1
|
Xing Y, Huang B, Cui Z, Zhang Q, Ma H. Dioscin improves fatty liver hemorrhagic syndrome by promoting ERα-AMPK mediated mitophagy in laying hens. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156056. [PMID: 39342780 DOI: 10.1016/j.phymed.2024.156056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Mitochondria play a crucial role in upholding metabolic homeostasis. Mitochondrial damage closely associated with the pathogenesis of fatty liver hemorrhagic syndrome (FLHS), while mitophagy being among the most effective methods for eliminating the damaged mitochondria. Dioscin, a natural extract, can activate autophagy; however, its effects on FLHS regarding mitophagy regulation remain unelucidated. PURPOSE We explored the impact of dioscin on FLHS induced by a high-energy and low-protein (HELP) diet in laying hens, mainly focused the protective effects of dioscin on mitochondrial injury. METHOD To investigate the impact of dioscin on fatty liver syndrome in laying hens, we first induced the condition by feeding them a high-energy and low-protein diet. Then, we assessed lipid metabolism-related markers using oil red staining and a commercial detection kit. In addition, the role of dioscin on fatty liver syndrome in laying hens was confirmed by assessing the activation of hepatocyte fat deposition and hepatocyte apoptosis; and the mechanism of dioscin in FLHS was investigated through LMH cell experiment in vitro. Furthermore, CETSA and molecular docking were conducted for additional confirmation. RESULT The results showed that dioscin alleviated mitochondrial damage, relieved the excessive deposition of hepatic lipid droplets and oxidative stress induced by HELP diet in laying hens. Furthermore, dioscin regulated the mitophagy by activating the estrogen receptor α (ERα)/adenosine 5'-monophosphate-activated protein kinase (AMPK) signaling pathway, thus mitigating mitochondria injury and apoptosis in hepatocytes. In addition, we found that dioscin promoted the translocation of nuclear transcription factor into nucleus by activating ERα-AMPK signaling, facilitating autophagic flux in the liver of laying hens and LMH cells. Furthermore, cells pretreated with the lysosomal acidification inhibitor bafilomycin A1 blocked the inhibitory effect of dioscin on the apoptosis induced by palmitic acid (PA)-stimulation in LMH cells, suggesting that dioscin reduces PA-induced apoptosis by activating mitophagy. Moreover, dioscin-induced lysosomal acidification and mitochondrial biogenesis were reversed in PA-induced LMH cells pretreated with ERα-specific inhibitor methylpiperidino pyrazole. CONCLUSION This study firstly demonstrated that dioscin alleviates fatty liver syndrome induced by HELP diet in laying hens. The findings from this study illustrated that dioscin plays a significant role in reducing mitochondrial damage and apoptosis, and these beneficial effects mainly achieve through promotion of ERα-AMPK signaling, which mediates autophagy within the liver of laying hens fed a HELP-diets. These findings provide a theoretical basis for considering dioscin as a possible treatment option for mitigating FLHS in egg-laying hens.
Collapse
Affiliation(s)
- Yuxiao Xing
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Benzeng Huang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyi Cui
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Quanwei Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Ruan D, Jiang J, Huang W, Fouad AM, El-Senousey HK, Lin X, Zhang S, Sun L, Yan S, Jiang Z, Jiang S. Integrated metabolomics and microbiome analysis reveal blended oil diet improves meat quality of broiler chickens by modulating flavor and gut microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:453-465. [PMID: 39679166 PMCID: PMC11638615 DOI: 10.1016/j.aninu.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/19/2024] [Accepted: 04/21/2024] [Indexed: 12/17/2024]
Abstract
This study was to evaluate the effects of different dietary oils in chicken diets on meat quality, lipid metabolites, the composition of volatile compounds, and gut microbiota. Nine hundred female 817 crossbred broilers at one day old with an average body weight of 43.56 ± 0.03 g were randomly divided into five treatments, each consisting of 6 replicates of 30 birds. The control group received soybean oil (SO); other groups received diets supplemented with rice bran oil (RO), lard (LO), poultry fat (PO), and blended oil (BO), respectively. All diets were formulated as isoenergic and isonitrogenous. Compared with SO, RO decreased ADG and 42 d BW (P < 0.05). Compared with the RO, BO increased ADG and 42 d BW and decreased FCR (P < 0.05). Compared with SO, BO increased 24 h redness (a∗) value and reduced the malondialdehyde concentration (P < 0.05), and further improved drip loss of breast muscle (P > 0.05). The proportions of C18:0 and saturated fatty acid were the highest in LO, and the proportions of C16:1, C18:1, and monounsaturated fatty acids were the highest in BO. The content of C18:2, C18:3, and polyunsaturated fatty acids were the highest in SO. The contents of glyceryl triglycerides and total esters in BO were significantly higher than those in the SO and LO group (P < 0.05). There was a substantial increment in the relative abundance of peroxisome proliferator activated receptor alpha (PPARα), acyl-CoA oxidase 1 (ACOX1), and carnitine palmitoyl-transferase 1 (CPT1A) transcripts in breast of chickens fed BO (P < 0.05). Further, dietary BO increased the relative cecal abundance of Firmicutes phylum, Ruminococcus_torques and Christensenellaceae _R-7 genera, and decreased that of Campylobacterota, Proteobacteria, and Phascolarctobacterium (P < 0.05). Genera g_Lactobacillus and Christensenellaceae _R-7 may mainly be involved in the formation of volatile flavor compounds in breast muscle. In conclusion, dietary BO improved the flavor of chickens by increasing the concentration of triglycerides and volatile flavor compounds, improving gut microbiota structure, and suppressing lipid oxidation. The potential positive effects of BO may be associated with the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Dong Ruan
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiashuai Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ahmed M. Fouad
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | | | - Xiajing Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Sai Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lihua Sun
- Guangzhou Youbaite Biotechnology Co., Ltd., Guangzhou 513356, China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zongyong Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Shouqun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
3
|
Zhang W, Wang D, Hao E, Shi L, Chen H, Zhang W, Chen Y. Positive effects and mechanism of mulberry leaf extract on alleviating fatty liver hemorrhagic syndrome in laying hens. Poult Sci 2024; 103:103998. [PMID: 39018653 PMCID: PMC11305280 DOI: 10.1016/j.psj.2024.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024] Open
Abstract
This experiment was conducted to investigate the effects of mulberry leaf extract (MLE) on alleviating fatty liver hemorrhagic syndrome (FLHS) in laying hens. The 576 Jing Fen laying hens of 56 weeks of age with good health and similar weights (1.76 ± 0.17 kg) were randomly divided into 6 groups, with 8 replicates in each group and 12 chickens in each replicate. The experiment lasted 56 d. The control group was fed a corn-soybean meal diet. The FLHS group was fed a high energy-low protein (HELP) diet, and the other four experimental groups were fed HELP diets supplemented with 0.04, 0.40, 0.80, and 1.20% MLE, respectively. The results showed that HELP treatment significantly induced liver injury, which indicated that the FLHS model was successfully established. MLE supplementation could alleviate the FLHS by reducing the liver index, abdominal fat percentage, total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and very low-density lipoprotein (VLDL) in the serum (P < 0.05), and subsequently increase the egg production rate (P < 0.05). The laying hens fed 0.8% MLE exhibited the greatest production performance (P < 0.05) and could improve serum lipid levels. In addition, the genes associated with fatty acid synthesis (ACC, HMGR and SREBP-1C) were downregulated (P < 0.05), and genes related to fatty acid oxidation (CPT1A, AMPK, and ATGL) were found to be upregulated (P < 0.05). Supplementation with 1.2% MLE significantly reduced the relative abundance of Firmicutes and Desulfurized Bacillus (P < 0.05) and significantly increased the relative abundance of Fecal Bacillus (P < 0.05). In conclusion, MLE may regulate the mRNA expression of lipid metabolism-related genes through the AMPK signaling pathway and improve cecal microbiota balance and serum lipid levels to alleviate FLHS in laying hens and subsequently improve egg production performance.
Collapse
Affiliation(s)
- Wei Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Dehe Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Erying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Lei Shi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Weiwei Zhang
- Xiangda Hezhong Biotechnology Co. Ltd, Shijiazhuang, Hebei, 050800, China
| | - Yifan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071001, China.
| |
Collapse
|
4
|
Wu W, Ma X, Chen R, Fan J, Ye W, Chen Z, Huang Q, Qian L. Effects of Phytosterol Ester Supplementation on Egg Characteristics, Eggshell Ultrastructure, Antioxidant Capacity, Liver Function and Hepatic Metabolites of Laying Hens during Peak Laying Period. Antioxidants (Basel) 2024; 13:458. [PMID: 38671906 PMCID: PMC11047565 DOI: 10.3390/antiox13040458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this experiment was to investigate the effects of dietary Phytosterol Ester (PSE) supplementation on egg characteristics, eggshell ultrastructure, antioxidant capacity, liver function, hepatic metabolites, and its mechanism of action in Hy-Line Brown laying hens during peak laying period. A total of 256 healthy Hy-Line Brown laying hens were randomly allocated into four groups. The hens in the control group were fed a basal diet, while those in the experimental groups were fed a basal diet further supplemented with 10, 20, and 40 mg/kg PSE, respectively. It was found that the addition of 20 mg/kg and 40 mg/kg PSE to the diets increased egg weight, but decreased egg breaking strength (p < 0.05). The addition of PSEs to the diets increased albumen height and Haugh unit in all experimental groups (p < 0.05). Electron microscopic observation revealed that the mammillary thickness increased significantly at doses of 20 and 40 mg/kg, but the total thickness decreased, and the effective thickness also thinned (p < 0.05). The mammillary width narrowed in all experimental groups (p < 0.001). Dietary supplementation with 40 mg/kg PSE significantly increased egg yolk Phenylalanine, Leucine, and Isoleucine levels (p < 0.05). In untargeted liver metabolomic analyses, L-Phenylalanine increased significantly in all experimental groups. Leucyl-Lysine, Glutamyl-Leucyl-Arginine, and L-Tryptophan increased significantly at doses of 10 and 20 mg/kg (p < 0.05), and L-Tyrosine increased significantly at doses of 10 and 40 mg/kg (p = 0.033). Aspartyl-Isoleucine also increased significantly at a dose of 10 mg/kg (p = 0.044). The concentration of total protein in the liver was significantly higher at doses of 20 and 40 mg/kg than that of the control group, and the concentrations of total cholesterol and low-density lipoprotein cholesterol were significantly reduced (p < 0.05). The concentration of triglyceride and alkaline phosphatase were significantly reduced in all experimental groups (p < 0.05). Steatosis and hemorrhage in the liver were also improved by observing the H&E-stained sections of the liver. Concerning the antioxidant capacity in the liver, malondialdehyde concentration was significantly reduced (p < 0.05) at a dose of 40 mg/kg. In the ovary, malondialdehyde and nitric oxide concentrations were significantly reduced (p < 0.001). In all the experimental groups, plasma nitric oxide concentration was significantly decreased while superoxide dismutase was significantly increased, and total antioxidant capacity concentration was significantly increased (p < 0.05) in the 10 mg/kg and 40 mg/kg doses. Metabolomics analyses revealed that PSEs play a role in promoting protein synthesis by promoting Aminoacyl-tRNA biosynthesis and amino acid metabolism, among other pathways. This study showed that the dietary addition of PSEs improved egg characteristics, antioxidant capacity, liver function, and symptoms of fatty liver hemorrhagic syndrome in Hy-Line Brown laying hens at peak laying stage. The changes in liver metabolism suggest that the mechanism of action may be related to pathways such as Aminoacyl-tRNA biosynthesis and amino acid metabolism. In conclusion, the present study demonstrated that PSEs are safe and effective dietary additives as an alternative to antibiotics.
Collapse
Affiliation(s)
- Wenzi Wu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (W.W.); (X.M.); (Q.H.)
| | - Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (W.W.); (X.M.); (Q.H.)
| | - Rui Chen
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.Y.); (Z.C.)
| | - Jinghui Fan
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310004, China;
| | - Wenxin Ye
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.Y.); (Z.C.)
| | - Zhuo Chen
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.Y.); (Z.C.)
| | - Qixin Huang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (W.W.); (X.M.); (Q.H.)
| | - Lichun Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (W.W.); (X.M.); (Q.H.)
| |
Collapse
|
5
|
Chu Y, Zheng Y, Li Y, Gui S, Zhao J, Zhao Y, Chen X. Dietary supplementation of magnolol alleviates fatty liver hemorrhage syndrome in postpeak Xinhua laying hens via regulation of liver lipid metabolism. Poult Sci 2024; 103:103378. [PMID: 38228060 PMCID: PMC10823128 DOI: 10.1016/j.psj.2023.103378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024] Open
Abstract
As a metabolic disease, fatty liver hemorrhagic syndrome (FLHS) has emerged as a major cause of noninfectious mortality in laying hens, resulting in substantial economic losses to the poultry industry. This study aimed to investigate the therapeutic effects of magnolol on FLHS in postpeak laying hen model, focusing on lipid metabolism, antioxidative capacity, and potential molecular mechanisms of action. We selected 150 Xinhua laying hens aged 50 wk and divided them into normal diet group (ND), high-fat diet group (HFD), 100 mg/kg magnolol group (MG100), 300 mg/kg magnolol group (MG300), 500 mg/kg magnolol group (MG500) on average. The experiment lasted for 6 wk, and liver samples were collected from the hens at the end of the experiment. The results demonstrated that the inclusion of magnolol in the diet had a significant impact on various factors. It led to a reduction in weight, an increase in egg production rate, a decrease in blood lipid levels, and an improvement in abnormal liver function, liver steatosis, and oxidative stress. These effects were particularly prominent in the MG500 group. The RNA-Seq analysis demonstrated that in the MG500 group, there was a down-regulation of genes associated with fatty acid synthesis (Acc, Fasn, Scd, Srebf1, Elovl6) compared to the HFD group. Moreover, genes related to fatty acid oxidation (CPT1A and PGC1α) were found to be up-regulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these differentially expressed genes indicated their enrichment in the PPAR signaling pathway. These findings demonstrate that magnolol can mitigate FLHS by inhibiting fatty acid synthesis and promoting fatty acid oxidation. This discovery offers a novel approach for treating FLHS in laying hens, reducing the economic losses associate with FLHS.
Collapse
Affiliation(s)
- Yi Chu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Yidanyuan Agricultural and Animal Husbandry Technology Co. LTD, Yingcheng, 432400, China
| | - Yazhen Zheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingying Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sisi Gui
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingwu Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaxiang Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaodong Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology & College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Liu M, Kang Z, Cao X, Jiao H, Wang X, Zhao J, Lin H. Prevotella and succinate treatments altered gut microbiota, increased laying performance, and suppressed hepatic lipid accumulation in laying hens. J Anim Sci Biotechnol 2024; 15:26. [PMID: 38369510 PMCID: PMC10874536 DOI: 10.1186/s40104-023-00975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 12/12/2023] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND This work aimed to investigate the potential benefits of administering Prevotella and its primary metabolite succinate on performance, hepatic lipid accumulation and gut microbiota in laying hens. RESULTS One hundred and fifty 58-week-old Hyline Brown laying hens, with laying rate below 80% and plasma triglyceride (TG) exceeding 5 mmol/L, were used in this study. The hens were randomly allocated into 5 groups and subjected to one of the following treatments: fed with a basal diet (negative control, NC), oral gavage of 3 mL/hen saline every other day (positive control, PC), gavage of 3 mL/hen Prevotella melaninogenica (107 CFU/mL, PM) or 3 mL/hen Prevotella copri (107 CFU/mL, P. copri) every other day, and basal diet supplemented with 0.25% sodium succinate (Succinate). The results showed that PM and P. copri treatments significantly improved laying rate compared to the PC (P < 0.05). The amount of lipid droplet was notably decreased by PM, P. copri, and Succinate treatments at week 4 and decreased by P. copri at week 8 (P < 0.05). Correspondingly, the plasma TG level in Succinate group was lower than that of PC (P < 0.05). Hepatic TG content, however, was not significantly influenced at week 4 and 8 (P > 0.05). PM treatment increased (P < 0.05) the mRNA levels of genes PGC-1β and APB-5B at week 4, and ACC and CPT-1 at week 8. The results indicated enhanced antioxidant activities at week 8, as evidenced by reduced hepatic malondialdehyde (MDA) level and improved antioxidant enzymes activities in PM and Succinate groups (P < 0.05). Supplementing with Prevotella or succinate can alter the cecal microbiota. Specifically, the abundance of Prevotella in the Succinate group was significantly higher than that in the other 4 groups at the family and genus levels (P < 0.05). CONCLUSIONS Oral intake of Prevotella and dietary supplementation of succinate can ameliorate lipid metabolism of laying hens. The beneficial effect of Prevotella is consistent across different species. The finding highlights that succinate, the primary metabolite of Prevotella, represents a more feasible feed additive for alleviating fatty liver in laying hens.
Collapse
Affiliation(s)
- Min Liu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Zeyue Kang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Xikang Cao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
7
|
San J, Hu J, Pang H, Zuo W, Su N, Guo Z, Wu G, Yang J. Taurine Protects against the Fatty Liver Hemorrhagic Syndrome in Laying Hens through the Regulation of Mitochondrial Homeostasis. Int J Mol Sci 2023; 24:10360. [PMID: 37373507 DOI: 10.3390/ijms241210360] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver disease caused by fat deposition in the liver of humans and mammals, while fatty liver hemorrhagic syndrome (FLHS) is a fatty liver disease in laying hens which can increase the mortality and cause severe economic losses to the laying industry. Increasing evidence has shown a close relationship between the occurrence of fatty liver disease and the disruption of mitochondrial homeostasis. Studies have proven that taurine can regulate hepatic fat metabolism, reduce hepatic fatty deposition, inhibit oxidative stress, and alleviate mitochondrial dysfunction. However, the mechanisms by which taurine regulates mitochondrial homeostasis in hepatocytes need to be further studied. In this study, we determined the effects and mechanisms of taurine on high-energy low-protein diet-induced FLHS in laying hens and in cultured hepatocytes in free fatty acid (FFA)-induced steatosis. The liver function, lipid metabolism, antioxidant capacity, mitochondrial function, mitochondrial dynamics, autophagy, and biosynthesis were detected. The results showed impaired liver structure and function, mitochondrial damage and dysfunction, lipid accumulation, and imbalance between mitochondrial fusion and fission, mitochondrial autophagy, and biosynthesis in both FLHS hens and steatosis hepatocytes. Taurine administration can significantly inhibit the occurrence of FLHS, protect mitochondria in hepatocytes from disease induced by lipid accumulation and FFA, up-regulate the expression levels of Mfn1, Mfn2, Opa1, LC3I, LC3II, PINK1, PGC-1α, Nrf1, Nrf2, and Tfam, and down-regulate the expression levels of Fis1, Drp1, and p62. In conclusion, taurine can protect laying hens from FLHS through the regulation of mitochondrial homeostasis, including the regulation of mitochondrial dynamics, autophagy, and biosynthesis.
Collapse
Affiliation(s)
- Jishuang San
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jianmin Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Huiping Pang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Wenjun Zuo
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Na Su
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Zimeng Guo
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
8
|
Tu W, Zhang Y, Jiang K, Jiang S. Osteocalcin and Its Potential Functions for Preventing Fatty Liver Hemorrhagic Syndrome in Poultry. Animals (Basel) 2023; 13:ani13081380. [PMID: 37106943 PMCID: PMC10135196 DOI: 10.3390/ani13081380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Osteocalcin (OCN) is synthesized and secreted by differentiating osteoblasts. In addition to its role in bone, OCN acts as a hormone in the pancreas, liver, muscle, fat, and other organs to regulate multiple pathophysiological processes including glucose homeostasis and adipic acid metabolism. Fat metabolic disorder, such as excessive fat buildup, is related to non-alcoholic fatty liver disease (NAFLD) in humans. Similarly, fatty liver hemorrhage syndrome (FLHS) is a metabolic disease in laying hens, resulting from lipid accumulation in hepatocytes. FLHS affects hen health with significant impact on poultry egg production. Many studies have proposed that OCN has protective function in mammalian NAFLD, but its function in chicken FLHS and related mechanism have not been completely clarified. Recently, we have revealed that OCN prevents laying hens from FLHS through regulating the JNK pathway, and some pathways related to the disease progression have been identified through both in vivo and vitro investigations. In this view, we discussed the current findings for predicting the strategy for using OCN to prevent or reduce FLHS impact on poultry production.
Collapse
Affiliation(s)
- Wenjun Tu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Yuhan Zhang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Kunyu Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
| | - Sha Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing 400715, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing 402460, China
| |
Collapse
|
9
|
Muir WI, Akter Y, Bruerton K, Groves PJ. The role of hen body weight and diet nutrient density in an extended laying cycle. Poult Sci 2022; 102:102338. [PMID: 36521298 PMCID: PMC9758487 DOI: 10.1016/j.psj.2022.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
The egg production (EP), egg quality and health of heavier or lighter hens fed a diet of either higher nutrient density (HND) or lower nutrient density (LND) during early lay, was assessed at very late lay. Based on their body weight (BW) at 18 wk of age (WOA) ISA Brown pullets were allocated as either heavier weight (HW; average 1.65 kg) or lighter weight (LW: average 1.49 kg). Half of each BW group received the HND (2,901 kcal/kg; 17.6% crude protein (CP) or LND (2726 kcal/kg, 16.4% CP) diet from 18 to 24 WOA. From 25 to 90 WOA all birds received identical early, then mid and late-lay diets. Hen BW was measured after peak-lay (36 WOA) and at 90 WOA. At 89 WOA and across 18 to 36 and 18 to 89 WOA feed intake (FI), EP, egg mass (EM), and feed conversion ratio (FCR) were calculated. Eggshell quality, breast score, relative ovary weight and liver and bone health were evaluated in very late lay. Differences in BW continued to 90 WOA. At 36 WOA HW hens produced heavier eggs, and had higher 18 to 36 WOA cumulative FI, EM (P < 0.001) and FCR (P < 0.05). When 89 WOA HW birds consumed more feed (P < 0.001) but EP, EM and FCR did not differ from LW hens. Cumulatively, 18 to 89 WOA FI and EM were higher for HW hens (P < 0.05), but cumulative EP and FCR was not different. The early-lay HND diet improved very late lay eggshell thickness (P < 0.05) and shell breaking strength (P = 0.05). Lighter hens fed HND and HW hens fed LND diet produced heavier eggs, higher relative oviduct weight and lower liver lipid peroxidase in very late lay (P < 0.05). Bone strength did not differ, but LW hens had higher femoral manganese and zinc (P < 0.05), lowering their likelihood of osteoporosis. Overall LW hens sustained EP throughout a longer laying cycle with beneficial bone characteristics. The HND diet improved eggshell strength and, in LW hens reduced hepatic oxidation.
Collapse
Affiliation(s)
- Wendy Isabelle Muir
- School of Life and Environmental Sciences, Poultry Research Foundation, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia,Corresponding author:
| | - Yeasmin Akter
- School of Life and Environmental Sciences, Poultry Research Foundation, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | | | - Peter John Groves
- Sydney School of Veterinary Science, Poultry Research Foundation, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
10
|
Wei F, Yang X, Zhang M, Xu C, Hu Y, Liu D. Akkermansia muciniphila Enhances Egg Quality and the Lipid Profile of Egg Yolk by Improving Lipid Metabolism. Front Microbiol 2022; 13:927245. [PMID: 35928144 PMCID: PMC9344071 DOI: 10.3389/fmicb.2022.927245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022] Open
Abstract
Akkermansia muciniphila (A. muciniphila) has shown potential as a probiotic for the prevention and treatment of non-alcoholic fatty liver disease in both humans and mice. However, relatively little is known about the effects of A. muciniphila on lipid metabolism, productivity, and product quality in laying hens. In this study, we explored whether A. muciniphila supplementation could improve lipid metabolism and egg quality in laying hens and sought to identify the underlying mechanism. In the first experiment, 80 Hy-Line Brown laying hens were divided into four groups, one of which was fed a normal diet (control group), while the other three groups were administered a high-energy, low-protein diet to induce fatty liver hemorrhagic syndrome (FLHS). Among the three FLHS groups, one was treated with phosphate-buffered saline, one with live A. muciniphila, and one with pasteurized A. muciniphila. In the second experiment, 140 Hy-Line Brown laying hens were divided into two groups and respectively fed a basal diet supplemented or not with A. muciniphila lyophilized powder. The results showed that, in laying hens with FLHS, treatment with either live or pasteurized A. muciniphila efficiently decreased body weight, abdominal fat deposition, and lipid content in both serum and the liver; downregulated the mRNA expression of lipid synthesis-related genes and upregulated that of lipid transport-related genes in the liver; promoted the growth of short-chain fatty acids (SCFAs)-producing microorganisms and increased the cecal SCFAs content; and improved the yolk lipid profile. Additionally, the supplementation of lyophilized powder of A. muciniphila to aged laying hens reduced abdominal fat deposition and total cholesterol (TC) levels in both serum and the liver, suppressed the mRNA expression of cholesterol synthesis-related genes in the liver, reduced TC content in the yolk, increased eggshell thickness, and reshaped the composition of the gut microbiota. Collectively, our findings demonstrated that A. muciniphila can modulate lipid metabolism, thereby, promoting laying hen health as well as egg quality and nutritive value. Live, pasteurized, and lyophilized A. muciniphila preparations all have the potential for use as additives for improving laying hen production.
Collapse
|
11
|
Cui Z, Jin N, Amevor FK, Shu G, Du X, Kang X, Ning Z, Deng X, Tian Y, Zhu Q, Wang Y, Li D, Zhang Y, Wang X, Han X, Feng J, Zhao X. Dietary Supplementation of Salidroside Alleviates Liver Lipid Metabolism Disorder and Inflammatory Response to Promote Hepatocyte Regeneration via PI3K/AKT/Gsk3-β Pathway. Poult Sci 2022; 101:102034. [PMID: 35926351 PMCID: PMC9356167 DOI: 10.1016/j.psj.2022.102034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/07/2023] Open
Abstract
Fatty liver hemorrhagic syndrome (FLHS) is a chronic hepatic disease which occurs when there is a disorder in lipid metabolism. FLHS is often observed in caged laying hens and characterized by a decrease in egg production and dramatic increase of mortality. Salidroside (SDS) is an herbal drug which has shown numerous pharmacological activities, such as protecting mitochondrial function, attenuating cell apoptosis and inflammation, and promoting antioxidant defense system. We aimed to determine the therapeutic effects of SDS on FLHS in laying hens and investigate the underlying mechanisms through which SDS operates these functions. We constructed oleic acid (OA)-induced fatty liver model in vitro and high-fat diet-induced FLHS of laying hens in vivo. The results indicated that SDS inhibited OA-induced lipid accumulation in chicken primary hepatocytes, increased hepatocyte activity, elevated the mRNA expression of proliferation related genes PCNA, CDK2, and cyclinD1 and increased the protein levels of PCNA and CDK2 (P < 0.05), as well as decreased the cleavage levels of Caspase-9, Caspase-8, and Caspase-3 and apoptosis in hepatocytes (P < 0.05). Moreover, SDS promoted the phosphorylation levels of PDK1, AKT, and Gsk3-β, while inhibited the PI3K inhibitor (P < 0.05). Additionally, we found that high-fat diet-induced FLHS hens had heavier body weight, liver weight, and abdominal fat weight, and severe steatosis in histology, compared with the control group (Con). However, hens fed with SDS maintained lighter body weight, liver weight, and abdominal fat weight, as well as normal liver without hepatic steatosis. In addition, high-fat diet-induced FLHS hens had high levels of serum total cholesterol (TC), triglyceride (TG), alanine transaminase (ALT), and aspartate aminotransferase (AST) compared to the Con group, however, in the Model+SDS group, the levels of TC, TG, ALT, and AST decreased significantly, whereas the level of superoxide dismutase (SOD) increased significantly (P < 0.05). We also found that SDS significantly decreased the mRNA expression abundance of PPARγ, SCD, and FAS in the liver, as well as increased levels of PPARα and MTTP, and decreased the mRNA expression of TNF-α, IL-1β, IL-6, and IL-8 in the Model+SDS group (P < 0.05). In summary, this study showed that 0.3 mg/mL SDS attenuated ROS generation, inhibited lipid accumulation and hepatocyte apoptosis, and promoted hepatocyte proliferation by targeting the PI3K/AKT/Gsk3-β pathway in OA-induced fatty liver model in vitro, and 20 mg/kg SDS alleviated high-fat-diet-induced hepatic steatosis, oxidative stress, and inflammatory response in laying hens in vivo.
Collapse
Affiliation(s)
- Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China; College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Ningning Jin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, P. R. China
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Xincheng Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China
| | - Xiaoqi Wang
- Agriculture and Animal Husbandry Comprehensive Service Center of Razi County, Tibet Autonomous Region, P. R. China
| | - Xue Han
- Guizhou Institute of Animal Husbandry and Veterinary Medicine, Guizhou province, P. R. China
| | - Jing Feng
- Institute of Animal Husbandry and Veterinary Medicine, College of Agriculture and Animal Husbandry, Tibet Autonomous Region, P. R. China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P. R. China.
| |
Collapse
|
12
|
Zhu Y, Zhang X, Du P, Wang Z, Luo P, Huang Y, Liu Z, Zhang H, Chen W. Dietary herbaceous mixture supplementation reduced hepatic lipid deposition and improved hepatic health status in post-peak laying hens. Poult Sci 2022; 101:101870. [PMID: 35472740 PMCID: PMC9061633 DOI: 10.1016/j.psj.2022.101870] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Fatty liver hemorrhagic syndrome is characterized by hepatic damage and hemorrhage impairing animal welfare in birds, which was well-known to be moderately relieved through dietary choline chloride supplementation in laying hens. Chinese herb has been proven to exert a positive role on hepatic health in human and rodents. Here, we investigated the effect of herbaceous mixture (HM), which consists of Andrographis paniculate, Silybum marianum, Azadirachta Indica, and Ocimum basilicum (2:3.5:1:2), on the hepatic lipid metabolism and health status in laying hens. A total of 240 Hy-line Brown hens (389-day-old) were randomly fed the basal diet with 0 mg/kg choline chloride (negative control, NC), 1,000 mg/kg choline chloride (control, Ctrl), or 300 mg/kg HM for 28 d. Birds fed HM diet exhibited lower serum triglyceride (TG) and low-density lipoprotein cholesterol concentration, and higher high-density lipoprotein cholesterol level than those received NC and Ctrl diets (P < 0.05). When compared to control and NC group, the diets with HM decreased the contents of total cholesterol and TG in liver, as well as upregulated the mRNA abundance of hepatic hormone-sensitive lipase and lipoprotein lipase. Meanwhile, the hepatic area and diameter of steatosis vacuoles were also decreased by dietary HM administration (P < 0.05), which accompanied by decreased serum alanine aminotransferase activity (P < 0.05). Birds fed HM diets enhanced the hepatic antioxidative capacity than those received NC and Ctrl diet. Dietary HM depressed the mRNA level of inflammatory cytokine as compared to NC but not Ctrl group. Collectively, the diet with 300 mg/kg HM has a favorable effect in decreasing the lipid deposition and protecting liver injury by alleviating hepatic oxidant stress and inflammation in post-peak laying hens.
Collapse
Affiliation(s)
- Yao Zhu
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengfei Du
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Ziyang Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengna Luo
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhenhua Liu
- Henan Jinqianguo Bio Tech Co., Ltd, Zhengzhou 477150, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
13
|
Parmar AB, Patel VR, Patel JM, Ramani UV, Desai DN. Efficacy of dietary quercetin supplementation with high-energy diet model in broilers: implications on zootechnical parameters, serum biochemistry, antioxidant status, patho-morphology and gene expression studies. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Muir WI, Akter Y, Bruerton K, Groves PJ. An evaluation of bird weight and diet nutrient density during early lay on ISA brown performance, egg quality, bone characteristics and liver health. Poult Sci 2022; 101:101765. [PMID: 35303686 PMCID: PMC8927826 DOI: 10.1016/j.psj.2022.101765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
This study compared the impact of a higher nutrient density (HND) or lower nutrient density (LND) diet fed during early lay to either heavier weight (HW) or lighter weight (LW) ISA Brown hens. At 18 wk of age (WOA) pullets (n = 240) were evenly assigned to either HW (n = 120) or LW (n = 120). Sixty birds from each weight group were then randomized to either the HND or LND diet treatments which were fed from 18 to 24 WOA inclusive. At 25 WOA the LND diet replaced the HND diet. All hens remained on LND diet to 50 WOA. Hen performance was measured from 18 to 50 WOA. Femur and liver health were evaluated at 50 WOA. Egg quality was assessed from 46 to 50 WOA. The 18 WOA HW hens had higher BW, cumulative egg production, cumulative feed intake (CFI), and cumulative egg mass (CEM) to both 24 and 50 WOA (P < 0.01). At 24 WOA the HND diet also generated higher BW (P < 0.001), CEM (P < 0.001) and lower cumulative feed conversion ratio (CFCR) (P < 0.01), the latter being sustained to 50 WOA (P < 0.01). At 50 WOA CFCR of LW birds was lower than HW birds (P < 0.01). Egg weight (EW), yolk diameter, and percent yolk weight were higher (P < 0.05) in the HW birds with the highest albumen to yolk ratio in LW birds (P < 0.05). Egg shape index was higher in LND diet fed birds (P < 0.01) while LW hens had higher shell phosphorus (P < 0.05). Body weight and diet nutrient density interacted on femoral diameter and cortical thickness being higher (P < 0.01) in LW birds fed HND than LW birds fed LND diets. Fatty liver hemorrhagic scores (P < 0.05) and liver lipid peroxidase (P < 0.001) at 50 WOA were higher in HW and LND diet treatments. Concurrently HW birds had the highest CFI and EW while CFCR and liver health were superior in LW and the HND diet treatment.
Collapse
|
15
|
Chen W, Shi Y, Li G, Huang C, Zhuang Y, Shu B, Cao X, Li Z, Hu G, Liu P, Guo X. Preparation of the peroxisome proliferator-activated receptor α polyclonal antibody: Its application in fatty liver hemorrhagic syndrome. Int J Biol Macromol 2021; 182:179-186. [PMID: 33838185 DOI: 10.1016/j.ijbiomac.2021.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/15/2021] [Accepted: 04/03/2021] [Indexed: 01/13/2023]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) play a key role in the regulation of metabolic homeostasis, inflammation, cellular growth, and differentiation. To further explore the potential role of PPARα in the energy homeostasis of fatty liver hemorrhagic syndrome (FLHS), we reported the prokaryotic expression and purification of chicken PPARα subunit protein, and successfully prepared a polyclonal antibody against PPARα recombinant protein. The 987 bp PPARα subunit genes were cloned into the pEASY-T3 clone vector. Then the plasmid PCR products encoding 329 amino acids were ligated to pEASY-Blunt E2 vector and transformed into BL21 to induce expression. The recombinant PPARα subunit protein, containing His-tag, was purified by affinity column chromatography using Ni-NTA affinity column. Rabbit antiserum was generated by using the concentration of recombinant PPARα subunit protein as the antigen. The results of western blotting showed that the antiserum can specifically recognize chicken endogenous PPARα protein. Immunohistochemistry and immunofluorescence showed that the PPARα mainly existed in the nucleus of hepatocytes, renal epithelial cells and hypothalamic endocrine nerve cells. More importantly, western blotting and real-time quantitative PCR indicated that FLHS significantly decreased the expression of PPARα.
Collapse
Affiliation(s)
- Wei Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bo Shu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xianhong Cao
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhengqing Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
16
|
Effects of Pyrroloquinoline Quinone on Lipid Metabolism and Anti-Oxidative Capacity in a High-Fat-Diet Metabolic Dysfunction-Associated Fatty Liver Disease Chick Model. Int J Mol Sci 2021; 22:ijms22031458. [PMID: 33535680 PMCID: PMC7867196 DOI: 10.3390/ijms22031458] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) and its interaction with many metabolic pathways raises global public health concerns. This study aimed to determine the therapeutic effects of Pyrroloquinoline quinone (PQQ, provided by PQQ.Na2) on MAFLD in a chick model and primary chicken hepatocytes with a focus on lipid metabolism, anti-oxidative capacity, and mitochondrial biogenesis. The MAFLD chick model was established on laying hens by feeding them a high-energy low-protein (HELP) diet. Primary hepatocytes isolated from the liver of laying hens were induced for steatosis by free fatty acids (FFA) and for oxidative stress by hydrogen peroxide (H2O2). In the MAFLD chick model, the dietary supplementation of PQQ conspicuously ameliorated the negative effects of the HELP diet on liver biological functions, suppressed the progression of MAFLD mainly through enhanced lipid metabolism and protection of liver from oxidative injury. In the steatosis and oxidative stress cell models, PQQ functions in the improvement of the lipid metabolism and hepatocytes tolerance to fatty degradation and oxidative damage by enhancing mitochondrial biogenesis and then increasing the anti-oxidative activity and anti-apoptosis capacity. At both the cellular and individual levels, PQQ was demonstrated to exert protective effects of hepatocyte and liver from fat accumulation through the improvement of mitochondrial biogenesis and maintenance of redox homeostasis. The key findings of the present study provide an in-depth knowledge on the ameliorative effects of PQQ on the progression of fatty liver and its mechanism of action, thus providing a theoretical basis for the application of PQQ, as an effective nutrient, into the prevention of MAFLD.
Collapse
|
17
|
Miao YF, Gao XN, Xu DN, Li MC, Gao ZS, Tang ZH, Mhlambi NH, Wang WJ, Fan WT, Shi XZ, Liu GL, Song SQ. Protective effect of the new prepared Atractylodes macrocephala Koidz polysaccharide on fatty liver hemorrhagic syndrome in laying hens. Poult Sci 2021; 100:938-948. [PMID: 33518147 PMCID: PMC7858188 DOI: 10.1016/j.psj.2020.11.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 11/10/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
Fatty liver hemorrhage syndrome (FLHS) is the most common noninfectious cause of death in backyard chickens worldwide, which can cause a sudden drop in egg production in the affected flocks and cause huge losses to the laying hens breeding industry. In this study, we prepared polysaccharide from Atractylodes macrocephala Koidz (PAMK) by one-step alcohol precipitation. The structural analysis found that PAMK with a molecular weight of 2.816 × 103 Da was composed of glucose and mannose, in a molar ratio of 0.582 to 0.418. Furthermore, we investigated the hepatoprotective effects of PAMK on high-energy and low-protein (HELP) diet-induced FLHS in laying hens. The results showed that the hens' livers of the HELP diet showed yellowish-brown, greasy, and soft, whereas the supplement of PAMK (200 mg/kg or 400 mg/kg) could alleviate such pathological changes. The liver index, the abdominal fat percentage, and liver injury induced by the HELP diet were reduced in PAMK (200 mg/kg or 400 mg/kg). Supplementing 200 mg/kg or 400 mg/kg PAMK showed improvements of the antioxidant capacity in laying hens. Furthermore, we found that the HELP diet increased the expression of hepatic lipogenesis genes and decreased the expression of fatty acid β-oxidation genes, which could be reversed by 200 mg/kg or 400 mg/kg PAMK supplementation. Nevertheless, there is no difference between the addition of 40 mg/kg PAMK and the HELP group. Collectively, these results showed that PAMK supplements could ameliorate HELP diet-induced liver injury through regulating activities of antioxidant enzymes and hepatic lipid metabolism. Therefore, PAMK could be a potential feedstuff additive to alleviate FLHS in laying hens.
Collapse
Affiliation(s)
- Y F Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - X N Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - D N Xu
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - M C Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Z S Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Z H Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - N H Mhlambi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - W J Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - W T Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - X Z Shi
- State Key Laboratory for Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - G L Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - S Q Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
18
|
Sreevallabhan S, Mohanan R, Jose SP, Sukumaran S, Jagmag T, Tilwani J, Kulkarni A. Hepatoprotective effect of essential phospholipids enriched with virgin coconut oil (Phoscoliv) on paracetamol-induced liver toxicity. J Food Biochem 2021; 45:e13606. [PMID: 33458835 DOI: 10.1111/jfbc.13606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/01/2023]
Abstract
The prevalence of liver disease is increasing year by year and it is recognized as a main health burden across the world. Nowadays, dietary nutraceuticals are found to be very effective in the prevention and treatment of liver diseases. The virgin coconut oil and phosphatidylcholine are found to have a wide range of therapeutic efficacy and the most important among them is its hepatoprotective activity. In the present study, we had evaluated the hepatoprotective effect of the novel formulation with the combination of these two which is named as Phoscoliv. For the study, adult Wistar rats were grouped into Normal control, Paracetamol-treated, and Paracetamol along with Phoscoliv-treated group. In order to evaluate the hepatoprotective effect of the drug, various parameters were analyzed. Data obtained from the study showed that Phoscoliv supplementation were found to significantly boost up the antioxidant status by enhancing the SOD, CAT, GPx, and GSH level and thereby inhibit the generation of ROS and also blocked lipid peroxidation, which was confirmed by the reduced level of TBARS. The release of pro-inflammatory cytokines was also decreased, which was eventually helped to maintain the normal architecture of the liver. Thus, from the overall result of this study reveals that Phoscoliv can be effectively used as a potent and safe hepatoprotective medicine. PRACTICAL APPLICATIONS: The over or unwanted usage of synthetic medicine is a serious problem because it can cause so many adverse health effects. Liver-related disorders are the major side effects of these drugs. Food habits of ancient people dictate that there is no other better medicine than a good food. So, treating a disease with a food or compounds derived from a food item will be more effective. Virgin coconut oil is a type of natural and organic oil, which has the capability of maintaining the body in a healthy state. Likewise, phosphatidylcholines are very important phospholipid nutrients necessary to keep the cells healthy. Both these have the potential to protect and prevent the liver damages. Therefore, the combination of these two can exhibit profound hepatoprotective activity.
Collapse
Affiliation(s)
| | - Ratheesh Mohanan
- Department of Biochemistry, St. Thomas College, Palai, Kottayam, India
| | - Svenia P Jose
- Department of Biochemistry, St. Thomas College, Palai, Kottayam, India
| | - Sandya Sukumaran
- Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
19
|
Huang J, Li G, Cao H, Yang F, Xing C, Zhuang Y, Zhang C, Liu P, Cao H, Hu G. The improving effects of biotin on hepatic histopathology and related apolipoprotein mRNA expression in laying hens with fatty liver hemorrhagic syndrome. CANADIAN JOURNAL OF ANIMAL SCIENCE 2020. [DOI: 10.1139/cjas-2019-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fatty liver hemorrhagic syndrome (FLHS) is a metabolic disease mostly observed in laying hens that causes an economic toll on the poultry industry. To investigate the improving effects of biotin on FLHS in laying hens, a total of 135 Hy-Line Brown layers of 300-d-old were randomly divided into three groups and treated for 60 d. The hens from these three groups were fed with different diets: control group (the basal diet), pathology group [high-energy-low-protein diet (HELP)], and treatment group (HELP containing a biotin dosage of 0.3 mg kg−1). The results showed that the mRNA expression level of apolipoprotein A I (apoA I) in pathology group significantly (P < 0.01) decreased on day 60 compared with the control group, while the mRNA level of apolipoprotein B100 (apoB100) increased significantly in pathology group on day 30, whereas it decreased significantly on day 60 (P < 0.05). Significantly increased mRNA levels of apoA I and apoB100 were observed in treatment group compared with the pathology group on days 30 and 60 (P < 0.05 or P < 0.01). These results indicated that biotin could effectively alleviate the pathological changes and abnormal expression of apoA I and apoB100 induced by FLHS, which might closely relate to the ability of biotin to promote egg production.
Collapse
Affiliation(s)
- Jiamei Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Hongfeng Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Fei Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population and Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, Jiangxi 330045, People’s Republic of China
| |
Collapse
|
20
|
The hepatoprotective effects of squid gonad phospholipids on fatty liver disease in zebrafish. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Wang X, Xing C, Yang F, Zhou S, Li G, Zhang C, Cao H, Hu G. Abnormal expression of liver autophagy and apoptosis-related mRNA in fatty liver haemorrhagic syndrome and improvement function of resveratrol in laying hens. Avian Pathol 2020; 49:171-178. [PMID: 31774299 DOI: 10.1080/03079457.2019.1698712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Fatty liver haemorrhagic syndrome (FLHS) is characterized by hepatic rupture and haemorrhage leading to sudden death in laying hens. Resveratrol (Res) is a natural polyphenol with antioxidant and anti-inflammatory effects that can ameliorate chronic liver disease. The aim of this study was to investigate the improved effect of Res on the altered expression of autophagy and apoptosis-related genes in laying hens with FLHS. A total of 144 healthy 150-day-old laying hens were randomly divided into four groups: control group (standard diet), HELP group (high-energy-low-protein (HELP) diet), HELP + Res group (HELP diet with 400 mg/kg Res) and Res group (standard diet with 400 mg/kg Res). Histopathological lesions of the liver and the mRNA levels of Beclin-1, Atg5, Atg7, p62, Bcl-2, Bax and Caspase-3 on days 40, 80, and 120 were measured. The results showed that lipid accumulation and hepatocyte damage in the HELP group were more serious than those in the HELP + Res group. The mRNA levels of Beclin-1, Atg5, Atg7, and Bcl-2 in the HELP and HELP + Res groups were strikingly declined (P < 0.01) compared to the control group, and their mRNA levels were markedly higher in HELP group than those in the HELP + Res group (P < 0.05). Additionally, the mRNA levels of p62, Bax and Caspase-3 were significantly increased in the HELP and HELP + Res groups (P < 0.01 or P < 0.05), but their mRNA levels in the HELP group were higher than those in the HELP + Res group (P < 0.05). Collectively, FLHS could induce severe lipid accumulation, abnormal mRNA levels of liver autophagy and apoptosis-related genes. Res as a dietary supplement could attenuate these abnormal changes.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Sihui Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| |
Collapse
|
22
|
Xing C, Wang Y, Dai X, Yang F, Luo J, Liu P, Zhang C, Cao H, Hu G. The protective effects of resveratrol on antioxidant function and the mRNA expression of inflammatory cytokines in the ovaries of hens with fatty liver hemorrhagic syndrome. Poult Sci 2019; 99:1019-1027. [PMID: 32036959 PMCID: PMC7587695 DOI: 10.1016/j.psj.2019.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/29/2019] [Accepted: 10/11/2019] [Indexed: 01/12/2023] Open
Abstract
To investigate the etiopathogenesis of fatty liver hemorrhagic syndrome (FLHS) and the protective effects of resveratrol (RSV) against FLHS in laying hens, 144 healthy 90-day-old laying hens were randomly divided into 4 groups including control (Con) group, high-energy low-protein (HELP) group, RSV group, and HELP + RSV group, each of which contained 36 hens with 3 replicates. Birds in the 4 groups were fed a basal diet, HELP diet, basal diet supplemented with 400 mg/kg RSV, and HELP diet supplemented with 400 mg/kg RSV. The histopathology of the ovary lesions on day 120, egg production, antioxidative function, and mRNA expression levels of inflammatory cytokines on days 40, 80, and 120 were determined. The lipid accumulation and hemorrhaging were more severe in the HELP group than those in the HELP + RSV group. The laying rate was markedly decreased in the HELP group compared with that in the Con and HELP + RSV groups. Furthermore, the malondialdehyde concentration was significantly increased (P < 0.05), while the levels of superoxide dismutase (SOD), catalase, and glutathione were significantly decreased (P < 0.05) in the HELP group compared with those in the Con and HELP + RSV groups. The mRNA levels of antioxidant genes (Nrf2, SOD-1, and HO-1) were markedly increased (P < 0.05) in the HELP + RSV group compared with those in the HELP group. In addition, the mRNA levels of inflammation-related genes (nuclear factor kappa B, tumor necrosis factor-α, IL-1β, and IL-6) were significantly increased (P < 0.05) in the HELP group compared with those in the Con and HELP + RSV groups. Collectively, these results indicate that oxidative stress and inflammation are involved in the occurrence and development of FLHS in the ovaries of laying hens, but RSV effectively attenuates oxidative stress and inflammation in hens with FLHS. Hence, RSV can be used as an effective feed additive to protect against FLHS.
Collapse
Affiliation(s)
- Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Yun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China.
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, P. R. China.
| |
Collapse
|
23
|
Zhuang Y, Xing C, Cao H, Zhang C, Luo J, Guo X, Hu G. Insulin resistance and metabonomics analysis of fatty liver haemorrhagic syndrome in laying hens induced by a high-energy low-protein diet. Sci Rep 2019; 9:10141. [PMID: 31300671 PMCID: PMC6626135 DOI: 10.1038/s41598-019-46183-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
Fatty liver haemorrhagic syndrome (FLHS) is a widespread metabolic disease in laying hens that causes a decrease in egg production and even death. Insulin resistance is a major contributor to the pathogenesis of nonalcoholic fatty liver disease. However, the relationship between FLHS and the insulin resistance mechanisms underlying FLHS is not well elucidated. Therefore, we established an FLHS model induced by feeding a high-energy low-protein diet. In the current study, we found that the fasting glucose and insulin concentrations were elevated in the FLHS group compared with the control group during the experimental period. The results of the oral glucose tolerance test (OGTT) and insulin sensitivity test (IST) showed a high level of insulin resistance in the FLHS model. InsR, 4EBP-1, Glut-1 and Glut-3 mRNA expression were decreased, and TOR, S6K1, and FOXO1 were elevated (P < 0.05). Metabolomic analysis with GC/MS identified 46 differentially expressed metabolites between these two groups, and of these, 14 kinds of metabolism molecules and 32 kinds of small metabolism molecules were decreased (P < 0.05). Further investigation showed that glucose, lipid and amino acid metabolism blocks in the progression of FLHS by GO functional and pathway analysis. Overall, these results suggest that insulin resistance participated in FLHS; comprehensively, metabolites participated in the dysregulated biological process.
Collapse
Affiliation(s)
- Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, P.R. China.
| |
Collapse
|
24
|
Peng G, Huang E, Ruan J, Huang L, Liang H, Wei Q, Xie X, Zeng Q, Huang J. Effects of a high energy and low protein diet on hepatic and plasma characteristics and Cidea and Cidec mRNA expression in liver and adipose tissue of laying hens with fatty liver hemorrhagic syndrome. Anim Sci J 2018; 90:247-254. [PMID: 30523654 DOI: 10.1111/asj.13140] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/12/2018] [Accepted: 10/24/2018] [Indexed: 11/30/2022]
Abstract
Cidea and Cidec are two members of Cell death-inducing DNA fragmentation factor-alpha-like effector family proteins, which could be involved in lipid or fat metabolism. To better understand the roles of Cidea and Cidec in fatty liver hemorrhagic syndrome (FLHS), 150 healthy 155-day-old Hyline Brown laying hens were randomly divided into control group (fed with basic diet) and experimental group (fed with high-energy low-protein [HELP] diet). Analysis of the liver by tissue sectioning and hematoxylin and eosin staining showed that the HELP diet induced micro-vesicular steatosis in laying hens. Subsequently, based on the liver color scores and the range of lipid accumulation observed in histological examination, we classified livers with <50% vacuolization as mild FLHS and >50% as severe FLHS. The results showed that the levels of Cidea and Cidec mRNA expression were markedly elevated in the liver and adipose tissues with FLHS and the levels of Cidea and Cidec mRNA expression in the liver with severe FLHS were significantly higher than that in the liver with mild FLHS. Thus, the present study revealed that the Cidea and Cidec genes may be involved in pathways of FLHS formation.
Collapse
Affiliation(s)
- Gang Peng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Enfu Huang
- Jiangxi Biotech Vocational College, Nanchang, China
| | - Jiming Ruan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Liumei Huang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Haiping Liang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qing Wei
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xianhua Xie
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Qingjie Zeng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jianzhen Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|