1
|
Fu L, Yokus B, Gao B, Pacher P. An Update on IL-22 Therapies in Alcohol-Associated Liver Disease and Beyond. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00117-8. [PMID: 40254130 DOI: 10.1016/j.ajpath.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/22/2025]
Abstract
Excessive alcohol consumption drives the development of alcohol-associated liver disease (ALD), including steatohepatitis, cirrhosis, and hepatocellular carcinoma, and its associated complications, such as hepatorenal syndrome. Hepatocyte death, inflammation, and impaired liver regeneration are key processes implicated in the pathogenesis and progression of ALD. Despite extensive research, therapeutic options for ALD remain limited. IL-22 has emerged as a promising therapeutic target because of its hepatoprotective properties mediated through the activation of the STAT3 signaling pathway. IL-22 enhances hepatocyte survival by mitigating apoptosis, oxidative stress, and inflammation while simultaneously promoting liver regeneration through the proliferation of hepatocytes and hepatic progenitor cells and the up-regulation of growth factors. Additionally, IL-22 exerts protective effects on epithelial cells in various organs affected by ALD and its associated complications. Studies from preclinical models and early-phase clinical trials of IL-22 agonists, such as F-652 and UTTR1147A, have shown favorable safety profiles, good tolerability, and encouraging efficacy in reducing liver injury and promoting regeneration. However, the heterogeneity and multifactorial nature of ALD present ongoing challenges. Further research is needed to optimize IL-22-based therapies and clarify their roles within a comprehensive approach to ALD management. This review summarizes the current understanding of IL-22 biology and its role in ALD pathophysiology and ALD-associated complications along with therapeutic application of IL-22, potential benefits, and limitations.
Collapse
Affiliation(s)
- Lihong Fu
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIH/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Burhan Yokus
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIH/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland
| | - Bin Gao
- Laboratory of Liver Diseases, NIH/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland.
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIH/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland.
| |
Collapse
|
2
|
Li X, Ni Z, Shi W, Zhao K, Zhang Y, Liu L, Wang Z, Chen J, Yu Z, Gao X, Qin Y, Zhao J, Peng W, Shi J, Kosten TR, Lu L, Su L, Xue Y, Sun H. Nitrate ameliorates alcohol-induced cognitive impairment via oral microbiota. J Neuroinflammation 2025; 22:106. [PMID: 40234914 PMCID: PMC12001487 DOI: 10.1186/s12974-025-03439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/06/2025] [Indexed: 04/17/2025] Open
Abstract
Alcohol use is associated with cognitive impairment and dysregulated inflammation. Oral nitrate may benefit cognitive impairment in aging through altering the oral microbiota. Similarly, the beneficial effects of nitrate on alcohol-induced cognitive decline and the roles of the oral microbiota merit investigation. Here we found that nitrate supplementation effectively mitigated cognitive impairment induced by chronic alcohol exposure in mice, reducing both systemic and neuroinflammation. Furthermore, nitrate restored the dysbiosis of the oral microbiota caused by alcohol consumption. Notably, removing the oral microbiota led to a subsequent loss of the beneficial effects of nitrate. Oral microbiota from donor alcohol use disordered humans who had been taking the nitrate intervention were transplanted into germ-free mice which then showed increased cognitive function and reduced neuroinflammation. Finally, we examined 63 alcohol drinkers with varying levels of cognitive impairment and found that lower concentrations of nitrate metabolism-related bacteria were associated with higher cognitive impairment and lower nitrate levels in plasma. These findings highlight the protective role of nitrate against alcohol-induced cognition impairment and neuroinflammation and suggest that the oral microbiota associated with nitrate metabolism and brain function may form part of a "microbiota-mouth-brain axis".
Collapse
Affiliation(s)
- Xiangxue Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Zhaojun Ni
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Weixiong Shi
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Kangqing Zhao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Yanjie Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lina Liu
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Zhong Wang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Jie Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Zhoulong Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Xuejiao Gao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
| | - Ying Qin
- Addiction Medicine Department, The Second People's Hospital of Guizhou Province, Guizhou, China
| | - Jingwen Zhao
- Addiction Medicine Department, The Second People's Hospital of Guizhou Province, Guizhou, China
| | - Wenjuan Peng
- Addiction Medicine Department, The Second People's Hospital of Guizhou Province, Guizhou, China
| | - Jie Shi
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Thomas R Kosten
- Department of Psychiatry, Pharmacology, Neuroscience, Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China
| | - Lei Su
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China.
| | - Yanxue Xue
- National Institute On Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, 100191, China.
- Chinese Institute for Brain Research, Beijing, China.
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), No.51 Huayuan North Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
3
|
Chen L, Liu Q, Li X, Zhang L, Dong W, Li Q, Su H, Luo G, Huang Y, Yang X. The diabetes medication Canagliflozin attenuates alcoholic liver disease by reducing hepatic lipid accumulation via SIRT1-AMPK-mTORC1 signaling pathway. Eur J Pharmacol 2025; 992:177320. [PMID: 39929419 DOI: 10.1016/j.ejphar.2025.177320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025]
Abstract
BACKGROUND AND AIMS Chronic consumption of large amounts of alcohol can lead to hepatic lipid accumulation and mitochondrial oxidative stress, resulting in alcoholic liver disease (ALD). Canagliflozin (Cana), an oral antidiabetic drug, regulates blood glucose by inhibiting sodium-glucose cotransporter-2 in renal tubulars, which also improves lipid metabolism and alleviates oxidative stress in hepatocyte. This study aims to determine the therapeutic effects of Cana on alcoholic liver injury and to explore the mechanistic pathways involved. METHODS C57BL/6J male mice at 8 weeks were used to construct a model of alcoholic fatty liver disease using the chronic-plus-binge alcohol feeding model. Primary hepatocytes and AML12 cell lines were used as in vitro models. The effects and mechanisms of Cana on alcoholic liver injury were investigated by using immunofluorescence, ELISA, H&E and Oil Red O staining, RT-PCR, and western blotting analysis. RESULTS Cana treatment reduced hepatic lipid accumulation, decreased glutathione and TNF-α levels, alleviated oxidative stress and inflammation. Mechanistic studies revealed that Cana reduced FAS expression in the liver, decreasing hepatic fatty acid synthesis, and increased PPARα expression, promoting fatty acid oxidation. Additionally, Cana increased mitochondrial content and promoted mitophagy. These effects were mediated by the SIRT1-AMPK-mTORC1 signaling pathway. CONCLUSIONS Cana activates the SIRT1-AMPK-mTORC1 signaling pathway, inhibiting alcohol-induced fatty acid synthesis, promoting fatty acid degradation, thereby alleviating alcoholic liver injury.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qinhui Liu
- Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiangyu Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Liaoyun Zhang
- Department of Pharmacy, Sichuan Provincial Maternity and Child Health Care Hospital & Women's and Children's Hospital, Chengdu, Sichuan, 610000, China
| | - Wenjie Dong
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Qiuyu Li
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Hao Su
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Gang Luo
- Department of Gastroenterology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Xuping Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
4
|
Perumal SK, Arumugam MK, Osna NA, Rasineni K, Kharbanda KK. Betaine regulates the gut-liver axis: a therapeutic approach for chronic liver diseases. Front Nutr 2025; 12:1478542. [PMID: 40196019 PMCID: PMC11973089 DOI: 10.3389/fnut.2025.1478542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Chronic liver disease is defined by persistent harm to the liver that might result in decreased liver function. The two prevalent chronic liver diseases are alcohol-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD). There is ample evidence that the pathogenesis of these two chronic liver diseases is closely linked to gastrointestinal dysfunctions that alters the gut-liver crosstalk. These alterations are mediated through the imbalances in the gut microbiota composition/function that combined with disruption in the gut barrier integrity allows for harmful gut microbes and their toxins to enter the portal circulation and reach the liver to elicit an inflammatory response. This leads to further recruitment of systemic inflammatory cells, such as neutrophils, T-cells, and monocytes into the liver, which perpetuate additional inflammation and the development of progressive liver damage. Many therapeutic modalities, currently used to prevent, attenuate, or treat chronic liver diseases are aimed at modulating gut dysbiosis and improving intestinal barrier function. Betaine is a choline-derived metabolite and a methyl group donor with antioxidant, anti-inflammatory and osmoprotectant properties. Studies have shown that low betaine levels are associated with higher levels of organ damage. There have been several publications demonstrating the role of betaine supplementation in preventing the development of ALD and MASLD. This review explores the protective effects of betaine through its role as a methyl donor and its capacity to regulate the protective gut microbiota and maintain intestinal barrier integrity to prevent the development of these chronic liver diseases. Further studies are needed to enhance our understanding of its therapeutic potential that could pave the way for targeted interventions in the management of not only chronic liver diseases, but other inflammatory bowel diseases or systemic inflammatory conditions.
Collapse
Affiliation(s)
- Sathish Kumar Perumal
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Madan Kumar Arumugam
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Natalia A. Osna
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Karuna Rasineni
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum K. Kharbanda
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
5
|
Zhang J, Yang Z, Liu X, Yang X, Li Y, Jin X, Duan H, Chen H, Zhao W, Wang Q, Liu Y. New Insights into the Pathogenesis of Alcoholic Liver Disease Based on Global Research. Dig Dis Sci 2025; 70:903-918. [PMID: 39806089 DOI: 10.1007/s10620-024-08778-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/24/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND AND AIMS Alcoholic liver disease (ALD) is the leading cause of death among alcohol-related diseases, yet its pathogenesis remains incompletely understood. This article employs data mining methods to conduct an indepth study of articles on ALD published in the past three decades, aiming to elucidate the pathogenesis of ALD. METHODS Firstly, articles related to the pathogenesis of ALD were retrieved from the Web of Science (WOS) database. CiteSpace 6.1.R2 and VOSviewer 1.6.18 were used to visually analyze the authors, institutions, journals, and keywords of the published articles. Secondly, by thoroughly reading the top 100 most cited articles and focusing on research hotspots such as cytochrome P450 2E1 (CYP2E1), gut microbiota, acetaldehyde dehydrogenase (ALDH), and alcohol dehydrogenase (ADH), the pathogenesis of ALD was preliminarily explored. Finally, the pathogenesis of ALD was further analyzed based on disease databases. RESULTS A total of 1521 articles were retrieved from the WOS database, and 384 of these were selected for in-depth reading. From GeneCards, 9084 genes related to ALD were identified. KEGG enrichment analysis was performed using DAVID, and the hsa04936: Alcoholic liver disease pathway was selected for visualization. CONCLUSIONS This study preliminarily elucidates the pathogenesis of ALD, which may be associated with the release of acetaldehyde, reactive oxygen species (ROS), and various pro-inflammatory factors during alcohol metabolism. It is also closely related to gut microbiota dysbiosis and increased intestinal permeability induced by multiple factors.
Collapse
Affiliation(s)
- Jinbao Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China.
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China.
- Key Laboratory of Pharmacology and Toxicology of TCM in Gansu Province, Lanzhou, China.
- Engineering Research Center for Evaluation, Protection and Utilization of Rare Traditional Chinese Medicine Resources, Lanzhou, Gansu, China.
| | - Zonghui Yang
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
| | - Xiaona Liu
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
| | - Xiujuan Yang
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China
- Key Laboratory of Pharmacology and Toxicology of TCM in Gansu Province, Lanzhou, China
| | - Yaling Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| | - Haijing Duan
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China
- Key Laboratory of Pharmacology and Toxicology of TCM in Gansu Province, Lanzhou, China
| | - Honggang Chen
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China
- Engineering Research Center for Evaluation, Protection and Utilization of Rare Traditional Chinese Medicine Resources, Lanzhou, Gansu, China
| | - Wenlong Zhao
- College of Pharmacy, Gansu University of Chinese Medicine, No.35 Dingxi East Road, Chengguan District, Lanzhou, China
- Northwest Collaborative Innovation Center for Traditional Chinese Medicine Co-constructed by Gansu Province & MOE of PRC, Lanzhou, China
- Engineering Research Center for Evaluation, Protection and Utilization of Rare Traditional Chinese Medicine Resources, Lanzhou, Gansu, China
| | - Qian Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and The Prevention and Treatment With Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
6
|
Huang Q, Ma F, Jin Y, Gao D, Chang M, Sun P. The dynamic distribution of the rectal microbiota in Holstein dairy calves provides a framework for understanding early-life gut health. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:301-312. [PMID: 39640550 PMCID: PMC11617247 DOI: 10.1016/j.aninu.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 12/07/2024]
Abstract
The posterior intestinal microbiota plays a vital role in the growth and health of Holstein dairy calves. However, its establishment and dynamic changes during early development remain unclear. The aim of this study was to investigate microbial colonization and development in the rectum of calves within the first 70 d after birth. Here, 96 rectal content samples were collected from 8 Holstein dairy calves at 12 time points and analyzed using 16S rRNA gene sequencing. The microbial alpha diversity increased with age. The bacterial community displayed a distinct dynamic distribution. The phylum Proteobacteria was replaced by Firmicutes and Bacteroidetes after d 3. The colonization process of bacterial genera in the rectum of neonatal calves can be divided into 2 periods: the colonization period (stage 1: d 1 and stage 2: d 3) and the stable period (stage 3: d 7-14, stage 4: d 21-42, and stage 5: d 49-70). The fermentation pattern and metabolic function changed from propionate fermentation dominated by Shigella to lactic acid fermentation dominated by Lactobacillus, Blautia, and Oscillospira. The stable period was more comprehensive and complete than the colonization period. This study revealed the dynamic changes in the posterior intestinal microbiota of Holstein dairy calves during early development. The transition period (d 7-14) was identified as a key stage for early nutritional intervention, as the abundance of Lactobacillus increased and the abundance of harmful bacteria (such as Proteobacteria and Shigella) decreased. This study provides a framework for understanding early-life gut health and offers theoretical guidance for future research on host-microbe interactions and early nutritional interventions. It is suggested that nutritional interventions based on microbial characteristics at different stages be implemented to improve calf growth performance and immune function, which may contribute to the reduction of diarrhea and other gastrointestinal disorders during dairy production.
Collapse
Affiliation(s)
- Qi Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengtao Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuhang Jin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Duo Gao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meinan Chang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
7
|
Liu H, Fan D, Wang J, Wang Y, Li A, Wu S, Zhang B, Liu J, Wang S. Lactobacillus rhamnosus NKU FL1-8 Isolated from Infant Feces Ameliorates the Alcoholic Liver Damage by Regulating the Gut Microbiota and Intestinal Barrier in C57BL/6J Mice. Nutrients 2024; 16:2139. [PMID: 38999886 PMCID: PMC11243132 DOI: 10.3390/nu16132139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Alcoholic liver damage is caused by long-term or heavy drinking, and it may further progress into alcoholic liver diseases (ALD). Probiotic supplements have been suggested for the prevention or improvement of liver damage. This study was designed to consider the ameliorative effects of Lactobacillus rhamnosus NKU FL1-8 isolated from infant feces against alcoholic liver damage. The mice were gavaged with a 50% ethanol solution and treated with 109 CFU of L. rhamnosus NKU FL1-8 suspension. The factors for liver function, oxidative stress, inflammation, gut microbiota composition, and intestinal barrier integrity were measured. The results showed that L. rhamnosus NKU FL1-8 could decrease the levels of aspartate aminotransferase (AST) to 61% and alanine aminotransferase (ALT) to 50% compared with ethanol given by gavage. It could inhibit the expression level of malondialdehyde (MDA), increase superoxide dismutase (SOD), glutathione (GSH) to relieve oxidative stress, and down-regulate the cytokines to decrease hepatic inflammation. After treatment, the level of triglycerides was reduced, and the expression levels of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and the peroxisome proliferators-activated receptor-α (PPAR-α) pathway were up-regulated. Additionally, the 16S rRNA sequencing analysis showed that L. rhamnosus NKU FL1-8 increased the relative abundance of Lactobacillus, Ruminococcaceae, etc. At the same time, L. rhamnosus NKU FL1-8 could significantly reduce lipopolysaccharides (LPS) and enhance intestinal tight junction proteins. These results demonstrated that L. rhamnosus NKU FL1-8 could reduce the level of oxidative stress, fat accumulation, and liver inflammation caused by alcohol in the host. The underlying mechanism could be that L. rhamnosus NKU FL1-8 inhibits LPS by regulating the gut microbiota and repairing the intestinal barrier. Thereby, these findings support L. rhamnosus NKU FL1-8 as a potential functional food for the relief of ALD.
Collapse
Affiliation(s)
- Haiwei Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Dancai Fan
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Yuanyifei Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Ang Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Sihao Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Jingmin Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China
| |
Collapse
|
8
|
Shen M, Zhao H, Han M, Su L, Cui X, Li D, Liu L, Wang C, Yang F. Alcohol-induced gut microbiome dysbiosis enhances the colonization of Klebsiella pneumoniae on the mouse intestinal tract. mSystems 2024; 9:e0005224. [PMID: 38345382 PMCID: PMC10949497 DOI: 10.1128/msystems.00052-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 03/20/2024] Open
Abstract
Chronic alcohol consumption, an important risk factor for diseases and deaths, can cause intestinal microbiota dysbiosis and increase the infection of some opportunistic pathogens. However, the current studies on the effects of alcohol-induced intestinal microbiota dysbiosis on gut colonization of Klebsiella pneumoniae are still scarce. In the present study, we established a binge-on-chronic alcohol model in mice to identify the characteristics of alcohol-induced intestinal microbiome and metabolite dysbiosis using multi-omics and explored the effects and potential mechanisms of these dysbioses on the intestinal colonization of K. pneumoniae. The results show that chronic alcohol consumption alters the diversity and composition of gut microbiota (including bacteria and fungi), decreases the complexity of the interaction between intestinal bacteria and fungi, disturbs the gut metabolites, and promotes the colonization of K. pneumoniae on the gut of mice. The relevance analyses find that alcohol-induced gut microbiome dysbiosis has a strong correlation with the alteration of secondary bile acids. In vitro results suggest that the high concentration of lithocholic acid, a secondary bile acid, could significantly inhibit the proliferation of K. pneumoniae, and the adhesion of K. pneumoniae to Caco-2 cells. Our results indicate that alcohol-induced microbiome dysbiosis contributes to decreased levels of secondary bile acids, which was one of the main reasons affecting the colonization of K. pneumoniae in mice's intestines. Some secondary bile acids (e.g., lithocholic acid) might be a potential drug to prevent the colonization and spread of K. pneumoniae.IMPORTANCEAlcohol is one of the most commonly misused substances in our lives. However, long-term heavy drinking will increase the colonization of some opportunistic pathogens (e.g., Klebsiella pneumoniae) in the body. Here, we revealed that binge-on-chronic alcohol consumption disrupted the balance between gut bacteria and fungi, induced the gut microbiome and metabolites dysbiosis, and promoted the colonization of K. pneumoniae in the intestine of mice. In particular, alcohol-taking disrupted intestinal bile acid metabolism and reduced the lithocholic acid concentration. However, a high concentration of lithocholic acid can protect against intestinal colonization of K. pneumoniae by inhabiting the bacterial growth and adhesion to the host cell. Hence, regulating the balance of gut microbiota and intestinal bile acid metabolism may be a potential strategy for reducing the risk of K. pneumoniae infection and spread.
Collapse
Affiliation(s)
- Mengke Shen
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
- Department of Pathogenic Biology and Immunology, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Huajie Zhao
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Meiqing Han
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Lin Su
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Xiaojian Cui
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Duan Li
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Liang Liu
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| | - Chuansheng Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
| | - Fan Yang
- Department of Pathogenic Biology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
9
|
Hua Z, Zhang X, Xing S, Li J, Liang D, Chen Y, Abd El-Aty A, Zhu BW, Liu D, Tan M. Design and preparation of multifunctional astaxanthin nanoparticles with good acid stability and hepatocyte-targeting ability for alcoholic liver injury alleviation. MATERIALS TODAY NANO 2024; 25:100436. [DOI: 10.1016/j.mtnano.2023.100436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Hofford RS, Kiraly DD. Clinical and Preclinical Evidence for Gut Microbiome Mechanisms in Substance Use Disorders. Biol Psychiatry 2024; 95:329-338. [PMID: 37573004 PMCID: PMC10884738 DOI: 10.1016/j.biopsych.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/14/2023]
Abstract
Substance use disorders are a set of recalcitrant neuropsychiatric conditions that cause tremendous morbidity and mortality and are among the leading causes of loss of disability-adjusted life years worldwide. While each specific substance use disorder is driven by problematic use of a different substance, they all share a similar pattern of escalating and out-of-control substance use, continued use despite negative consequences, and a remitting/relapsing pattern over time. Despite significant advances in our understanding of the neurobiology of these conditions, current treatment options remain few and are ineffective for too many individuals. In recent years, there has been a rapidly growing body of literature demonstrating that the resident population of microbes in the gastrointestinal tract, collectively called the gut microbiome, plays an important role in modulating brain and behavior in preclinical and clinical studies of psychiatric disease. While these findings have not yet been translated into clinical practice, this remains an important and exciting avenue for translational research. In this review, we highlight the current state of microbiome-brain research within the substance use field with a focus on both clinical and preclinical studies. We also discuss potential neurobiological mechanisms underlying microbiome effects on models of substance use disorder and propose future directions to bring these findings from bench to bedside.
Collapse
Affiliation(s)
- Rebecca S Hofford
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina
| | - Drew D Kiraly
- Department of Physiology & Pharmacology, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina; Department of Psychiatry, Wake Forest University School of Medicine, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina.
| |
Collapse
|
11
|
Sung J, Rajendraprasad SS, Philbrick KL, Bauer BA, Gajic O, Shah A, Laudanski K, Bakken JS, Skalski J, Karnatovskaia LV. The human gut microbiome in critical illness: disruptions, consequences, and therapeutic frontiers. J Crit Care 2024; 79:154436. [PMID: 37769422 PMCID: PMC11034825 DOI: 10.1016/j.jcrc.2023.154436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/23/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023]
Abstract
With approximately 39 trillion cells and over 20 million genes, the human gut microbiome plays an integral role in both health and disease. Modern living has brought a widespread use of processed food and beverages, antimicrobial and immunomodulatory drugs, and invasive procedures, all of which profoundly disrupt the delicate homeostasis between the host and its microbiome. Of particular interest is the human gut microbiome, which is progressively being recognized as an important contributing factor in many aspects of critical illness, from predisposition to recovery. Herein, we describe the current understanding of the adverse impacts of standard intensive care interventions on the human gut microbiome and delve into how these microbial alterations can influence patient outcomes. Additionally, we explore the potential association between the gut microbiome and post-intensive care syndrome, shedding light on a previously underappreciated avenue that may enhance patient recuperation following critical illness. There is an impending need for future epidemiological studies to encompass detailed phenotypic analyses of gut microbiome perturbations. Interventions aimed at restoring the gut microbiome represent a promising therapeutic frontier in the quest to prevent and treat critical illnesses.
Collapse
Affiliation(s)
- Jaeyun Sung
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Kemuel L Philbrick
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Brent A Bauer
- Department of General Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ognjen Gajic
- Department of Pulmonary & Critical Care, Mayo Clinic, Rochester, MN, USA
| | - Aditya Shah
- Division of Public Health, Infectious Diseases and Occupational Medicine, Mayo Clinic, Rochester, MN, USA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Perioperative Care, Mayo Clinic, Rochester, MN, USA
| | - Johan S Bakken
- Department of Infectious Diseases, St Luke's Hospital, Duluth, MN, United States of America
| | - Joseph Skalski
- Department of Pulmonary & Critical Care, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
12
|
Ge J, Li G, Chen Z, Xu W, Lei X, Zhu S. Kaempferol and nicotiflorin ameliorated alcohol-induced liver injury in mice by miR-138-5p/SIRT1/FXR and gut microbiota. Heliyon 2024; 10:e23336. [PMID: 38205320 PMCID: PMC10777378 DOI: 10.1016/j.heliyon.2023.e23336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/12/2024] Open
Abstract
Aims Excessive alcohol consumption can lead to alcoholic liver diseases (ALDs). Tetrastigma hemsleyanum Diels et Gilg is a rare Chinese medicinal herb. Tetrastigma hemsleyanum Diels et Gilg has been validated to be highly effective for treating hepatitis. Kaempferol and nicotiflorin are two highly representative flavonoids, which have exhibit therapeutic effects on liver disease. Therefore, the protective mechanism of kaempferol and nicotiflorin on alcohol-induced liver injury were investigated. Main methods Forty mice were used in this study. After treatment of Kaempferol and nicotiflorin, serum and liver were collected and used for determination of biochemical indicators, H&E staining, and molecular detection. The interaction of miRNAs from serum extracellular vehicles (EVs) with mRNAs and 16S rRNA sequencing of gut microbiota were also investigated. Key findings The results showed that kaempferol and nicotiflorins significantly ameliorated alcohol-induced liver damage and observably regulated gut microbiota. Specifically, the levels of malondialdehyde (MDA) and CYP2E1 in the liver significantly reduced, and the activity of superoxide dismutase (SOD) and glutathione (GSH) in the liver evidently increased. They also significantly relieved liver oxidative stress and lipid accumulation by suppressing miR-138-5p expression, inversely enhancing deacetylase silencing information regulator 2 related enzyme-1 (SIRT1) levels and then decreasing farnesoid X receptor (FXR) acetylation, which then modulated Nrf2 and SREBP-1c signaling pathways to regulate oxidative stress and lipid metabolism induced by alcohol. Significance Kaempferol and nicotiflorin reduced alcohol-induced liver damage by enhancing alcohol metabolism and reducing oxidative stress and lipid metabolism. The intestinal microorganism disorder was also ameliorated after oral kaempferol and nicotiflorin.
Collapse
Affiliation(s)
| | | | | | - Weijia Xu
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone. Hangzhou, 310018, Zhejiang Province, People's Republic of China
| | - Xuanhao Lei
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone. Hangzhou, 310018, Zhejiang Province, People's Republic of China
| | - Shengnan Zhu
- College of Life Sciences, China Jiliang University, 258 XueYuan Street, XiaSha Higher Education Zone. Hangzhou, 310018, Zhejiang Province, People's Republic of China
| |
Collapse
|
13
|
Wang J, Zhang B, Peng L, Wang J, Xu K, Xu P. The Causal Association between Alcohol, Smoking, Coffee Consumption, and the Risk of Arthritis: A Meta-Analysis of Mendelian Randomization Studies. Nutrients 2023; 15:5009. [PMID: 38068867 PMCID: PMC10707754 DOI: 10.3390/nu15235009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Objective: To evaluate the genetic causality between alcohol intake, smoking, coffee consumption, and arthritis. Methods: Mendelian randomization (MR) studies with alcohol, smoking, and coffee consumption behaviors as exposures, and osteoarthritis (OA) and rheumatoid arthritis (RA) as outcomes were retrieved from up to July 2023. Two researchers with relevant professional backgrounds independently assessed the quality and extracted data from the included studies. Meanwhile, we applied MR analyses of four lifestyle exposures and five arthritis outcomes (two for OA and three for RA) with gene-wide association study (GWAS) data that were different from the included studies, and the results were also included in the meta-analysis. Statistical analyses were performed using Stata 16.0 and R software version 4.3.1. Results: A total of 84 studies were assessed. Of these, 11 were selected for meta-analysis. As a whole, the included studies were considered to be at a low risk of bias and were of high quality. Results of the meta-analysis showed no significant genetic causality between alcohol intake and arthritis (odds ratio (OR): 1.02 (0.94-1.11)). Smoking and arthritis had a positive genetic causal association (OR: 1.44 (1.27-1.64)) with both OA (1.44 (1.22-1.71)) and RA (1.37 (1.26-1.50)). Coffee consumption and arthritis also had a positive genetic causal association (OR: 1.02 (1.01-1.03)). Results from the subgroup analysis showed a positive genetic causality between coffee consumption and both OA (OR: 1.02 (1.00-1.03)) and RA (OR: 1.56 (1.19-2.05)). Conclusion: There is positive genetic causality between smoking and coffee consumption and arthritis (OA and RA), while there is insufficient evidence for genetic causality between alcohol intake and arthritis.
Collapse
Affiliation(s)
- Junxiang Wang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (J.W.); (B.Z.); (J.W.); (K.X.)
- The School of Medicine, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (J.W.); (B.Z.); (J.W.); (K.X.)
| | - Leixuan Peng
- The School of Medicine, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Jiachen Wang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (J.W.); (B.Z.); (J.W.); (K.X.)
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (J.W.); (B.Z.); (J.W.); (K.X.)
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (J.W.); (B.Z.); (J.W.); (K.X.)
| |
Collapse
|
14
|
Raad G, Fakih F, Bazzi M, Massaad V, Nasrallah E, Yarkiner Z, Mourad Y, Khater DA, Balech R, Saliba C, Serdarogullari M, Fakih C. Lactobacillus plantarum secretions may exert a cryoprotective effect on human sperm motility: A prospective in vitro study. Andrology 2023; 11:1437-1450. [PMID: 36960890 DOI: 10.1111/andr.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 03/25/2023]
Abstract
BACKGROUND Semen cryopreservation is a widely used procedure for fertility preservation, despite some level of cryodamage that may occur in spermatozoa after thawing. However, there is some evidence that lactobacilli, one of the bacteria found in semen, might benefit sperm quality. OBJECTIVES This study aims to determine whether the addition of Lactobacillus plantarum secretions to sperm freezing medium has an impact on sperm motility, morphology, and DNA fragmentation. MATERIALS AND METHODS This is a prospective auto-controlled study. It was conducted on 30 raw semen samples from 30 infertile men attending a fertility center for semen analysis. Before freezing, all the samples were analyzed for motility, morphology, and DNA fragmentation percentages. Each sample was then divided equally into three aliquots. Cryopreservation was performed on each aliquot using one of the following three media: without Lactobacillus plantarum secretions (control group) or with 107 or 108 colony-forming units/mL Lactobacillus plantarum secretions. Sperm motility, morphology, and DNA integrity were evaluated after the cryopreservation media were added and after semen thawing. RESULTS The results of this study indicated that after thawing, no statistically significant decrease in progressive motility and non-progressive percentages were detected in the sperm freezing medium supplemented with 108 colony-forming units/mL Lactobacillus plantarum secretions than the fresh raw semen. Moreover, multivariate linear regression model analyses showed that the progressive motility (p = 0.02), non-progressive motility (p = 0.016), and non-motile spermatozoa (p = 0.012) percentages were significantly decreased in the freezing medium (without Lactobacillus plantarum secretions) compared to the fresh raw semen. DISCUSSION AND CONCLUSION To the best of our knowledge, this is the first study showing that Lactobacillus plantarum secretions had a cryoprotective effect on sperm motility when added to the sperm freezing medium. Furthermore, Lactobacillus plantarum secretions were found to protect sperm DNA integrity more effectively than the freezing medium without Lactobacillus plantarum secretions in non-normozoospermia group. Cryopreservation procedures must therefore be optimized to minimize any iatrogenically induced sperm DNA damage, given the correlation between sperm DNA damage and increased mutation loads in progeny.
Collapse
Affiliation(s)
- Georges Raad
- Faculty of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Fadi Fakih
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Marwa Bazzi
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | - Vinal Massaad
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | | | - Zalihe Yarkiner
- Department of Basic Sciences and Humanities, Faculty of Arts and Sciences, Northern Cyprus via Mersin, Cyprus International University, Turkey
| | - Youmna Mourad
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
| | | | - Rita Balech
- Faculty of Medicine, Lebanese University, Beirut, Lebanon
| | | | - Munevver Serdarogullari
- Department of Histology and Embryology, Northern Cyprus via Mersin, Faculty of Medicine, Cyprus International University, Turkey
| | - Chadi Fakih
- Al Hadi Laboratory and Medical Center, Beirut, Lebanon
- Faculty of Medicine, Lebanese University, Beirut, Lebanon
| |
Collapse
|
15
|
Wang H, Juhasz AL, Zhang Y, Zhang L, Ma LQ, Zhou D, Li H. Alcohol consumption promotes arsenic absorption but reduces tissue arsenic accumulation in mice. ECO-ENVIRONMENT & HEALTH (ONLINE) 2023; 2:107-116. [PMID: 38074988 PMCID: PMC10702898 DOI: 10.1016/j.eehl.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/11/2023] [Accepted: 06/25/2023] [Indexed: 01/12/2024]
Abstract
Alcohol consumption alters gut microflora and damages intestinal tight junction barriers, which may affect arsenic (As) oral bioavailability. In this study, mice were exposed to arsenate in the diet (6 μg/g) over a 3-week period and gavaged daily with Chinese liquor (0.05 or 0.10 mL per mouse per day). Following ingestion, 78.0% and 72.9% of the total As intake was absorbed and excreted via urine when co-exposed with liquor at daily doses of 0.05 or 0.10 mL, significantly greater than when As was supplied alone (44.7%). Alcohol co-exposure significantly altered gut microbiota but did not significantly alter As biotransformation in the intestinal tract or tissue. Significantly lower relative mRNA expression was observed for genes encoding for tight junctions in the ileum of liquor co-exposed mice, contributing to greater As bioavailability attributable to enhanced As absorption via the intestinal paracellular pathway. However, As concentration in the liver, kidney, and intestinal tissue of liquor-treated mice was decreased by 24.4%-42.6%, 27.5%-38.1%, and 28.1%-48.9% compared to control mice. This was likely due to greater renal glomerular filtration rate induced by alcohol, as suggested by significantly lower expression of genes encoding for renal tight junctions. In addition, in mice gavaged daily with 0.05 mL liquor, the serum antidiuretic hormone level was significantly lower than control mice (2.83 ± 0.59 vs. 5.40 ± 1.10 pg/mL), suggesting the diuretic function of alcohol consumption, which may facilitate As elimination via urine. These results highlight that alcohol consumption has a significant impact on the bioavailability and accumulation of As.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert L. Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Yaosheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lizhu Zhang
- Department of Nanxin Pharm, Nanjing 210000, China
| | - Lena Q. Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Zhang D, Liu Z, Bai F. Roles of Gut Microbiota in Alcoholic Liver Disease. Int J Gen Med 2023; 16:3735-3746. [PMID: 37641627 PMCID: PMC10460590 DOI: 10.2147/ijgm.s420195] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023] Open
Abstract
Alcoholic liver disease (ALD)-one of the most common liver diseases - involves a wide range of disorders, including asymptomatic hepatic steatosis, alcoholic hepatitis (AH), liver fibrosis, and cirrhosis. Alcohol consumption induces a weakened gut barrier and changes in the composition of the gut microbiota. The presence of CYP2E1 and its elevated levels in the gastrointestinal tract after alcohol exposure lead to elevated levels of ROS and acetaldehyde, inducing inflammation and oxidative damage in the gut. At the same time, the influx of harmful molecules such as the bacterial endotoxin LPS and peptidogly from gut dysbiosis can induce intestinal inflammation and oxidative damage, further compromising the intestinal mucosal barrier. In this process, various oxidative stress-mediated post-translational modifications (PTMs) play an important role in the integrity of the barrier, eg, the presence of acetaldehyde will result in the sustained phosphorylation of several paracellular proteins (occludin and zona occludens-1), which can lead to intestinal leakage. Eventually, persistent oxidative stress, LPS infiltration and hepatocyte damage through the enterohepatic circulation will lead to hepatic stellate cell activation and hepatic fibrosis. In addition, probiotics, prebiotics, synbiotics, fecal microbial transplantation (FMT), bioengineered bacteria, gut-restricted FXR agonists and others are promising therapeutic approaches that can alter gut microbiota composition to improve ALD. In the future, there will be new challenges to study the interactions between the genetics of individuals with ALD and their gut microbiome, to provide personalized interventions targeting the gut-liver axis, and to develop better techniques to measure microbial communities and metabolites in the body.
Collapse
Affiliation(s)
- Daya Zhang
- Graduate School, Hainan Medical University, Haikou, People’s Republic of China
| | - ZhengJin Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
| | - Feihu Bai
- Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, People’s Republic of China
- The Gastroenterology Clinical Medical Center of Hainan Province, Haikou, People’s Republic of China
| |
Collapse
|
17
|
Zhu F, Zheng S, Zhao M, Shi F, Zheng L, Wang H. The regulatory role of bile acid microbiota in the progression of liver cirrhosis. Front Pharmacol 2023; 14:1214685. [PMID: 37416060 PMCID: PMC10320161 DOI: 10.3389/fphar.2023.1214685] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Bile acids (BAs) are synthesized in liver tissue from cholesterol and are an important endocrine regulator and signaling molecule in the liver and intestine. It maintains BAs homeostasis, and the integrity of intestinal barrier function, and regulates enterohepatic circulation in vivo by modulating farnesoid X receptors (FXR) and membrane receptors. Cirrhosis and its associated complications can lead to changes in the composition of intestinal micro-ecosystem, resulting in dysbiosis of the intestinal microbiota. These changes may be related to the altered composition of BAs. The BAs transported to the intestinal cavity through the enterohepatic circulation are hydrolyzed and oxidized by intestinal microorganisms, resulting in changes in their physicochemical properties, which can also lead to dysbiosis of intestinal microbiota and overgrowth of pathogenic bacteria, induction of inflammation, and damage to the intestinal barrier, thus aggravating the progression of cirrhosis. In this paper, we review the discussion of BAs synthesis pathway and signal transduction, the bidirectional regulation of bile acids and intestinal microbiota, and further explore the role of reduced total bile acid concentration and dysregulated intestinal microbiota ratio in the development of cirrhosis, in order to provide a new theoretical basis for the clinical treatment of cirrhosis and its complications.
Collapse
Affiliation(s)
- Feng Zhu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fan Shi
- First Clinical School of Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Gastroenterology, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haiqiang Wang
- Department of Gastroenterology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
18
|
Ohkusa T, Nishikawa Y, Sato N. Gastrointestinal disorders and intestinal bacteria: Advances in research and applications in therapy. Front Med (Lausanne) 2023; 9:935676. [PMID: 36825261 PMCID: PMC9941163 DOI: 10.3389/fmed.2022.935676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/27/2022] [Indexed: 02/09/2023] Open
Abstract
Intestinal bacteria coexist with humans and play a role in suppressing the invasion of pathogens, producing short-chain fatty acids, producing vitamins, and controlling the immune system. Studies have been carried out on culturable bacterial species using bacterial culture methods for many years. However, as metagenomic analysis of bacterial genes has been developed since the 1990s, it has recently revealed that many bacteria in the intestine cannot be cultured and that approximately 1,000 species and 40 trillion bacteria are present in the gut microbiota. Furthermore, the composition of the microbiota is different in each disease state compared with the healthy state, and dysbiosis has received much attention as a cause of various diseases. Regarding gastrointestinal diseases, dysbiosis has been reported to be involved in inflammatory bowel disease, irritable bowel syndrome, and non-alcoholic steatohepatitis. Recent findings have also suggested that dysbiosis is involved in colon cancer, liver cancer, pancreatic cancer, esophageal cancer, and so on. This review focuses on the relationship between the gut microbiota and gastrointestinal/hepatobiliary diseases and also discusses new therapies targeting the gut microbiota.
Collapse
Affiliation(s)
| | - Yuriko Nishikawa
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuhiro Sato
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Bhat MH, Hajam YA, Neelam, Kumar R, Diksha. Microbial Diversity and Their Role in Human Health and Diseases. ROLE OF MICROBES IN SUSTAINABLE DEVELOPMENT 2023:1-33. [DOI: 10.1007/978-981-99-3126-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Saifi S, Swaminathan A, Devi P, Chattopadhyay P, Gupta S, Garg A, Saxena S, Parveen S, Pandey R. A Tour-d’Horizon of microbiota therapeutics for metabolic disorders. MICROBIOME THERAPEUTICS 2023:231-253. [DOI: 10.1016/b978-0-323-99336-4.00006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Chayanupatkul M, Somanawat K, Chuaypen N, Klaikeaw N, Wanpiyarat N, Siriviriyakul P, Tumwasorn S, Werawatganon D. Probiotics and their beneficial effects on alcohol-induced liver injury in a rat model: the role of fecal microbiota. BMC Complement Med Ther 2022; 22:168. [PMID: 35733194 PMCID: PMC9215017 DOI: 10.1186/s12906-022-03643-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Current therapies for alcohol-induced liver injury are of limited efficacy and associated with significant side effects. With the proposed pathophysiology of alcohol-induced liver injury to be related to deranged gut microbiota, we hypothesized that probiotics would have beneficial effects in attenuating alcohol-induced liver injury.
Methods
Twenty-four male Sprague-Dawley rats were divided into 4 groups: control group, alcohol group, Lactobacillus plantarum group, and mixed-strain probiotics group. After 4 weeks, all rats were sacrificed, and blood samples were analyzed for ALT, lipopolysaccharide level (LPS), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Liver tissues were processed for histopathology, malondialdehyde (MDA) level and immunohistochemistry for toll-like receptors 4 (TLR-4). Stool samples were collected, and 16S rRNA sequencing was used to analyze the fecal microbiota.
Results
Liver histopathology showed the presence of significant hepatocyte ballooning in the alcohol group as compared with the control group, and the treatment with L. plantarum or mixed-strain probiotics alleviated these changes. Significant elevation of serum ALT, LPS, IL-6, and TNF-α, hepatic MDA levels, and hepatic TLR-4 expression were observed in alcohol-fed rats as compared with control rats. The administration of L. plantarum or mixed-strain probiotics restored these changes to the levels of control rats. The relative abundance of fecal bacteria at genus level showed a significant reduction in Allobaculum, Romboutsia, Bifidobacterium, and Akkermansia in the alcohol group as compared with the control group. In probiotics-treated rats, significant increases in Allobaculum and Bifidobacterium were observed, while the relative abundance of Romboutsia and Akkermansia was unchanged compared to the alcohol group. A reduction in alpha diversity was observed in alcohol-treated rats, whereas the improvement was noted after probiotic treatment.
Conclusions
The treatment with Lactobacillus, whether as single-, or mixed-strain probiotics, was beneficial in reducing the severity of alcohol-induced liver injury likely through the increase in beneficial bacteria, and the reduction of inflammatory responses, and oxidative stress.
Collapse
|
22
|
Zhang H, Zuo Y, Zhao H, Zhao H, Wang Y, Zhang X, Zhang J, Wang P, Sun L, Zhang H, Liang H. Folic acid ameliorates alcohol-induced liver injury via gut–liver axis homeostasis. Front Nutr 2022; 9:989311. [PMID: 36337656 PMCID: PMC9632181 DOI: 10.3389/fnut.2022.989311] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
The gut–liver axis (GLA) plays an important role in the development of alcohol-induced liver injury. Alcohol consumption is typically associated with folic acid deficiency. However, no clear evidence has confirmed the effect of folic acid supplementation on alcohol-induced liver injury via GLA homeostasis. In this study, male C57BL/6J mice were given 56% (v/v) ethanol and 5.0 mg/kg folic acid daily by gavage for 10 weeks to investigate potential protective mechanisms of folic acid in alcohol-induced liver injury via GLA homeostasis. Histopathological and biochemical analyses showed that folic acid improved lipid deposition and inflammation in the liver caused by alcohol consumption and decreased the level of ALT, AST, TG, and LPS in serum. Folic acid inhibited the expression of the TLR4 signaling pathway and its downstream inflammatory mediators in the liver and upregulated the expression of ZO-1, claudin 1, and occludin in the intestine. But compared with the CON group, folic acid did not completely eliminate alcohol-induced intestine and liver injury. Furthermore, folic acid regulated alcohol-induced alterations in gut microbiota. In alcohol-exposed mice, the relative abundance of Bacteroidota was significantly increased, and the relative abundance of unclassified_Lachnospiraceae was significantly decreased. Folic acid supplementation significantly increased the relative abundance of Verrucomicrobia, Lachnospiraceae_NK4A136_group and Akkermansia, and decreased the relative abundance of Proteobacteria. The results of Spearman’s correlation analysis showed that serum parameters and hepatic inflammatory cytokines were significantly correlated with several bacteria, mainly including Bacteroidota, Firmicutes, and unclassified_Lachnospiraceae. In conclusion, folic acid could ameliorate alcohol-induced liver injury in mice via GLA homeostasis to some extent, providing a new idea and method for prevention of alcohol-induced liver injury.
Collapse
Affiliation(s)
- Huaqi Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Yuwei Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Huichao Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Hui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Yutong Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Xinyu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Jiacheng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Peng Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Lirui Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
| | - Huizhen Zhang
- Qingdao Institute for Food and Drug Control, Qingdao, China
| | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, Qingdao, China
- *Correspondence: Hui Liang,
| |
Collapse
|
23
|
Comparative study between the effects of aged and fresh Chinese baijiu on gut microbiota and host metabolism. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Hawk Tea Flavonoids as Natural Hepatoprotective Agents Alleviate Acute Liver Damage by Reshaping the Intestinal Microbiota and Modulating the Nrf2 and NF-κB Signaling Pathways. Nutrients 2022; 14:nu14173662. [PMID: 36079919 PMCID: PMC9459715 DOI: 10.3390/nu14173662] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Hawk tea (Litsea coreana Levl. var. lanuginosa) is a traditional herbal tea in southwestern China, and was found to possess hepatoprotective effects in our previous study. However, it is unclear whether hawk tea flavonoids (HTF) can alleviate alcoholic liver damage (ALD). Firstly, we extracted and identified the presence of 191 molecules categorized as HTFs, with reynoutrin, avicularin, guaijaverin, cynaroside, and kaempferol-7-O-glucoside being the most prevalent. After taking bioavailability into consideration and conducting comprehensive sorting, the contribution of guaijaverin was the highest (0.016 mg/mice). Then, by daily intragastric administration of HTF (100 mg/kg/day) to the ALD mice, we found that HTF alleviated liver lipid deposition (inhibition of TG, TC, LDL-C) by reducing liver oxidative-stress-mediated inflammation (up-regulation NRF2/HO-1 and down-regulation TLR4/MyD88/NF-κB pathway) and reshaping the gut microbiota (Lactobacillus, Bifidobacterium, Bacillus increased). Overall, we found HTF could be a potential protective natural compound for treating ALD via the gut–liver axis and guaijaverin might be the key substance involved.
Collapse
|
25
|
Qu J, Chen Q, Wei T, Dou N, Shang D, Yuan D. Systematic characterization of Puerariae Flos metabolites in vivo and assessment of its protective mechanisms against alcoholic liver injury in a rat model. Front Pharmacol 2022; 13:915535. [PMID: 36110520 PMCID: PMC9468746 DOI: 10.3389/fphar.2022.915535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Puerariae Flos, a representative homology plant of medicine and food for alcoholism, has a long history of clinical experience and remarkable curative effect in the treatment of alcoholic liver disease (ALD). However, its effective forms and hepatoprotective mechanisms remain unknown. In the present study, a strategy based on UPLC-QTOF MS combined with mass defect filtering technique was established for comprehensive mapping of the metabolic profile of PF in rat plasma, urine, bile, and feces after oral administration. Furthermore, the absorbed constituents into plasma and bile with a relatively high level were subjected to the network analysis, functional enrichment analysis, and molecular docking to clarify the potential mechanism. Finally, the therapeutic effect of PF on ALD and predicted mechanisms were further evaluated using a rat model of alcohol-induced liver injury and Western blot analysis. In total, 25 prototype components and 82 metabolites, including 93 flavonoids, 13 saponins, and one phenolic acid, were identified or tentatively characterized in vivo. In addition, glucuronidation, sulfation, methylation, hydroxylation, and reduction were observed as the major metabolic pathways of PF. The constructed compound–target–pathway network revealed that 11 absorbed constituents associated with the 16 relevant targets could be responsible for the protective activity of PF against ALD by regulating nine pathways attributable to glycolysis/gluconeogenesis, amino acid metabolism, and lipid regulation as well as inflammation and immune regulation. In addition, four active ingredients (6″-O-xylosyltectoridin, genistein-7-glucuronide-4′-sulfate, tectoridin-4′-sulfate, and 6″-O-xylosyltectoridin-4′-sulfate) as well as two target genes (MAO-A and PPAR-α) were screened and validated to play a crucial role with a good molecular docking score. The present results not only increase the understanding on the effective form and molecular mechanisms of PF-mediated protection against ALD but also promote better application of PF as a supplement food and herbal medicine for the treatment of ALD.
Collapse
Affiliation(s)
- Jialin Qu
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiuyue Chen
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Tianfu Wei
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ning Dou
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
| | - Dong Shang
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Dong Shang, ; Dan Yuan,
| | - Dan Yuan
- Department of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Dong Shang, ; Dan Yuan,
| |
Collapse
|
26
|
Guo L, Guan Q, Duan W, Ren Y, Zhang XJ, Xu HY, Shi JS, Wang FZ, Lu R, Zhang HL, Xu ZH, Li H, Geng Y. Dietary Goji Shapes the Gut Microbiota to Prevent the Liver Injury Induced by Acute Alcohol Intake. Front Nutr 2022; 9:929776. [PMID: 35898713 PMCID: PMC9309278 DOI: 10.3389/fnut.2022.929776] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Diet is a major driver of the structure and function of the gut microbiota, which influences the host physiology. Alcohol abuse can induce liver disease and gut microbiota dysbiosis. Here, we aim to elucidate whether the well-known traditional health food Goji berry targets gut microbiota to prevent liver injury induced by acute alcohol intake. The results showed that Goji supplementation for 14 days alleviated acute liver injury as indicated by lowering serum aspartate aminotransferase, alanine aminotransferase, pro-inflammatory cytokines, as well as lipopolysaccharide content in the liver tissue. Goji maintained the integrity of the epithelial barrier and increased the levels of butyric acid in cecum contents. Furthermore, we established the causal relationship between gut microbiota and liver protection effects of Goji with the help of antibiotics treatment and fecal microbiota transplantation (FMT) experiments. Both Goji and FMT-Goji increased glutathione (GSH) in the liver and selectively enriched the butyric acid-producing gut bacterium Akkermansia and Ruminococcaceae by using 16S rRNA gene sequencing. Metabolomics analysis of cecum samples revealed that Goji and its trained microbiota could regulate retinoyl β-glucuronide, vanillic acid, and increase the level of glutamate and pyroglutamic acid, which are involved in GSH metabolism. Our study highlights the communication among Goji, gut microbiota, and liver homeostasis.
Collapse
Affiliation(s)
- Lin Guo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qijie Guan
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Wenhui Duan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yilin Ren
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xiao-Juan Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Hong-Yu Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | | | - Ran Lu
- Ningxia Red Power Goji Co., Ltd, Zhongwei, China
| | - Hui-Ling Zhang
- Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Ningxia University, Yinchuan, China
| | - Zheng-Hong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, China
| | - Huazhong Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- *Correspondence: Huazhong Li
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
- Yan Geng
| |
Collapse
|
27
|
Liu X, Vigorito M, Huang W, Khan MAS, Chang SL. The Impact of Alcohol-Induced Dysbiosis on Diseases and Disorders of the Central Nervous System. J Neuroimmune Pharmacol 2022; 17:131-151. [PMID: 34843074 DOI: 10.1007/s11481-021-10033-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022]
Abstract
The human digestive tract contains a diverse and abundant microbiota that is important for health. Excessive alcohol use can disrupt the balance of these microbes (known as dysbiosis), leading to elevated blood endotoxin levels and systemic inflammation. Using QIAGEN Ingenuity Pathway Analysis (IPA) bioinformatics tool, we have confirmed that peripheral endotoxin (lipopolysaccharide) mediates various cytokines to enhance the neuroinflammation signaling pathway. The literature has identified alcohol-mediated neuroinflammation as a possible risk factor for the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), and psychiatric disorders such as addiction to alcohol and other drugs. In this review, we discuss alcohol-use-induced dysbiosis in the gut and other body parts as a causal factor in the progression of Central Nervous System (CNS) diseases including neurodegenerative disease and possibly alcohol use disorder.
Collapse
Affiliation(s)
- Xiangqian Liu
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China
| | - Michael Vigorito
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Psychology, Seton Hall University, South Orange, NJ, 07079, USA
| | - Wenfei Huang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA
| | - Mohammed A S Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School and Shriners Hospital for Children, Boston, MA, 02114, USA.
| | - Sulie L Chang
- Institute of Neuroimmune Pharmacology, Seton Hall University, South Orange, NJ, 07079, USA.
- Department of Biological Sciences, Seton Hall University, South Orange, NJ, 07079, USA.
| |
Collapse
|
28
|
Lin Y, Kong DX, Zhang YN. Does the Microbiota Composition Influence the Efficacy of Colorectal Cancer Immunotherapy? Front Oncol 2022; 12:852194. [PMID: 35463305 PMCID: PMC9023803 DOI: 10.3389/fonc.2022.852194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the second most common malignancy globally, and many people with CRC suffer the fate of death. Due to the importance of CRC and its negative impact on communities, treatment strategies to control it or increase patient survival are being studied. Traditional therapies, including surgery and chemotherapy, have treated CRC patients. However, with the advancement of science, we are witnessing the emergence of novel therapeutic approaches such as immunotherapy for CRC treatment, which have had relatively satisfactory clinical outcomes. Evidence shows that gastrointestinal (GI) microbiota, including various bacterial species, viruses, and fungi, can affect various biological events, regulate the immune system, and even treat diseases like human malignancies. CRC has recently shown that the gut microorganism pattern can alter both antitumor and pro-tumor responses, as well as cancer immunotherapy. Of course, this is also true of traditional therapies because it has been revealed that gut microbiota can also reduce the side effects of chemotherapy. Therefore, this review summarized the effects of gut microbiota on CRC immunotherapy.
Collapse
Affiliation(s)
- Yan Lin
- Health Management Center, Department of General Practice, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Yan Lin, ; You-Ni Zhang,
| | - De-Xia Kong
- Health Management Center, Department of General Practice, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - You-Ni Zhang
- Department of Laboratory Medicine, Tiantai People’s Hospital, Taizhou, China
- *Correspondence: Yan Lin, ; You-Ni Zhang,
| |
Collapse
|
29
|
Gut microbiota in gastrointestinal diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 191:141-151. [DOI: 10.1016/bs.pmbts.2022.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Ming L, Qi B, Hao S, Ji R. Camel milk ameliorates inflammatory mechanisms in an alcohol-induced liver injury mouse model. Sci Rep 2021; 11:22811. [PMID: 34819599 PMCID: PMC8613211 DOI: 10.1038/s41598-021-02357-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
Camel milk (CM) is considered to protect the liver in the practice of traditional medicine in nomadic areas. The purpose of the present study was to investigate the effects of CM on the hepatic biochemical and multiple omics alterations induced by chronic alcoholic liver disease (ALD). An intragastric gavage mice Lieber DeCarli + Gao binge model (NIAAA model) was employed to investigate the inflammatory mechanism of camel milk on the liver tissue of mice. A gut microbiota of the feces of mice and transcriptomic and proteomic analyses of the liver of mice were performed. Analysis of serum and liver biochemical indexes revealed that camel milk not only prevents alcohol-induced colonic dysfunction and lipid accumulation, but also regulates oxidative stress and inflammatory cytokine production to protect against chronic ALD in mouse. The gut microbial community of mice treated with camel milk was more similar to the untreated control group than to the model group, indicating that the intake of camel milk pre- and post-alcohol gavage effectively prevents and alleviates the intestinal microbial disorder caused by chronic alcoholism in mice. Furthermore, the results of the transcriptomic and proteomic analyses of the liver tissue showed that camel milk can improve alcoholic liver injury in mice by regulating inflammatory factors and immune system disruptions. This study provides insights into the molecular mechanism by which camel milk can be developed as a potential functional food with no side effects and against liver injury.
Collapse
Affiliation(s)
- Liang Ming
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Bule Qi
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Shiqi Hao
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Rimutu Ji
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
- Camel Research Institute of Inner Mongolia, Alashan, 737300, Inner Mongolia, China.
| |
Collapse
|
31
|
Nie W, Du YY, Xu FR, Zhou K, Wang ZM, Al-Dalali S, Wang Y, Li XM, Ma YH, Xie Y, Zhou H, Xu BC. Oligopeptides from Jinhua ham prevent alcohol-induced liver damage by regulating intestinal homeostasis and oxidative stress in mice. Food Funct 2021; 12:10053-10070. [PMID: 34515716 DOI: 10.1039/d1fo01693h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The current study aimed to evaluate the protective activity of peptides isolated from Jinhua ham (JHP) against alcoholic liver disease (ALD) and the mechanisms by which JHP prevents against ALD. The tangential flow filtration (TFF) combined with size exclusion chromatography (SEC) and reversed-phase high performance liquid chromatography (RP-HPLC) were used to isolate the JHP. Then the hepatoprotective activity of peptides was evaluated through experiments in mice. The primary structure of the peptide with the strongest liver protective activity was Lys-Arg-Gln-Lys-Tyr-Asp (KRQKYD) and the peptide was derived from the myosin of Jinhua ham, which were both identified by LC-MS/MS. Furthermore, the mechanism of KRQKYD prevention against ALD was attributed to the fact that KRQKYD increases the abundance of Akkermansia muciniphila in the gut and decreases the abundance of Proteobacteria (especially Escherichia_Shigella). The LPS-mediated liver inflammatory cascade was reduced by protecting the intestinal barrier, increasing the tight connection of intestinal epithelial cells and reducing the level of LPS in the portal venous circulation. KRQKYD could inhibit the production of ROS by upregulating the expression of the NRF2/HO-1 antioxidant defense system and by reducing oxidative stress injury in liver cells. This study can provide a theoretical foundation for the application of JHP in the protection of liver from ALD.
Collapse
Affiliation(s)
- Wen Nie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Ye-Ye Du
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, 230036, P.R. China
| | - Fei-Ran Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China.,Anhui QiangWang Flavouring Food Co., Ltd, Fuyang 236500, Anhui, P. R. China
| | - Zhao-Ming Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Sam Al-Dalali
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Ying Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Xiao-Min Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Yun-Hao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| | - Bao-Cai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. .,Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
32
|
Lin Y, Chen H, Cao Y, Zhang Y, Li W, Guo W, Lv X, Rao P, Ni L, Liu P. Auricularia auricula Melanin Protects against Alcoholic Liver Injury and Modulates Intestinal Microbiota Composition in Mice Exposed to Alcohol Intake. Foods 2021; 10:foods10102436. [PMID: 34681485 PMCID: PMC8535349 DOI: 10.3390/foods10102436] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022] Open
Abstract
The potential effects of Auricularia auricula melanin (AAM) on the intestinal flora and liver metabolome in mice exposed to alcohol intake were investigated for the first time. The results showed that oral administration of AAM significantly reduced the abnormal elevation of serum total triglyceride (TG), cholesterol (TC), low density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and significantly inhibited hepatic lipid accumulation and steatosis in mice exposed to alcohol intake. Besides, the abnormally high levels of bile acids (BAs) and lactate dehydrogenase (LDH) in the liver of mice with alcohol intake were significantly decreased by AAM intervention, while the hepatic levels of glutathione (GSH) and superoxide dismutase (SOD) were appreciably increased. Compared with the model group, AAM supplementation significantly changed the composition of intestinal flora and up-regulated the levels of Akkermansia, Bifidobacterium, Romboutsia, Muribaculaceae, Lachnospiraceae_NK4A136_group, etc. Furthermore, liver metabolomics demonstrated that AAM had a significant regulatory effect on the composition of liver metabolites in mice with alcohol intake, especially the metabolites involved in phosphatidylinositol signaling system, ascorbate and aldarate metabolism, starch and sucrose metabolism, galactose metabolism, alpha-linolenic acid metabolism, glycolysis/gluconeogenesis, and biosynthesis of unsaturated fatty acids. At the gene level, AAM treatment regulated the mRNA levels of lipid metabolism and inflammatory response related genes in liver, including ACC-1, FASn, CPT-1, CD36, IFN-γ, LDLr and TNF-α. Conclusively, these findings suggest that AAM has potential beneficial effects on alleviating alcohol-induced liver injury and is expected to become a new functional food ingredient.
Collapse
Affiliation(s)
- Yichen Lin
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.C.); (W.G.)
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (P.R.); (L.N.)
| | - Hua Chen
- Fujian Province Key Laboratory of Agro-Ecological Processes in Hilly Red Soil, Agricultural Ecology Institute, Fujian Academy of Agriculture Sciences, Fuzhou 350003, China;
| | - Yingjia Cao
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.C.); (W.G.)
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (P.R.); (L.N.)
| | - Yuanhui Zhang
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (P.R.); (L.N.)
| | - Wenfeng Li
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou 350122, China;
| | - Weiling Guo
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.C.); (W.G.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (P.R.); (L.N.)
- Correspondence: (X.L.); (P.L.)
| | - Pingfan Rao
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (P.R.); (L.N.)
| | - Li Ni
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, China; (Y.Z.); (P.R.); (L.N.)
| | - Penghu Liu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Y.C.); (W.G.)
- Correspondence: (X.L.); (P.L.)
| |
Collapse
|
33
|
Zhao M, Chen C, Yuan Z, Li W, Zhang M, Cui N, Duan Y, Zhang X, Zhang P. Dietary Bacillus subtilis supplementation alleviates alcohol-induced liver injury by maintaining intestinal integrity and gut microbiota homeostasis in mice. Exp Ther Med 2021; 22:1312. [PMID: 34630666 PMCID: PMC8461600 DOI: 10.3892/etm.2021.10747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Alcoholic liver disease (ALD) is a worldwide health problem with limited therapeutic options, which is associated with gut-derived endotoxins, particularly lipopolysaccharide (LPS) and intestinal microbiota dysbiosis. Recently, probiotics, synbiotics and other food additive interventions have been shown to be effective in decreasing or preventing the progression of ALD. Bacillus subtilis (B. subtilis) and its metabolic products are widely used as food additives to maintain intestinal health, but the protective effects of B. subtilis against alcohol-induced liver injury are poorly understood. In the present study a chronic alcohol-induced liver injury model was constructed based on the Lieber-DeCarli diet and it aimed to determine whether dietary B. subtilis supplementation may alleviate alcohol-induced liver injury. Results revealed that prophylactic B. subtilis supplementation partially restored gut microbiota homeostasis and relieved alcohol-induced intestinal barrier injury, which significantly decreased the translocation of bacterial endotoxins to the blood. In addition, the decreased serum LPS alleviated hepatic inflammation via the toll-like receptor 4 pathway, resulting in improved hepatic structure and function. These results demonstrated that dietary B. subtilis supplementation imparts novel hepatoprotective functions by improving intestinal permeability and homeostasis.
Collapse
Affiliation(s)
- Meiqi Zhao
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Chuanai Chen
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Zhoujie Yuan
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China.,Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Wenwen Li
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China.,Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Mohan Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Nailing Cui
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Yitao Duan
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Xiaoqian Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China.,Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Peng Zhang
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
34
|
Milosevic I, Russo E, Vujovic A, Barac A, Stevanovic O, Gitto S, Amedei A. Microbiota and viral hepatitis: State of the art of a complex matter. World J Gastroenterol 2021; 27:5488-5501. [PMID: 34588747 PMCID: PMC8433613 DOI: 10.3748/wjg.v27.i33.5488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Changes in gut microbiota influence both the gut and liver, which are strictly connected by the so-called "gut-liver axis". The gut microbiota acts as a major determinant of this relationship in the onset and clinical course of liver diseases. According to the results of several studies, gut dysbiosis is linked to viral hepatitis, mainly hepatitis C virus and hepatitis B virus infection. Gut bacteria-derived metabolites and cellular components are key molecules that affect liver function and modulate the pathology of viral hepatitis. Recent studies showed that the gut microbiota produces various molecules, such as peptidoglycans, lipopolysaccharides, DNA, lipoteichoic acid, indole-derivatives, bile acids, and trimethylamine, which are translocated to the liver and interact with liver immune cells causing pathological effects. Therefore, the existence of crosstalk between the gut microbiota and the liver and its implications on host health and pathologic status are essential factors impacting the etiology and therapeutic approach. Concrete mechanisms behind the pathogenic role of gut-derived components on the pathogenesis of viral hepatitis remain unclear and not understood. In this review, we discuss the current findings of research on the bidirectional relationship of the components of gut microbiota and the progression of liver diseases and viral hepatitis and vice versa. Moreover, this paper highlights the current therapeutic and preventive strategies, such as fecal transplantation, used to restore the gut microbiota composition and so improve host health.
Collapse
Affiliation(s)
- Ivana Milosevic
- Clinic for Infectious and Tropical Diseases, Clinical Centre of Serbia Faculty of Medicine, University of Belgrade, Belgrade 101801, Serbia
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Firenze 50100, Italy
| | - Ankica Vujovic
- Clinic for Infectious and Tropical Diseases, Clinical Centre of Serbia Faculty of Medicine, University of Belgrade, Belgrade 101801, Serbia
| | - Aleksandra Barac
- Clinic for Infectious and Tropical Diseases, Clinical Centre of Serbia Faculty of Medicine, University of Belgrade, Belgrade 101801, Serbia
| | - Olja Stevanovic
- Clinic for Infectious and Tropical Diseases, Clinical Centre of Serbia Faculty of Medicine, University of Belgrade, Belgrade 101801, Serbia
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Florence, Firenze 50100, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Firenze 50100, Italy
| |
Collapse
|
35
|
Li D, He Q, Yang H, Du Y, Yu K, Yang J, Tong X, Guo Y, Xu J, Qin L. Daily Dose of Bovine Lactoferrin Prevents Ethanol-Induced Liver Injury and Death in Male Mice by Regulating Hepatic Alcohol Metabolism and Modulating Gut Microbiota. Mol Nutr Food Res 2021; 65:e2100253. [PMID: 34331394 DOI: 10.1002/mnfr.202100253] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/22/2021] [Indexed: 11/10/2022]
Abstract
SCOPE Lactoferrin (Lf) possess a protective potential to liver, but whether it can prevent alcoholic liver injury (ALI) remains unclear. METHODS AND RESULTS Four groups of male C57BL/6J mice are fed with different diets, namely, AIN-93G diet for control (CON) and ethanol (EtOH) groups, and AIN-93G diet with 0.4% and 4% casein replaced by Lf for low-dose Lf (LLf) and high-dose Lf (HLf) groups, respectively. ALI is induced by giving 20% ethanol ad libitum combined with four "binges". Lf can remarkably decrease EtOH-induced mortality. Lf promotes aldehyde dehydrogenase-2 (ALDH2) expression and suppressing cytochrome P450 2E1 (CYP2E1) overexpression, resulting in the reduced hepatic superoxide and inflammation levels, which ultimately leads to the hepatic injury alleviation. However, HLf increases acetyl-CoA carboxylase and fatty acid synthase protein levels, which suggests that excessive intake may weaken the beneficial effects of Lf. Moreover, LLf increases the relative abundances of Akkermansia and Lactobacillus. Additionally, the study shows that Lf likely exerts action in its digestive product forms rather than intact Lf molecular in normal condition. CONCLUSION LLf can ameliorate ALI, which is associated with the regulation of hepatic alcohol metabolism and the modulation of gut microbiota. However, excessive Lf intake may result in a diminished benefit.
Collapse
Affiliation(s)
- Deming Li
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Qian He
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Huanhuan Yang
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Yafang Du
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Kangqing Yu
- Institute of Optics and Electronics, Chinese Academy of Science, Chengdu, Sichuan, 610209, China
| | - Jing Yang
- Department of Clinical Nutrition, The First Affiliated Hospital of Soochow University, Suzhou, 215123, China
| | - Xing Tong
- Laboratory Center, Medical College of Soochow University, Suzhou, 215123, China
| | - Yaxin Guo
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| | - Jiaying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Liqiang Qin
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
36
|
Yan X, Ren X, Liu X, Wang Y, Ma J, Song R, Wang X, Dong Y, Fan Q, Wei J, Yu A, She G. Dietary Ursolic Acid Prevents Alcohol-Induced Liver Injury via Gut-Liver Axis Homeostasis Modulation: The Key Role of Microbiome Manipulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7074-7083. [PMID: 34152776 DOI: 10.1021/acs.jafc.1c02362] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ursolic acid (UA), a natural triterpenoid widely distributed within fruits and edible plants, has been proven to relieve alcoholic liver disease (ALD). However, the mechanisms involved largely remain unclear. This study investigated whether the beneficial effects of UA on ALD could be related to gut-liver axis (GLA) modulation. Special attention was paid to the contribution of gut microbiome manipulation. UA ameliorated intestinal oxidative stress and barrier dysfunction induced by alcohol. As a consequence of gut leakiness amelioration, the related endotoxemia-mediated liver toll-like receptor 4 pathway induction and the subsequent reactive oxygen species overproduction were reverted. UA also counteracted alcohol-induced gut dysbiosis. A fecal microbiota transplantation study indicated that liver injury as well as ileum oxidative stress and gut barrier dysfunction of recipient mice were partly ameliorated as a result of microbiome remodeling. These results suggest that dietary UA alleviates ALD through GLA homeostasis modulation. Gut microbiome manipulation contributes to the hepatoprotective activity and GLA modulating effect of UA.
Collapse
Affiliation(s)
- Xin Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Xueyang Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Xiaoyun Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Yu Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Jiamu Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Ruolan Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Xiuhuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Ying Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Qiqi Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Jing Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Axiang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Gaimei She
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
- Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| |
Collapse
|
37
|
VanEvery H, Yang W, Olsen N, Bao L, Lu B, Wu S, Cui L, Gao X. Alcohol Consumption and Risk of Rheumatoid Arthritis among Chinese Adults: A Prospective Study. Nutrients 2021; 13:nu13072231. [PMID: 34209676 PMCID: PMC8308382 DOI: 10.3390/nu13072231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/08/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022] Open
Abstract
Alcohol consumption may be associated with the risk of rheumatoid arthritis (RA), but potential sex-related differences in this association have not been explored. Thus, we utilized 87,118 participants in the Kailuan Study, a prospective cohort initiated in 2006 to study the risk factors of cardiovascular disease in a Chinese population. We included those that did not have RA at baseline (2006), and performed cox proportional hazard modeling to calculate the hazard ratio (HR) and 95% confidence interval (95% CI) of RA according to the levels of alcohol consumption (never or past, light or moderate (<1 serving/day for women, <2 servings/day for men), and heavy (>1 serving/day for women, >2 servings/day for men), adjusting for age, sex, body mass index, and smoking. Diagnoses of RA were confirmed via medical record review by rheumatologists. From 2006 to 2018, we identified 87 incident RA cases. After adjusting for potential confounders, the HR of RA was 1.26 (95% CI: 0.62, 2.56) for participants with light or moderate alcohol consumption and 1.98 (95% CI: 0.93, 4.22) for participants with heavy alcohol consumption) versus non-drinkers. The HR of each 10 g increase in alcohol consumption was 1.11 (95% CI: 0.98, 1.26) (p-trend = 0.09). A significant association between alcohol consumption and RA risk was observed in women, but not in men (p for interaction = 0.06). Among women, each 10 g increase in alcohol consumption was significantly associated with a high risk of RA (HR: 1.56; 95% CI: 1.06, 2.29). In contrast, each 10 g increase in alcohol consumption was not significantly associated with the risk of RA in men (HR: 1.10; 95% CI: 0.97, 1.25). Excluding past drinkers generated similar results. In this prospective Chinese cohort, increasing alcohol consumption was associated with an elevated risk of RA among women, but not in men. These findings highlight the importance of incorporating analysis of sex differences into future studies of alcohol consumption and RA risk.
Collapse
Affiliation(s)
- Hannah VanEvery
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA;
| | - Wenhao Yang
- Department of Rheumatology and Immunology, Kailuan General Hospital, Tangshan 063000, China; (W.Y.); (L.C.)
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine, Penn State Milton S. Hershey Medical Center, Hershey, PA 17033, USA;
| | - Le Bao
- Department of Statistics, The Pennsylvania State University, State College, PA 16802, USA;
| | - Bing Lu
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan 063000, China;
| | - Liufu Cui
- Department of Rheumatology and Immunology, Kailuan General Hospital, Tangshan 063000, China; (W.Y.); (L.C.)
| | - Xiang Gao
- Department of Nutritional Sciences, The Pennsylvania State University, State College, PA 16802, USA;
- Correspondence: ; Tel.: +814-867-5959
| |
Collapse
|
38
|
Nishimura N, Kaji K, Kitagawa K, Sawada Y, Furukawa M, Ozutsumi T, Fujinaga Y, Tsuji Y, Takaya H, Kawaratani H, Moriya K, Namisaki T, Akahane T, Fukui H, Yoshiji H. Intestinal Permeability Is a Mechanical Rheostat in the Pathogenesis of Liver Cirrhosis. Int J Mol Sci 2021; 22:6921. [PMID: 34203178 PMCID: PMC8267717 DOI: 10.3390/ijms22136921] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies have suggested that an alteration in the gut microbiota and their products, particularly endotoxins derived from Gram-negative bacteria, may play a major role in the pathogenesis of liver diseases. Gut dysbiosis caused by a high-fat diet and alcohol consumption induces increased intestinal permeability, which means higher translocation of bacteria and their products and components, including endotoxins, the so-called "leaky gut". Clinical studies have found that plasma endotoxin levels are elevated in patients with chronic liver diseases, including alcoholic liver disease and nonalcoholic liver disease. A decrease in commensal nonpathogenic bacteria including Ruminococaceae and Lactobacillus and an overgrowth of pathogenic bacteria such as Bacteroidaceae and Enterobacteriaceae are observed in cirrhotic patients. The decreased diversity of the gut microbiota in cirrhotic patients before liver transplantation is also related to a higher incidence of post-transplant infections and cognitive impairment. The exposure to endotoxins activates macrophages via Toll-like receptor 4 (TLR4), leading to a greater production of proinflammatory cytokines and chemokines including tumor necrosis factor-alpha, interleukin (IL)-6, and IL-8, which play key roles in the progression of liver diseases. TLR4 is a major receptor activated by the binding of endotoxins in macrophages, and its downstream signal induces proinflammatory cytokines. The expression of TLR4 is also observed in nonimmune cells in the liver, such as hepatic stellate cells, which play a crucial role in the progression of liver fibrosis that develops into hepatocarcinogenesis, suggesting the importance of the interaction between endotoxemia and TLR4 signaling as a target for preventing liver disease progression. In this review, we summarize the findings for the role of gut-derived endotoxemia underlying the progression of liver pathogenesis.
Collapse
Affiliation(s)
- Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8522, Japan; (K.K.); (K.K.); (Y.S.); (M.F.); (T.O.); (Y.F.); (Y.T.); (H.T.); (H.K.); (K.M.); (T.N.); (T.A.); (H.F.); (H.Y.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Silva CBP, Elias-Oliveira J, McCarthy CG, Wenceslau CF, Carlos D, Tostes RC. Ethanol: striking the cardiovascular system by harming the gut microbiota. Am J Physiol Heart Circ Physiol 2021; 321:H275-H291. [PMID: 34142885 DOI: 10.1152/ajpheart.00225.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ethanol consumption represents a significant public health problem, and excessive ethanol intake is a risk factor for cardiovascular disease (CVD), one of the leading causes of death and disability worldwide. The mechanisms underlying the effects of ethanol on the cardiovascular system are complex and not fully comprehended. The gut microbiota and their metabolites are indispensable symbionts essential for health and homeostasis and therefore, have emerged as potential contributors to ethanol-induced cardiovascular system dysfunction. By mechanisms that are not completely understood, the gut microbiota modulates the immune system and activates several signaling pathways that stimulate inflammatory responses, which in turn, contribute to the development and progression of CVD. This review summarizes preclinical and clinical evidence on the effects of ethanol in the gut microbiota and discusses the mechanisms by which ethanol-induced gut dysbiosis leads to the activation of the immune system and cardiovascular dysfunction. The cross talk between ethanol consumption and the gut microbiota and its implications are detailed. In summary, an imbalance in the symbiotic relationship between the host and the commensal microbiota in a holobiont, as seen with ethanol consumption, may contribute to CVD. Therefore, manipulating the gut microbiota, by using antibiotics, probiotics, prebiotics, and fecal microbiota transplantation might prove a valuable opportunity to prevent/mitigate the deleterious effects of ethanol and improve cardiovascular health and risk prevention.
Collapse
Affiliation(s)
- Carla B P Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Jefferson Elias-Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Camilla F Wenceslau
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
40
|
Fecal Microbiota Transplantation in Patients with HBV Infection or Other Chronic Liver Diseases: Update on Current Knowledge and Future Perspectives. J Clin Med 2021; 10:jcm10122605. [PMID: 34204748 PMCID: PMC8231596 DOI: 10.3390/jcm10122605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Liver disease and gut dysbiosis are strictly associated, and the pathophysiology of this bidirectional relationship has recently been the subject of several investigations. Growing evidence highlights the link between gut microbiota composition, impairment of the gut-liver axis, and the development or progression of liver disease. Therefore, the modulation of gut microbiota to maintain homeostasis of the gut-liver axis could represent a potential instrument to halt liver damage, modify the course of liver disease, and improve clinical outcomes. Among all the methods available to achieve this purpose, fecal microbiota transplantation (FMT) is one of the most promising, being able to directly reshape the recipient’s gut microbial communities. In this review, we report the main characteristics of gut dysbiosis and its pathogenetic consequences in cirrhotic patients, discussing the emerging data on the application of FMT for liver disease in different clinical settings.
Collapse
|
41
|
Chen T, Li R, Chen P. Gut Microbiota and Chemical-Induced Acute Liver Injury. Front Physiol 2021; 12:688780. [PMID: 34122150 PMCID: PMC8187901 DOI: 10.3389/fphys.2021.688780] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Drug overdose or chemical exposures are the main causes of acute liver injury (ALI). Severe liver injury can develop into liver failure that is an important cause of liver-related mortality in intensive care units in most countries. Pharmacological studies have utilized a variety of comprehensive chemical induction models that recapitulate the natural pathogenesis of acute liver injury. Their mechanism is always based on redox imbalance-induced direct hepatotoxicity and massive hepatocyte cell death, which can trigger immune cell activation and recruitment to the liver. However, the pathogenesis of these models has not been fully stated. Many studies showed that gut microbiota plays a crucial role in chemical-induced liver injury. Hepatotoxicity is likely induced by imbalanced microbiota homeostasis, gut mucosal barrier damage, systemic immune activation, microbial-associated molecular patterns, and bacterial metabolites. Meanwhile, many preclinical studies have shown that supplementation with probiotics can improve chemical-induced liver injury. In this review, we highlight the pathogenesis of gut microorganisms in chemical-induced acute liver injury animal models and explore the protective mechanism of exogenous microbial supplements on acute liver injury.
Collapse
Affiliation(s)
- Tao Chen
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China.,Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rui Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
42
|
Li R, Mao Z, Ye X, Zuo T. Human Gut Microbiome and Liver Diseases: From Correlation to Causation. Microorganisms 2021; 9:1017. [PMID: 34066850 PMCID: PMC8151257 DOI: 10.3390/microorganisms9051017] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
The important role of human gut microbiota in liver diseases has long been recognized as dysbiosis and the translocation of certain microbes from the gut to liver. With the development of high-throughput DNA sequencing, the complexity and integrity of the gut microbiome in the whole spectrum of liver diseases is emerging. Specific patterns of gut microbiota have been identified in liver diseases with different causes, including alcoholic, non-alcoholic, and virus induced liver diseases, or even at different stages, ranging from steatohepatitis, fibrosis, cirrhosis, to hepatocellular carcinoma. At the same time, the mechanism of how microbiota contributes to liver diseases goes beyond the traditional function of the gut-liver axis which could lead to liver injury and inflammation. With the application of proteomics, metabolomics, and modern molecular technologies, more microbial metabolites and the complicated interaction of microbiota with host immunity come into our understanding in the liver pathogenesis. Germ-free animal models serve as a workhorse to test the function of microbiota and their derivatives in liver disease models. Here, we review the current evidence on the relationship between gut microbiota and liver diseases, and the mechanisms underlying this phenotype. In addition to original liver diseases, gut microbiota might also affect liver injury in systemic disorders involving multiple organs, as in the case of COVID-19 at a severe state. A better understanding of the gut microbial contribution to liver diseases might help us better benefit from this guest-host relationship and pave the way for novel therapies.
Collapse
Affiliation(s)
- Rui Li
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China;
| | - Zhengsheng Mao
- Department of Neurology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China;
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510000, China
| |
Collapse
|
43
|
Shi Y, Leng Y, Liu D, Liu X, Ren Y, Zhang J, Chen F. Research Advances in Protective Effects of Ursolic Acid and Oleanolic Acid Against Gastrointestinal Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:413-435. [PMID: 33622215 DOI: 10.1142/s0192415x21500191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intestinal tract plays an essential role in protecting tissues from the invasion of external harmful substances due to impaired barrier function. Furthermore, it participates in immunomodulation by intestinal microorganisms, which is important in health. When the intestinal tract is destroyed, it can lose its protective function, resulting in multiple systemic complications. In severe cases, it may lead to systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome (MODS). Thus far, there are no curative therapies for intestinal mucosal barrier injury, other than a few drugs that can relieve symptoms. Thus, the development of novel curative agents for gastrointestinal diseases remains a challenge. Ursolic acid (UA) and its isomer, Oleanolic acid (OA), are pentacyclic triterpene acid compounds. Both their aglycone and glycoside forms have anti-oxidative, anti-inflammatory, anti-ulcer, antibacterial, antiviral, antihypertensive, anti-obesity, anticancer, antidiabetic, cardio protective, hepatoprotective, and anti-neurodegenerative properties in living organisms. In recent years, several studies have shown that UA and OA can reduce the risk of intestinal pathological injury, alleviate intestinal dysfunction, and restore intestinal barrier function. The present study evaluated the beneficial effects of UA and OA on intestinal damage and diseases, including inflammatory bowel disease (IBD) and colorectal cancer (CRC).
Collapse
Affiliation(s)
- Yajing Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
| | - Yufang Leng
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Disheng Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Xin Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Yixing Ren
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
| | - Jianmin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
| | - Feng Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
44
|
Polyphenol-rich vinegar extract regulates intestinal microbiota and immunity and prevents alcohol-induced inflammation in mice. Food Res Int 2021; 140:110064. [DOI: 10.1016/j.foodres.2020.110064] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/13/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
|
45
|
Chen X, Zhang Z, Li H, Zhao J, Wei X, Lin W, Zhao X, Jiang A, Yuan J. Endogenous ethanol produced by intestinal bacteria induces mitochondrial dysfunction in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2020; 35:2009-2019. [PMID: 32150306 DOI: 10.1111/jgh.15027] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 02/26/2020] [Accepted: 03/04/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM A causal relationship between changes of the gut microbiome and non-alcoholic fatty liver disease (NAFLD) remains unclear. We demonstrated that endogenous ethanol (EnEth) produced by intestinal microbiota is likely a causative agent of NAFLD. METHODS Two mutants with different alcohol-producing abilities, namely, W14-adh and W14Δadh, were constructed using the clinical high alcohol-producing (HiAlc) Klebsiella pneumoniae strain W14 as a parent. Damage to hepatocytes caused by bacteria with different alcohol-producing capacities was evaluated (EtOH group as positive control). The ultrastructural changes of mitochondria were assessed via transmission electron microscopy (TEM). Hepatic levels of mitochondrial reactive oxygen species (ROS), DNA damage, and adenosine triphosphate were examined. RESULTS The results illustrated that steatosis was most severe in the W14-adh group, followed by the W14 group, whereas the W14Δadh group had few fatty droplets. TEM and examination of related protein expression revealed that the mitochondrial integrity of HepG2 hepatocytes was considerably damaged in the EtOH and bacteria treatment groups. The impaired mitochondrial function in HepG2 hepatocytes was evidenced by reduced adenosine triphosphate content and increased mitochondrial ROS accumulation and DNA damage in the EtOH and bacteria treatment groups, especially the W14-adh group. Meanwhile, liver injury and mitochondrial damage were observed in the hepatocytes of mice. The livers of mice in the W14-adh group, which had the highest ethanol production, exhibited the most serious damage, similar to that in the EtOH group. CONCLUSIONS EnEth produced by HiAlc bacteria induces mitochondrial dysfunction in NAFLD.
Collapse
Affiliation(s)
- Xiao Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zheng Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan, China
| | - Huan Li
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Jiangtao Zhao
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Xiao Wei
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Weishi Lin
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Xiangna Zhao
- Center for Disease Control and Prevention, China PLA, Beijing, China
| | - Aimin Jiang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jing Yuan
- Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
46
|
Ames NJ, Barb JJ, Schuebel K, Mudra S, Meeks BK, Tuason RTS, Brooks AT, Kazmi N, Yang S, Ratteree K, Diazgranados N, Krumlauf M, Wallen GR, Goldman D. Longitudinal gut microbiome changes in alcohol use disorder are influenced by abstinence and drinking quantity. Gut Microbes 2020; 11:1608-1631. [PMID: 32615913 PMCID: PMC7527072 DOI: 10.1080/19490976.2020.1758010] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/26/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023] Open
Abstract
Many patients with alcohol use disorder (AUD) consume alcohol chronically and in large amounts that alter intestinal microbiota, damage the gastrointestinal tract, and thereby injure other organs via malabsorption and intestinal inflammation. We hypothesized that alcohol consumption and subsequent abstinence would change the gut microbiome in adults admitted to a treatment program. Stool and oral specimens, diet data, gastrointestinal assessment scores, anxiety, depression measures and drinking amounts were collected longitudinally for up to 4 weeks in 22 newly abstinent inpatients with AUD who were dichotomized as less heavy drinkers (LHD, <10 drinks/d) and very heavy drinkers (VHD, 10 or more drinks/d). Next-generation 16 S rRNA gene sequencing was performed to measure the gut and oral microbiome at up to ten time points/subject and LHD and VHD were compared for change in principal components, Shannon diversity index and specific genera. The first three principal components explained 46.7% of the variance in gut microbiome diversity across time and all study subjects, indicating the change in gut microbiome following abstinence. The first time point was an outlier in three-dimensional principal component space versus all other time points. The gut microbiota in LHD and VHD were significantly dissimilar in change from day 1 to day 5 (p = .03) and from day 1 to week 3 (p = .02). The VHD drinking group displayed greater change from baseline. The Shannon diversity index of the gut microbiome changed significantly during abstinence in five participants. In both groups, the Shannon diversity was lower in the oral microbiome than gut. Ten total genera were shared between oral and stool in the AUD participants. These data were compared with healthy controls from the Human Microbiome Project to investigate the concept of a core microbiome. Rapid changes in gut microbiome following abstinence from alcohol suggest resilience of the gut microbiome in AUD and reflects the benefits of refraining from the highest levels of alcohol and potential benefits of abstinence.
Collapse
Affiliation(s)
- Nancy J. Ames
- Clinical Center Nursing Department, NIH, Bethesda, MD, USA
| | - Jennifer J. Barb
- Clinical Center Nursing Department, NIH, Bethesda, MD, USA
- Center for Information Technology, NIH, Bethesda, MD, USA
| | - Kornel Schuebel
- Office of the Clinical Director, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Sarah Mudra
- Clinical Center Nursing Department, NIH, Bethesda, MD, USA
| | | | - Ralph Thadeus S. Tuason
- Clinical Center Nursing Department, NIH, Bethesda, MD, USA
- Unites States Public Health Service Commissioned Corps, Bethesda, MD, USA
| | | | - Narjis Kazmi
- Clinical Center Nursing Department, NIH, Bethesda, MD, USA
| | - Shanna Yang
- Clinical Center Nutrition Department, NIH, Bethesda, MD, USA
| | - Kelly Ratteree
- Unites States Public Health Service Commissioned Corps, Bethesda, MD, USA
- Clinical Center Nutrition Department, NIH, Bethesda, MD, USA
| | - Nancy Diazgranados
- Office of the Clinical Director, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Michael Krumlauf
- Clinical Center Nursing Department, NIH, Bethesda, MD, USA
- Unites States Public Health Service Commissioned Corps, Bethesda, MD, USA
| | | | - David Goldman
- Office of the Clinical Director, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| |
Collapse
|
47
|
Lycium barbarum polysaccharide attenuates myocardial injury in high-fat diet-fed mice through manipulating the gut microbiome and fecal metabolome. Food Res Int 2020; 138:109778. [PMID: 33288164 DOI: 10.1016/j.foodres.2020.109778] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 01/15/2023]
Abstract
High-fat diets (HFDs) can induce health problems including gut microbiota dysbiosis and cardiac dysfunction. In this study, we modulated the gut microbiota in mice to investigate whether Lycium barbarum polysaccharide (LBP), a potential prebiotic fiber, could alleviate HFD-induced myocardial injury. Mice fed a HFD were given LBP (HFPD group) by gavage once/day for 2 months. Left ventricular function and serum trimethylamine N-oxide were significantly improved in HFPD mice compared with HFD mice. HFD increased the abundances of Bifidobacterium, Lactobacillus, and Romboutsia, while LBP increased the abundances of Gordonibacter, Parabacteroides, and Anaerostipes. Fecal metabolic profiling revealed significant increases in metabolites involved in nicotinate, nicotinamide and purine metabolism pathways, as well as indole derivatives of tryptophan metabolites in the HFPD group. LBP reduced intestinal permeability and inflammatory cytokine levels, maintained a healthy intestinal microenvironment, and alleviated myocardial injury. Modulating the gut microbiota is a potential treatment for cardiovascular diseases.
Collapse
|
48
|
Eom T, Ko G, Kim KC, Kim JS, Unno T. Dendropanax morbifera Leaf Extracts Improved Alcohol Liver Injury in Association with Changes in the Gut Microbiota of Rats. Antioxidants (Basel) 2020; 9:antiox9100911. [PMID: 32987739 PMCID: PMC7598590 DOI: 10.3390/antiox9100911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
This study evaluated the protective effects of Dendropanax morbifera leaf (DML) extracts in the liver due to excessive ethanol consumption. Our results showed that the ethanol extract had better antioxidant activity than the water extract, likely due to the higher levels of total flavonoid and phenolic compounds in the former. We found that the main phenolic acid was chlorogenic acid and the major flavonoid was rutin. Results from the animal model experiment showed concentration-dependent liver protection with the distilled water extract showing better liver protection than the ethanol extract. Gut microbiota dysbiosis induced by alcohol consumption was significantly shifted by DML extracts through increasing mainly Bacteroides and Allobaculum. Moreover, predicted metabolic activities of biosynthesis of beneficial monounsaturated fatty acids such as oleate and palmitoleate were enhanced. Our results suggest that these hepatoprotective effects are likely due to the increased activities of antioxidant enzymes and partially promoted by intestinal microbiota shifts.
Collapse
Affiliation(s)
- Taekil Eom
- Subtropical/Tropical Organism Gene Bank, SARI, Jeju National University, Jeju 63243, Korea;
| | - Gwangpyo Ko
- Faculty of Biotechnology, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea;
| | - Kyeoung Cheol Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea; (K.C.K.); (J.-S.K.)
| | - Ju-Sung Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea; (K.C.K.); (J.-S.K.)
| | - Tatsuya Unno
- Subtropical/Tropical Organism Gene Bank, SARI, Jeju National University, Jeju 63243, Korea;
- Faculty of Biotechnology, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, Korea;
- Correspondence: ; Tel.: +82-64-754-3354; Fax: +82-64-756-3351
| |
Collapse
|
49
|
Osna NA, Bhatia R, Thompson C, Batra SK, Kumar S, Cho Y, Szabo G, Molina PE, Weinman SA, Ganesan M, Kharbanda KK. Role of non-Genetic Risk Factors in Exacerbating Alcohol-related organ damage. Alcohol 2020; 87:63-72. [PMID: 32497558 PMCID: PMC7483997 DOI: 10.1016/j.alcohol.2020.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
Abstract
This review provides a summary of the symposium titled "Role of Non-Genetic Risk Factors in Exacerbating Alcohol-Related Organ Damage", which was held at the 42nd Annual Meeting of the Research Society on Alcoholism. The goals of the symposium were to provide newer insights into the role of non-genetic factors, including specific external factors, notably infectious agents or lifestyle factors, that synergistically act to exacerbate alcohol pathogenicity to generate more dramatic downstream biological defects. This summary of the symposium will benefit junior/senior basic scientists and clinicians currently investigating/treating alcohol-induced organ pathology, as well as undergraduate, graduate, and post-graduate students and fellows.
Collapse
Affiliation(s)
- Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Rakesh Bhatia
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Christopher Thompson
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Surinder K Batra
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sushil Kumar
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yeonhee Cho
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Patricia E Molina
- Department of Physiology, LSUHSC-New Orleans, New Orleans, LA, United States
| | - Steven A Weinman
- Department of Internal Medicine and the Liver Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
50
|
Lockyer S, Aguirre M, Durrant L, Pot B, Suzuki K. The role of probiotics on the roadmap to a healthy microbiota: a symposium report. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2020; 1:e2. [PMID: 39296722 PMCID: PMC11406418 DOI: 10.1017/gmb.2020.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 09/21/2024]
Abstract
The ninth International Yakult Symposium was held in Ghent, Belgium in April 2018. Keynote lectures were from Professor Wijmenga on using biobanks to understand the relationship between the gut microbiota and health; and Professor Hill on phage-probiotic interactions. Session one included talks from Professor Plӧsch on epigenetic programming by nutritional and environmental factors; Professor Wilmes on the use of "omics" methodologies in microbiome research and Professor Rescigno on the gut vascular barrier. Session two explored the evidence behind Lactobacillus casei Shirota with Dr Nanno explaining the plasticity in immunomodulation that enables the strain to balance immune functions; Dr Macnaughtan outlining its potential therapeutic use in cirrhosis and Professor Nishida detailing effects in subjects under stress. The third session saw Professor Marchesi describing that both the host genes and the gut microbiota can play a role in cancer; Professor Bergheim highlighting crosstalk between the gut and the liver and Professor Cani describing the relationship between the gut microbiota and the endocrine system. The final session explored probiotic mechanisms, with Professor Lebeer dissecting the challenges in conducting mechanistic studies; Professor Wehkamp describing the mucosal defence system and Professor Van de Wiele detailing methods for modelling the gut microbiota in vitro.
Collapse
Affiliation(s)
| | | | | | - Bruno Pot
- Yakult Europe B.V., Almere, The Netherlands
| | | |
Collapse
|