1
|
Panikulam S, Morgan H, Gutknecht M, Villiger TK, Lebesgue N, Karle AC. Host cell protein-mediated adjuvanticity and immunogenicity risks of biotherapeutics. Biotechnol Adv 2025; 81:108575. [PMID: 40180137 DOI: 10.1016/j.biotechadv.2025.108575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/18/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
Host cell proteins (HCPs) are process-related impurities of biotherapeutic production that might affect product quality and/or patient safety. In a few cases, adverse events were attributed to HCPs present in the administered biotherapeutic. HCP-associated immune risks include adjuvanticity and immunogenicity with potential cross-reactivity. Based on the published data, some HCPs can act as adjuvants increasing the immunogenicity of the biotherapeutic as a bystander effect. HCPs may also induce immunogenicity against themselves, resulting in anti-HCP T cell responses and anti-HCP antibody formation. Depending on sequence similarities, these anti-HCP immune responses might theoretically be cross-reactive to the biotherapeutic or human endogenous proteins. In this review, we examine HCP-associated immune-related risks reported from non-clinical and clinical studies. We also discuss the potential and limitations of in vitro and in silico methods to evaluate the adjuvanticity and immunogenicity potential of HCPs. A risk-based assessment of the safety impact of HCPs may include the identity of the HCP and similarity to the biotherapeutic and human proteins, as well as product, treatment-, and patient-related factors.
Collapse
Affiliation(s)
- Sherin Panikulam
- Institute of Pharma Technology, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Hannah Morgan
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | - Thomas K Villiger
- Institute of Pharma Technology, University of Applied Sciences Northwestern Switzerland, Muttenz, Switzerland
| | - Nicolas Lebesgue
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Anette C Karle
- Biomedical Research, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
2
|
Zhu S, Zhang R, Yao L, Lin Z, Li Y, Li S, Wu L. De novo NAD + synthesis is ineffective for NAD + supply in axenically cultured Caenorhabditis elegans. Commun Biol 2025; 8:545. [PMID: 40175694 PMCID: PMC11965519 DOI: 10.1038/s42003-025-07984-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/22/2025] [Indexed: 04/04/2025] Open
Abstract
To secure an adequate nicotinamide adenine dinucleotide (NAD+) supply for survival, organisms typically rely on two complementary mechanisms: the de novo synthesis pathway and the salvage pathway. Notably, the classic quinolinic acid phosphoribosyltransferase (QPRTase) for de novo NAD+ synthesis is absent in Caenorhabditis elegans (C. elegans), despite the reported alternative mechanism involving uridine monophosphate phosphoribosyltransferase (UMPS). However, the effectiveness of this proposed mechanism for NAD+ production of C. elegans remains unclear. Here, using a chemically defined medium, we observed that removing NAD+ salvage precursors from the medium results in a significant decrease in NAD+ levels, causing severe developmental delay and fecundity loss in C. elegans. Strikingly, these defects cannot be restored by any metabolites from the de novo synthesis pathway, including the direct QPRTase substrate quinolinic acid (QA). Furthermore, the deficiency of umps-1 does not cause any significant changes in the NAD+ levels of C. elegans. Moreover, the growth defects of the umps-1 mutant could be rescued by uridine, but not the salvage NAD+ supply. Additionally, we discovered that commercially available QA products contain substantial amounts of nicotinic acid, potentially producing misleading information. Collectively, our results demonstrate that C. elegans lacks the necessary mechanisms for de novo synthesis of NAD+.
Collapse
Affiliation(s)
- Shihao Zhu
- Fudan University, Shanghai, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Runshuai Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Luxia Yao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zhirong Lin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yanjie Li
- Fudan University, Shanghai, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Siyuan Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Lianfeng Wu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Yang QE, Lee N, Johnson N, Hong J, Zhao J(Q, Sun X, Zhang J. Quality assessment strategy development and analytical method selection of GMP grade biological drugs for gene and cell therapy. BBA ADVANCES 2025; 7:100151. [PMID: 40094061 PMCID: PMC11909464 DOI: 10.1016/j.bbadva.2025.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/10/2025] [Accepted: 02/15/2025] [Indexed: 03/19/2025] Open
Abstract
Biological drugs with gene and cell therapy potentials, including natural or rationally created biomacromolecules, recombinant proteins/enzymes, gene-carrying DNA/RNA fragments, oncolytic viruses, plasmid and viral vectors or other gene delivering vehicles with specific therapeutic genes and gene manipulation tools, and genetically modified and reprogrammed human cells comprise a large fraction of drug development candidates in modern precision and regeneration medicine. These drugs have displayed unique capabilities in treating patients with previously incurable diseases. However, most of the drug preparations have complex multimolecular structures and require specific biomanufacturing systems and many other additional biological active materials for drug synthesis, cell expansion, and production enhancement. Thus, the final products would have to be subjected to sequential extensive purification processes to exclude impurities and to concentrate the drug products after manufacturing. The quality evaluation for each drug product is an individualized process and must be specifically designed and performed according to the characteristics of the drug and its manufacturing and purification methods. Some of the Quality Control (QC) assays may be very costly and time-consuming, frequently with inconsistent test results from batch-to-batch. This review focuses on QC assessment strategy development for common gene and cell therapy drugs which use prokaryotic or eukaryotic cells for manufacturing or cell factories for in vitro expansions, especially for drug identification and concentration determination, impurity detection and quantification, drug potency, stability, and safety evaluations; and discusses some key issues for drug quality assessments in different categories and emphasizes the importance of individualized QC strategy design.
Collapse
Affiliation(s)
- Quan-en Yang
- uBriGene Biosciences, Inc., Germantown, MD, USA
- Forecyte Biosciences, Inc., Frederick, MD, USA
| | | | | | | | - Jenny (Qinghua) Zhao
- uBriGene Biosciences, Inc., Germantown, MD, USA
- Forecyte Biosciences, Inc., Frederick, MD, USA
| | - Xiulian Sun
- uBriGene Biosciences, Inc., Germantown, MD, USA
| | | |
Collapse
|
4
|
Lapras B, Marchand C, Merienne C, Medina M, Kolenda C, Laurent F, Pirot F. Rationalisation of the purification process for a phage active pharmaceutical ingredient. Eur J Pharm Biopharm 2024; 203:114438. [PMID: 39111580 DOI: 10.1016/j.ejpb.2024.114438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
The resurgence of phage therapy, once abandoned in the early 20th century in part due to issues related to the purification process and stability, is spurred by the global threat of antibiotic resistance. Engineering advances have enabled more precise separation unit operations, improving overall purification efficiency. The present review discusses the physicochemical properties of impurities commonly found in a phage lysate, e.g., contaminants, phage-related impurities, and propagation-related impurities. Differences in phages and bacterial impurities properties are leveraged to elaborate a four-step phage purification process: clarification, capture and concentration, subsequent purification and polishing. Ultimately, a framework for rationalising the development of a purification process is proposed, considering three operational characteristics, i.e., scalability, transferability to various phages and duration. This guide facilitates the preselection of a sequence of unit operations, which can then be confronted with the expected impurities to validate the theoretical capacity of the process to purify the phage lysate.
Collapse
Affiliation(s)
- B Lapras
- Hospices Civils de Lyon, Edouard Herriot Hospital, Pharmacy Department, FRIPHARM®, F-69437 Lyon, France; Claude Bernard Lyon 1 University, French National Centre for Scientific Research (CNRS), Institut de Biologie et de Chimie des Protéines (IBCP), Tissue Biology and Therapeutic Engineering Laboratory (LBTI), UMR 5305, F-69007 Lyon, France.
| | - C Marchand
- Hospices Civils de Lyon, Edouard Herriot Hospital, Pharmacy Department, FRIPHARM®, F-69437 Lyon, France
| | - C Merienne
- Hospices Civils de Lyon, Edouard Herriot Hospital, Pharmacy Department, FRIPHARM®, F-69437 Lyon, France
| | - M Medina
- Hospices Civils de Lyon, Croix Rousse Hospital, Bacteriology Department, French National Reference Centre for Staphylococci, F-69317 Lyon, France; Claude Bernard Lyon 1 University, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR 5308, F- 69365 Lyon, France
| | - C Kolenda
- Hospices Civils de Lyon, Croix Rousse Hospital, Bacteriology Department, French National Reference Centre for Staphylococci, F-69317 Lyon, France; Claude Bernard Lyon 1 University, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR 5308, F- 69365 Lyon, France
| | - F Laurent
- Hospices Civils de Lyon, Croix Rousse Hospital, Bacteriology Department, French National Reference Centre for Staphylococci, F-69317 Lyon, France; Claude Bernard Lyon 1 University, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR 5308, F- 69365 Lyon, France
| | - F Pirot
- Hospices Civils de Lyon, Edouard Herriot Hospital, Pharmacy Department, FRIPHARM®, F-69437 Lyon, France; Claude Bernard Lyon 1 University, French National Centre for Scientific Research (CNRS), Institut de Biologie et de Chimie des Protéines (IBCP), Tissue Biology and Therapeutic Engineering Laboratory (LBTI), UMR 5305, F-69007 Lyon, France
| |
Collapse
|
5
|
Crist RM, Clogston JD, Stern ST, Dobrovolskaia MA. Advancements in Nanoparticle Characterization. Methods Mol Biol 2024; 2789:3-17. [PMID: 38506986 DOI: 10.1007/978-1-0716-3786-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Nanotechnology for drug delivery has made significant advancements over the last two decades. Innovations have been made in cancer research and development, including chemotherapies, imaging agents, and vaccine strategies, as well as other therapeutic areas, e.g., the recent commercialization of mRNA lipid nanoparticles as vaccines against the SARS-CoV-2 virus. The field has also seen technological advancements to aid in addressing the complex questions posed by these novel therapies. In this latest edition of protocols and methods for nanoparticle characterization, we highlight both old and new methodologies for defining physicochemical properties, present both in vitro and in vivo methods to test for a variety of immunotoxicities, and describe assays used for pharmacological studies to assess drug release and tissue distribution.
Collapse
Affiliation(s)
- Rachael M Crist
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Stephan T Stern
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
6
|
Haltaufderhyde K, Roberts BJ, Khan S, Terry F, Boyle CM, McAllister M, Martin W, Rosenberg A, De Groot AS. Immunoinformatic Risk Assessment of Host Cell Proteins During Process Development for Biologic Therapeutics. AAPS J 2023; 25:87. [PMID: 37697150 DOI: 10.1208/s12248-023-00852-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/19/2023] [Indexed: 09/13/2023] Open
Abstract
The identification and removal of host cell proteins (HCPs) from biologic products is a critical step in drug development. Despite recent improvements to purification processes, biologics such as monoclonal antibodies, enzyme replacement therapies, and vaccines that are manufactured in a range of cell lines and purified using diverse processes may contain HCP impurities, making it necessary for developers to identify and quantify impurities during process development for each drug product. HCPs that contain sequences that are less conserved with human homologs may be more immunogenic than those that are more conserved. We have developed a computational tool, ISPRI-HCP, that estimates the immunogenic potential of HCP sequences by evaluating and quantifying T cell epitope density and relative conservation with similar T cell epitopes in the human proteome. Here we describe several case studies that support the use of this method for classifying candidate HCP impurities according to their immunogenicity risk.
Collapse
Affiliation(s)
| | - Brian J Roberts
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA
| | - Sundos Khan
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA
| | - Frances Terry
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA
| | | | | | - William Martin
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA
| | - Amy Rosenberg
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA
| | - Anne S De Groot
- EpiVax, Inc, 188 Valley St #424, Providence, Rhode Island, USA.
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
7
|
Zenin V, Tsedilin A, Yurkova M, Siniavin A, Fedorov A. Thermostable chaperone-based polypeptide biosynthesis: Enfuvirtide model product quality and protocol-related impurities. PLoS One 2023; 18:e0286752. [PMID: 37289764 PMCID: PMC10249821 DOI: 10.1371/journal.pone.0286752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Large peptide biosynthesis is a valuable alternative to conventional chemical synthesis. Enfuvirtide, the largest therapeutic peptide used in HIV infection treatment, was synthesized in our thermostable chaperone-based peptide biosynthesis system and evaluated for peptide quality as well as the profile of process-related impurities. Host cell proteins (HCPs) and BrCN cleavage-modified peptides were evaluated by LC-MS in intermediate. Cleavage modifications during the reaction were assessed after LC-MS maps were aligned by simple in-house algorithm and formylation/oxidation levels were estimated. Circular dichroism spectra of the obtained enfuvirtide were compared to the those of the chemically- synthesized standard product. Final-product endotoxin and HCPs content were assessed resulting 1.06 EU/mg and 5.58 ppm respectively. Peptide therapeutic activity was measured using the MT-4 cells HIV infection-inhibition model. The biosynthetic peptide IC50 was 0.0453 μM while the standard one had 0.0180 μM. Non-acylated C-terminus was proposed as a cause of IC50 and CD spectra difference. Otherwise, the peptide has met all the requirements of the original chemically synthesized enfuvirtide in the cell-culture and in vivo experiments.
Collapse
Affiliation(s)
- Vladimir Zenin
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Andrey Tsedilin
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Maria Yurkova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Andrey Siniavin
- Ivanovsky Institute of Virology, N.F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Alexey Fedorov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
8
|
The potential of emerging sub-omics technologies for CHO cell engineering. Biotechnol Adv 2022; 59:107978. [DOI: 10.1016/j.biotechadv.2022.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/25/2022] [Accepted: 05/07/2022] [Indexed: 11/23/2022]
|
9
|
Wang F, Li X, Swanson M, Guetschow E, Winston M, Smith JP, Hoyt E, Liu Z, Richardson D, Bu X, Jawa V, Variankaval N. Holistic Analytical Characterization and Risk Assessment of Residual Host Cell Protein Impurities in an Active Pharmaceutical Ingredient (API) Synthesized by Biocatalysts. Biotechnol Bioeng 2022; 119:2088-2104. [PMID: 35437754 DOI: 10.1002/bit.28112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 11/10/2022]
Abstract
Host cell proteins (HCPs) are a significant class of process-related impurities commonly associated with the manufacturing of biopharmaceuticals. However, due to the increased use of crude enzymes as biocatalysts for modern organic synthesis, HCPs can also be introduced as a new class of impurities in chemical drugs. In both cases, residual HCPs need to be adequately controlled to ensure product purity, quality, and patient safety. Although a lot of attentions have been focused on defining a universally acceptable limit for such impurities, the risks associated with residual HCPs on product quality, safety, and efficacy often need to be determined on a case-by-case basis taking into consideration the residual HCP profile in the product, the dose, dosage form, and administration route etc. Here we describe the unique challenges for residual HCP control presented by the biocatalytic synthesis of a Merck investigational stimulator of interferon genes protein (STING) agonist, MK-1454, which is a cyclic dinucleotide synthesized using E. coli cell lysate overexpressing cyclic GMP-AMP synthase (cGAS) as a biocatalyst. In this study, a holistic characterization of residual protein impurities using a variety of analytical tools including nano-LC-MS/MS, together with in silico immunogenicity prediction of identified proteins, facilitated risk assessment and guided process development to achieve adequate removal of residual protein impurities in MK-1454 API. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fengqiang Wang
- Small Molecular Analytical Research & Development, Rahway, NJ.,Biologics Analytical Research & Development, Kenilworth, NJ
| | - Xuanwen Li
- Analytical Enabling Technologies, Analytical Research & Development, Kenilworth, NJ
| | - Michael Swanson
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM), West Point, PA
| | - Erik Guetschow
- Small Molecular Analytical Research & Development, Rahway, NJ
| | | | - Joseph P Smith
- Analytical Enabling Technologies, Analytical Research & Development, Kenilworth, NJ
| | - Erik Hoyt
- Small Molecular Analytical Research & Development, Rahway, NJ
| | - Zhijian Liu
- Small Molecular Process Research & Development, Rahway, NJ
| | - Douglas Richardson
- Analytical Enabling Technologies, Analytical Research & Development, Kenilworth, NJ
| | - Xiaodong Bu
- Small Molecular Analytical Research & Development, Rahway, NJ
| | - Vibha Jawa
- Pharmacokinetics, Pharmacodynamics & Drug Metabolism (PPDM), West Point, PA
| | | |
Collapse
|
10
|
Innate Immunity Modulating Impurities and the Immunotoxicity of Nanobiotechnology-Based Drug Products. Molecules 2021; 26:molecules26237308. [PMID: 34885886 PMCID: PMC8658779 DOI: 10.3390/molecules26237308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022] Open
Abstract
Innate immunity can be triggered by the presence of microbial antigens and other contaminants inadvertently introduced during the manufacture and purification of bionanopharmaceutical products. Activation of these innate immune responses, including cytokine secretion, complement, and immune cell activation, can result in unexpected and undesirable host immune responses. These innate modulators can also potentially stimulate the activation of adaptive immune responses, including the formation of anti-drug antibodies which can impact drug effectiveness. To prevent induction of these adverse responses, it is important to detect and quantify levels of these innate immunity modulating impurities (IIMIs) that may be present in drug products. However, while it is universally agreed that removal of IIMIs from drug products is crucial for patient safety and to prevent long-term immunogenicity, there is no single assay capable of directly detecting all potential IIMIs or indirectly quantifying downstream biomarkers. Additionally, there is a lack of agreement as to which of the many analytical assays currently employed should be standardized for general IIMI screening. Herein, we review the available literature to highlight cellular and molecular mechanisms underlying IIMI-mediated inflammation and its relevance to the safety and efficacy of pharmaceutical products. We further discuss methodologies used for direct and indirect IIMI identification and quantification.
Collapse
|
11
|
Jones M, Palackal N, Wang F, Gaza-Bulseco G, Hurkmans K, Zhao Y, Chitikila C, Clavier S, Liu S, Menesale E, Schonenbach NS, Sharma S, Valax P, Waerner T, Zhang L, Connolly T. "High-risk" host cell proteins (HCPs): A multi-company collaborative view. Biotechnol Bioeng 2021; 118:2870-2885. [PMID: 33930190 DOI: 10.1002/bit.27808] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022]
Abstract
Host cell proteins (HCPs) are process-related impurities that may copurify with biopharmaceutical drug products. Within this class of impurities there are some that are more problematic. These problematic HCPs can be considered high-risk and can include those that are immunogenic, biologically active, or enzymatically active with the potential to degrade either product molecules or excipients used in formulation. Some have been shown to be difficult to remove by purification. Why should the biopharmaceutical industry worry about these high-risk HCPs? What approach could be taken to understand the origin of its copurification and address these high-risk HCPs? To answer these questions, the BioPhorum Development Group HCP Workstream initiated a collaboration among its 26-company team with the goal of industry alignment around high-risk HCPs. The information gathered through literature searches, company experiences, and surveys were used to compile a list of frequently seen problematic/high-risk HCPs. These high-risk HCPs were further classified based on their potential impact into different risk categories. A step-by-step recommendation is provided for establishing a comprehensive control strategy based on risk assessments for monitoring and/or eliminating the known impurity from the process that would be beneficial to the biopharmaceutical industry.
Collapse
Affiliation(s)
- Marisa Jones
- GlaxoSmithKline, CMC Analytical, Structure & Function Characterization, Collegeville, Pennsylvania, USA
| | - Nisha Palackal
- Regeneron Pharmaceuticals Inc., Protein Biochemistry, Tarrytown, New York, USA
| | - Fengqiang Wang
- Merck & Co. Inc., Analytical Research & Development, Kenilworth, New Jersey, USA
| | | | - Karen Hurkmans
- AbbVie Bioresearch Center, Protein Analytics, Worcester, Massachusetts, USA
| | - Yiwei Zhao
- Takeda Pharmaceuticals, Pharmaceutical science, Cambridge, Massachusetts, USA
| | - Carmelata Chitikila
- Janssen R&D LLC, BioTherapeutics Development and Supply, Analytical Development, Bioassay Methods Development, Malvern, Pennsylvania, USA
| | - Severine Clavier
- Sanofi R&D, BioAnalytics, Biologics Development, Vitry-sur-seine, France
| | - Suli Liu
- Biogen, Analytical Development, Cambridge, Massachusetts, USA
| | - Emily Menesale
- Biogen, Analytical Development, Cambridge, Massachusetts, USA
| | - Nicole S Schonenbach
- Pfizer, Downstream Process Development, Bioprocess R&D, Chesterfield, Missouri, USA
| | - Satish Sharma
- Bristol Meyers Squibb, Analytical Development, New York, New York, USA
| | - Pascal Valax
- Merck KGaA, Global Healthcare Operations, Development and Launch, Biotech Process Sciences, Merck BioDevelopment, Martillac, France
| | - Thomas Waerner
- Boehringer Ingelheim Pharma, GmbH & Co. KG, Analytical Development, Biologicals, Biberach, Germany
| | - Lei Zhang
- Bristol Meyers Squibb, Analytical Development, New York, New York, USA
| | - Trish Connolly
- Development Group Phorum, BioPhorum, The Gridiron building, One Pancras Square, London, UK
| |
Collapse
|
12
|
Wang F, Xiao Y, Neupane S, Ptak SH, Römer R, Xiong J, Ohmes J, Seekamp A, Fretté X, Alban S, Fuchs S. Influence of Fucoidan Extracts from Different Fucus Species on Adult Stem Cells and Molecular Mediators in In Vitro Models for Bone Formation and Vascularization. Mar Drugs 2021; 19:194. [PMID: 33805470 PMCID: PMC8066524 DOI: 10.3390/md19040194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023] Open
Abstract
Fucoidans, sulfated polysaccharides extracted from brown algae, are marine products with the potential to modulate bone formation and vascularization processes. The bioactivity and safety of fucoidans are highly associated with their chemical structure, which may vary with algae species and extraction method. Thus, in depth evaluation of fucoidan extracts in terms of endotoxin content, cytotoxicity, and their detailed molecular biological impact on the individual cell types in bone is needed. In this study, we characterized fucoidan extracts from three different Fucus species including Fucus vesiculosus (Fv), Fucus serratus (Fs), and Fucus distichus subsp. evanescens (Fe) for their chemical features, endotoxin content, cytotoxicity, and bioactive effects on human outgrowth endothelial cells (OEC) and human mesenchymal stem cells (MSC) as in vitro models for bone function and vascularization. Extracts contained mainly high molecular weight (HMW) fucoidans and were free of endotoxins that may cause inflammation or influence vascularization. OEC tolerated fucoidan concentrations up to 200 µg/mL, and no indication of cytotoxicity was observed. The inflammatory response, however, investigated by real-time PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) and endothelial barrier assessed by impedance measurement differed for the individual extracts. MSC in comparison with endothelial cells were more sensitive to fucoidans and showed partly reduced metabolic activity and proliferation at higher doses of fucoidans. Further results for MSC indicated impaired osteogenic functions in alkaline phosphatase and calcification assays. All tested extracts consistently lowered important molecular mediators involved in angiogenesis, such a VEGF (vascular endothelial growth factor), ANG-1 (angiopoietin 1), and ANG-2 (angiopoietin 2), as indicated by RT-PCR and ELISA. This was associated with antiangiogenic effects at the functional level using selected extracts in co-culture models to mimic bone vascularization processes during bone regeneration or osteosarcoma.
Collapse
Affiliation(s)
- Fanlu Wang
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (F.W.); (Y.X.); (R.R.); (J.X.); (J.O.); (A.S.)
| | - Yuejun Xiao
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (F.W.); (Y.X.); (R.R.); (J.X.); (J.O.); (A.S.)
| | - Sandesh Neupane
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Kiel University, 24148 Kiel, Germany; (S.N.); (S.A.)
| | - Signe Helle Ptak
- SDU Chemical Engineering, University of Southern Denmark, 5230 Odense, Denmark; (S.H.P.); (X.F.)
| | - Ramona Römer
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (F.W.); (Y.X.); (R.R.); (J.X.); (J.O.); (A.S.)
| | - Junyu Xiong
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (F.W.); (Y.X.); (R.R.); (J.X.); (J.O.); (A.S.)
| | - Julia Ohmes
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (F.W.); (Y.X.); (R.R.); (J.X.); (J.O.); (A.S.)
| | - Andreas Seekamp
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (F.W.); (Y.X.); (R.R.); (J.X.); (J.O.); (A.S.)
| | - Xavier Fretté
- SDU Chemical Engineering, University of Southern Denmark, 5230 Odense, Denmark; (S.H.P.); (X.F.)
| | - Susanne Alban
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Kiel University, 24148 Kiel, Germany; (S.N.); (S.A.)
| | - Sabine Fuchs
- Experimental Trauma Surgery, Department of Orthopedics and Trauma Surgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany; (F.W.); (Y.X.); (R.R.); (J.X.); (J.O.); (A.S.)
| |
Collapse
|
13
|
Correction. Br J Clin Pharmacol 2019; 85:2182. [DOI: 10.1111/bcp.14059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Reijers JAA, Malone KE, Bajramovic JJ, Verbeek R, Burggraaf J, Moerland M. Adverse immunostimulation caused by impurities: The dark side of biopharmaceuticals. Br J Clin Pharmacol 2019; 85:1418-1426. [PMID: 30920013 PMCID: PMC6595286 DOI: 10.1111/bcp.13938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/10/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
Drug safety is an important issue, especially in the experimental phases of development. Adverse immunostimulation (AI) is sometimes encountered following treatment with biopharmaceuticals, which can be life-threatening if it results in a severe systemic inflammatory reaction. Biopharmaceuticals that unexpectedly induce an inflammatory response still enter the clinic, even while meeting all regulatory requirements. Impurities (of microbial origin) in biopharmaceuticals are an often-overlooked cause of AI. This demonstrates that the current guidelines for quality control and safety pharmacology testing are not flawless. Here, based on two case examples, several shortcomings of the guidelines are discussed. The most important of these are the lack of sensitivity for impurities, lack of testing for pyrogens other than endotoxin, and the use of insensitive animal species and biomarkers in preclinical investigations. Moreover, testing for the immunotoxicity of biopharmaceuticals is explicitly not recommended by the international guidelines. Publication of cases of AI is pivotal, both to increase awareness and to facilitate scientific discussions on how to prevent AI in the future.
Collapse
Affiliation(s)
| | | | | | - Richard Verbeek
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenthe Netherlands
| | | | | |
Collapse
|