1
|
Xiao H, Xing T, Qiu M, Zhang G, Yang G, Chen W, Hu D, Xue D, Peng J, Du B. Adiponectin deficiency prevents chronic colitis-associated colonic fibrosis via inhibiting CXCL13 production. J Adv Res 2024:S2090-1232(24)00610-6. [PMID: 39725008 DOI: 10.1016/j.jare.2024.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
INTRODUCTION Colonic fibrosis is a long-term complication of inflammatory bowel disease (IBD), often leading to functional impairment, intestinal obstruction, and surgery. Adiponectin (APN) is an adipokine derived from adipocytes that plays a pleiotropic role in fibrosis regulation, depending on tissue and cell type specific or disease context, but its role in colonic fibrosis remains unclear. OBJECTIVE To explore the role and involved mechanism of APN in chronic colitis-associated colonic fibrosis. METHODS Studies were performed in GEO database, colonic tissues of UC patients, dextran sulfate sodium (DSS)-induced colonic fibrosis in male wild-type (WT) and APN-/- mice, mouse L929 and human CCD-18Co fibroblasts treated with recombinant CXCL13 protein, and colonic fibrosis in WT mice infected with shRNA of CXCL13. RESULTS APN was highly expressed in the colonic tissues of UC patients and positively correlated with the colonoscopy score and colonic fibrosis markers COL1A1 and COL3A1. APN deficiency significantly improved chronic colitis-induced colonic fibrosis in mice with down-regulating collagenase accumulation and expressions of TGF-β, α-SMA, COL1A1, COL3A1, and MMP-9 in colonic tissues. Transcriptomics showed that APN deficiency mainly affected cytokine-cytokine receptor interactions, especially CXCL13 signaling. Follow-up studies showed that APN deficiency significantly decreased the number of colonic F4/80+CD206+CXCL13+ macrophages by weakening Akt phosphorylation. Additional experiments confirmed that CXCL13 notably increased the expressions of α-SMA and COL1A1 in mouse and human fibroblasts by activating p-Akt, p-p38, p-ERK, and p-JNK. Moreover, inhibiting CXCL13 with shRNA significantly ameliorated colonic fibrosis in mice with DSS-induced chronic colitis. Immunohistochemistry analysis revealed high expression of CXCL13 in the colon tissues of patients with UC, showing a positive correlation with APN, COL1A1, and COL3A1. CONCLUSION APN contributes to the progression of colonic fibrosis and can exacerbate this condition by regulating the secretion of CXCL13 in the colon, offering potential new perspectives on the pathophysiology of colonic fibrosis.
Collapse
Affiliation(s)
- Haitao Xiao
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Tianhang Xing
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China; Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China; Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China
| | - Miao Qiu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Guangtao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Gongli Yang
- Department of Gastroenterology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Wenke Chen
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Die Hu
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Deao Xue
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Jiao Peng
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| | - Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
| |
Collapse
|
2
|
Nagura Y, Suzuki T, Matsuura K, Ogawa S, Kawamura H, Kuno K, Fujiwara K, Nojiri S, Nagaoka K, Iio E, Watanabe T, Kataoka H, Tanaka Y. Serum inducible protein 10 kDa/C-X-C motif chemokine 10 levels predict regression of M2BPGi-based liver fibrosis after hepatitis C virus eradication by direct-acting antiviral agents. Hepatol Res 2024; 54:32-42. [PMID: 37638483 DOI: 10.1111/hepr.13962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
AIM It is desirable to identify predictors of regression of liver fibrosis after achieving sustained virological response by anti-hepatitis C virus (anti-HCV) therapy. We retrospectively investigated the serum interferon-γ inducible protein 10 kDa (IP-10) level as a predictive indicator of regression of liver fibrosis after successful hepatitis C virus eradication by direct-acting antiviral agents (DAAs) therapy. METHODS The study participants were recruited from a historical cohort of 116 chronically hepatitis C virus-infected patients who had achieved sustained virological response by DAAs therapy and whose serum Mac-2 binding protein glycosylation isomer (M2BPGi) levels at baseline (before DAAs therapy) were ≥2.0 cut-off index. We defined patients with M2BPGi levels <1.76 and ≥1.76 cut-off index at 2 years after the end of treatment (EOT) as the regression (n = 71) and non-regression (n = 45) groups, respectively. RESULTS Multivariate analyses revealed that the albumin-bilirubin score at baseline, and albumin-bilirubin score, Fibrosis-4 index at 24 weeks after the EOT, and serum IP-10 change from baseline to 24 weeks after the EOT (IP-10 change) were significantly associated with regression of M2BPGi-based liver fibrosis. In addition, IP-10 change was significantly associated with regression of M2BPGi-based liver fibrosis by a multivariate analysis, even when the serum M2BPGi levels were aligned by propensity score matching and in patients with advanced M2BPGi-based liver fibrosis: M2BPGi levels ≥3.3 cut-off index at baseline. CONCLUSIONS Serum IP-10 change from baseline to 24 weeks after the EOT is a feasible predictor of regression of M2BPGi-based liver fibrosis after achieving sustained virological response with DAA therapy.
Collapse
Affiliation(s)
- Yoshihito Nagura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Gastroenterology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Takanori Suzuki
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kentaro Matsuura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shintaro Ogawa
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hayato Kawamura
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kayoko Kuno
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kei Fujiwara
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shunsuke Nojiri
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Katsuya Nagaoka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Etsuko Iio
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takehisa Watanabe
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiromi Kataoka
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
3
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Role of CXCL1 Chemokine in Gastrointestinal Cancers. Cells 2023; 12:1406. [PMID: 37408240 DOI: 10.3390/cells12101406] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 07/07/2023] Open
Abstract
One area of cancer research is the interaction between cancer cells and immune cells, in which chemokines play a vital role. Despite this, a comprehensive summary of the involvement of C-X-C motif ligand 1 (CXCL1) chemokine (also known as growth-regulated gene-α (GRO-α), melanoma growth-stimulatory activity (MGSA)) in cancer processes is lacking. To address this gap, this review provides a detailed analysis of CXCL1's role in gastrointestinal cancers, including head and neck cancer, esophageal cancer, gastric cancer, liver cancer (hepatocellular carcinoma (HCC)), cholangiocarcinoma, pancreatic cancer (pancreatic ductal adenocarcinoma), and colorectal cancer (colon cancer and rectal cancer). This paper presents the impact of CXCL1 on various molecular cancer processes, such as cancer cell proliferation, migration, and invasion, lymph node metastasis, angiogenesis, recruitment to the tumor microenvironment, and its effect on immune system cells, such as tumor-associated neutrophils (TAN), regulatory T (Treg) cells, myeloid-derived suppressor cells (MDSCs), and macrophages. Furthermore, this review discusses the association of CXCL1 with clinical aspects of gastrointestinal cancers, including its correlation with tumor size, cancer grade, tumor-node-metastasis (TNM) stage, and patient prognosis. This paper concludes by exploring CXCL1's potential as a therapeutic target in anticancer therapy.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 St., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
4
|
Yegorov S, Kadyrova I, Negmetzhanov B, Kolesnikova Y, Kolesnichenko S, Korshukov I, Baiken Y, Matkarimov B, Miller MS, Hortelano GH, Babenko D. Sputnik-V reactogenicity and immunogenicity in the blood and mucosa: a prospective cohort study. Sci Rep 2022; 12:13207. [PMID: 35915123 PMCID: PMC9342835 DOI: 10.1038/s41598-022-17514-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/26/2022] [Indexed: 12/30/2022] Open
Abstract
Sputnik-V (Gam-COVID-Vac) is a heterologous, recombinant adenoviral (rAdv) vector-based, COVID-19 vaccine now used in > 70 countries. Yet there is a shortage of data on this vaccine's performance in diverse populations. Here, we performed a prospective cohort study to assess the reactogenicity and immunologic outcomes of Sputnik-V vaccination in Kazakhstan. COVID-19-free participants (n = 82 at baseline) were followed at day 21 after Sputnik-V dose 1 (rAd5) and dose 2 (rAd26). Self-reported local and systemic adverse events were captured using questionnaires. Blood and nasopharyngeal swabs were collected to perform SARS-CoV-2 diagnostic and immunologic assays. We observed that most of the reported adverse events were mild-to-moderate injection site or systemic reactions, no severe or potentially life-threatening conditions were reported, and dose 1 appeared to be more reactogenic than dose 2. The seroconversion rate was 97% post-dose 1, remaining the same post-dose 2. The proportion of participants with detectable virus neutralization was 83% post-dose 1, increasing to 98% post-dose 2, with the largest relative increase observed in participants without prior COVID-19 exposure. Dose 1 boosted nasal S-IgG and S-IgA, while the boosting effect of dose 2 on mucosal S-IgG, but not S-IgA, was only observed in subjects without prior COVID-19. Systemically, vaccination reduced serum levels of growth regulated oncogene (GRO), which correlated with an elevation in blood platelet count. Overall, Sputnik-V dose 1 elicited both blood and mucosal SARS-CoV-2 immunity, while the immune boosting effect of dose 2 was minimal. Thus, adjustments to the current vaccine dosing regimen are necessary to optimize immunization efficacy and cost-effectiveness. While Sputnik-V reactogenicity is similar to that of other COVID-19 vaccines, the induced alterations to the GRO/platelet axis warrant investigation of the vaccine's effects on systemic immunology.
Collapse
Affiliation(s)
- Sergey Yegorov
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada.
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan.
| | - Irina Kadyrova
- Research Centre, Karaganda Medical University, Karaganda, Kazakhstan.
| | - Baurzhan Negmetzhanov
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Centre for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | | | - Ilya Korshukov
- Research Centre, Karaganda Medical University, Karaganda, Kazakhstan
| | - Yeldar Baiken
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Centre for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Bakhyt Matkarimov
- National Laboratory Astana, Centre for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Matthew S Miller
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Gonzalo H Hortelano
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Dmitriy Babenko
- Research Centre, Karaganda Medical University, Karaganda, Kazakhstan
| |
Collapse
|
5
|
The Importance of CXCL1 in the Physiological State and in Noncancer Diseases of the Oral Cavity and Abdominal Organs. Int J Mol Sci 2022; 23:ijms23137151. [PMID: 35806156 PMCID: PMC9266754 DOI: 10.3390/ijms23137151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 02/06/2023] Open
Abstract
CXCL1 is a CXC chemokine, CXCR2 ligand and chemotactic factor for neutrophils. In this paper, we present a review of the role of the chemokine CXCL1 in physiology and in selected major non-cancer diseases of the oral cavity and abdominal organs (gingiva, salivary glands, stomach, liver, pancreas, intestines, and kidneys). We focus on the importance of CXCL1 on implantation and placentation as well as on human pluripotent stem cells. We also show the significance of CXCL1 in selected diseases of the abdominal organs, including the gastrointestinal tract and oral cavity (periodontal diseases, periodontitis, Sjögren syndrome, Helicobacter pylori infection, diabetes, liver cirrhosis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), HBV and HCV infection, liver ischemia and reperfusion injury, inflammatory bowel disease (Crohn’s disease and ulcerative colitis), obesity and overweight, kidney transplantation and ischemic-reperfusion injury, endometriosis and adenomyosis).
Collapse
|
6
|
Hou R, Tomalin LE, Silva JP, Kim-Schulze S, Whitehead SS, Fernandez-Sesma A, Durbin AP, Suárez-Fariñas M. The innate immune response following multivalent dengue vaccination and implications for protection against dengue challenge. JCI Insight 2022; 7:e157811. [PMID: 35511431 PMCID: PMC9220850 DOI: 10.1172/jci.insight.157811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Understanding the immune response to dengue virus (DENV) is essential for developing a dengue vaccine that is protective against all 4 DENV serotypes. We evaluated the immune response after vaccination (live attenuated tetravalent dengue vaccine TV005 or trivalent admixture) and after challenge with DEN2Δ30 (Tonga/74) to better understand the importance of homotypic immunity in vaccine protection. Significant increases in IP-10 expression were observed following receipt of either the trivalent or tetravalent vaccine. After challenge, a large increase in IP-10 expression was observed in the placebo and trivalent admixture groups but not in the tetravalent vaccine group. MCP-1, IL-1RA, and MIP-1β exhibited a similar pattern as IP-10. These results demonstrate protective effects of trivalent and tetravalent vaccines against DENV and suggest that the tetravalent vaccine has a better protective effect compared with the trivalent admixture. We also explored the postvaccination and postchallenge immune response differences between Black and White participants. White participants responded to vaccine differently than Black participants; Black participants receiving trivalent and tetravalent vaccines responded strongly and White participants responded only transiently in trivalent group. In response to challenge, White participants elicited a stronger response than Black participants. These results may explain why White participants may have a more vigorous DENV immune response than Black participants, as reported in literature.
Collapse
Affiliation(s)
- Ruixue Hou
- Department of Population Health Science and Policy
| | | | | | - Seunghee Kim-Schulze
- Department of Oncological Science and Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Stephen S. Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | | | - Anna P. Durbin
- Bloomberg School of Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- School of Medicine, Johns Hopkins School of Public Health, Baltimore, Maryland, USA
| | - Mayte Suárez-Fariñas
- Department of Population Health Science and Policy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Wu CL, Yin R, Wang SN, Ying R. A Review of CXCL1 in Cardiac Fibrosis. Front Cardiovasc Med 2021; 8:674498. [PMID: 33996954 PMCID: PMC8113392 DOI: 10.3389/fcvm.2021.674498] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/01/2021] [Indexed: 12/31/2022] Open
Abstract
Chemokine C-X-C motif ligand-1 (CXCL1), principally expressed in neutrophils, macrophages and epithelial cells, is a valid pro-inflammatory factor which performs an important role in mediating the infiltration of neutrophils and monocytes/macrophages. Elevated serum level of CXCL1 is considered a pro-inflammatory reaction by the organism. CXCL1 is also related to diverse organs fibrosis according to relevant studies. A growing body of evidence suggests that CXCL1 promotes the process of cardiac remodeling and fibrosis. Here, we review structure and physiological functions of CXCL1 and recent progress on the effects and mechanisms of CXCL1 in cardiac fibrosis. In addition, we explore the role of CXCL1 in the fibrosis of other organs. Besides, we probe the possibility that CXCL1 can be a therapeutic target for the treatment of cardiac fibrosis in cardiovascular diseases.
Collapse
Affiliation(s)
- Cheng-Long Wu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ran Yin
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Su-Nan Wang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ru Ying
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Gene Expression of CXCL1 (GRO-α) and EGF by Platelets in Myeloproliferative Neoplasms. Hemasphere 2020; 4:e490. [PMID: 33134870 PMCID: PMC7592996 DOI: 10.1097/hs9.0000000000000490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022] Open
|
9
|
Lagos L, Bekkelund AK, Skugor A, Ånestad R, Åkesson CP, Press CM, Øverland M. Cyberlindnera jadinii Yeast as a Protein Source for Weaned Piglets-Impact on Immune Response and Gut Microbiota. Front Immunol 2020; 11:1924. [PMID: 33013844 PMCID: PMC7495143 DOI: 10.3389/fimmu.2020.01924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022] Open
Abstract
Supplying novel feed ingredients for pig production is crucial to enhance food security and decrease the environmental impact of meat production. Several studies have focused on evaluating the beneficial health effects of yeast in pigs. However, its use as a protein source has been partially addressed. Previously, we have shown that yeast at high inclusion levels maintains growth performance and digestibility, while nutrient digestibility, intestinal villi height and fecal consistency were improved. The present study combined microbiome, short-chain fatty acid, and immune parameter analysis to investigate the effect of high inclusion of yeast in diets for post-weaning piglets. Our results showed that yeast did not have a significant impact on the hematological or biochemical parameters in blood. The different immune cell subpopulations isolated from blood and distal jejunal lymph nodes (DJLN) were analyzed by flow cytometry and showed that yeast diet induced an increased number of the subtype of leukocytes CD45+/CD3-/CD8+, a special type of Natural Killer (NK) cells. Also, a very mild to moderate infiltration of neutrophilic granulocytes and lower IgA level were observed in the colon of yeast fed piglets. The microbiome profiling in different compartments of the gastrointestinal tract of piglets was performed using 16S rRNA metabarcoding. The results showed that 40% replacement of dietary protein had a statistically significant effect on the microbial communities in cecum and colon, while the microbial population in ileum and jejunum were not affected. Analysis of predicted microbial metabolic pathways analysis revealed significant upregulation of short-chain fatty acids, ether lipid metabolisms, secondary bile acids, and several other important biosynthesis pathways in cecum and colon of pigs fed yeast. In conclusion, the results showed that diet containing 40% of yeast protein positively shaped microbial community in the large intestine and increased the number of a specific subpopulation of NK cells in the DJLN. These results showed that yeast modulates the microbiome and decreases the secretion of IgA in the colon of post-weaning pigs.
Collapse
Affiliation(s)
- Leidy Lagos
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | | | - Adrijana Skugor
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Ragnhild Ånestad
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Caroline P. Åkesson
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Charles McL. Press
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
10
|
Hisaka A, Yoshioka H, Hatakeyama H, Sato H, Onouchi Y, Anzai N. Global Comparison of Changes in the Number of Test-Positive Cases and Deaths by Coronavirus Infection (COVID-19) in the World. J Clin Med 2020; 9:E1904. [PMID: 32570833 PMCID: PMC7356890 DOI: 10.3390/jcm9061904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/16/2020] [Indexed: 01/01/2023] Open
Abstract
Global differences in changes in the numbers of population-adjusted daily test-positive cases (NPDP) and deaths (NPDD) by COVID-19 were analyzed for 49 countries, including developed and developing countries. The changes as a proportion of national population were compared, adjusting by the beginning of test-positive cases increase (BPI) or deaths increase (BDI). Remarkable regional differences of more than 100-fold in NPDP and NPDD were observed. The trajectories of NPDD after BDI increased exponentially within 20 days in most countries. Machine learning analysis suggested that NPDD on 30 days after BDI was the highest in developed Western countries (1180 persons per hundred million), followed by countries in the Middle East (128), Latin America (97), and Asia (7). Furthermore, in Western countries with positive rates of the PCR test of less than 7.0%, the increase in NPDP was slowing-down two weeks after BPI, and subsequent NPDD was only 15% compared with those with higher positive rates, which suggested that the situation of testing might have affected the velocity of COVID-19 spread. The causes behind remarkable differences between regions possibly include genetic factors of inhabitants because distributions of the race and of the observed infection increasing rates were in good agreement globally.
Collapse
Affiliation(s)
- Akihiro Hisaka
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan; (H.Y.); (H.H.); (H.S.)
| | - Hideki Yoshioka
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan; (H.Y.); (H.H.); (H.S.)
| | - Hiroto Hatakeyama
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan; (H.Y.); (H.H.); (H.S.)
| | - Hiromi Sato
- Clinical Pharmacology and Pharmacometrics, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan; (H.Y.); (H.H.); (H.S.)
| | - Yoshihiro Onouchi
- Department of Public Health, Graduate School of Medicine, Chiba University, Chiba, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan;
| | - Naohiko Anzai
- Department of Pharmacology, Graduate School of Medicine, Chiba University, Chiba, 1-8-1, Inohana, Chuo-ku, Chiba 260-8670, Japan;
| |
Collapse
|
11
|
Øbro NF, Grinfeld J, Belmonte M, Irvine M, Shepherd MS, Rao TN, Karow A, Riedel LM, Harris OB, Baxter EJ, Nangalia J, Godfrey A, Harrison CN, Li J, Skoda RC, Campbell PJ, Green AR, Kent DG. Longitudinal Cytokine Profiling Identifies GRO-α and EGF as Potential Biomarkers of Disease Progression in Essential Thrombocythemia. Hemasphere 2020; 4:e371. [PMID: 32647796 PMCID: PMC7306314 DOI: 10.1097/hs9.0000000000000371] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are characterized by deregulation of mature blood cell production and increased risk of myelofibrosis (MF) and leukemic transformation. Numerous driver mutations have been identified but substantial disease heterogeneity remains unexplained, implying the involvement of additional as yet unidentified factors. The inflammatory microenvironment has recently attracted attention as a crucial factor in MPN biology, in particular whether inflammatory cytokines and chemokines contribute to disease establishment or progression. Here we present a large-scale study of serum cytokine profiles in more than 400 MPN patients and identify an essential thrombocythemia (ET)-specific inflammatory cytokine signature consisting of Eotaxin, GRO-α, and EGF. Levels of 2 of these markers (GRO-α and EGF) in ET patients were associated with disease transformation in initial sample collection (GRO-α) or longitudinal sampling (EGF). In ET patients with extensive genomic profiling data (n = 183) cytokine levels added significant prognostic value for predicting transformation from ET to MF. Furthermore, CD56+CD14+ pro-inflammatory monocytes were identified as a novel source of increased GRO-α levels. These data implicate the immune cell microenvironment as a significant player in ET disease evolution and illustrate the utility of cytokines as potential biomarkers for reaching beyond genomic classification for disease stratification and monitoring.
Collapse
Affiliation(s)
- Nina F. Øbro
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - Jacob Grinfeld
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5NG, United Kingdom
| | - Melissa Irvine
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - Mairi S. Shepherd
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - Tata Nageswara Rao
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Axel Karow
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lisa M. Riedel
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - Oliva B. Harris
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - E. Joanna Baxter
- Department of Hematology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Jyoti Nangalia
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Anna Godfrey
- Department of Hematology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Claire N. Harrison
- Department of Hematology, Guy's and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Juan Li
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - Radek C. Skoda
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Peter J. Campbell
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Anthony R. Green
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - David G. Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5NG, United Kingdom
| |
Collapse
|
12
|
Goelz N, Bosch AMS, Rand ML, Eekels JJM, Franzoso FD, Schmugge M. Increased levels of IL-10 and IL-1Ra counterbalance the proinflammatory cytokine pattern in acute pediatric immune thrombocytopenia. Cytokine 2020; 130:155078. [PMID: 32220726 DOI: 10.1016/j.cyto.2020.155078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease which leads to accelerated platelet clearance. We investigated the plasma cytokine, chemokine and growth factor signatures and their clinical significance in pediatric ITP patients during acute, chronic and follow-up stages as well as the effects of intravenous immunoglobulin (IVIg) treatment, by using the Multiplex technology. In acute ITP before and/or after IVIg treatment we found significantly increased plasma levels of the pro- (tumour necrosis factor-α (TNF-α), interleukin IL-15) and anti- (IL-1 receptor antagonist (Ra), IL-10 and the growth factor interferon γ-induced protein (IP-10)) inflammatory cytokines, compared to healthy controls. Except for IL1-Ra, these cytokines decreased to normal levels in chronic patients. In contrast, growth-regulated α protein (GRO) and soluble CD40 ligand (sCD40L), known as platelet-derived molecules, were found to be significantly decreased in acute and increased in chronic ITP patients compared to healthy controls. GRO levels positively correlated with the platelet counts in the follow-up and chronic cohort. Monocyte counts showed a significant positive correlation only with IP-10 levels in acute ITP after IVIg treatment and follow-up patients. Expression levels of mRNAs for macrophage inflammatory protein MIP1-β, IL-1Ra and GRO determined in peripheral blood mononuclear cells (PBMCs) were significantly reduced in both acute and chronic ITP compared to controls. Our findings suggest that the different clinical presentation of acute and chronic pediatric ITP and to a lesser extent the IVIg treatment effects are characterized overall by a counterbalanced cytokine, chemokine and growth factor pattern response that might exert a pathogenic role in this disease.
Collapse
Affiliation(s)
- Nadine Goelz
- Division of Hematology and Children's Research Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Alessandra M S Bosch
- Division of Hematology and Children's Research Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Margaret L Rand
- Division of Hematology/Oncology, Translational Medicine, Research Institute, Hospital for Sick Children, Departments of Laboratory Medicine & Pathobiology, Biochemistry, and Pediatrics, University of Toronto, 555 University Avenue, Toronto M5G 1X8, Canada
| | - Julia J M Eekels
- Department of Immunology and Transfusion Medicine, University Hospital Greifswald, F-Sauerbruch-Strasse, 17475 Greifswald, Germany
| | - Francesca D Franzoso
- Division of Hematology and Children's Research Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland
| | - Markus Schmugge
- Division of Hematology and Children's Research Center, University Children's Hospital Zurich, Steinwiesstrasse 75, 8032 Zurich, Switzerland.
| |
Collapse
|
13
|
Wu J, Gao FX, Wang C, Qin M, Han F, Xu T, Hu Z, Long Y, He XM, Deng X, Ren DL, Dai TY. IL-6 and IL-8 secreted by tumour cells impair the function of NK cells via the STAT3 pathway in oesophageal squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:321. [PMID: 31324197 PMCID: PMC6642486 DOI: 10.1186/s13046-019-1310-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
Background Recurrence and metastasis are the leading causes of tumour-related death in patients with oesophageal squamous cell carcinoma (ESCC). Tumour-infiltrating natural killer cells (NK cells) display powerful cytotoxicity to tumour cells and play a pivotal role in tumour therapy. However, the phenotype and functional regulation of NK cells in oesophageal squamous cell carcinoma (ESCC) remains largely unknown. Methods Single cell suspensions from blood and tissue samples were isolated by physical dissociation and filtering through a 70 μm cell strainer. Flow cytometry was applied to profile the activity and function of NK cells, and an antibody chip experiment was used to identify and quantitate cytokine levels. We studied IL-6 and IL-8 function in primary oesophageal squamous carcinoma and NK cell co-cultures in vitro and by a xenograft tumour model in vivo. Western blotting was used to quantitate STAT3 (signal transducer and activator of transcription 3) and p-STAT3 levels. Finally, we performed an IHC array to analyse IL-6/IL-8 (interleukin 6/interleukin 8) expression in 103 pairs of tumours and matched adjacent tissues of patients with ESCC to elucidate the correlation between IL-6 or IL-8 and clinical characteristics. Results The percentages of NK cells in both peripheral blood and tumour tissues from patients with ESCC were significantly increased in comparison with those in the controls and correlated with the clinical characteristics. Furthermore, the decrease in activating receptors and increase in inhibitory receptors on the surface of tumour-infiltrating NK cells was confirmed by flow cytometry. The level of granzyme B, the effector molecule of tumour-infiltrating NK cells, was also decreased. Mechanistically, primary ESCC cells activated the STAT3 signalling pathway on NK cells through IL-6 and IL-8 secretion, leading to the downregulation of activating receptors (NKp30 and NKG2D) on the surface of NK cells. An ex vivo study showed that blockade of STAT3 attenuated the IL-6/IL-8-mediated impairment of NK cell function. Moreover, the expression of IL-6 or IL-8 in tumour tissues was validated by immunohistochemistry to be positively correlated with tumour progression and poor survival, respectively. Conclusions Tumour cell-secreted IL-6 and IL-8 impair the activity and function of NK cells via STAT3 signalling and contribute to oesophageal squamous cell carcinoma malignancy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1310-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Wu
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Feng-Xia Gao
- Department of Immunology, Basic Medicine College, South West Medical University, Luzhou, Sichuan, China
| | - Chao Wang
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Mei Qin
- Department of Immunology, Basic Medicine College, South West Medical University, Luzhou, Sichuan, China
| | - Fei Han
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Tao Xu
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Zhi Hu
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Yang Long
- Experimental Medicine Center, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Xue-Mei He
- Experimental Medicine Center, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Xin Deng
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - De-Lian Ren
- Department of Immunology, Basic Medicine College, South West Medical University, Luzhou, Sichuan, China.
| | - Tian-Yang Dai
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
14
|
Möhring T, Karch A, Falk CS, Laue T, D'Antiga L, Debray D, Hierro L, Kelly D, McLin V, McKiernan P, Pawlowska J, Czubkowski P, Mikolajczyk RT, Baumann U, Goldschmidt I. Immune Status in Children Before Liver Transplantation-A Cross-Sectional Analysis Within the ChilsSFree Multicentre Cohort Study. Front Immunol 2019; 10:52. [PMID: 30740106 PMCID: PMC6357985 DOI: 10.3389/fimmu.2019.00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Both, markers of cellular immunity and serum cytokines have been proposed as potential biomarkers for graft rejection after liver transplantation. However, no good prognostic model is available for the prediction of acute cellular rejection. The impact of underlying disease and demographic factors on immune status before pediatric liver transplantation (pLTx) is still poorly understood. We investigated expression of immune markers before pLTx, in order to better understand the pre-transplant immune status. Improved knowledge of the impact of pre-transplant variables may enhance our understanding of immunological changes post pLTx in the future. Methods: This is a cross-sectional analysis of data from the ChilSFree study, a European multicentre cohort study investigating the longitudinal patterns of immune response before and after pLTx. Immune cell counts and soluble immune markers were measured in 155 children 1–30 days before pLTx by TruCount analysis and BioPlex assays. Results were logarithmised due to skewed distributions and then compared according to age, sex, and diagnosis using t-tests, ANOVAs, and Tukey post-hoc tests. The association between immune markers at time of pLTx and patients' age was assessed using a fractional polynomial approach. Multivariable regression models were used to assess the relative contribution of each factor. Results: Sex had no effect on immune status. We found strong evidence for age-specific differences in the immune status. The majority of immune markers decreased in a log-linear way with increasing age. T and B cells showed a sharp increase within the first months of life followed by a log-linear decline in older age groups. Several immune markers were strongly associated with underlying diagnoses. The effects of age and underlying disease remained virtually unchanged when adjusting for each other in multivariable models. Discussion: We show for the first time that age and diagnosis are major independent determinants of cellular and soluble immune marker levels in children with end-stage liver disease. These results need to be considered for future research on predictive immune monitoring after pLTx.
Collapse
Affiliation(s)
- Tamara Möhring
- Research Group Epidemiological and Statistical Methods (ESME), Helmholtz Centre for Infection Research, Braunschweig, Germany.,Division of Pediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Hannover, Germany.,European Paediatric Liver Transplantation Network EPLTN, Hannover, Germany
| | - André Karch
- Research Group Epidemiological and Statistical Methods (ESME), Helmholtz Centre for Infection Research, Braunschweig, Germany.,German Center for Infection Research, TTU-IICH Hannover, Braunschweig, Germany.,Institute for Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Christine S Falk
- German Center for Infection Research, TTU-IICH Hannover, Braunschweig, Germany.,Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Tobias Laue
- Division of Pediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Hannover, Germany.,European Paediatric Liver Transplantation Network EPLTN, Hannover, Germany
| | - Lorenzo D'Antiga
- European Paediatric Liver Transplantation Network EPLTN, Hannover, Germany.,Ospedali Riuniti di Bergamo, Bergamo, Italy
| | - Dominique Debray
- European Paediatric Liver Transplantation Network EPLTN, Hannover, Germany.,Hôpital Necker-Enfants Malades, Paris, France
| | - Loreto Hierro
- European Paediatric Liver Transplantation Network EPLTN, Hannover, Germany.,Hospital Infantil Universitario La Paz, Madrid, Spain
| | - Deirdre Kelly
- European Paediatric Liver Transplantation Network EPLTN, Hannover, Germany.,Birmingham Children's Hospital, Birmingham, United Kingdom
| | - Valerie McLin
- European Paediatric Liver Transplantation Network EPLTN, Hannover, Germany.,Service Spécialités Pédiatriques, Genève, Switzerland
| | - Patrick McKiernan
- European Paediatric Liver Transplantation Network EPLTN, Hannover, Germany.,Service Spécialités Pédiatriques, Genève, Switzerland.,Centre for Rare Diseases Therapy, Children's Hospital of Pittsburgh, Pittsburgh, PN, United States
| | - Joanna Pawlowska
- European Paediatric Liver Transplantation Network EPLTN, Hannover, Germany.,Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Piotr Czubkowski
- European Paediatric Liver Transplantation Network EPLTN, Hannover, Germany.,Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children's Memorial Health Institute, Warsaw, Poland
| | - Rafael T Mikolajczyk
- Research Group Epidemiological and Statistical Methods (ESME), Helmholtz Centre for Infection Research, Braunschweig, Germany.,German Center for Infection Research, TTU-IICH Hannover, Braunschweig, Germany.,Institute of Medical Epidemiology, Biostatistics and Medical Informatics, University of Halle, Halle, Germany
| | - Ulrich Baumann
- Division of Pediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Hannover, Germany.,European Paediatric Liver Transplantation Network EPLTN, Hannover, Germany.,Birmingham Children's Hospital, Birmingham, United Kingdom
| | - Imeke Goldschmidt
- Division of Pediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Hannover, Germany.,European Paediatric Liver Transplantation Network EPLTN, Hannover, Germany
| |
Collapse
|
15
|
Ronet C, Passelli K, Charmoy M, Scarpellino L, Myburgh E, Hauyon La Torre Y, Turco S, Mottram JC, Fasel N, Luther SA, Beverley SM, Launois P, Tacchini-Cottier F. TLR2 Signaling in Skin Nonhematopoietic Cells Induces Early Neutrophil Recruitment in Response to Leishmania major Infection. J Invest Dermatol 2018; 139:1318-1328. [PMID: 30594488 DOI: 10.1016/j.jid.2018.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022]
Abstract
Neutrophils are rapidly recruited to the mammalian skin in response to infection with the cutaneous Leishmania pathogen. The parasites use neutrophils to establish the disease; however, the signals driving early neutrophil recruitment are poorly known. Here, we identified the functional importance of TLR2 signaling in this process. Using bone marrow chimeras and immunohistology, we identified the TLR2-expressing cells involved in this early neutrophil recruitment to be of nonhematopoietic origin. Keratinocytes are damaged and briefly in contact with the parasites during infection. We show that TLR2 triggering by Leishmania major is required for their secretion of neutrophil-attracting chemokines. Furthermore, TLR2 triggering by L. major phosphoglycans is critical for neutrophil recruitment to negatively affect disease development, as shown by better control of lesion size and parasite load in Tlr2-/- compared with wild-type infected mice. Conversely, restoring early neutrophil presence in Tlr2-/- mice through injection of wild-type neutrophils or CXCL1 at the onset of infection resulted in delayed disease resolution comparable to that observed in wild-type mice. Taken together, our data show a crucial role for TLR2-expressing nonhematopoietic skin cells in the recruitment of the first wave of neutrophils after L. major infection, a process that delays disease control.
Collapse
Affiliation(s)
- Catherine Ronet
- Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland; World Health Organization Immunology Research and Training Center, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland
| | - Katiuska Passelli
- Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland; World Health Organization Immunology Research and Training Center, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland
| | - Mélanie Charmoy
- Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland; World Health Organization Immunology Research and Training Center, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland
| | - Leo Scarpellino
- Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland
| | - Elmarie Myburgh
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, UK
| | - Yazmin Hauyon La Torre
- Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland; World Health Organization Immunology Research and Training Center, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland
| | - Salvatore Turco
- Department of Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Jeremy C Mottram
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, UK
| | - Nicolas Fasel
- Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland
| | - Sanjiv A Luther
- Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland
| | - Stephen M Beverley
- Molecular Microbiology Department, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pascal Launois
- Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland; World Health Organization Immunology Research and Training Center, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland
| | - Fabienne Tacchini-Cottier
- Department of Biochemistry, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland; World Health Organization Immunology Research and Training Center, Faculty of Biology and Medicine, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
16
|
Oliveira RADS, Cordeiro MT, Moura PMMFD, Baptista Filho PNB, Braga-Neto UDM, Marques ETDA, Gil LHVG. Serum cytokine/chemokine profiles in patients with dengue fever (DF) and dengue hemorrhagic fever (FHD) by using protein array. J Clin Virol 2017; 89:39-45. [PMID: 28242509 DOI: 10.1016/j.jcv.2017.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 02/09/2017] [Accepted: 02/14/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND DENV infection can induce different clinical manifestations varying from mild forms to dengue fever (DF) or the severe hemorrhagic fever (DHF). Several factors are involved in the progression from DF to DHF. No marker is available to predict this progression. Such biomarker could allow a suitable medical care at the beginning of the infection, improving patient prognosis. OBJECTIVES The aim of this study was to compare the serum expression levels of acute phase proteins in a well-established cohort of dengue fever (DF) and dengue hemorrhagic fever (DHF) patients, in order to individuate a prognostic marker of diseases severity. STUDY DESIGN The serum levels of 36 cytokines, chemokines and acute phase proteins were determined in DF and DHF patients and compared to healthy volunteers using a multiplex protein array and near-infrared (NIR) fluorescence detection. Serum levels of IL-1ra, IL-23, MIF, sCD40 ligand, IP-10 and GRO-α were also determined by ELISA. RESULTS At the early stages of infection, GRO-α and IP-10 expression levels were different in DF compared to DHF patients. Besides, GRO-α was positively correlated with platelet counts and IP-10 was negatively correlated with total protein levels. CONCLUSIONS These findings suggest that high levels of GRO-α during acute DENV infection may be associated with a good prognosis, while high levels of IP-10 may be a warning sign of infection severity.
Collapse
Affiliation(s)
| | - Marli Tenório Cordeiro
- Departamento de Virologia, Centro de Pesquisas Aggeu Magalhães-Fundação Oswaldo Cruz-Fiocruz, Recife, PE, Brazil
| | | | | | | | - Ernesto Torres de Azevedo Marques
- Departamento de Virologia, Centro de Pesquisas Aggeu Magalhães-Fundação Oswaldo Cruz-Fiocruz, Recife, PE, Brazil; Department of Infectious Diseases and Microbiology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
17
|
Medrano LM, Rallón N, Berenguer J, Jiménez-Sousa MA, Soriano V, Aldámiz-Echevarria T, Fernández-Rodríguez A, García M, Tejerina F, Martínez I, Benito JM, Resino S. Relationship of TRIM5 and TRIM22 polymorphisms with liver disease and HCV clearance after antiviral therapy in HIV/HCV coinfected patients. J Transl Med 2016; 14:257. [PMID: 27590274 PMCID: PMC5010694 DOI: 10.1186/s12967-016-1005-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/16/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND AIMS TRIM5 and TRIM22 are restriction factors involved in innate immune response and exhibit anti-viral activity. Single nucleotide polymorphisms (SNPs) at TRIM5 and TRIM22 genes have shown to influence several viral infections such as human immunodeficiency virus (HIV), hepatitis B, as well as measles and rubella vaccination. The aim of this study is to analyze whether TRIM5 and TRIM22 polymorphisms are associated with liver fibrosis inflammation-related biomarkers and response to pegylated-interferon-alpha plus ribavirin (pegIFNα/RBV) therapy in HIV/hepatitis C virus (HCV) coinfected patients. METHODS A retrospective study was performed in 319 patients who started pegIFNα/RBV therapy. Liver fibrosis stage was characterized in 288 patients. TRIM5 rs3824949 and TRIM22 polymorphisms (rs1063303, rs7935564, and rs7113258) were genotyped using the GoldenGate assay. The primary outcomes were: a) significant liver fibrosis (≥F2) evaluated by liver biopsy or transient elastography (liver stiffness values ≥7.1 Kpa); b) sustained virological response (SVR) defined as no detectable HCV viral load (<10 IU/mL) at week 24 after the end of the treatment. The secondary outcome variable was plasma chemokine levels. RESULTS Patients with TRIM5 rs3824949 GG genotype had higher SVR rate than patients with TRIM5 rs3824949 CC/CG genotypes (p = 0.013), and they had increased odds of achieving SVR (adjusted odds ratio (aOR = 2.58; p = 0.012). Patients with TRIM22 rs1063303 GG genotype had higher proportion of significant liver fibrosis than patients with rs1063303 CC/CG genotypes (p = 0.021), and they had increased odds of having significant hepatic fibrosis (aOR = 2.19; p = 0.034). Patients with TRIM22 rs7113258 AT/AA genotype had higher SVR rate than patients with rs7113258 TT genotypes (p = 0.013), and they had increased odds of achieving SVR (aOR = 1.88; p = 0.041). The TRIM22 haplotype conformed by rs1063303_C and rs7113258_A was more frequent in patients with SVR (p = 0.018) and was significantly associated with achieving SVR (aOR = 2.80; p = 0.013). The TRIM5 rs3824949 GG genotype was significantly associated with higher levels of GRO-α (adjusted arithmetic mean ratio ((aAMR) = 1.40; p = 0.011) and MCP-1 (aAMR = 1.61; p = 0.003). CONCLUSIONS TRIM5 and TRIM22 SNPs are associated to increased odds of significant liver fibrosis and SVR after pegIFNα/RBV therapy in HIV/HCV coinfected patients. Besides, TRIM5 SNP was associated to higher baseline levels of circulating biomarkers GRO and MCP-1.
Collapse
Affiliation(s)
- Luz M. Medrano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, 28220 Majadahonda Madrid, Spain
| | - Norma Rallón
- Instituto de Investigación Sanitaria de La Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Juan Berenguer
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario “Gregorio Marañón”, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María A. Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, 28220 Majadahonda Madrid, Spain
| | - Vicente Soriano
- Unidad de Enfermedades Infecciosas, Hospital Universitario La Paz, Madrid, Spain
| | - Teresa Aldámiz-Echevarria
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario “Gregorio Marañón”, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, 28220 Majadahonda Madrid, Spain
| | - Marcial García
- Instituto de Investigación Sanitaria de La Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Francisco Tejerina
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario “Gregorio Marañón”, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, 28220 Majadahonda Madrid, Spain
| | - José M. Benito
- Instituto de Investigación Sanitaria de La Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, 28220 Majadahonda Madrid, Spain
| |
Collapse
|