sweetness, bitterness and umami. In this review, we focus on a potentiometric taste sensor that we developed and fabricated using lipid polymer membranes. The taste sensor can measure the taste perceived by humans and is called an electronic tongue with global selectivity, which is the property to discriminate taste qualities and quantify them without discriminating each chemical substance. This property is similar to the gustatory system; hence, the taste sensor is a type of biomimetic device. In this paper, we first explain the sensing mechanism of the taste sensor, its application to beer evaluation and the measurement mechanism. Second, results recently obtained are introduced; i.e., the application of the senor to high-potency sweeteners and the improvement of the bitterness sensor are explained. Last, quantification of the bitterness-masking effect of high-potency sweeteners is explained using a regression analysis based on both the outputs of bitterness and sweetness sensors. The taste sensor provides a biomimetic method different from conventional analytical methods.
Collapse
Affiliation(s)
- Xiao Wu
- Research and Development Center for Five-Sense Devices, Kyushu University
| | - Yusuke Tahara
- Research and Development Center for Five-Sense Devices, Kyushu University
| | - Rui Yatabe
- Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University
| | - Kiyoshi Toko
- Research and Development Center for Five-Sense Devices, Kyushu University.,Institute for Advanced Study, Kyushu University
| |
Collapse
|
37
|
Kimura I, Ichimura A, Ohue-Kitano R, Igarashi M. Free Fatty Acid Receptors in Health and Disease. Physiol Rev 2019; 100:171-210. [PMID: 31487233 DOI: 10.1152/physrev.00041.2018] [Citation(s) in RCA: 600] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fatty acids are metabolized and synthesized as energy substrates during biological responses. Long- and medium-chain fatty acids derived mainly from dietary triglycerides, and short-chain fatty acids (SCFAs) produced by gut microbial fermentation of the otherwise indigestible dietary fiber, constitute the major sources of free fatty acids (FFAs) in the metabolic network. Recently, increasing evidence indicates that FFAs serve not only as energy sources but also as natural ligands for a group of orphan G protein-coupled receptors (GPCRs) termed free fatty acid receptors (FFARs), essentially intertwining metabolism and immunity in multiple ways, such as via inflammation regulation and secretion of peptide hormones. To date, several FFARs that are activated by the FFAs of various chain lengths have been identified and characterized. In particular, FFAR1 (GPR40) and FFAR4 (GPR120) are activated by long-chain saturated and unsaturated fatty acids, while FFAR3 (GPR41) and FFAR2 (GPR43) are activated by SCFAs, mainly acetate, butyrate, and propionate. In this review, we discuss the recent reports on the key physiological functions of the FFAR-mediated signaling transduction pathways in the regulation of metabolism and immune responses. We also attempt to reveal future research opportunities for developing therapeutics for metabolic and immune disorders.
Collapse
Affiliation(s)
- Ikuo Kimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Atsuhiko Ichimura
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Ryuji Ohue-Kitano
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| | - Miki Igarashi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan; and Department of Biochemistry, Kyoto University Graduate School of Pharmaceutical Science, Sakyo, Kyoto, Japan
| |
Collapse
|
38
|
Gaillard D, Kinnamon SC. New evidence for fat as a primary taste quality. Acta Physiol (Oxf) 2019; 226:e13246. [PMID: 30588748 DOI: 10.1111/apha.13246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Dany Gaillard
- Department of Cell & Developmental Biology, and the Rocky Mountain Taste & Smell Center University of Colorado Anschutz Medical Campus Aurora Colorado
| | - Sue C. Kinnamon
- Department of Otolaryngology, and the Rocky Mountain Taste & Smell CenterUniversity of Colorado Anschutz Medical Campus Aurora Colorado
| |
Collapse
|