1
|
Lin Q, He Y, Li Y, Sun Q, Li FN, Lin J, Zhu X. Tumor-microenvironment-driven carbon-center radical generation accompanied by glutathione exhaustion for intensified chemodynamic therapy. J Colloid Interface Sci 2025; 692:137545. [PMID: 40228460 DOI: 10.1016/j.jcis.2025.137545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 04/16/2025]
Abstract
The high redox levels within tumors position chemodynamic therapy (CDT) as a promising therapeutic approach. However, the CDT efficiency of dihydroartemisinin (DHA) is limited by rapid clearance from bloodstream, along with inadequate endogenous ferrous ions within tumor microenvironment and heightened anti-oxidative defense inside tumor cells. To overcome these limitations, we developed an innovative virus-like hollow mesoporous manganese nanocage, loaded with DHA and subsequently cloaked with red cell membrane, designed to trigger a tumor-microenvironment-responsive free radical generation, synergized with glutathione (GSH) exhaustion for enhanced CDT efficacy. Upon accumulation in tumor tissues via the enhanced penetration and retention (EPR) effect, the high concentration of GSH in cancer cells initiates the degradation of the nanocages. This process specifically and efficiently released both Mn2+ and DHA while simultaneously depleting GSH. The released Mn2+ further catalyzed the conversion of DHA to generate large amounts of highly toxic carbon-center (•C) radicals accompanied by the generation of Mn4+. The •C radical generation led to severe mitochondria dysfunction and DNA damage, potentially causing cancer cell death. The concurrently generated Mn4+ continued to depelete intracellular GSH and induce lipid peroxidation, thereby weakening cancer cells' anti-oxidative defenses and amplifing oxidative stress. The viability of 4T1 cells treated with DHA@vhmMN@RM was significantly lower (about 30 %) than other groups. This work presents a novel nanosystem that specifically enhances the therapeutic effect of CDT by leveraging a tumor microenvironment-responsive free radical generation, coupled with GSH exhaustion, offering a new avenue for targeted drug delivery and synergistic cancer therapy.
Collapse
Affiliation(s)
- Qian Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Yueyang He
- Cancer Center and Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, PR China
| | - Yang Li
- State Key Laboratory of Structural Chemistry & Xiamen Institute of Rare Earth Materials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
| | - Qiuyue Sun
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China
| | - Fu-Nan Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China.
| | - Jinyan Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, PR China; Department of Bone and Joint Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
2
|
Waalewijn H, Almett M, Wasmann RE, Cressey TR, Easterbrook P, Olumese PE, Hesseling AC, Garcia-Prats AJ, Tarning J, Turkova A, Viney K, Svensson EM, Colbers A, Were WM, Denti P, Penazzato M. Simplifying medicine dosing for children by harmonising weight bands across therapeutic areas. THE LANCET. CHILD & ADOLESCENT HEALTH 2025; 9:274-282. [PMID: 40113369 DOI: 10.1016/s2352-4642(25)00025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 03/22/2025]
Abstract
Generally, dose recommendations for children are expressed as fixed dosing increments related to bodyweight, known as weight bands. The weight bands recommended in WHO treatment guidelines vary between diseases, leading to complexity and potential dosing errors when treating children for multiple diseases simultaneously. The introduction of a harmonised weight banding approach for orally administered drugs across disease areas could streamline dosing for young children, but implementing such an approach would require changes in current dosing recommendations. In this Health Policy, we describe the process we conducted to: identify therapeutic areas for harmonisation of weight bands; propose a harmonised weight-banding system to align with current use of weight bands in antibiotic guidance; and simulate the expected effect of dose adjustments due to weight-band harmonisation. Each step of this process, along with the effect and feasibility of weight-band harmonisation was discussed with clinical, policy, and pharmacology experts convened by WHO, representing four therapeutic areas: tuberculosis, HIV, malaria, and hepatitis C. Dosing according to harmonised weight bands across the targeted therapeutic areas was found to be feasible and should be considered for implementation by WHO disease programmes through their appropriate normative processes.
Collapse
Affiliation(s)
- Hylke Waalewijn
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Mounier Almett
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Roeland E Wasmann
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Tim R Cressey
- AMS-PHPT Research Collaboration, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anthony J Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anna Turkova
- Medical Research Council Clinical Trials Unit, University College London, London, UK
| | - Kerri Viney
- Global Tuberculosis Programme, WHO, Geneva, Switzerland
| | - Elin M Svensson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden; Department of Pharmacy, Radboud University Medical Center Research Institute for Medical Innovation, Nijmegen, Netherlands
| | - Angela Colbers
- Department of Pharmacy, Radboud University Medical Center Research Institute for Medical Innovation, Nijmegen, Netherlands
| | - Wilson M Were
- Department of Maternal, Newborn, Child and Adolescent Health and Ageing, WHO, Geneva, Switzerland
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - Martina Penazzato
- Department of Research for Health, Science Division, WHO, Geneva, Switzerland
| |
Collapse
|
3
|
Tang J, Liu Y, Xue Y, Jiang Z, Chen B, Liu J. Endoperoxide-enhanced self-assembled ROS producer as intracellular prodrugs for tumor chemotherapy and chemodynamic therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230127. [PMID: 39175885 PMCID: PMC11335464 DOI: 10.1002/exp.20230127] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 08/24/2024]
Abstract
Prodrug-based self-assembled nanoparticles (PSNs) with tailored responses to tumor microenvironments show a significant promise for chemodynamic therapy (CDT) by generating highly toxic reactive oxygen species (ROS). However, the insufficient level of intracellular ROS and the limited drug accumulation remain major challenges for further clinical transformation. In this study, the PSNs for the delivery of artesunate (ARS) are demonstrated by designing the pH-responsive ARS-4-hydroxybenzoyl hydrazide (HBZ)-5-amino levulinic acid (ALA) nanoparticles (AHA NPs) with self-supplied ROS for excellent chemotherapy and CDT. The PSNs greatly improved the loading capacity of artesunate and the ROS generation from endoperoxide bridge using the electron withdrawing group attached directly to C10 site of artesunate. The ALA and ARS-HBZ could be released from AHA NPs under the cleavage of hydrazone bonds triggered by the acidic surroundings. Besides, the ALA increased the intracellular level of heme in mitochondria, further promoting the ROS generation and lipid peroxidation with ARS-HBZ for excellent anti-tumor effects. Our study improved the chemotherapy of ARS through the chemical modification, pointing out the potential applications in the clinical fields.
Collapse
Affiliation(s)
- JunJie Tang
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
| | - Yadong Liu
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
| | - Yifan Xue
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
| | - Zhaozhong Jiang
- Department of Biomedical EngineeringIntegrated Science and Technology CenterYale UniversityWest HavenConnecticutUSA
| | - Baizhu Chen
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical InstrumentSun Yat‐Sen UniversityGuangzhouChina
| | - Jie Liu
- School of Biomedical EngineeringShenzhen Campus of Sun Yat‐Sen UniversityShenzhenGuangdongPeople's Republic of China
| |
Collapse
|
4
|
Mlugu EM, Minzi OMS, Johansson M, Kamuhabwa AAR, Aklillu E. Pharmacokinetics of piperaquine and its association with intermittent malaria preventive therapy outcomes during pregnancy. BMC Pharmacol Toxicol 2024; 25:38. [PMID: 38978151 PMCID: PMC11229336 DOI: 10.1186/s40360-024-00762-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Dihydroartemisinin-piperaquine (DHP) recently showed superior effectiveness over sulfadoxine-pyrimethamine for malaria intermittent preventive treatment in pregnancy (IPTp). We investigated day 7 piperaquine pharmacokinetics and its therapeutic efficacy in preventing malaria during pregnancy. METHODS Malaria-free (mRDT) pregnant women (n = 400) who received monthly IPTp-DHP were enrolled and followed till delivery. Day 7 Plasma piperaquine concentrations were determined after each IPTp dose using UPLC/MS/MS. IPTp outcomes (symptomatic malaria and parasitemia during pregnancy, placental malaria, and maternal malaria at delivery) were monitored. Linear mixed model and Cox regression were used to assess predictors of day 7 piperaquine concentration and treatment outcome, respectively. RESULTS The incidences of symptomatic malaria and parasitemia during pregnancy per 100 person-year at risk were 2 and 33, respectively. The prevalence of histopathologically confirmed placental malaria and maternal malaria at delivery were 3% and 9.8%, respectively. Repeated monthly IPTp-DHP resulted in significantly increased day 7 plasma piperaquine concentration (p < 0.001). Following the 1st, 2nd, and 3rd monthly IPTp-DHP doses, the proportions of women with day 7 piperaquine concentration below the therapeutic threshold (< 30 ng/mL) were 6.1%, 4.1% and 3.6%, respectively. Factors such as maternal age, body weight and trimester were not significant predictors of day 7 piperaquine concentration. However, having a low day 7 piperaquine plasma concentration (< 30 ng/mL) was significantly associated with a higher risk of parasitemia during pregnancy (p = 0.004). CONCLUSION Lower day 7 piperaquine plasma concentration is a risk factor for parasitemia during pregnancy. Single plasma sampling at day 7 can be used to monitor piperaquine effectiveness during IPTp-DHP. TRIAL REGISTRATION Registered 09/12/2016, PACTR201612001901313.
Collapse
Affiliation(s)
- Eulambius M Mlugu
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P. O, Box 65013, Dar es Salaam, Tanzania.
| | - Omary M S Minzi
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P. O, Box 65013, Dar es Salaam, Tanzania
| | - Mats Johansson
- Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital, Huddinge, Stockholm, 141 86, Sweden
| | - Appolinary A R Kamuhabwa
- Department of Clinical Pharmacy and Pharmacology, School of Pharmacy, Muhimbili University of Health and Allied Sciences, P. O, Box 65013, Dar es Salaam, Tanzania
| | - Eleni Aklillu
- Department of Global Public Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Blessborn D, Kaewkhao N, Tarning J. A high-throughput LC-MS/MS assay for piperaquine from dried blood spots: Improving malaria treatment in resource-limited settings. J Mass Spectrom Adv Clin Lab 2024; 31:19-26. [PMID: 38229676 PMCID: PMC10789632 DOI: 10.1016/j.jmsacl.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/04/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
Background Malaria is a parasitic disease that affects many of the poorest economies, resulting in approximately 241 million clinical episodes and 627,000 deaths annually. Piperaquine, when administered with dihydroartemisinin, is an effective drug against the disease. Drug concentration measurements taken on day 7 after treatment initiation have been shown to be a good predictor of therapeutic success with piperaquine. A simple capillary blood collection technique, where blood is dried onto filter paper, is especially suitable for drug studies in remote areas or resource-limited settings or when taking samples from children, toddlers, and infants. Methods Three 3.2 mm discs were punched out from a dried blood spot (DBS) and then extracted in a 96-well plate using solid phase extraction on a fully automated liquid handling system. The analysis was performed using LC-MS/MS with a calibration range of 3 - 1000 ng/mL. Results The recovery rate was approximately 54-72 %, and the relative standard deviation was below 9 % for low, middle and high quality control levels. The LC-MS/MS quantification limit of 3 ng/mL is sensitive enough to detect piperaquine for up to 4-8 weeks after drug administration, which is crucial when evaluating recrudescence and drug resistance development. While different hematocrit levels can affect DBS drug measurements, the effect was minimal for piperaquine. Conclusion A sensitive LC-MS/MS method, in combination with fully automated extraction in a 96-well plate format, was developed and validated for the quantification of piperaquine in DBS. The assay was implemented in a bioanalytical laboratory for processing large-scale clinical trial samples.
Collapse
Affiliation(s)
- Daniel Blessborn
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Natpapat Kaewkhao
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Chan XHS, Chotsiri P, Capel RA, Pike J, Hanboonkunupakarn B, Lee SJ, Hanafiah M, Win YN, Cremer MA, Kiechel J, Ogutu B, Taylor WRJ, Burton RB, Tarning J, White NJ. Cardiovascular concentration-effect relationships of amodiaquine and its metabolite desethylamodiaquine: Clinical and preclinical studies. Br J Clin Pharmacol 2023; 89:1176-1186. [PMID: 36256474 PMCID: PMC7614325 DOI: 10.1111/bcp.15569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/18/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022] Open
Abstract
AIMS Amodiaquine is a 4-aminoquinoline used extensively for the treatment and prevention of malaria. Orally administered amodiaquine is largely converted to the active metabolite desethylamodiaquine. Amodiaquine can cause bradycardia, hypotension, and electrocardiograph QT interval prolongation, but the relationship of these changes to drug concentrations is not well characterized. METHODS We conducted a secondary analysis of a pharmacokinetic study of the cardiac safety of amodiaquine (10 mg base/kg/day over 3 days) in 54 Kenyan adults (≥18 years) with uncomplicated malaria. Nonlinear mixed effects modelling was used to assess amodiaquine and desethylamodiaquine concentration-effect relationships for vital sign (pulse rate, blood pressure) and electrocardiograph interval (QT, QRS, PR) outcomes. We also measured the spontaneous beating heart rate after cumulative dosing of amodiaquine and desethylamodiaquine in isolated mouse atrial preparations. RESULTS Amodiaquine and desethylamodiaquine caused concentration-dependent mean decreases in pulse rate (1.9 beats/min per 100 nmol/L; 95% confidence interval: 1.5-2.4), supine systolic blood pressure (1.7 mmHg per 100 nmol/L; 1.2-2.1), erect systolic blood pressure (1.5 mmHg per 100 nmol/L; 1.0-2.0) and erect diastolic blood pressure (1.4 mmHg per 100 nmol/L; 1.0-1.7). The mean QT interval prolongation was 1.4 ms per 100 nmol/L irrespective of correction factor after adjustment for residual heart rate dependency. There was no significant effect of drug concentration on postural change in blood pressure or PR and QRS intervals. In mouse atria, the spontaneous beating rate was significantly reduced by amodiaquine (n = 6) and desethylamodiaquine (n = 8) at 3 μmol/L (amodiaquine: 10 ± 2%; desethylamodiaquine: 12 ± 3%) and 10 μmol/L (amodiaquine: 50 ± 7%; desethylamodiaquine: 46 ± 6%) concentrations with no significant difference in potency between the 2 compounds. CONCLUSION Amodiaquine and desethylamodiaquine have concentration-dependent effects on heart rate, blood pressure, and ventricular repolarization.
Collapse
Affiliation(s)
- Xin Hui S. Chan
- Mahidol‐Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Palang Chotsiri
- Mahidol‐Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | | | - James Pike
- Mahidol‐Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Borimas Hanboonkunupakarn
- Mahidol‐Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Department of Clinical Tropical Medicine, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Sue J. Lee
- Mahidol‐Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Maryam Hanafiah
- Mahidol‐Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Yan Naung Win
- Mahidol‐Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Department of Preventive and Social MedicineUniversity of MedicineTaunggyiMyanmar
| | | | | | | | - Walter R. J. Taylor
- Mahidol‐Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | | | - Joel Tarning
- Mahidol‐Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of MedicineUniversity of OxfordOxfordUK
- WorldWide Antimalarial Research Network, Centre for Tropical Medicine and Global Health, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Nicholas J. White
- Mahidol‐Oxford Tropical Medicine Research Unit, Faculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
7
|
Hughes E, Wallender E, Kajubi R, Jagannathan P, Ochieng T, Kakuru A, Kamya MR, Clark TD, Rosenthal PJ, Dorsey G, Aweeka F, Savic RM. Piperaquine-Induced QTc Prolongation Decreases With Repeated Monthly Dihydroartemisinin-Piperaquine Dosing in Pregnant Ugandan Women. Clin Infect Dis 2022; 75:406-415. [PMID: 34864925 PMCID: PMC9427153 DOI: 10.1093/cid/ciab965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Intermittent preventive treatment with monthly dihydroartemisinin-piperaquine (DHA-PQ) is highly effective at preventing both malaria during pregnancy and placental malaria. Piperaquine prolongs the corrected QT interval (QTc), and it is possible that repeated monthly dosing could lead to progressive QTc prolongation. Intensive characterization of the relationship between piperaquine concentration and QTc interval throughout pregnancy can inform effective, safe prevention guidelines. METHODS Data were collected from a randomized controlled trial, where pregnant Ugandan women received malaria chemoprevention with monthly DHA-PQ (120/960 mg DHA/PQ; n = 373) or sulfadoxine-pyrimethamine (SP; 1500/75 mg; n = 375) during the second and third trimesters of pregnancy. Monthly trough piperaquine samples were collected throughout pregnancy, and pre- and postdose electrocardiograms were recorded at 20, 28, and 36 weeks' gestation in each woman. The pharmacokinetics-QTc relationship for piperaquine and QTc for SP were assessed using nonlinear mixed-effects modeling. RESULTS A positive linear relationship between piperaquine concentration and Fridericia corrected QTc interval was identified. This relationship progressively decreased from a 4.42 to 3.28 to 2.13 millisecond increase per 100 ng/mL increase in piperaquine concentration at 20, 28, and 36 weeks' gestation, respectively. Furthermore, 61% (n = 183) of women had a smaller change in QTc at week 36 than week 20. Nine women given DHA-PQ had grade 3-4 cardiac adverse events. SP was not associated with any change in QTc. CONCLUSIONS Repeated DHA-PQ dosing did not result in increased risk of QTc prolongation and the postdose QTc intervals progressively decreased. Monthly dosing of DHA-PQ in pregnant women carries minimal risk of QTc prolongation. CLINICAL TRIALS REGISTRATION NCT02793622.
Collapse
Affiliation(s)
- Emma Hughes
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Erika Wallender
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Richard Kajubi
- Infectious Disease Research Collaboration, Kampala, Uganda
| | | | - Teddy Ochieng
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Abel Kakuru
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Moses R Kamya
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Tamara D Clark
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Francesca Aweeka
- Department of Clinical Pharmacy, University of California San Francisco, San Francisco, California, USA
| | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
8
|
Piperaquine Pharmacokinetic and Pharmacodynamic Profiles in Healthy Volunteers of Papua New Guinea after Administration of Three-Monthly Doses of Dihydroartemisinin–Piperaquine. Antimicrob Agents Chemother 2022; 66:e0018522. [DOI: 10.1128/aac.00185-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mass drug administration (MDA) with monthly dihydroartemisinin-piperaquine (DHA-PQP) appears useful in malaria control and elimination strategies. Determining the relationship between consecutive piperaquine phosphate (PQP) exposure and its impact on QT interval prolongation is a key safety consideration for MDA campaigns.
Collapse
|
9
|
Han W, Duan X, Ni K, Li Y, Chan C, Lin W. Co-delivery of dihydroartemisinin and pyropheophorbide-iron elicits ferroptosis to potentiate cancer immunotherapy. Biomaterials 2022; 280:121315. [PMID: 34920370 PMCID: PMC8724418 DOI: 10.1016/j.biomaterials.2021.121315] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Dihydroartemisinin (DHA) has shown cytotoxicity against various tumor cells in vitro in an iron-dependent manner, but its in vivo antitumor efficacy is compromised by its rapid degradation and clearance. Here we show the induction of ferroptosis by DHA in an immunogenic fashion and the maximization of in vivo antitumor efficacy of DHA by co-delivering a cholesterol derivative of DHA (Chol-DHA) and Pyropheophorbide-iron (Pyro-Fe) in ZnP@DHA/Pyro-Fe core-shell nanoparticles. ZnP@DHA/Pyro-Fe particles stabilize DHA against hydrolysis and prolong blood circulation of Chol-DHA and Pyro-Fe for their enhanced uptake in tumors. Co-delivery of an exogenous iron complex and DHA induces more ROS production and causes significant tumor inhibition in vivo. By increasing tumor immunogenicity, the combination of DHA and Pyro-Fe sensitizes non-immunogenic colorectal tumors to anti-PD-L1 checkpoint blockade immunotherapy. These findings suggest the potential of using nanotechnology to repurpose DHA and other drugs with excellent safety profiles for combination with immune checkpoint blockade to treat cancers.
Collapse
Affiliation(s)
- Wenbo Han
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaopin Duan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Kaiyuan Ni
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Youyou Li
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Christina Chan
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA; Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, IL, 60637, USA.
| |
Collapse
|
10
|
Wallender E, Ali AM, Hughes E, Kakuru A, Jagannathan P, Muhindo MK, Opira B, Whalen M, Huang L, Duvalsaint M, Legac J, Kamya MR, Dorsey G, Aweeka F, Rosenthal PJ, Savic RM. Identifying an optimal dihydroartemisinin-piperaquine dosing regimen for malaria prevention in young Ugandan children. Nat Commun 2021; 12:6714. [PMID: 34795281 PMCID: PMC8602248 DOI: 10.1038/s41467-021-27051-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 10/29/2021] [Indexed: 12/01/2022] Open
Abstract
Intermittent preventive treatment (IPT) with dihydroartemisinin-piperaquine (DP) is highly protective against malaria in children, but is not standard in malaria-endemic countries. Optimal DP dosing regimens will maximize efficacy and reduce toxicity and resistance selection. We analyze piperaquine (PPQ) concentrations (n = 4573), malaria incidence data (n = 326), and P. falciparum drug resistance markers from a trial of children randomized to IPT with DP every 12 weeks (n = 184) or every 4 weeks (n = 96) from 2 to 24 months of age (NCT02163447). We use nonlinear mixed effects modeling to establish malaria protective PPQ levels and risk factors for suboptimal protection. Compared to DP every 12 weeks, DP every 4 weeks is associated with 95% protective efficacy (95% CI: 84-99%). A PPQ level of 15.4 ng/mL reduces the malaria hazard by 95%. Malnutrition reduces PPQ exposure. In simulations, we show that DP every 4 weeks is optimal across a range of transmission intensities, and age-based dosing improves malaria protection in young or malnourished children.
Collapse
Affiliation(s)
- Erika Wallender
- grid.266102.10000 0001 2297 6811Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA USA
| | - Ali Mohamed Ali
- grid.266102.10000 0001 2297 6811Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA USA
| | - Emma Hughes
- grid.266102.10000 0001 2297 6811Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA USA
| | - Abel Kakuru
- grid.463352.5Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Prasanna Jagannathan
- grid.168010.e0000000419368956Department of Medicine, Stanford University, Palo Alto, CA USA
| | | | - Bishop Opira
- grid.463352.5Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Meghan Whalen
- grid.266102.10000 0001 2297 6811Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA USA
| | - Liusheng Huang
- grid.266102.10000 0001 2297 6811Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA USA
| | - Marvin Duvalsaint
- grid.266102.10000 0001 2297 6811Department of Medicine, University of California, San Francisco, San Francisco, CA USA
| | - Jenny Legac
- grid.266102.10000 0001 2297 6811Department of Medicine, University of California, San Francisco, San Francisco, CA USA
| | - Moses R. Kamya
- grid.463352.5Infectious Diseases Research Collaboration, Kampala, Uganda ,grid.11194.3c0000 0004 0620 0548Department of Medicine, Makerere University, Kampala, Uganda
| | - Grant Dorsey
- grid.266102.10000 0001 2297 6811Department of Medicine, University of California, San Francisco, San Francisco, CA USA
| | - Francesca Aweeka
- grid.266102.10000 0001 2297 6811Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA USA
| | - Philip J. Rosenthal
- grid.266102.10000 0001 2297 6811Department of Medicine, University of California, San Francisco, San Francisco, CA USA
| | - Rada M. Savic
- grid.266102.10000 0001 2297 6811Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA USA
| |
Collapse
|
11
|
Vignier N, Bouchaud O, Angheben A, Bottieau E, Calleri G, Salas-Coronas J, Martin C, Ramos JM, Mechain M, Rapp C, Nothdurft HD, Velasco M, Bardají A, Rojo-Marcos G, Visser LG, Hatz C, Bisoffi Z, Jelinek T, Duparc S, Bourhis Y, Tommasini S, Iannucelli M, Bacchieri A, Mattera GG, Merlo Pich E, Behrens RH. Longitudinal study based on a safety registry for malaria patients treated with artenimol-piperaquine in six European countries. Malar J 2021; 20:214. [PMID: 33964945 PMCID: PMC8105939 DOI: 10.1186/s12936-021-03750-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/29/2021] [Indexed: 11/10/2022] Open
Abstract
Background European travellers to endemic countries are at risk of malaria and may be affected by a different range of co-morbidities than natives of endemic regions. The safety profile, especially cardiac issues, of artenimol (previously dihydroartemisinin)–piperaquine (APQ) Eurartesim® during treatment of uncomplicated imported falciparum malaria is not adequately described due to the lack of longitudinal studies in this population. The present study was conducted to partially fill this gap. Methods Participants were recruited through Health Care Provider’s safety registry in 15 centres across 6 European countries in the period 2013–2016. Adverse events (AE) were collected, with a special focus on cardiovascular safety by including electrocardiogram QT intervals evaluated after correction with either Bazett’s (QTcB) or Fridericia’s (QTcF) methods, at baseline and after treatment. QTcB and/or QTcF prolongation were defined by a value > 450 ms for males and children and > 470 ms for females. Results Among 294 participants, 30.3% were women, 13.7% of Caucasian origin, 13.5% were current smoker, 13.6% current alcohol consumer and 42.2% declared at least one illness history. The mean (SD) age and body mass index were 39.8 years old (13.2) and 25.9 kg/m2 (4.7). Among them, 75 reported a total of 129 AE (27 serious), 46 being suspected to be related to APQ (11 serious) and mostly labelled as due to haematological, gastrointestinal, or infection. Women and Non-African participants had significantly (p < 0.05) more AEs. Among AEs, 21 were due to cardiotoxicity (7.1%), mostly QT prolongation, while 6 were due to neurotoxicity (2.0%), mostly dizziness. Using QTcF correction, QT prolongation was observed in 17/143 participants (11.9%), only 2 of them reporting QTcF > 500 ms (milliseconds) but no clinical symptoms. Using QTcB correction increases of > 60 ms were present in 9 participants (6.3%). A trend towards increased prolongation was observed in those over 65 years of age but only a few subjects were in this group. No new safety signal was reported. The overall efficacy rate was 255/257 (99.2%). Conclusions APQ appears as an effective and well-tolerated drug for treatment of malaria in patients recruited in European countries. AEs and QT prolongation were in the range of those obtained in larger cohorts from endemic countries. Trial registration This study has been registered in EU Post-Authorization Studies Register as EUPAS6942 Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03750-x.
Collapse
Affiliation(s)
- Nicolas Vignier
- Department of Infectious and Tropical Diseases, and Laboratoire Éducations et Pratiques de Santé (LEPS EA 3412), Sorbonne Paris Nord University, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France. .,Centre D'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, France. .,INSERM, Sorbonne Université, Institut Pierre Louis D'Épidémiologie et de Santé Publique IPLESP, Paris, France.
| | - Olivier Bouchaud
- Department of Infectious and Tropical Diseases, and Laboratoire Éducations et Pratiques de Santé (LEPS EA 3412), Sorbonne Paris Nord University, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Bobigny, France.,TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy
| | - Andrea Angheben
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Emmanuel Bottieau
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,Institute of Tropical Medicine, Antwerp, Belgium
| | - Guido Calleri
- Azienda Sanitaria Locale "Cità Di Torino", Torino, Italy
| | - Joaquín Salas-Coronas
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,Tropical Medicine Unit, Hospital de Poniente, El Ejido, Almería, Spain
| | | | - José Manuel Ramos
- Consulta de Enfermedades Importadas Y Parasitología Clínica, Unidad de Enfermedades Infecciosas, Hospital General Universitario Alicante, Alicante, Spain
| | | | | | | | - Maria Velasco
- Hospital Universitario Fundación Alcorcón, Madrid, Spain
| | - Azucena Bardají
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação Em Saúde de Manhiça, Maputo, Mozambique.,Consorcio de Investigación Biomédica en Red de Epidemiología Y Salud Pública (CIBERESP), Madrid, Spain
| | - Gerardo Rojo-Marcos
- Hospital Universitario Príncipe de Asturias, Alcalà de Henares, Madrid, Spain
| | - Leo G Visser
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,Department of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Christoph Hatz
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Zeno Bisoffi
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Italy
| | - Tomas Jelinek
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,Berliner Centrum Fürr Reise- Und Tropenmedizin, Berlin, Germany
| | | | | | | | | | | | | | | | - Ronald H Behrens
- TropNet, A European Network for Tropical and Travel Medicine, Verona, Italy.,Clinical Research Dept, Faculty of Infectious & Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
12
|
Semimechanistic Pharmacokinetic and Pharmacodynamic Modeling of Piperaquine in a Volunteer Infection Study with Plasmodium falciparum Blood-Stage Malaria. Antimicrob Agents Chemother 2021; 65:AAC.01583-20. [PMID: 33468477 PMCID: PMC8097471 DOI: 10.1128/aac.01583-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/10/2021] [Indexed: 11/20/2022] Open
Abstract
Dihydroartemisinin-piperaquine is a recommended first-line artemisinin combination therapy for Plasmodium falciparum malaria. Piperaquine is also under consideration for other antimalarial combination therapies. The aim of this study was to develop a pharmacokinetic-pharmacodynamic model that might be useful when optimizing the use of piperaquine in new antimalarial combination therapies. The pharmacokinetic-pharmacodynamic model was developed using data from a previously reported dose-ranging study where 24 healthy volunteers were inoculated with 1,800 blood-stage Plasmodium falciparum parasites. All volunteers received a single oral dose of piperaquine (960 mg, 640 mg, or 480 mg) on day 7 or day 8 after parasite inoculation in separate cohorts. Parasite densities were measured by quantitative PCR (qPCR), and piperaquine levels were measured in plasma samples. We used nonlinear mixed-effect modeling to characterize the pharmacokinetic properties of piperaquine and the parasite dynamics associated with piperaquine exposure. The pharmacokinetics of piperaquine was described by a three-compartment disposition model. A semimechanistic parasite dynamics model was developed to explain the maturation of parasites, sequestration of mature parasites, synchronicity of infections, and multiplication of parasites, as seen in natural clinical infections with P. falciparum malaria. Piperaquine-associated parasite killing was estimated using a maximum effect (E max) function. Treatment simulations (i.e., 3-day oral dosing of dihydroartemisinin-piperaquine) indicated that to be able to combat multidrug-resistant infections, an ideal additional drug in a new antimalarial triple-combination therapy should have a parasite reduction ratio of ≥102 per life cycle (38.8 h) with a duration of action of ≥2 weeks. The semimechanistic pharmacokinetic-pharmacodynamic model described here offers the potential to be a valuable tool for assessing and optimizing current and new antimalarial drug combination therapies containing piperaquine and the impact of these therapies on killing multidrug-resistant infections. (This study has been registered in the Australian and New Zealand Clinical Trials Registry under no. ANZCTRN12613000565741.).
Collapse
|
13
|
Hassett MR, Roepe PD. In vitro growth competition experiments that suggest consequences of the substandard artemisinin epidemic that may be accelerating drug resistance in P. falciparum malaria. PLoS One 2021; 16:e0248057. [PMID: 33690638 PMCID: PMC7942984 DOI: 10.1371/journal.pone.0248057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
Over the past decade, artemisinin (ART)-combination therapies (ACTs) have shown declining efficacy within Southeast Asia (SEA). These resistance-like phenomena manifest as a delayed clearance phenotype (DCP) in some patients treated with ACTs. ACTs are currently the recommended treatment for P. falciparum infections by the World Health Organization (WHO), and they are our last line of defense to effectively treat all strains of malaria. Acceleration of antimicrobial resistance (AMR) is often theorized to be exacerbated by the use of subtherapeutic dosages of drugs ("substandard" drug), which for ACTs has been well documented over the last decade. Troublingly, in 2017, the WHO estimated that nearly 1 in 10 medical products tested in low- and middle-income countries failed to meet quality standards. We have developed a tissue culture-based approach for testing possible connections between substandard treatment and the spread of ACT resistant blood stage forms of P. falciparum. Via sequencing of pfk13, a molecular marker that is predictive for ART resistance (ARTR), we monitor competition of sensitive vs resistant strains over time and under various conditions and define conditions that favor emergence of ARTR parasites. Our findings help to define the conditions under which substandard drug treatments might favor the proliferation of mutant PfK13-mediated drug resistant strains over drug sensitive.
Collapse
Affiliation(s)
- Matthew R. Hassett
- Dept. of Chemistry and Dept. of Biochemistry & Cellular & Molecular Biology, Georgetown University (MRH, PDR), Washington, DC, United States of America
| | - Paul D. Roepe
- Dept. of Chemistry and Dept. of Biochemistry & Cellular & Molecular Biology, Georgetown University (MRH, PDR), Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
14
|
Piperaquine Pharmacokinetics during Intermittent Preventive Treatment for Malaria in Pregnancy. Antimicrob Agents Chemother 2021; 65:AAC.01150-20. [PMID: 33361303 PMCID: PMC8092554 DOI: 10.1128/aac.01150-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022] Open
Abstract
Dihydroartemisinin-piperaquine (DP) is a long-acting artemisinin combination treatment that provides effective chemoprevention and has been proposed as an alternative antimalarial drug for intermittent preventive therapy in pregnancy (IPTp). Several pharmacokinetic studies have shown that dose adjustment may not be needed for the treatment of malaria in pregnancy with DP. Dihydroartemisinin-piperaquine (DP) is a long-acting artemisinin combination treatment that provides effective chemoprevention and has been proposed as an alternative antimalarial drug for intermittent preventive therapy in pregnancy (IPTp). Several pharmacokinetic studies have shown that dose adjustment may not be needed for the treatment of malaria in pregnancy with DP. However, there are limited data on the optimal dosing for IPTp. This study aimed to evaluate the population pharmacokinetics of piperaquine given as IPTp in pregnant women. Pregnant women were enrolled in clinical trials conducted in Kenya and Indonesia and treated with standard 3-day courses of DP, administered in 4- to 8-week intervals from the second trimester until delivery. Pharmacokinetic blood samples were collected for piperaquine drug measurements before each treatment round, at the time of breakthrough symptomatic malaria, and at delivery. Piperaquine population pharmacokinetic properties were investigated using nonlinear mixed-effects modeling with a prior approach. In total, data from 366 Kenyan and 101 Indonesian women were analyzed. The pharmacokinetic properties of piperaquine were adequately described using a flexible transit absorption (n = 5) followed by a three-compartment disposition model. Gestational age did not affect the pharmacokinetic parameters of piperaquine. After three rounds of monthly IPTp, 9.45% (95% confidence interval [CI], 1.8 to 26.5%) of pregnant women had trough piperaquine concentrations below the suggested target concentration (10.3 ng/ml). Translational simulations suggest that providing the full treatment course of DP at monthly intervals provides sufficient protection to prevent malaria infection. Monthly administration of DP has the potential to offer optimal prevention of malaria during pregnancy. (This study has been registered at ClinicalTrials.gov under identifier NCT01669941 and in the ISRCTN under number ISRCTN34010937.)
Collapse
|
15
|
Wu W, Lu C, Liang Y, Zhang H, Deng C, Wang Q, Xu Q, Tan B, Zhou C, Song J. Electrocardiographic effect of artemisinin-piperaquine, dihydroartemisinin-piperaquine, and artemether-lumefantrine treatment in falciparum malaria patients. Rev Soc Bras Med Trop 2021; 54:e05362020. [PMID: 33605379 PMCID: PMC7891559 DOI: 10.1590/0037-8682-0536-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/15/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Artemisinin-based combination therapy (ACT), such as artemisinin-piperaquine (AP), dihydroartemisinin-piperaquine (DP), and artemether-lumefantrine (AL), is the first-line treatment for malaria in many malaria-endemic areas. However, we lack a detailed evaluation of the cardiotoxicity of these ACTs. This study aimed to analyze the electrocardiographic effects of these three ACTs in malaria patients. METHODS We analyzed the clinical data of 89 hospitalized patients with falciparum malaria who had received oral doses of three different ACTs. According to the ACTs administered, these patients were divided into three treatment groups: 27 treated with AP (Artequick), 31 with DP (Artekin), and 31 with AL (Coartem). Electrocardiograms and other indicators were recorded before and after the treatment. The QT interval was calculated using Fridericia's formula (QTcF) and Bazett's formula (QTcB). RESULTS Both QTcF and QTcB interval prolongation occurred in all three groups. The incidence of such prolongation between the three groups was not significantly different. The incidence of both moderate and severe prolongation was not significantly different between the three groups. The ΔQTcF and ΔQTcB of the three groups were not significantly different. The intra-group comparison showed significant prolongation of QTcF after AL treatment. CONCLUSIONS Clinically recommended doses of DP, AL, and AP may cause QT prolongation in some malaria patients but do not cause torsades de pointes ventricular tachycardia or other arrhythmias.
Collapse
Affiliation(s)
- Wanting Wu
- Guangzhou University of Chinese Medicine, Artemisinin Research Center, Guangzhou, Guangdong, People’s Republic of China
- Guangzhou University of Chinese Medicine, Sci-tech Industrial Park, Guanzhou, Guangdong, People’s Republic of China
| | - Chenguang Lu
- Guangzhou University of Chinese Medicine, Artemisinin Research Center, Guangzhou, Guangdong, People’s Republic of China
- Guangzhou University of Chinese Medicine, Sci-tech Industrial Park, Guanzhou, Guangdong, People’s Republic of China
| | - Yuan Liang
- Guangzhou University of Chinese Medicine, Artemisinin Research Center, Guangzhou, Guangdong, People’s Republic of China
| | - Hongying Zhang
- Guangzhou University of Chinese Medicine, Artemisinin Research Center, Guangzhou, Guangdong, People’s Republic of China
- Guangzhou University of Chinese Medicine, Sci-tech Industrial Park, Guanzhou, Guangdong, People’s Republic of China
| | - Changsheng Deng
- Guangzhou University of Chinese Medicine, Artemisinin Research Center, Guangzhou, Guangdong, People’s Republic of China
- Guangzhou University of Chinese Medicine, Sci-tech Industrial Park, Guanzhou, Guangdong, People’s Republic of China
| | - Qi Wang
- Guangzhou University of Chinese Medicine, Artemisinin Research Center, Guangzhou, Guangdong, People’s Republic of China
- Guangzhou University of Chinese Medicine, Sci-tech Industrial Park, Guanzhou, Guangdong, People’s Republic of China
| | - Qin Xu
- Guangzhou University of Chinese Medicine, Artemisinin Research Center, Guangzhou, Guangdong, People’s Republic of China
- Guangzhou University of Chinese Medicine, Sci-tech Industrial Park, Guanzhou, Guangdong, People’s Republic of China
| | - Bo Tan
- Guangzhou University of Chinese Medicine, Institute of Tropical Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Chongjun Zhou
- Guangzhou University of Chinese Medicine, Institute of Tropical Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Jianping Song
- Guangzhou University of Chinese Medicine, Artemisinin Research Center, Guangzhou, Guangdong, People’s Republic of China
- Guangzhou University of Chinese Medicine, Sci-tech Industrial Park, Guanzhou, Guangdong, People’s Republic of China
| |
Collapse
|
16
|
Peng H, Chen Z, Wang Y, Ren S, Xu T, Lai X, Wen J, Zhao M, Zeng C, Du L, Zhang Y, Cao L, Hu J, Wei X, Hong T. Systematic Review and Pharmacological Considerations for Chloroquine and Its Analogs in the Treatment for COVID-19. Front Pharmacol 2020; 11:554172. [PMID: 33192503 PMCID: PMC7655531 DOI: 10.3389/fphar.2020.554172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/31/2020] [Indexed: 01/07/2023] Open
Abstract
COVID-19 has been announced pandemic by WHO and over 17,000,000 people infected (Till April 21st 2020). The disease is currently under control in China, with a curative rate of 86.8%. Chloroquine (CQ) is an old anti-malarial drug with good tolerability, which had proved to be effective in previous SARS-coronavirus, which spread and disappeared between 2002-2003. In vitro studies demonstrated the efficacy of CQ in curing COVID-19. Consequently, via analytical PBPK modeling, a further preliminary clinical trial has proved the efficacy and safety of CQ in China., and multiple clinical trials were registered and approved to investigate the activity of other analogs of CQ against COVID-19. We have listed all the clinical trials and made a meta-analysis of published data of hydroxychloroquine (HCQ). HCQ could increase the CT improvement and adverse reactions (ADRs) significantly though there was considerable heterogeneity among current researches. Actually, CQ and its analogs have unique pharmacokinetic characteristics, which would induce severe side effects in some circumstances. We have then summarized pharmacological considerations for these drugs so as to provide to the busy clinicians to avoid potential side effects when administered CQ or its analogs to COVID-19 patients, especially in the elderly, pediatrics, and pregnancies.
Collapse
Affiliation(s)
- Hongwei Peng
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhangren Chen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunyun Wang
- Academic Affairs Office, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Simei Ren
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, China,Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tiantian Xu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Lai
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinhua Wen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mengjun Zhao
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Chuanfei Zeng
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Lijuan Du
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Yanmei Zhang
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Li Cao
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinfang Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Xiaohua Wei, ; Jinfang Hu, ; Tao Hong, ;
| | - Xiaohua Wei
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Xiaohua Wei, ; Jinfang Hu, ; Tao Hong, ;
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Xiaohua Wei, ; Jinfang Hu, ; Tao Hong, ;
| |
Collapse
|
17
|
de Araújo RV, Santos SS, Sanches LM, Giarolla J, El Seoud O, Ferreira EI. Malaria and tuberculosis as diseases of neglected populations: state of the art in chemotherapy and advances in the search for new drugs. Mem Inst Oswaldo Cruz 2020; 115:e200229. [PMID: 33053077 PMCID: PMC7534959 DOI: 10.1590/0074-02760200229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/04/2020] [Indexed: 11/22/2022] Open
Abstract
Malaria and tuberculosis are no longer considered to be neglected diseases by the World Health Organization. However, both are huge challenges and public health problems in the world, which affect poor people, today referred to as neglected populations. In addition, malaria and tuberculosis present the same difficulties regarding the treatment, such as toxicity and the microbial resistance. The increase of Plasmodium resistance to the available drugs along with the insurgence of multidrug- and particularly tuberculosis drug-resistant strains are enough to justify efforts towards the development of novel medicines for both diseases. This literature review provides an overview of the state of the art of antimalarial and antituberculosis chemotherapies, emphasising novel drugs introduced in the pharmaceutical market and the advances in research of new candidates for these diseases, and including some aspects of their mechanism/sites of action.
Collapse
Affiliation(s)
- Renan Vinicius de Araújo
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| | - Soraya Silva Santos
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| | - Luccas Missfeldt Sanches
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| | - Jeanine Giarolla
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| | - Omar El Seoud
- Universidade de São Paulo, Instituto de Química, Departamento de
Química Fundamental, São Paulo, SP, Brasil
| | - Elizabeth Igne Ferreira
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas,
Departamento de Farmácia, Laboratório de Planejamento e Síntese de Quimioterápicos
Contra Doenças Negligenciadas, São Paulo, SP, Brasil
| |
Collapse
|
18
|
Wattanakul T, Ogutu B, Kabanywanyi AM, Asante KP, Oduro A, Adjei A, Sie A, Sevene E, Macete E, Compaore G, Valea I, Osei I, Winterberg M, Gyapong M, Adjuik M, Abdulla S, Owusu-Agyei S, White NJ, Day NPJ, Tinto H, Baiden R, Binka F, Tarning J. Pooled Multicenter Analysis of Cardiovascular Safety and Population Pharmacokinetic Properties of Piperaquine in African Patients with Uncomplicated Falciparum Malaria. Antimicrob Agents Chemother 2020; 64:e01848-19. [PMID: 32312783 PMCID: PMC7318010 DOI: 10.1128/aac.01848-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 04/08/2020] [Indexed: 01/08/2023] Open
Abstract
Dihydroartemisinin-piperaquine has shown excellent efficacy and tolerability in malaria treatment. However, concerns have been raised of potentially harmful cardiotoxic effects associated with piperaquine. The population pharmacokinetics and cardiac effects of piperaquine were evaluated in 1,000 patients, mostly children enrolled in a multicenter trial from 10 sites in Africa. A linear relationship described the QTc-prolonging effect of piperaquine, estimating a 5.90-ms mean QTc prolongation per 100-ng/ml increase in piperaquine concentration. The effect of piperaquine on absolute QTc interval estimated a mean maximum QTc interval of 456 ms (50% effective concentration of 209 ng/ml). Simulations from the pharmacokinetic-pharmacodynamic models predicted 1.98 to 2.46% risk of having QTc prolongation of >60 ms in all treatment settings. Although piperaquine administration resulted in QTc prolongation, no cardiovascular adverse events were found in these patients. Thus, the use of dihydroartemisinin-piperaquine should not be limited by this concern. (This study has been registered at ClinicalTrials.gov under identifier NCT02199951.).
Collapse
Affiliation(s)
- Thanaporn Wattanakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Bernhards Ogutu
- INDEPTH Network, Accra, Ghana
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | | | | | - Alex Adjei
- Dodowa Health Research Centre, Dodowa, Ghana
| | - Ali Sie
- Nouna Health Research Centre, Nouna, Burkina Faso
| | - Esperanca Sevene
- Centro de Investigaçãoem Saúde de Manhiça, CISM, Manhiça, Mozambique
| | - Eusebio Macete
- Centro de Investigaçãoem Saúde de Manhiça, CISM, Manhiça, Mozambique
| | | | - Innocent Valea
- Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | - Isaac Osei
- Navrongo Health Research Centre, Navrongo, Ghana
| | - Markus Winterberg
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Margaret Gyapong
- Dodowa Health Research Centre, Dodowa, Ghana
- University for Health and Allied Sciences, Ho, Ghana
| | | | | | - Seth Owusu-Agyei
- Kintampo Health Research Centre, Kintampo, Ghana
- University for Health and Allied Sciences, Ho, Ghana
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Halidou Tinto
- Clinical Research Unit of Nanoro (IRSS-URCN), Nanoro, Burkina Faso
| | | | - Fred Binka
- INDEPTH Network, Accra, Ghana
- University for Health and Allied Sciences, Ho, Ghana
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom
| |
Collapse
|
19
|
Savic RM, Jagannathan P, Kajubi R, Huang L, Zhang N, Were M, Kakuru A, Muhindo MK, Mwebaza N, Wallender E, Clark TD, Opira B, Kamya M, Havlir DV, Rosenthal PJ, Dorsey G, Aweeka FT. Intermittent Preventive Treatment for Malaria in Pregnancy: Optimization of Target Concentrations of Dihydroartemisinin-Piperaquine. Clin Infect Dis 2019; 67:1079-1088. [PMID: 29547881 DOI: 10.1093/cid/ciy218] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Background Dihydroartemisinin-piperaquine (DHA-PQ) is highly efficacious as intermittent preventive therapy for malaria during pregnancy (IPTp). Determining associations between piperaquine (PQ) exposure, malaria risk, and adverse birth outcomes informs optimal dosing strategies. Methods Human immunodeficiency virus-uninfected pregnant women (n = 300) were enrolled in a placebo-controlled trial of IPTp at 12-20 weeks' gestation and randomized to sulfadoxine-pyrimethamine every 8 weeks, DHA-PQ every 8 weeks, or DHA-PQ every 4 weeks during pregnancy. Pharmacokinetic sampling for PQ was performed every 4 weeks, and an intensive pharmacokinetic substudy was performed in 30 women at 28 weeks' gestation. Concentration-effect relationships were assessed between exposure to PQ; the prevalence of Plasmodium falciparum infection during pregnancy; outcomes at delivery including placental malaria, low birth weight, and preterm birth; and risks for toxicity. Simulations of new dosing scenarios were performed. Results Model-defined PQ target venous plasma concentrations of 13.9 ng/mL provided 99% protection from P. falciparum infection during pregnancy. Each 10-day increase in time above target PQ concentrations was associated with reduced odds of placental parasitemia, preterm birth, and low birth weight, though increases in PQ concentrations were associated with QT interval prolongation. Modeling suggests that daily or weekly administration of lower dosages of PQ, compared to standard dosing, will maintain PQ trough levels above target concentrations with reduced PQ peak levels, potentially limiting toxicity. Conclusions The protective efficacy of IPTp with DHA-PQ was strongly associated with higher drug exposure. Studies of the efficacy and safety of alternative DHA-PQ IPTp dosing strategies are warranted. Clinical Trials Registration NCT02163447.
Collapse
Affiliation(s)
- Rada M Savic
- Department of Bioengineering and Therapeutic Sciences
| | - Prasanna Jagannathan
- Department of Medicine, University of California, San Francisco.,Department of Medicine, Stanford University, California
| | - Richard Kajubi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Liusheng Huang
- Department of Clinical Pharmacy, University of California, San Francisco
| | - Nan Zhang
- Department of Bioengineering and Therapeutic Sciences
| | - Moses Were
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Abel Kakuru
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Mary K Muhindo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Norah Mwebaza
- Department of Pharmacology and Therapeutics, Kampala, Uganda
| | - Erika Wallender
- Department of Medicine, University of California, San Francisco
| | - Tamara D Clark
- Department of Medicine, University of California, San Francisco
| | - Bishop Opira
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Moses Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | | | | | - Grant Dorsey
- Department of Medicine, Stanford University, California
| | | |
Collapse
|
20
|
Chairat K, Jittamala P, Hanboonkunupakarn B, Pukrittayakamee S, Hanpithakpong W, Blessborn D, White NJ, Day NPJ, Tarning J. Enantiospecific pharmacokinetics and drug-drug interactions of primaquine and blood-stage antimalarial drugs. J Antimicrob Chemother 2019; 73:3102-3113. [PMID: 30085149 PMCID: PMC6198747 DOI: 10.1093/jac/dky297] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023] Open
Abstract
Objectives Characterization of the pharmacokinetic properties of the enantiomers of primaquine and carboxyprimaquine following administration of racemic primaquine given alone and in combination with commonly used antimalarial drugs. Methods Enantiomeric pharmacokinetics were evaluated in 49 healthy adult volunteers enrolled in three randomized cross-over studies in which a single dose of primaquine was given alone and then, after a suitable washout period, in combination with chloroquine, dihydroartemisinin/piperaquine or pyronaridine/artesunate. Non-linear mixed-effects modelling was used to characterize pharmacokinetics and assess the impact of drug-drug interactions. Results The volume of distribution of racemic primaquine was decreased by a median (95% CI) of 22.0% (2.24%-39.9%), 24.0% (15.0%-31.5%) and 25.7% (20.3%-31.1%) when co-administered with chloroquine, dihydroartemisinin/piperaquine and pyronaridine/artesunate, respectively. The oral clearance of primaquine was decreased by a median of 19.1% (14.5%-22.8%) when co-administered with pyronaridine/artesunate. These interactions were enantiospecific with a relatively higher effect on (+)-S-primaquine than on (-)-R-primaquine. No drug-drug interaction effects were seen on the pharmacokinetics of either carboxyprimaquine enantiomer. Conclusions Population pharmacokinetic models characterizing the enantiospecific properties of primaquine were developed successfully. Exposure to primaquine, particularly to the (+)-S-primaquine but not the carboxy metabolites, increased by up to 30% when co-administered with commonly used antimalarial drugs. A better mechanistic understanding of primaquine metabolism is required for assessment of its efficacy and haematological toxicity in humans.
Collapse
Affiliation(s)
- Kalayanee Chairat
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Podjanee Jittamala
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Borimas Hanboonkunupakarn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Warunee Hanpithakpong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Daniel Blessborn
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
von Seidlein L, Hanboonkunupakarn B, Jittamala P, Pongsuwan P, Chotivanich K, Tarning J, Hoglund RM, Winterberg M, Mukaka M, Peerawaranun P, Sirithiranont P, Doran Z, Ockenhouse CF, Ivinson K, Lee C, Birkett AJ, Kaslow DC, Singhasivanon P, Day NPJ, Dondorp AM, White NJ, Pukrittayakamee S. Combining antimalarial drugs and vaccine for malaria elimination campaigns: a randomized safety and immunogenicity trial of RTS,S/AS01 administered with dihydroartemisinin, piperaquine, and primaquine in healthy Thai adult volunteers. Hum Vaccin Immunother 2019; 16:33-41. [PMID: 31306084 PMCID: PMC7012096 DOI: 10.1080/21645515.2019.1643675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction: RTS,S/AS01 is currently the most advanced malaria vaccine but provides incomplete, short-term protection. It was developed for use within the expanded program on immunizations (EPI) for African children. Another use could be adding mass RTS,S/AS01 vaccination to the integrated malaria elimination strategy in the Greater Mekong Subregion (GMS), where multidrug-resistant P.falciparum strains have emerged and spread. Prior to evaluating RTS,S/AS01 in large-scale trials we assessed whether the vaccine, administered with and without antimalarial drugs, is safe and immunogenic in Asian populations. Methods: An open-label, randomized, controlled phase 2 trial was conducted in healthy, adult Thai volunteers. Seven vaccine regimens with and without antimalarial drugs (dihydroartemisinin-piperaquine plus a single low dose primaquine) were assessed. Antibody titres against the PfCSP full-length (NANP) 6, PfCSP anti-C–term, PfCSP full-length (N + C-Terminal) were measured by standard enzyme-linked immunosorbent assays. Liquid chromatography was used to measure piperaquine, primaquine and carboxy-primaquine concentrations. Results: 193 volunteers were enrolled and 186 study participants completed the 6 months follow-up period. One month after the last vaccination all study participants had seroconverted to the PfCSP (NANP)6, and the PfCSP Full Length (N + C-Terminal). More than 90% had seroconverted to the Pfanti-C-Term CSP. There was no indication that drug concentrations were influenced by vaccine regimens or the antibody levels by the drug regimens. Adverse events were similarly distributed between the seven treatment groups. No serious adverse events attributable to the study interventions were detected. Conclusion: This study found that RTS,S/AS01 with and without dihydroartemisinin-piperaquine plus a single low dose primaquine was safe and immunogenic in a healthy, adult Asian population.
Collapse
Affiliation(s)
- Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Borimas Hanboonkunupakarn
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Podjanee Jittamala
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pongphaya Pongsuwan
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kesinee Chotivanich
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Richard M Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Markus Winterberg
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pimnara Peerawaranun
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pasathorn Sirithiranont
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Zoe Doran
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Cynthia Lee
- PATH's Malaria Vaccine Initiative, Seattle, WA, USA
| | | | | | | | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sasithon Pukrittayakamee
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,The Royal Society of Thailand, Dusit, Bangkok, Thailand
| |
Collapse
|
22
|
Sequential Open-Label Study of the Safety, Tolerability, and Pharmacokinetic Interactions between Dihydroartemisinin-Piperaquine and Mefloquine in Healthy Thai Adults. Antimicrob Agents Chemother 2019; 63:AAC.00060-19. [PMID: 31182525 PMCID: PMC6658739 DOI: 10.1128/aac.00060-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/25/2019] [Indexed: 11/26/2022] Open
Abstract
Artemisinin-based combination therapies (ACTs) have contributed substantially to the global decline in Plasmodium falciparum morbidity and mortality, but resistance to artemisinins and their partner drugs is increasing in Southeast Asia, threatening malaria control. New antimalarial compounds will not be generally available soon. Artemisinin-based combination therapies (ACTs) have contributed substantially to the global decline in Plasmodium falciparum morbidity and mortality, but resistance to artemisinins and their partner drugs is increasing in Southeast Asia, threatening malaria control. New antimalarial compounds will not be generally available soon. Combining three existing antimalarials in the form of triple ACTs, including dihydroartemisinin (DHA)-piperaquine + mefloquine, is a potential treatment option for multidrug-resistant Plasmodium falciparum malaria. In a sequential open-label study, healthy Thai volunteers were treated with DHA-piperaquine (120 to 960 mg), mefloquine (500 mg), and DHA-piperaquine + mefloquine (120 to 960 mg + 500 mg), and serial symptom questionnaires, biochemistry, full blood counts, pharmacokinetic profiles, and electrocardiographic measurements were performed. Fifteen healthy subjects were enrolled. There was no difference in the incidence or severity of adverse events between the three treatment arms. The slight prolongation in QTc (QT interval corrected for heart rate) associated with DHA-piperaquine administration did not increase after administration of DHA-piperaquine + mefloquine. The addition of mefloquine had no significant effect on the pharmacokinetic properties of piperaquine. However, coadministration of mefloquine significantly reduced the exposures to dihydroartemisinin for area under the concentration-time curve (−22.6%; 90% confidence interval [CI], −33.1, −10.4; P = 0.0039) and maximum concentration of drug in serum (−29.0%; 90% CI, −40.6, −15.1; P = 0.0079). Mefloquine can be added safely to dihydroartemisinin-piperaquine in malaria treatment. (This study has been registered at ClinicalTrials.gov under identifier NCT02324738.)
Collapse
|
23
|
Liu L, Ding Y, Jiao Z, Wu M, Li C, Liu J, Liu C, Hu Y, Li Q, Zhang H. Clinical Evaluation of the Tolerability, Pharmacokinetics, and Inhibition of Platelet Aggregation of Eptifibatide in Healthy Chinese Subjects. Clin Pharmacol Drug Dev 2019; 9:267-276. [PMID: 31197974 DOI: 10.1002/cpdd.717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/22/2019] [Indexed: 11/11/2022]
Abstract
The present study aimed to evaluate the pharmacokinetic properties and antiplatelet aggregation activity of eptifibatide in healthy Chinese subjects. Eptifibatide (180 μg/kg) was administrated by 2 bolus injections 10 minutes apart, followed by a 2.0 μg/kg/min infusion for 24 hours. The eptifibatide pharmacokinetic and antiplatelet aggregation activities were evaluated using nonlinear mixed-effects modeling and noncompartmental analysis. Safety assessments included adverse events, hematology, and biochemistry tests. Twelve Chinese healthy subjects were enrolled and completed the study. Steady-state concentrations were achieved at 0.5 to 24 hours after dosing. The median time to maximum concentration was 13 minutes, and the mean terminal elimination half-life was 148.19 minutes. The effective inhibition of platelet aggregation (<20% platelet aggregation) occurred by 3 minutes after starting dosing to 4 hours after termination of the infusion. Eptifibatide concentrations were fitted with a 3-compartment model, and the typical value of clearance was 0.11 L/min, with no significant covariates found. Three mild adverse events were detected in the study. Eptifibatide displays high sensitivity and excellent tolerability in healthy Chinese subjects. The dosage of eptifibatide recommended on the label for whites can effectively inhibit platelet aggregation.
Collapse
Affiliation(s)
- Li Liu
- Department of Pediatrics, The First Hospital of Jilin University, Jilin, China
| | - Yanhua Ding
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Zheng Jiao
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Wu
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Cuiyun Li
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Jingrui Liu
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Chengjiao Liu
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Yue Hu
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| | - Qingmei Li
- Department of Pediatrics, The First Hospital of Jilin University, Jilin, China
| | - Hong Zhang
- Phase I Clinical Research Center, The First Hospital of Jilin University, Jilin, China
| |
Collapse
|
24
|
Wu W, Liang Y, Wu G, Su Y, Zhang H, Zhang Z, Deng C, Wang Q, Huang B, Tan B, Zhou C, Song J. Effect of artemisinin-piperaquine treatment on the electrocardiogram of malaria patients. Rev Soc Bras Med Trop 2019; 52:e20180453. [PMID: 31141053 DOI: 10.1590/0037-8682-0453-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/17/2018] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Concern regarding the cardiotoxicity of antimalarials has been renewed because of their potential to cause QT/QTc interval prolongation related to torsade de pointes (TdP). Artemisinin-piperaquine (AP) is considered an effective artemisinin-based combination therapy (ACT) for malaria. METHODS This study involved a retrospective analysis of clinical data of 93 hospitalized malaria patients who had received AP orally. Electrocardiograms (ECGs) were obtained at specific time points in the original study. RESULTS Some cases of QT prolongation were observed. However, no TdP was found. CONCLUSIONS AP may cause QT interval prolongation in some malaria patients but may not lead to TdP.
Collapse
Affiliation(s)
- Wanting Wu
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China
| | - Yuan Liang
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China
| | - Guangchao Wu
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China
| | - Yinghang Su
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China
| | - Hongying Zhang
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China
| | - Zhenyan Zhang
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China
| | - Changsheng Deng
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China.,Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Qi Wang
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China
| | - Bo Huang
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China.,Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Bo Tan
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Chongjun Zhou
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Jianping Song
- Sci-tech Industrial Park, Guangzhou University of Chinese Medicine, Guanzhou, Guangdong, People's Republic of China.,Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
25
|
Smit MR, Ochomo EO, Waterhouse D, Kwambai TK, Abong'o BO, Bousema T, Bayoh NM, Gimnig JE, Samuels AM, Desai MR, Phillips-Howard PA, Kariuki SK, Wang D, Ter Kuile FO, Ward SA, Aljayyoussi G. Pharmacokinetics-Pharmacodynamics of High-Dose Ivermectin with Dihydroartemisinin-Piperaquine on Mosquitocidal Activity and QT-Prolongation (IVERMAL). Clin Pharmacol Ther 2018; 105:388-401. [PMID: 30125353 PMCID: PMC6585895 DOI: 10.1002/cpt.1219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 08/05/2018] [Indexed: 12/26/2022]
Abstract
High‐dose ivermectin, co‐administered for 3 days with dihydroartemisinin‐piperaquine (DP), killed mosquitoes feeding on individuals for at least 28 days posttreatment in a recent trial (IVERMAL), whereas 7 days was predicted pretrial. The current study assessed the relationship between ivermectin blood concentrations and the observed mosquitocidal effects against Anopheles gambiae s.s. Three days of ivermectin 0, 300, or 600 mcg/kg/day plus DP was randomly assigned to 141 adults with uncomplicated malaria in Kenya. During 28 days of follow‐up, 1,393 venous and 335 paired capillary plasma samples, 850 mosquito‐cluster mortality rates, and 524 QTcF‐intervals were collected. Using pharmacokinetic/pharmacodynamic (PK/PD) modeling, we show a consistent correlation between predicted ivermectin concentrations and observed mosquitocidal‐effects throughout the 28‐day study duration, without invoking an unidentified mosquitocidal metabolite or drug‐drug interaction. Ivermectin had no effect on piperaquine's PKs or QTcF‐prolongation. The PK/PD model can be used to design new treatment regimens with predicted mosquitocidal effect. This methodology could be used to evaluate effectiveness of other endectocides.
Collapse
Affiliation(s)
- Menno R Smit
- Liverpool School of Tropical Medicine (LSTM), Liverpool, UK
| | - Eric O Ochomo
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research, Kisumu, Kenya
| | | | - Titus K Kwambai
- Liverpool School of Tropical Medicine (LSTM), Liverpool, UK.,Kenya Medical Research Institute (KEMRI), Centre for Global Health Research, Kisumu, Kenya.,Kenya Ministry of Health (MoH), Kisumu County, Kisumu, Kenya
| | - Bernard O Abong'o
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research, Kisumu, Kenya
| | - Teun Bousema
- Radboud University Nijmegen Medical Center (Radboud), Nijmegen, The Netherlands.,London School of Hygiene and Tropical Medicine (LSHTM), London, UK
| | - Nabie M Bayoh
- US Centers for Disease Control and Prevention (CDC), Center for Global Health, Division of Parasitic Diseases and Malaria, Atlanta, Georgia, USA
| | - John E Gimnig
- US Centers for Disease Control and Prevention (CDC), Center for Global Health, Division of Parasitic Diseases and Malaria, Atlanta, Georgia, USA
| | - Aaron M Samuels
- US Centers for Disease Control and Prevention (CDC), Center for Global Health, Division of Parasitic Diseases and Malaria, Atlanta, Georgia, USA
| | - Meghna R Desai
- US Centers for Disease Control and Prevention (CDC), Center for Global Health, Division of Parasitic Diseases and Malaria, Atlanta, Georgia, USA
| | | | - Simon K Kariuki
- Kenya Medical Research Institute (KEMRI), Centre for Global Health Research, Kisumu, Kenya
| | - Duolao Wang
- Liverpool School of Tropical Medicine (LSTM), Liverpool, UK
| | | | - Stephen A Ward
- Liverpool School of Tropical Medicine (LSTM), Liverpool, UK
| | | |
Collapse
|
26
|
Hecht M, Veigure R, Couchman L, S Barker CI, Standing JF, Takkis K, Evard H, Johnston A, Herodes K, Leito I, Kipper K. Utilization of data below the analytical limit of quantitation in pharmacokinetic analysis and modeling: promoting interdisciplinary debate. Bioanalysis 2018; 10:1229-1248. [PMID: 30033744 DOI: 10.4155/bio-2018-0078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Traditionally, bioanalytical laboratories do not report actual concentrations for samples with results below the LOQ (BLQ) in pharmacokinetic studies. BLQ values are outside the method calibration range established during validation and no data are available to support the reliability of these values. However, ignoring BLQ data can contribute to bias and imprecision in model-based pharmacokinetic analyses. From this perspective, routine use of BLQ data would be advantageous. We would like to initiate an interdisciplinary debate on this important topic by summarizing the current concepts and use of BLQ data by regulators, pharmacometricians and bioanalysts. Through introducing the limit of detection and evaluating its variability, BLQ data could be released and utilized appropriately for pharmacokinetic research.
Collapse
Affiliation(s)
- Max Hecht
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Rūta Veigure
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Lewis Couchman
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Charlotte I S Barker
- Paediatric Infectious Diseases Research Group, Institute for Infection & Immunity, St George's University of London, London, SW17 0RE, UK
- Inflammation, Infection & Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Paediatric Infectious Diseases Unit, St George's University Hospitals NHS Foundation Trust, London, SW17 0RE, UK
| | - Joseph F Standing
- Paediatric Infectious Diseases Research Group, Institute for Infection & Immunity, St George's University of London, London, SW17 0RE, UK
- Inflammation, Infection & Rheumatology Section, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Kalev Takkis
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| | - Hanno Evard
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Atholl Johnston
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
- Clinical Pharmacology, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Koit Herodes
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Ivo Leito
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
| | - Karin Kipper
- Chair of Analytical Chemistry, Institute of Chemistry, University of Tartu, 14a Ravila Street, 50411 Tartu, Estonia
- Analytical Services International, St George's University of London, Cranmer Terrace, London, SW17 0RE, UK
| |
Collapse
|
27
|
Zuber JA, Takala-Harrison S. Multidrug-resistant malaria and the impact of mass drug administration. Infect Drug Resist 2018. [PMID: 29535546 PMCID: PMC5840189 DOI: 10.2147/idr.s123887] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Based on the emergence and spread throughout the Greater Mekong Subregion (GMS) of multiple artemisinin-resistant lineages, the prevalence of multidrug resistance leading to high rates of artemisinin-based combination treatment failure in parts of the GMS, and the declining malaria burden in the region, the World Health Organization has recommended complete elimination of falciparum malaria from the GMS. Mass drug administration (MDA) is being piloted as one elimination intervention to be employed as part of this effort. However, concerns remain as to whether MDA might exacerbate the already prevalent problem of multidrug resistance in the region. In this review, we briefly discuss challenges of MDA, the use of MDA in the context of multidrug-resistant malaria, and the potential of different drug combinations and drug-based elimination strategies for mitigating the emergence and spread of resistance.
Collapse
Affiliation(s)
- Janie Anne Zuber
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shannon Takala-Harrison
- Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Chotsiri P, Wattanakul T, Hoglund RM, Hanboonkunupakarn B, Pukrittayakamee S, Blessborn D, Jittamala P, White NJ, Day NPJ, Tarning J. Population pharmacokinetics and electrocardiographic effects of dihydroartemisinin-piperaquine in healthy volunteers. Br J Clin Pharmacol 2017; 83:2752-2766. [PMID: 28695570 PMCID: PMC5698590 DOI: 10.1111/bcp.13372] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/21/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022] Open
Abstract
Aims The aims of the present study were to evaluate the pharmacokinetic properties of dihydroartemisinin (DHA) and piperaquine, potential drug–drug interactions with concomitant primaquine treatment, and piperaquine effects on the electrocardiogram in healthy volunteers. Methods The population pharmacokinetic properties of DHA and piperaquine were assessed in 16 healthy Thai adults using an open‐label, randomized, crossover study. Drug concentration–time data and electrocardiographic measurements were evaluated with nonlinear mixed‐effects modelling. Results The developed models described DHA and piperaquine population pharmacokinetics accurately. Concomitant treatment with primaquine did not affect the pharmacokinetic properties of DHA or piperaquine. A linear pharmacokinetic–pharmacodynamic model described satisfactorily the relationship between the individually corrected QT intervals and piperaquine concentrations; the population mean QT interval increased by 4.17 ms per 100 ng ml–1 increase in piperaquine plasma concentration. Simulations from the final model showed that monthly and bimonthly mass drug administration in healthy subjects would result in median maximum QT interval prolongations of 18.9 ms and 16.8 ms, respectively, and would be very unlikely to result in prolongation of more than 50 ms. A single low dose of primaquine can be added safely to the existing DHA–piperaquine treatment in areas of multiresistant Plasmodium falciparum malaria. Conclusions Pharmacokinetic–pharmacodynamic modelling and simulation in healthy adult volunteers suggested that therapeutic doses of DHA–piperaquine in the prevention or treatment of P. falciparum malaria are unlikely to be associated with dangerous QT prolongation.
Collapse
Affiliation(s)
- Palang Chotsiri
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thanaporn Wattanakul
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Richard M Hoglund
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | | | - Daniel Blessborn
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|