1
|
Mizanur Rahaman M, Wangchuk P, Sarker S. A systematic review on the role of gut microbiome in inflammatory bowel disease: Spotlight on virome and plant metabolites. Microb Pathog 2025:107608. [PMID: 40250496 DOI: 10.1016/j.micpath.2025.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
Inflammatory bowel diseases (IBD), including ulcerative colitis and Crohn's disease, arise from various factors such as dietary, genetic, immunological, and microbiological influences. The gut microbiota plays a crucial role in the development and treatment of IBD, though the exact mechanisms remain uncertain. Current research has yet to definitively establish the beneficial effects of the microbiome on IBD. Bacteria and viruses (both prokaryotic and eukaryotic) are key components of the microbiome uniquely related to IBD. Numerous studies suggest that dysbiosis of the microbiota, including bacteria, viruses, and bacteriophages, contributes to IBD pathogenesis. Conversely, some research indicates that bacteria and bacteriophages may positively impact IBD outcomes. Additionally, plant metabolites play a crucial role in alleviating IBD due to their anti-inflammatory and microbiome-modulating properties. This systematic review discusses the role of the microbiome in IBD patients and evaluates the potential connection between plant metabolites and the microbiome in the context of IBD pathophysiology.
Collapse
Affiliation(s)
- Md Mizanur Rahaman
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Phurpa Wangchuk
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Subir Sarker
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
2
|
Du D, Li Q, Wei Z, Wang Z, Xu L. Exploring the CDCA-Scd1 Axis: Molecular Mechanisms Linking the Colitis Microbiome to Neurological Deficits. Int J Mol Sci 2025; 26:2111. [PMID: 40076732 PMCID: PMC11900004 DOI: 10.3390/ijms26052111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Inflammatory bowel disease is a risk factor for brain dysfunction; however, the underlying mechanisms remain largely unknown. In this study, we aimed to explore the potential molecular mechanisms through which intestinal inflammation affects brain function and to verify these mechanisms. Mice were treated with multiple cycles of 1% w/v dextran sulfate sodium (DSS) in drinking water to establish a chronic colitis model. Behavioral tests were conducted using the open field test (OFT), tail suspension test (TST), forced swimming test (FST), and Morris water maze test (MWM). Brain metabolomics, transcriptomics, and proteomics analyses were performed, and key target proteins were verified using qPCR and immunofluorescence. Four cycles of DSS administration induced colitis, anxiety, depression, and spatial memory impairment. The integrated multi-omics characterization of colitis revealed decreased brain chenodeoxycholic acid (CDCA) levels as well as reduced stearoyl-CoA desaturase (Scd1) gene and protein expression. Transplantation of the colitis microbiome resulted in anxiety, depression, impaired spatial memory, reduced CDCA content, decreased Scd1 gene and protein expression, and lower concentrations of monounsaturated fatty acids (MUFAs), palmitoleate (C16:1), and oleate (C18:1) in the brain. In addition, CDCA supplementation improved DSS-induced colitis, alleviated depression and spatial memory impairment, and increased Scd1 gene and protein expression as well as MUFA levels in the brain. The gut microbiome induced by colitis contributes to neurological dysfunction, possibly through the CDCA-Scd1 signaling axis. CDCA supplementation alleviates colitis and depressive behavior, likely by increasing Scd1 expression in the brain.
Collapse
Affiliation(s)
- Donglin Du
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (D.D.)
| | - Qi Li
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhengqiang Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (D.D.)
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (D.D.)
| | - Lei Xu
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
3
|
Begré S, Fox M, Jordi SBU, Misselwitz B. [Functional disorders in chronic inflammatory bowel disease: the gut-brain axis]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2025; 66:181-189. [PMID: 39809995 DOI: 10.1007/s00108-024-01832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND In patients with inflammatory bowel diseases (IBD), functional complaints frequently persist after the clearing of inflammation and are clinically difficult to distinguish from symptoms of inflammation. In recent years, the influence of bidirectional communication between the gut and brain on gut physiology, emotions, and behavior has been demonstrated. RESEARCH QUESTIONS What mechanisms underlie the development of functional gastrointestinal complaints in patients with irritable bowel syndrome (IBS) and IBD? What therapeutic approaches arise from this? MATERIALS AND METHODS Narrative review. RESULTS The pathogenesis of IBS involves interactions between psychosocial factors, genetics, and microbiota as well as the central and peripheral nervous systems. The interplay between stress and visceral hypersensitivity is of central importance. Therapeutically, lifestyle changes with stress reduction and exercise alongside dietary, pharmacological, and psychotherapeutic options are useful. DISCUSSION The treatment of functional gastrointestinal disorders remains challenging, as pharmacological therapies are often ineffective and gut-directed psychotherapies are rarely available.
Collapse
Affiliation(s)
- Stefan Begré
- ISFOM - Institut für Stressfolgeerkrankungen und Stressmanagement, Weinbergstrasse 139, Zürich, Schweiz, 8006.
- Neurologie, Departement für Klinische Forschung, Inselspital Bern, Universitätsspital Bern, Bern, Schweiz.
| | - Mark Fox
- Klinik für Gastroenterologie und Hepatologie, Universitätsspital Zürich, Zürich, Schweiz
- Labor und Klinik für Motilitätsstörungen und Funktionelle Verdauungskrankheiten, Zentrum für Integrative Gastroenterologie, Klinik Arlesheim, Arlesheim, Schweiz
| | - Sebastian Bruno Ulrich Jordi
- Universitätsklinik für Viszerale Medizin und Chirurgie, Department für Klinische Forschung, Inselspital Bern, Universitätsspital Bern, Bern, Schweiz
| | - Benjamin Misselwitz
- Medizinische Klinik 2, Ludwig-Maximilians-Universität München, Marchioninistraße 15, 83477, München, Deutschland
| |
Collapse
|
4
|
Atanasova K, Knödler LL, Reindl W, Ebert MP, Thomann AK. Role of the gut microbiome in psychological symptoms associated with inflammatory bowel diseases. Semin Immunopathol 2025; 47:12. [PMID: 39870972 PMCID: PMC11772462 DOI: 10.1007/s00281-025-01036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/02/2025] [Indexed: 01/29/2025]
Abstract
The brain-gut axis constitutes the basis for the bidirectional communication between the central nervous system and the gastrointestinal tract driven by neural, hormonal, metabolic, immunological, and microbial signals. Alterations in the gut microbiome composition as observed in inflammatory bowel diseases can modulate brain function and emerging empirical evidence has indicated that interactions among the brain-gut microbiome-axis seem to play a significant role in the pathogenesis of both inflammatory bowel diseases and psychiatric disorders and their comorbidity. Yet, the immunological and molecular mechanisms underlying the co-occurrence of inflammatory bowel diseases and psychological symptoms are still poorly understood. The aim of this narrative review is to highlight contemporary empirical findings supporting a pivotal role of the gut microbiome in the pathophysiology of highly prevalent neuropsychiatric symptoms in inflammatory bowel diseases such as fatigue, depression, and anxiety. Finally, we focus on microbiome modulation as potential treatment option for comorbid neuropsychiatric symptoms in immune-mediated diseases and especially in inflammatory bowel diseases. High-quality clinical trials are required to clarify how microbiome modulation through dietary interventions or probiotic, prebiotic or synbiotic treatment can be used clinically to improve mental health and thus quality of life of patients with inflammatory bowel diseases.
Collapse
Affiliation(s)
- Konstantina Atanasova
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Department of Psychosomatic Medicine, Medical Faculty Mannheim, Central Institute for Mental Health Mannheim, Heidelberg University, Mannheim, Germany.
| | - Laura-Louise Knödler
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Reindl
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Kerstin Thomann
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
5
|
Jiang M, Zhang X, Jin X, Shi B, Xu Y, Wang Z. Relieving Effect of Artemisia ordosica Krasch Extract on DSS-Induced Colitis by Regulating Immunity, Antioxidant Function, Gut Microbiota, and Bile Acid Metabolism in Mice. Antioxidants (Basel) 2025; 14:45. [PMID: 39857378 PMCID: PMC11762840 DOI: 10.3390/antiox14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Artemisia ordosica Krasch, a traditional Chinese herbal medicine, possesses antibacterial, antiviral, and anti-inflammatory properties. The aim of this experiment was to investigate the therapeutic effect of Artemisia ordosica Krasch extraction (AOE) in treating colitis induced by dextran sulfate sodium (DSS) in mice. The in vitro antioxidant activity of AOE was evaluated by assessing its iron reduction capacity and scavenging capacity towards 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radicals (·OH). The protective effect of AOE on colitis in mice was determined by monitoring key indicators such as body weight, colon length, and survival rate in mice, as well as by assessing the expression of colon-related genes and cytokine levels. We evaluated the impact of AOE on intestinal microbiota by measuring the 16s sequencing of cecal contents and bile acid metabolism. The results showed that the iron reduction capacity of AOE was positively correlated with its concentration. The half-maximal inhibitory concentrations (IC50) for scavenging DPPH and hydroxyl radicals were 3.126 mg/mL and 6.139 mg/mL, with a 95% confidence interval of 95%. In vivo studies demonstrated that AOE reduced DSS-induced colitis in mice by increasing the colon length, enhancing antioxidant enzyme activity, inhibiting inflammatory cell infiltration, suppressing the formation of TNF-α and IL-6, and reducing malondialdehyde (MDA) levels. qPCR analysis revealed that AOE reversed the down-regulation of Claudin mRNA expression, and altered the composition of cecal microbiota, thus mitigating DSS-induced colitis. AOE plays a crucial role in alleviating colitis in mice and effectively improves DSS-induced colitis, highlighting its potential as a therapeutic agent for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Min Jiang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (M.J.); (X.Z.); (X.J.); (B.S.)
| | - Xuekai Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (M.J.); (X.Z.); (X.J.); (B.S.)
| | - Xiao Jin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (M.J.); (X.Z.); (X.J.); (B.S.)
| | - Binlin Shi
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (M.J.); (X.Z.); (X.J.); (B.S.)
| | - Yuanqing Xu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (M.J.); (X.Z.); (X.J.); (B.S.)
| | - Zheqi Wang
- Institute of Grassland Research of CAAS, Hohhot 010010, China
| |
Collapse
|
6
|
Cai H, Li T, Feng W, Wu X, Zhao Y, Wang T. Triple probiotics attenuate colitis via inhibiting macrophage glycolysis dependent pro-inflammatory response. Biochem Biophys Res Commun 2025; 742:151128. [PMID: 39644601 DOI: 10.1016/j.bbrc.2024.151128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Probiotics, a class of live microorganisms, play an important role in anti-inflammation, regulating immunity and optimizing intestinal microecological environment. In this study, we constructed a combination of three strains - Lactobacillus acidophilus, Bacillus bulgaricus, and Bacillus subtilis - to ferment triple probiotics Bornlisy. Our findings indicate that Bornlisy has a significant therapeutic effect in alleviating colitis in mice, further proofing its ability to suppress inflammation in colon, enhance intestinal barrier function and restore imbalanced intestinal microbiome. Then we found Bornlisy could modulate immune response by inhibiting macrophage glycolysis and ultimately attenuated the progression of colitis in mice. Our investigation into the therapeutic efficacy of Bornlisy in colitis revealed that triple probiotics offer a promising approach for the management of intestinal inflammation.
Collapse
Affiliation(s)
- Hantao Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Tianxin Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Wanting Feng
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Xian Wu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Yue Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China.
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
7
|
Thomann AK, Schmitgen MM, Stephan JC, Ebert MP, Thomann PA, Szabo K, Reindl W, Wolf RC. Associations Between Brain Morphology, Inflammatory Markers, and Symptoms of Fatigue, Depression, or Anxiety in Active and Remitted Crohn's Disease. J Crohns Colitis 2024; 18:1767-1779. [PMID: 38757201 DOI: 10.1093/ecco-jcc/jjae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/17/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND Fatigue and psychosocial impairments are highly prevalent in IBD, particularly during active disease. Disturbed brain-gut interactions may contribute to these symptoms. This study examined associations between brain structure, faecal calprotectin, and symptoms of fatigue, depression, and anxiety in persons with Crohn's disease [CD] in different disease states. METHODS In this prospective observational study, n = 109 participants [n = 67 persons with CD, n = 42 healthy controls] underwent cranial magnetic resonance imaging, provided stool samples for analysis of faecal calprotectin, and completed questionnaires to assess symptoms of fatigue, depression, and anxiety. We analysed differences in grey matter volume [GMV] between patients and controls, and associations between regional GMV alterations, neuropsychiatric symptoms, and faecal calprotectin. RESULTS Symptoms of fatigue, depression, and anxiety were increased in patients with CD compared with controls, with highest scores in active CD. Patients exhibited regionally reduced GMV in cortical and subcortical sensorimotor regions, occipitotemporal and medial frontal areas. Regional GMV differences showed a significant negative association with fatigue, but not with depression or anxiety. Subgroup analyses revealed symptom-GMV associations for fatigue in remitted but not in active CD, whereas fatigue was positively associated with faecal calprotectin in active but not in remitted disease. CONCLUSION Our findings support disturbed brain-gut interactions in CD which may be particularly relevant for fatigue during remitted disease. Reduced GMV in the precentral gyrus and other sensorimotor areas could reflect key contributions to fatigue pathophysiology in CD. A sensorimotor model of fatigue in CD could also pave the way for novel treatment approaches.
Collapse
Affiliation(s)
- Anne K Thomann
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Mike M Schmitgen
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Jule C Stephan
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P Ebert
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp A Thomann
- Department of Psychiatry and Psychotherapy, SRH Clinic Karlsbad-Langensteinbach, Karlsbad, Germany
| | - Kristina Szabo
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Reindl
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - R Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
8
|
Bonaz B, Sinniger V, Pellissier S. Role of stress and early-life stress in the pathogeny of inflammatory bowel disease. Front Neurosci 2024; 18:1458918. [PMID: 39319312 PMCID: PMC11420137 DOI: 10.3389/fnins.2024.1458918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Numerous preclinical and clinical studies have shown that stress is one of the main environmental factor playing a significant role in the pathogeny and life-course of bowel diseases. However, stressful events that occur early in life, even during the fetal life, leave different traces within the central nervous system, in area involved in stress response and autonomic network but also in emotion, cognition and memory regulation. Early-life stress can disrupt the prefrontal-amygdala circuit thus favoring an imbalance of the autonomic nervous system and the hypothalamic-pituitary adrenal axis, resulting in anxiety-like behaviors. The down regulation of vagus nerve and cholinergic anti-inflammatory pathway favors pro-inflammatory conditions. Recent data suggest that emotional abuse at early life are aggravating risk factors in inflammatory bowel disease. This review aims to unravel the mechanisms that explain the consequences of early life events and stress in the pathophysiology of inflammatory bowel disease and their mental co-morbidities. A review of therapeutic potential will also be covered.
Collapse
Affiliation(s)
- Bruno Bonaz
- Université Grenoble Alpes, Service d'Hépato-Gastroentérologie, Grenoble Institut Neurosciences, Grenoble, France
| | - Valérie Sinniger
- Université Grenoble Alpes, Service d'Hépato-Gastroentérologie, Grenoble Institut Neurosciences, Grenoble, France
| | - Sonia Pellissier
- Université Savoie Mont Blanc, Université Grenoble Alpes, LIP/PC2S, Chambéry, France
| |
Collapse
|
9
|
Liu Y, Bai X, Wu H, Duan Z, Zhu C, Fu R, Fan D. Ginsenoside CK Alleviates DSS-Induced IBD in Mice by Regulating Tryptophan Metabolism and Activating Aryl Hydrocarbon Receptor via Gut Microbiota Modulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9867-9879. [PMID: 38602268 DOI: 10.1021/acs.jafc.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Dysbiosis of gut microbiota is believed to be associated with inflammatory bowel disease (IBD). Ginsenoside compound K (CK), the main metabolite of Panax ginseng ginsenoside, has proven effective as an anti-inflammatory agent in IBD. However, the mechanisms by which CK modulates gut microbiota to ameliorate IBD remain poorly understood. Herein, CK demonstrated the potential to suppress the release of proinflammatory cytokines by gut microbiota modulation. Notably, supplementation with CK promoted the restoration of a harmonious balance in gut microbiota, primarily by enhancing the populations of Lactobacillus and Akkermansia. Furthermore, CK considerably elevated the concentrations of tryptophan metabolites derived from Lactobacillus that could activate the aryl hydrocarbon receptor. Overall, the promising alleviative efficacy of CK primarily stemmed from the promotion of Lactobacillus growth and production of tryptophan metabolites, suggesting that CK should be regarded as a prospective prebiotic agent for IBD in the future.
Collapse
Affiliation(s)
- Yuan Liu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Xue Bai
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Huanyan Wu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Zhiguang Duan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Rongzhan Fu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
10
|
Zhang L, Miao C, Wang Z, Guan X, Ma Y, Song J, Shen S, Song H, Li M, Liu C. Preparation and characterisation of baicalin magnesium and its protective effect in ulcerative colitis via gut microbiota-bile acid axis modulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155416. [PMID: 38394726 DOI: 10.1016/j.phymed.2024.155416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Scutellaria baicalensis Georgi is a well-known herb in traditional Chinese medicine that is frequently prescribed for various gastrointestinal conditions, including ulcerative colitis (UC). Its primary active constituent, baicalin, has poorly water solubility that reduces its efficacy. PURPOSE To enhance the aqueous solubility of baicalin by optimising its extraction process. We compared the modulatory effects of isolated water-soluble baicalin and water-insoluble baicalin on UC, and delved deeper into the potential mechanisms of water-soluble baicalin. METHODS We successfully extracted a more hydrophilic baicalin directly from an aqueous S. baicalensis Georgi extract through the process of recrystallisation following alcoholic precipitation of the aqueous extract obtained from S. baicalensis Georgi, eliminating the need for acid additives. This specific form of baicalin was conclusively identified by UV, IR, atomic absorption spectroscopy, elemental analysis, 1H NMR, 13C NMR, and ESI-HRMS. We subsequently compared the regulatory effects of baicalin on UC before and after optimisation, employing 16S rDNA sequencing, bile acid-targeted metabolomics, and transcriptome analysis to elucidate the potential mechanism of water-soluble baicalin; and the key genes and proteins implicated in this mechanism were verified through RT-PCR and western blotting. RESULTS A new form of baicalin present in the aqueous solution of S. baicalensis Georgi was isolated, and its structural characterisation showed that it was bound to magnesium ions (baicalin magnesium) and exhibited favorable water solubility. Baicalin magnesium offers enhanced therapeutic benefits over baicalin for UC treatment, which alleviated the inflammatory response and oxidative stress levels while improving intestinal mucosal damage. Further investigation of the mechanism revealed that baicalin magnesium could effectively regulate bile acid metabolism and maintain intestinal microecological balance in UC mice, and suppress the activation of the nuclear factor-kappa B and peroxisome proliferator-activated receptor α signalling pathways, thereby playing a therapeutic role. CONCLUSIONS Baicalin magnesium has good water solubility, which solves the bottleneck problem of water insolubility in the practical applications of baicalin. Moreover, baicalin magnesium exhibits therapeutic potential for UC significantly better than baicalin.
Collapse
Affiliation(s)
- Lin Zhang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Ceyu Miao
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Zhixuan Wang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Xiulu Guan
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Yechao Ma
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Jingyu Song
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Shiyuan Shen
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China
| | - Hongru Song
- Hebei North University, Zhangjiakou 075000, PR China
| | - Mingqian Li
- Cancer Institute of Integrated Tradition Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, PR China.
| | - Cuizhe Liu
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Institute of Traditional Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, PR China.
| |
Collapse
|
11
|
Shivani Mohan Raj P, Mary Martin T, Kishore Kumar MS, Prathap L. Anti-psychotic Nature of Antibiotics: Vancomycin and Omadacycline Combination Ameliorating Stress in a Zebrafish Model. Cureus 2024; 16:e56195. [PMID: 38618468 PMCID: PMC11016137 DOI: 10.7759/cureus.56195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
Background Stress affects mental health significantly and is a ubiquitous feature of contemporary living. Among the possible antibiotics are omadacycline and vancomycin, whose anti-inflammatory properties have also been thoroughly documented in recent research. The goal of the current study was to examine their complex involvement in the brain's stress response circuits and how they modulate stress. An established model organism that provides a useful platform for examining stress-induced behaviors and possible therapeutic approaches is the zebrafish. To investigate how dopamine affects the stress response, we used a zebrafish model that was exposed to stress. Methodology For three minutes, zebrafish were continually subjected to chasing stress. They were then given antibiotic combinations of 50 µg/mL each of vancomycin and omadacycline at various ratios of 1:1, 3:1, and 3:1. Behavior alterations, including freezing bouts, top-bottom ratios, and latency periods, were analyzed and contrasted with control groups. ImageJ software was utilized to analyze the video footage of the fish. Results The study showed that the combination of omadacycline and vancomycin greatly reduced the behaviors in zebrafish caused by stress. They chose their concentration (50 µg/mL) according to the lethal concentration 50% result. By shortening the latency time and increasing the intensity of breezing sessions, these chemicals restored almost normal activity. There was statistical significance in the outcomes. The results show that the combination of vancomycin and omadacycline may have an anti-psychotic impact on zebrafish behaviors brought on by stress. Their control of stress reactions is consistent with their known roles in the reward and stress circuits of the brain. These results emphasize the complex interactions between neurotransmitter systems and the control of stress, highlighting the therapeutic potential of dopamine in the treatment of stress-related mental illnesses. Conclusions The combination of vancomycin and omadacycline has been shown to have anti-psychotic effects, which presents potential opportunities for the development of new treatment strategies for mental diseases associated with stress. To fully understand the specific processes underpinning their involvement in stress management and how they relate to mental illnesses in humans, more investigation is necessary.
Collapse
Affiliation(s)
- Pavitra Shivani Mohan Raj
- Department of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Taniya Mary Martin
- Department of Anatomy, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Meenakshi Sundaram Kishore Kumar
- Department of Anatomy, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Lavanya Prathap
- Department of Anatomy, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
12
|
Li W, Zhang Y, Chen M, Guo X, Ding Z. The antioxidant strain Lactiplantibacillus plantarum AS21 and Clostridium butyricum ameliorate DSS-induced colitis in mice by remodeling the assembly of intestinal microbiota and improving gut functions. Food Funct 2024; 15:2022-2037. [PMID: 38289370 DOI: 10.1039/d3fo05337g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Probiotics are known for their beneficial effects on improving intestinal function by alleviating the gut microbial diversity. However, the influences of antioxidant lactic acid bacteria (LAB) and anti-inflammatory Clostridium butyricum (CB) on ameliorating enteritis remain unclear. In this study, we investigated the effects of the antioxidant strain Lactiplantibacillus plantarum AS21 and CB alone, or in combination on intestinal microbiota, barrier function, oxidative stress and inflammation in mice with DSS-induced colitis. All probiotic treatments relieved the pathological development of colitis by improving the integrity of the intestinal mucosal barrier and the length of the colon. The probiotics also suppressed inflammation and oxidative stress by improving gut short-chain fatty acids and inhibiting the p38-MAPK/NF-κB pathway in colon tissues. According to the meta-network analysis, three distinct modules containing sensitive OTUs of the gut bacterial community specific to the control, DSS and DSS + probiotics groups were observed, and unlike the other two modules, Lachnospiraceae and Clostridia dominated the sensitive OTUs in the DSS + probiotics group. In addition, administration of the present probiotics particularly increased antioxidant and anti-inflammatory microbes Muribaculaceae, Bifidobacterium, Prevotellaceae and Alloprevotella. Furthermore, combined probiotic strain treatment showed a more stable anti-colitis effect than a single probiotic strain. Collectively, the present probiotics exhibited protective effects against colitis by suppressing the inflammation and oxidative damage in the colon, improving the gut microbiota and their functions, and consequently preventing the gut leak. The results indicate that the combination of the antioxidant properties of LAB and the anti-inflammatory properties of CB as nutritional intervention and adjuvant therapy could be an effective strategy to prevent and alleviate colitis.
Collapse
Affiliation(s)
- Wenyuan Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Ying Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Mengyan Chen
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Xusheng Guo
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| | - Zitong Ding
- School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China.
- Probiotics and Life Health Institute, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
13
|
Chang L, Wang C, Peng J, Song Y, Zhang W, Chen Y, Peng Q, Li X, Liu X, Lan Y. Rattan Pepper Polysaccharide Regulates DSS-Induced Intestinal Inflammation and Depressive Behavior through Microbiota-Gut-Brain Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:437-448. [PMID: 38164789 DOI: 10.1021/acs.jafc.3c08462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent disease. Increasing evidence suggests a higher incidence of depression in IBD patients compared with the general population, but the underlying mechanism remains uncertain. Rattan pepper polysaccharide (RPP) is an important active ingredient of rattan pepper, yet its effects and mechanisms on intestinal inflammation and depression-like behavior remain largely unknown. This study aims to investigate the ameliorating effect of RPP on dextran sulfate sodium salt (DSS)-induced intestinal inflammation and depression-like behavior as well as to reveal its mechanism. Our results indicate that RPP effectively ameliorated intestinal microbiota imbalance and metabolic disorders of short-chain fatty acids (SCFAs) and bile acids in mice with DSS-induced inflammation, contributing to the recovery of intestinal Th17/Treg homeostasis. Importantly, RPP effectively alleviated brain inflammation caused by intestinal inflammatory factors entering the brain through the blood-brain barrier. This effect may be attributed to the inhibition of the TLR4/NF-κB signaling pathway, which alleviates neuroinflammation, and the activation of the CREB/BDNF signaling pathway, which improves synaptic dysfunction. Therefore, our findings suggest that RPP may play a role in alleviating DSS-induced gut inflammation and depression-like behavior through the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Lili Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chendi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yujie Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wanting Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yurui Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiang Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiulian Li
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Lan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
14
|
Pandey H, Jain D, Tang DWT, Wong SH, Lal D. Gut microbiota in pathophysiology, diagnosis, and therapeutics of inflammatory bowel disease. Intest Res 2024; 22:15-43. [PMID: 37935653 PMCID: PMC10850697 DOI: 10.5217/ir.2023.00080] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 11/09/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disease, which is thought to be an interplay between genetic, environment, microbiota, and immune-mediated factors. Dysbiosis in the gut microbial composition, caused by antibiotics and diet, is closely related to the initiation and progression of IBD. Differences in gut microbiota composition between IBD patients and healthy individuals have been found, with reduced biodiversity of commensal microbes and colonization of opportunistic microbes in IBD patients. Gut microbiota can, therefore, potentially be used for diagnosing and prognosticating IBD, and predicting its treatment response. Currently, there are no curative therapies for IBD. Microbiota-based interventions, including probiotics, prebiotics, synbiotics, and fecal microbiota transplantation, have been recognized as promising therapeutic strategies. Clinical studies and studies done in animal models have provided sufficient evidence that microbiota-based interventions may improve inflammation, the remission rate, and microscopic aspects of IBD. Further studies are required to better understand the mechanisms of action of such interventions. This will help in enhancing their effectiveness and developing personalized therapies. The present review summarizes the relationship between gut microbiota and IBD immunopathogenesis. It also discusses the use of gut microbiota as a noninvasive biomarker and potential therapeutic option.
Collapse
Affiliation(s)
| | | | - Daryl W. T. Tang
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Sunny H. Wong
- Centre for Microbiome Medicine, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Devi Lal
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| |
Collapse
|
15
|
Xia P, Hou T, Jin H, Meng Y, Li J, Zhan F, Geng F, Li B. A critical review on inflammatory bowel diseases risk factors, dietary nutrients regulation and protective pathways based on gut microbiota during recent 5 years. Crit Rev Food Sci Nutr 2023; 64:8805-8821. [PMID: 37096497 DOI: 10.1080/10408398.2023.2204147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
The treatment of inflammatory bowel diseases (IBDs) has become a worldwide problem. Intestinal flora plays an important role in the development and progression of IBDs. Various risk factors (psychology, living habits, dietary patterns, environment) influence the structure and composition of the gut microbiota and contribute to the susceptibility to IBDs. This review aims to provide a comprehensive overview on risk factors regulating intestinal microenvironment which was contributed to IBDs. Five protective pathways related to intestinal flora were also discussed. We hope to provide systemic and comprehensive insights of IBDs treatment and to offer theoretical guidance for personalized patients with precision nutrition.
Collapse
Affiliation(s)
- Pengkui Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Tao Hou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Hong Jin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Yaqi Meng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Jing Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Fuchao Zhan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Fang Geng
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| |
Collapse
|
16
|
Zhao H, Chen X, Zhang L, Tang C, Meng F, Zhou L, Zhu P, Lu Z, Lu Y. Ingestion of Lacticaseibacillus rhamnosus Fmb14 prevents depression-like behavior and brain neural activity via the microbiota-gut-brain axis in colitis mice. Food Funct 2023; 14:1909-1928. [PMID: 36748225 DOI: 10.1039/d2fo04014j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Large preclinical evidence suggested that colitis was one of the risk factors for depression and probiotics were effective therapeutic agents to prevent the disease. The effect of Lacticaseibacillus rhamnosus Fmb14 on colitis-related depression-like behavior and its possible mechanisms were investigated. One week of DSS exposure led to the following changes in male C57BL/6N mice: a reduction in the movement distance from 2218 to 1299 cm, time in central areas from 23.6 s to 11.5 s, and time in the bright box from 217 s to 103 s, which were restored to 1816 cm, 18.4 s, and 181 s, respectively, with preadministration of Fmb14 for 8 weeks. All improvements provided by Fmb14 indicated a remarkable protective effect on depression-like behavior. Fmb14 first worked to repair intestinal barrier damage and the inflammatory response in the colon through ZO1 and Ocln enhancement and IL-1β, NF-κB and IL-6 reduction, respectively. Second, dysbiosis of the gut microbiota was modulated by Fmb14, including reduction of Akkermansia (18.9% to 5.4%), Mucispirillum (0.6% to 0.1%) and Bifidobacterium (0.32% to 0.03%). Fmb14 supplementation ameliorates the brain inflammatory response via IL-18 and NF-κB reduction and improves the blood-brain barrier via increased levels of ZO1 and Ocln. Moreover, brain activity was facilitated by an increase in BDNF and dopamine and the downregulation of GABA in the Fmb14 group. As a consequence of the modulatory effect on the dysfunction of neurotransmitters and neuroinflammation, Fmb14 prevents neurodegeneration by inhibiting neuronal apoptosis and Nissl edema. In addition, the correlation analysis further demonstrated the preventative effect of Fmb14 on depression-like behavior through the microbiota-gut-brain axis. Together, these findings demonstrated the important role of Fmb14 in biological signal transduction over the microbiota-gut-brain axis to improve mood disorders.
Collapse
Affiliation(s)
- Hongyuan Zhao
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaoyu Chen
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Li Zhang
- Institute of Vegetable, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Chao Tang
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fanqiang Meng
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Libang Zhou
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ping Zhu
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhaoxin Lu
- College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yingjian Lu
- College of Food Science & Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China.
| |
Collapse
|
17
|
Thomann AK, Wüstenberg T, Wirbel J, Knoedler LL, Thomann PA, Zeller G, Ebert MP, Lis S, Reindl W. Depression and fatigue in active IBD from a microbiome perspective-a Bayesian approach to faecal metagenomics. BMC Med 2022; 20:366. [PMID: 36244970 PMCID: PMC9575298 DOI: 10.1186/s12916-022-02550-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extraintestinal symptoms are common in inflammatory bowel diseases (IBD) and include depression and fatigue. These are highly prevalent especially in active disease, potentially due to inflammation-mediated changes in the microbiota-gut-brain axis. The aim of this study was to investigate the associations between structural and functional microbiota characteristics and severity of fatigue and depressive symptoms in patients with active IBD. METHODS We included clinical data of 62 prospectively enrolled patients with IBD in an active disease state. Patients supplied stool samples and completed the questionnaires regarding depression and fatigue symptoms. Based on taxonomic and functional metagenomic profiles of faecal gut microbiota, we used Bayesian statistics to investigate the associative networks and triangle motifs between bacterial genera, functional modules and symptom severity of self-reported fatigue and depression. RESULTS Associations with moderate to strong evidence were found for 3 genera (Odoribacter, Anaerotruncus and Alistipes) and 3 functional modules (pectin, glycosaminoglycan and central carbohydrate metabolism) with regard to depression and for 4 genera (Intestinimonas, Anaerotruncus, Eubacterium and Clostridiales g.i.s) and 2 functional modules implicating amino acid and central carbohydrate metabolism with regard to fatigue. CONCLUSIONS This study provides the first evidence of association triplets between microbiota composition, function and extraintestinal symptoms in active IBD. Depression and fatigue were associated with lower abundances of short-chain fatty acid producers and distinct pathways implicating glycan, carbohydrate and amino acid metabolism. Our results suggest that microbiota-directed therapeutic approaches may reduce fatigue and depression in IBD and should be investigated in future research.
Collapse
Affiliation(s)
- Anne Kerstin Thomann
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Torsten Wüstenberg
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Core Facility for Neuroscience of Self-Regulation (CNSR), Field of Focus 4 (FoF4), Heidelberg University, Heidelberg, Germany
| | - Jakob Wirbel
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Laura-Louise Knoedler
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Georg Zeller
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Clinical Cooperation Unit Healthy Metabolism, Centre of Preventive Medicine and Digital Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Lis
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Reindl
- Department of Medicine II, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
18
|
Jones RP, Ponomarenko A. Roles for Pathogen Interference in Influenza Vaccination, with Implications to Vaccine Effectiveness (VE) and Attribution of Influenza Deaths. Infect Dis Rep 2022; 14:710-758. [PMID: 36286197 PMCID: PMC9602062 DOI: 10.3390/idr14050076] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 08/29/2023] Open
Abstract
Pathogen interference is the ability of one pathogen to alter the course and clinical outcomes of infection by another. With up to 3000 species of human pathogens the potential combinations are vast. These combinations operate within further immune complexity induced by infection with multiple persistent pathogens, and by the role which the human microbiome plays in maintaining health, immune function, and resistance to infection. All the above are further complicated by malnutrition in children and the elderly. Influenza vaccination offers a measure of protection for elderly individuals subsequently infected with influenza. However, all vaccines induce both specific and non-specific effects. The specific effects involve stimulation of humoral and cellular immunity, while the nonspecific effects are far more nuanced including changes in gene expression patterns and production of small RNAs which contribute to pathogen interference. Little is known about the outcomes of vaccinated elderly not subsequently infected with influenza but infected with multiple other non-influenza winter pathogens. In this review we propose that in certain years the specific antigen mix in the seasonal influenza vaccine inadvertently increases the risk of infection from other non-influenza pathogens. The possibility that vaccination could upset the pathogen balance, and that the timing of vaccination relative to the pathogen balance was critical to success, was proposed in 2010 but was seemingly ignored. Persons vaccinated early in the winter are more likely to experience higher pathogen interference. Implications to the estimation of vaccine effectiveness and influenza deaths are discussed.
Collapse
Affiliation(s)
- Rodney P Jones
- Healthcare Analysis and Forecasting, Wantage OX12 0NE, UK
| | - Andrey Ponomarenko
- Department of Biophysics, Informatics and Medical Instrumentation, Odessa National Medical University, Valikhovsky Lane 2, 65082 Odessa, Ukraine
| |
Collapse
|
19
|
Tse CS, Singh S, Sandborn WJ. A Framework for Clinical Trials of Neurobiological Interventions That Target the Gut-Brain Axis in Inflammatory Bowel Disease. Inflamm Bowel Dis 2022; 28:788-800. [PMID: 34244749 DOI: 10.1093/ibd/izab153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 12/09/2022]
Abstract
A growing body of evidence from preclinical, translational, and clinical studies supports a bidirectional relationship within the gut-brain axis that contributes to neurobiological symptoms including anxiety, depression, fatigue, stress, and sleep disturbance. These symptoms have a significant impact on health-related quality of life and functional ability in individuals with inflammatory bowel disease. Clinical studies that generate high-quality evidence on pharmacological and nonpharmacological (eg, psychosocial, behavioral) interventions are needed to ultimately improve access to safe and effective therapies that have a meaningful impact on patients and to guide medical and regulatory decisions. This review outlines a framework for designing and conducting randomized controlled trials for interventions that target neurobiological symptoms in patients with inflammatory bowel disease based on the most recent guidance published within the past 5 years from policy makers, clinicians specialized in inflammatory bowel disease, patient-reported outcomes methodologists, health economists, patient advocates, industry representatives, ethicists, and clinical trial experts.
Collapse
Affiliation(s)
- Chung Sang Tse
- Division of Gastroenterology, University of California San Diego, San Diego, California, USA
| | - Siddharth Singh
- Division of Gastroenterology, University of California San Diego, San Diego, California, USA
| | - William J Sandborn
- Division of Gastroenterology, University of California San Diego, San Diego, California, USA
| |
Collapse
|
20
|
Vicentini FA, Szamosi JC, Rossi L, Griffin L, Nieves K, Bihan D, Lewis IA, Pittman QJ, Swain MG, Surette MG, Hirota SA, Sharkey KA. Colitis-associated microbiota drives changes in behaviour in male mice in the absence of inflammation. Brain Behav Immun 2022; 102:266-278. [PMID: 35259427 DOI: 10.1016/j.bbi.2022.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract. IBD are associated with a high prevalence of cognitive, behavioural and emotional comorbidities, including anxiety and depression. The link between IBD and the development of behavioural comorbidities is poorly understood. As the intestinal microbiota profoundly influences host behaviour, we sought to determine whether the altered gut microbiota associated with intestinal inflammation contributes to the development of behavioural abnormalities. Using the dextran sulphate sodium (DSS) model of colitis, we characterized intestinal inflammation, behaviour (elevated plus maze and tail suspension test) and the composition of the microbiota in male mice. Cecal contents from colitic mice were transferred into germ-free (GF) or antibiotic (Abx)-treated mice, and behaviour was characterized in recipient mice. Gene expression was measured using qPCR. DSS colitis was characterized by a significant reduction in body weight and an increase in colonic inflammatory markers. These changes were accompanied by increased anxiety-like behaviour, an altered gut microbiota composition, and increased central Tnf expression. Transfer of the cecal matter from colitic mice induced similar behavioural changes in both GF and Abx-treated recipient mice, with no signs of colonic or neuroinflammation. Upon characterization of the microbiota in donor and recipient mice, specific taxa were found to be associated with behavioural changes, notably members of the Lachnospiraceae family. Behavioural abnormalities associated with intestinal inflammation are transmissible via transfer of cecal matter, suggesting that alterations in the composition of the gut microbiota play a key role in driving behavioural changes in colitis.
Collapse
Affiliation(s)
- Fernando A Vicentini
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jake C Szamosi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Laura Rossi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Lateece Griffin
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Kristoff Nieves
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Dominique Bihan
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ian A Lewis
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Quentin J Pittman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark G Swain
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Michael G Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Simon A Hirota
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Inflammation Research Network, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
21
|
Cluny NL, Nyuyki KD, Almishri W, Griffin L, Lee BH, Hirota SA, Pittman QJ, Swain MG, Sharkey KA. Recruitment of α4β7 monocytes and neutrophils to the brain in experimental colitis is associated with elevated cytokines and anxiety-like behavior. J Neuroinflammation 2022; 19:73. [PMID: 35379260 PMCID: PMC8981853 DOI: 10.1186/s12974-022-02431-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Background Behavioral comorbidities, such as anxiety and depression, are a prominent feature of IBD. The signals from the inflamed gut that cause changes in the brain leading to these behavioral comorbidities remain to be fully elucidated. We tested the hypothesis that enhanced leukocyte–cerebral endothelial cell interactions occur in the brain in experimental colitis, mediated by α4β7 integrin, to initiate neuroimmune activation and anxiety-like behavior. Methods Female mice treated with dextran sodium sulfate were studied at the peak of acute colitis. Circulating leukocyte populations were determined using flow cytometry. Leukocyte–cerebral endothelial cell interactions were examined using intravital microscopy in mice treated with anti-integrin antibodies. Brain cytokine and chemokines were assessed using a multiplex assay in animals treated with anti-α4β7 integrin. Anxiety-like behavior was assessed using an elevated plus maze in animals after treatment with an intracerebroventricular injection of interleukin 1 receptor antagonist. Results The proportion of classical monocytes expressing α4β7 integrin was increased in peripheral blood of mice with colitis. An increase in the number of rolling and adherent leukocytes on cerebral endothelial cells was observed, the majority of which were neutrophils. Treatment with anti-α4β7 integrin significantly reduced the number of rolling leukocytes. After anti-Ly6C treatment to deplete monocytes, the number of rolling and adhering neutrophils was significantly reduced in mice with colitis. Interleukin-1β and CCL2 levels were elevated in the brain and treatment with anti-α4β7 significantly reduced them. Enhanced anxiety-like behavior in mice with colitis was reversed by treatment with interleukin 1 receptor antagonist. Conclusions In experimental colitis, α4β7 integrin-expressing monocytes direct the recruitment of neutrophils to the cerebral vasculature, leading to elevated cytokine levels. Increased interleukin-1β mediates anxiety-like behavior. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02431-z.
Collapse
Affiliation(s)
- Nina L Cluny
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Kewir D Nyuyki
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Wagdi Almishri
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lateece Griffin
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Benjamin H Lee
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Simon A Hirota
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Quentin J Pittman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark G Swain
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
22
|
The Impact of Probiotic Bacillus subtilis on Injurious Behavior in Laying Hens. Animals (Basel) 2022; 12:ani12070870. [PMID: 35405859 PMCID: PMC8997090 DOI: 10.3390/ani12070870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Injurious behavior prevention is a critical issue in the poultry industry due to increasing social stress, leading to negative effects on bird production and survivability, consequently enhancing gut microbiota dysbiosis and neuroinflammation via the microbiota–gut–brain axis. Probiotics have been used as potential therapeutic psychobiotics to treat or improve neuropsychiatric disorders or symptoms by boosting cognitive and behavioral processes and reducing stress reactions in humans and various experimental animals. The current data will first report that probiotic Bacillus subtilis reduces stress-induced injurious behavior in laying hens via regulating microbiota–gut–brain function with the potential to be an alternative to beak trimming during poultry egg production. Abstract Intestinal microbiota functions such as an endocrine organ to regulate host physiological homeostasis and behavioral exhibition in stress responses via regulating the gut–brain axis in humans and other mammals. In humans, stress-induced dysbiosis of the gut microbiota leads to intestinal permeability, subsequently affecting the clinical course of neuropsychiatric disorders, increasing the frequency of aggression and related violent behaviors. Probiotics, as direct-fed microorganism, have been used as dietary supplements or functional foods to target gut microbiota (microbiome) for the prevention or therapeutic treatment of mental diseases including social stress-induced psychiatric disorders such as depression, anxiety, impulsivity, and schizophrenia. Similar function of the probiotics may present in laying hens due to the intestinal microbiota having a similar function between avian and mammals. In laying hens, some management practices such as hens reared in conventional cages or at a high stocking density may cause stress, leading to injurious behaviors such as aggressive pecking, severe feather pecking, and cannibalism, which is a critical issue facing the poultry industry due to negative effects on hen health and welfare with devastating economic consequences. We discuss the current development of using probiotic Bacillus subtilis to prevent or reduce injurious behavior in laying hens.
Collapse
|
23
|
Chen L, Wang J. Gut microbiota and inflammatory bowel disease. WIREs Mech Dis 2022; 14:e1540. [PMID: 35266651 DOI: 10.1002/wsbm.1540] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
Gut microbiota refers to the complex aggregation of microbes in gut, including bacteria, archaea, fungi, and viruses, and they exert marked influence on the host's health. Perturbations in the gut microbiota have been closely linked to initiation and progression of IBD, which has become a disease with accelerating incidence worldwide, but it remains to be thoroughly investigated how microbial involvement might contribute to IBD. In this review, we discuss the current research findings concerning alterations in the gut microbiota, trans-kingdom interaction between the members of the gut microbiota, their interactions with the immune system of host, their potential role in the IBD pathogenesis, and the relationship between gut microbiota and IBD. We hope to provide a better understanding of the causes of IBD and shed light on the development of microbiome-based therapeutic approaches, which might be a promising strategy to alleviate, manage, and eventually cure IBD. This article is categorized under: Infectious Diseases > Genetics/Genomics/Epigenetics Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Liang Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| |
Collapse
|
24
|
Burden of depression and anxiety among patients with inflammatory bowel disease: results of a nationwide analysis. Int J Colorectal Dis 2022; 37:313-321. [PMID: 34731298 DOI: 10.1007/s00384-021-04056-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The burden of psychiatric disorders is on a rise in inflammatory bowel disease (IBD) patients which has shown to effect medication compliance and overall clinical outcomes. We studied the prevalence of depression and anxiety in IBD patients when compared to individuals with other chronic medical conditions. METHODS This is a retrospective cohort study using the United States national inpatient sample of 2016 to 2018. We identified patient encounters with a diagnosis of IBD. Our primary outcome was prevalence of depression and anxiety in IBD patients when compared to general adult population with other chronic medical conditions. We further studied these outcomes in subgroups of patients with ulcerative colitis and Crohn's disease. RESULTS A total of 963,619 patient encounters were identified with the diagnosis of IBD between 2016 and 2018, of them 162,850 (16.9%) had depression and 201,685 (20.9%) had anxiety. The prevalence of depression and anxiety was significantly higher in IBD patients in comparison to general population, (16.9% vs 12.3%) and (20.9% vs 15%) respectively (p < 0.001). Association of depression and anxiety was also higher in IBD patients when compared to patients with other chronic conditions like diabetes, metastatic cancer, and coronary artery disease. Crohn's disease and ulcerative colitis were independently associated with increased odds of depression and anxiety and these results were statistically significant (p < 0.001). CONCLUSIONS IBD is associated with increased prevalence of depression and anxiety when compared to general population. Association of these psychiatric illnesses with IBD is significantly higher when compared to other chronic medical conditions.
Collapse
|
25
|
Ali H, Pamarthy R, Bolick NL, Lambert K, Naseer M. Relation between inflammatory bowel disease, depression, and inpatient outcomes in the United States. Proc AMIA Symp 2022; 35:278-283. [DOI: 10.1080/08998280.2022.2028344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Hassam Ali
- Department of Internal Medicine, East Carolina University/Vidant Medical Center, Greenville, North Carolina
| | - Rahul Pamarthy
- Department of Internal Medicine, East Carolina University/Vidant Medical Center, Greenville, North Carolina
| | | | - Karissa Lambert
- Department of Gastroenterology, East Carolina University/Vidant Medical Center, Greenville, North Carolina
| | - Maliha Naseer
- Department of Gastroenterology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
26
|
Wan F, Zhong R, Wang M, Zhou Y, Chen Y, Yi B, Hou F, Liu L, Zhao Y, Chen L, Zhang H. Caffeic Acid Supplement Alleviates Colonic Inflammation and Oxidative Stress Potentially Through Improved Gut Microbiota Community in Mice. Front Microbiol 2021; 12:784211. [PMID: 34867926 PMCID: PMC8636926 DOI: 10.3389/fmicb.2021.784211] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
Caffeic acid (CA) is one of the major phenolic acids of coffee with multiple biological activities. Our previous study found that 500 mg/kg of chlorogenic acid (CGA) had the potential capacity of alleviating colonic inflammation. Moreover, CGA can be degraded into caffeic acid (CA) by the gut microbiota in the colon. Therefore, we hypothesize that CA can exert protective effects on colonic inflammation. To test the hypothesis, 251 mg/kg CA was supplemented to DSS-induced colitis mice. The results showed that CA treatment recovered DSS-induced disease activity index (DAI), colon length, and histopathology scores of colon tissue. Additionally, CA treatment significantly decreased pro-inflammatory cytokines and malondialdehyde (MDA) levels and increased the level of IL-10, total antioxidant capacity (T-AOC), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in serum. qPCR results indicated that CA treatment dramatically downregulated mRNA expression of IL-1β, IL-6, and TNF-α as well as upregulated SOD1, GPX1, GPX2, CAT, and IL-10. In addition, CA supplementation significantly increased mRNA expression of Nrf-2, HO-1, and NQO1, which showed its antioxidant and anti-inflammatory capacities potentially by activating the Nrf-2/HO-1 pathway. Moreover, CA supplementation prevented gut barrier damage by enhancing Occludin gene expression. Furthermore, CA supplementation altered the gut microbiome composition by decreasing the relative abundance of Bacteroides and Turicibacter, and enhancing the relative abundance of Alistipes and Dubosiella. Meanwhile, CA supplementation increases the abundance of Dubosiella and Akkermansia. In conclusion, CA supplementation could effectively alleviate DSS-induced colitis by improving the defense against oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Fan Wan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,State Key Laboratory of Grassland Agro-Ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Ruqing Zhong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yexun Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxia Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-Ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
27
|
Dong S, Zhu M, Wang K, Zhao X, Hu L, Jing W, Lu H, Wang S. Dihydromyricetin improves DSS-induced colitis in mice via modulation of fecal-bacteria-related bile acid metabolism. Pharmacol Res 2021; 171:105767. [PMID: 34273490 DOI: 10.1016/j.phrs.2021.105767] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/20/2022]
Abstract
Recent studies show that the nutraceutical supplement dihydromyricetin (DHM) can alleviate IBD in murine models by downregulating the inflammatory pathways. However, the molecular mechanistic link between the therapeutic efficiency of DHM, gut microbiota, and the metabolism of microbial BAs remains elusive. In this study, we explored the improvement of DHM on the dysregulated gut microbiota of mice with dextran sulfate sodium (DSS)-induced colitis. We found that DHM could markedly improve colitis symptoms, gut barrier disruption, and colonic inflammation in DSS-treated mice. In addition, bacterial 16S rDNA sequencing assay demonstrated that DHM could alleviate gut dysbiosis in mice with colitis. Furthermore, antibiotic-mediated depletion of the gut microflora and fecal microbiome transplantation (FMT) demonstrated that the therapeutic efficiency of DHM was closely associated with gut microbiota. BA-targeted metabolomics analysis revealed that DHM restored the metabolism of microbial BAs in the gastrointestinal tract during the development of colitis. DHM significantly enriched the proportion of the beneficial Lactobacillus and Akkermansia genera, which were correlated with increased gastrointestinal levels of unconjugated BAs involving chenodeoxycholic acid and lithocholic acid, enabling the BAs to activate specific receptors, such as FXR and TGR5, and maintaining intestinal integrity. Taken together, DHM could alleviate DSS-induced colitis in mice by restoring the dysregulated gut microbiota and BA metabolism, leading to improvements in intestinal barrier function and colonic inflammation. Increased microbiota-BAs-FXR/TGR5 signaling may be the potential targets of DHM in colitis. Therefore, our findings provide novel insights into the development of novel DHM-derived drugs for the management of IBD.
Collapse
Affiliation(s)
- Sijing Dong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Min Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiaoye Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Longlong Hu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; Laboratory for Functional Metabolomics Science, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanghui Jing
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China.
| | - Haitao Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China; Laboratory for Functional Metabolomics Science, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China; Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| |
Collapse
|
28
|
Yang F, Zou Q. DisBalance: a platform to automatically build balance-based disease prediction models and discover microbial biomarkers from microbiome data. Brief Bioinform 2021; 22:6217721. [PMID: 33834198 DOI: 10.1093/bib/bbab094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/23/2022] Open
Abstract
How best to utilize the microbial taxonomic abundances in regard to the prediction and explanation of human diseases remains appealing and challenging, and the relative nature of microbiome data necessitates a proper feature selection method to resolve the compositional problem. In this study, we developed an all-in-one platform to address a series of issues in microbiome-based human disease prediction and taxonomic biomarkers discovery. We prioritize the interpretation, runtime and classification accuracy of the distal discriminative balances analysis (DBA-distal) method in selecting a set of distal discriminative balances, and develop DisBalance, a comprehensive platform, to integrate and streamline the workflows of disease model building, disease risk prediction and disease-related biomarker discovery for microbiome-based binary classifications. DisBalance allows the de novo model-building and disease risk prediction in a very fast and convenient way. To facilitate the model-driven and knowledge-driven discoveries, DisBalance dedicates multiple strategies for the mining of microbial biomarkers. The independent validation of the models constructed by the DisBalance pipeline is performed on seven microbiome datasets from the original article of DBA-distal. The implementation of the DisBalance platform is demonstrated by a complete analysis of a shotgun metagenomic dataset of Ulcerative Colitis (UC). As a free and open-source, DisBlance can be accessed at http://lab.malab.cn/soft/DisBalance. The source code and demo data for Disbalance are available at https://github.com/yangfenglong/DisBalance.
Collapse
Affiliation(s)
- Fenglong Yang
- University of Electronic Science and Technology of China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
| |
Collapse
|
29
|
Vecchiarelli HA, Morena M, Keenan CM, Chiang V, Tan K, Qiao M, Leitl K, Santori A, Pittman QJ, Sharkey KA, Hill MN. Comorbid anxiety-like behavior in a rat model of colitis is mediated by an upregulation of corticolimbic fatty acid amide hydrolase. Neuropsychopharmacology 2021; 46:992-1003. [PMID: 33452437 PMCID: PMC8115350 DOI: 10.1038/s41386-020-00939-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/11/2020] [Accepted: 12/06/2020] [Indexed: 01/29/2023]
Abstract
Peripheral inflammatory conditions, including those localized to the gastrointestinal tract, are highly comorbid with psychiatric disorders such as anxiety and depression. These behavioral symptoms are poorly managed by conventional treatments for inflammatory diseases and contribute to quality of life impairments. Peripheral inflammation is associated with sustained elevations in circulating glucocorticoid hormones, which can modulate central processes, including those involved in the regulation of emotional behavior. The endocannabinoid (eCB) system is exquisitely sensitive to these hormonal changes and is a significant regulator of emotional behavior. The impact of peripheral inflammation on central eCB function, and whether this is related to the development of these behavioral comorbidities remains to be determined. To examine this, we employed the trinitrobenzene sulfonic acid-induced model of colonic inflammation (colitis) in adult, male, Sprague Dawley rats to produce sustained peripheral inflammation. Colitis produced increases in behavioral measures of anxiety and elevations in circulating corticosterone. These alterations were accompanied by elevated hydrolytic activity of the enzyme fatty acid amide hydrolase (FAAH), which hydrolyzes the eCB anandamide (AEA), throughout multiple corticolimbic brain regions. This elevation of FAAH activity was associated with broad reductions in the content of AEA, whose decline was driven by central corticotropin releasing factor type 1 receptor signaling. Colitis-induced anxiety was reversed following acute central inhibition of FAAH, suggesting that the reductions in AEA produced by colitis contributed to the generation of anxiety. These data provide a novel perspective for the pharmacological management of psychiatric comorbidities of chronic inflammatory conditions through modulation of eCB signaling.
Collapse
Affiliation(s)
- Haley A. Vecchiarelli
- grid.22072.350000 0004 1936 7697Neuroscience Graduate Program, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Maria Morena
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Catherine M. Keenan
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Vincent Chiang
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Kaitlyn Tan
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Min Qiao
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Kira Leitl
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Alessia Santori
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Quentin J. Pittman
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Keith A. Sharkey
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N4N1 Canada
| | - Matthew N. Hill
- grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB T2N4N1 Canada ,grid.22072.350000 0004 1936 7697Department of Psychiatry, University of Calgary, Calgary, AB T2N4N1 Canada
| |
Collapse
|
30
|
Clinical and Translational Considerations for Understanding Depression and Anxiety in Patients with Inflammatory Bowel Disease. Gastroenterol Res Pract 2021; 2021:6689443. [PMID: 33747075 PMCID: PMC7960036 DOI: 10.1155/2021/6689443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/03/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022] Open
Abstract
Depression and anxiety are comorbidities of inflammatory bowel disease (IBD). Though previous studies have proposed a relationship between anxiety, depression, and IBD, causality and directionality are largely unknown. Current and future research in these areas is aimed at exploring the biological underpinnings of this relationship, specifically pertaining to small molecule metabolism, such as tryptophan. Tryptophan is acquired through the diet and is the precursor to several vital bioactive metabolites including the hormone melatonin, the neurotransmitter serotonin, and vitamin B3. In this review, we discuss previous findings relating mental health comorbidities with IBD and underline ongoing research of tryptophan catabolite analysis.
Collapse
|
31
|
Peppas S, Pansieri C, Piovani D, Danese S, Peyrin-Biroulet L, Tsantes AG, Brunetta E, Tsantes AE, Bonovas S. The Brain-Gut Axis: Psychological Functioning and Inflammatory Bowel Diseases. J Clin Med 2021; 10:377. [PMID: 33498197 PMCID: PMC7863941 DOI: 10.3390/jcm10030377] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The brain-gut axis represents a complex bi-directional system comprising multiple interconnections between the neuroendocrine pathways, the autonomous nervous system and the gastrointestinal tract. Inflammatory bowel disease (IBD), comprising Crohn's disease and ulcerative colitis, is a chronic, relapsing-remitting inflammatory disorder of the gastrointestinal tract with a multifactorial etiology. Depression and anxiety are prevalent among patients with chronic disorders characterized by a strong immune component, such as diabetes mellitus, cancer, multiple sclerosis, rheumatoid arthritis and IBD. Although psychological problems are an important aspect of morbidity and of impaired quality of life in patients with IBD, depression and anxiety continue to be under-diagnosed. There is lack of evidence regarding the exact mechanisms by which depression, anxiety and cognitive dysfunction may occur in these patients, and whether psychological disorders are the result of disease activity or determinants of the IBD occurrence. In this comprehensive review, we summarize the role of the brain-gut axis in the psychological functioning of patients with IBD, and discuss current preclinical and clinical data on the topic and therapeutic strategies potentially useful for the clinical management of these patients. Personalized pathways of psychological supports are needed to improve the quality of life in patients with IBD.
Collapse
Affiliation(s)
- Spyros Peppas
- Department of Gastroenterology, Athens Naval Hospital, 11521 Athens, Greece;
| | - Claudia Pansieri
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Daniele Piovani
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Inserm U1256 NGERE, Nancy University Hospital, Lorraine University, 54500 Vandoeuvre-les-Nancy, France;
| | - Andreas G. Tsantes
- Attiko Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.G.T.); (A.E.T.)
| | - Enrico Brunetta
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| | - Argirios E. Tsantes
- Attiko Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece; (A.G.T.); (A.E.T.)
| | - Stefanos Bonovas
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy; (C.P.); (S.D.); (E.B.)
- Humanitas Clinical and Research Center–IRCCS, 20089 Milan, Italy
| |
Collapse
|
32
|
Prevalence of IBS-type symptoms in IBD. Lancet Gastroenterol Hepatol 2020; 5:1029-1031. [DOI: 10.1016/s2468-1253(20)30291-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
|