1
|
Tang D, Qiu R, Qiu X, Sun M, Su M, Tao Z, Zhang L, Tao S. Dietary restriction rescues 5-fluorouracil-induced lethal intestinal toxicity in old mice by blocking translocation of opportunistic pathogens. Gut Microbes 2024; 16:2355693. [PMID: 38780487 PMCID: PMC11123560 DOI: 10.1080/19490976.2024.2355693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Chemotherapy remains a major treatment for malignant tumors, yet the application of standard dose intensity chemotherapy is limited due to the side effects of cytotoxic drugs, especially in old populations. The underlying mechanisms of cytotoxicity and strategies to increase the safety and tolerance of chemotherapy remain to be explored. Using 5-fluorouracil (5-FU), a cornerstone chemotherapeutic drug, we demonstrate that the main cause of death in ad libitum (AL) fed mice after 5-FU chemotherapy was infection caused by translocation of intestinal opportunistic pathogens. We show that these opportunistic pathogens greatly increase in the intestine after chemotherapy, which was closely related to loss of intestinal lysozyme. Of note, two weeks of dietary restriction (DR) prior to chemotherapy significantly protected the loss of lysozyme and increased the content of the beneficial Lactobacillus genera, resulting in a substantial inhibition of intestinal opportunistic pathogens and their translocation. The rescue effect of DR could be mimicked by Lysozyme or Lactobacillus gavage. Our study provides the first evidence that DR achieved a comprehensive protection of the intestinal physical, biological and chemical barriers, which significantly improved the overall survival of 5-FU-treated mice. Importantly, the above findings were more prominent in old mice. Furthermore, we show that patients over 65 years old have enriched opportunistic pathogens in their gut microbiota, especially after 5-FU based chemotherapy. Our study reveals important mechanisms for the poor chemotherapy tolerance of the elderly population, which can be significantly improved by short-term DR. This study generates new insights into methods for improving the chemotherapeutic prognosis by increasing the chemotherapy tolerance and safety of patients with malignant tumors.
Collapse
Affiliation(s)
- Duozhuang Tang
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rongrong Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xingxing Qiu
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Man Sun
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mingyue Su
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhendong Tao
- Department of Medical Laboratory Medicine, Jiangxi Province Hospital of Integrated Chinese & Western Medicine, Nanchang, Jiangxi, China
| | - Liu Zhang
- Intensive Care Unit, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Si Tao
- Jiangxi Key Laboratory of Clinical and Translational Cancer Research, Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Mohammed AI, Celentano A, Paolini R, Low JT, McCullough MJ, O' Reilly LA, Cirillo N. Characterization of a novel dual murine model of chemotherapy-induced oral and intestinal mucositis. Sci Rep 2023; 13:1396. [PMID: 36697446 PMCID: PMC9876945 DOI: 10.1038/s41598-023-28486-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Oral and intestinal mucositis are debilitating inflammatory diseases observed in cancer patients undergoing chemo-radiotherapy. These are devastating clinical conditions which often lead to treatment disruption affecting underlying malignancy management. Although alimentary tract mucositis involves the entire gastrointestinal tract, oral and intestinal mucositis are often studied independently utilizing distinct organ-specific pre-clinical models. This approach has however hindered the development of potentially effective whole-patient treatment strategies. We now characterize a murine model of alimentary tract mucositis using 5-Fluorouracil (5-FU). Mice were given 5-FU intravenously (50 mg/kg) or saline every 48 h for 2 weeks. Post initial injection, mice were monitored clinically for weight loss and diarrhea. The incidence and extent of oral mucositis was assessed macroscopically. Microscopical and histomorphometric analyses of the tongue and intestinal tissues were conducted at 3 interim time points during the experimental period. Repeated 5-FU treatment caused severe oral and intestinal atrophy, including morphological damage, accompanied by body weight loss and mild to moderate diarrhea in up to 77.8% of mice. Oral mucositis was clinically evident throughout the observation period in 88.98% of mice. Toluidine blue staining of the tongue revealed that the ulcer size peaked at day-14. In summary, we have developed a model reproducing the clinical and histologic features of both oral and intestinal mucositis, which may represent a useful in vivo pre-clinical model for the study of chemotherapy-induced alimentary tract mucositis and the development of preventative therapies.
Collapse
Affiliation(s)
- Ali I Mohammed
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia. .,College of Dentistry, The University of Tikrit, Tikrit, Iraq.
| | - Antonio Celentano
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Rita Paolini
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Jun T Low
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Michael J McCullough
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia
| | - Lorraine A O' Reilly
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, 3000, Australia
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, 720 Swanston Street, Carlton, VIC, 3053, Australia.
| |
Collapse
|
3
|
Huang J, Hwang AYM, Jia Y, Kim B, Iskandar M, Mohammed AI, Cirillo N. Experimental Chemotherapy-Induced Mucositis: A Scoping Review Guiding the Design of Suitable Preclinical Models. Int J Mol Sci 2022; 23:15434. [PMID: 36499758 PMCID: PMC9737148 DOI: 10.3390/ijms232315434] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a common and most debilitating complication associated with the cytotoxicity of chemotherapy. The condition affects the entire alimentary canal from the mouth to the anus and has a significant clinical and economic impact. Although oral and intestinal mucositis can occur concurrently in the same individual, these conditions are often studied independently using organ-specific models that do not mimic human disease. Hence, the purpose of this scoping review was to provide a comprehensive yet systematic overview of the animal models that are utilised in the study of chemotherapy-induced mucositis. A search of PubMed/MEDLINE and Scopus databases was conducted to identify all relevant studies. Multiple phases of filtering were conducted, including deduplication, title/abstract screening, full-text screening, and data extraction. Studies were reported according to the updated Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. An inter-rater reliability test was conducted using Cohen's Kappa score. After title, abstract, and full-text screening, 251 articles met the inclusion criteria. Seven articles investigated both chemotherapy-induced intestinal and oral mucositis, 198 articles investigated chemotherapy-induced intestinal mucositis, and 46 studies investigated chemotherapy-induced oral mucositis. Among a total of 205 articles on chemotherapy-induced intestinal mucositis, 103 utilised 5-fluorouracil, 34 irinotecan, 16 platinum-based drugs, 33 methotrexate, and 32 other chemotherapeutic agents. Thirteen articles reported the use of a combination of 5-fluorouracil, irinotecan, platinum-based drugs, or methotrexate to induce intestinal mucositis. Among a total of 53 articles on chemotherapy-induced oral mucositis, 50 utilised 5-fluorouracil, 2 irinotecan, 2 methotrexate, 1 topotecan and 1 with other chemotherapeutic drugs. Three articles used a combination of these drugs to induce oral mucositis. Various animal models such as mice, rats, hamsters, piglets, rabbits, and zebrafish were used. The chemotherapeutic agents were introduced at various dosages via three routes of administration. Animals were mainly mice and rats. Unlike intestinal mucositis, most oral mucositis models combined mechanical or chemical irritation with chemotherapy. In conclusion, this extensive assessment of the literature revealed that there was a large variation among studies that reproduce oral and intestinal mucositis in animals. To assist with the design of a suitable preclinical model of chemotherapy-induced alimentary tract mucositis, animal types, routes of administration, dosages, and types of drugs were reported in this study. Further research is required to define an optimal protocol that improves the translatability of findings to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
| |
Collapse
|
4
|
Efthymakis K, Neri M. The role of Zinc L-Carnosine in the prevention and treatment of gastrointestinal mucosal disease in humans: a review. Clin Res Hepatol Gastroenterol 2022; 46:101954. [PMID: 35659631 DOI: 10.1016/j.clinre.2022.101954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/05/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023]
Abstract
Zinc L-carnosine is a pharmaceutical compound with direct mucosal cytoprotective and anti-inflammatory action through its antioxidative effects, cytokine modulation and membrane-stabilizing properties. Chemically, it is not an anti-secretory, antacid or raft-forming agent; its properties are mainly mediated by its higher affinity for damaged mucosa that permits the release of zinc locally by ligand exchange. Beneficial effects on various types of mucosal damage have been described in vitro and in vivo, in both animals and humans. It has been shown to promote repair of mucosal injury in human studies and has been widely used for the treatment of peptic ulcers, chemoradiotherapy-induced oral mucositis and esophagitis. More recently, the therapeutic applications of Zinc L-carnosine have been extended to the prevention and cure of various types of intestinal damage, including ulcerative colitis, iatrogenic ulcers after operative endoscopy, hemorrhoidal disease and impaired intestinal permeability. This review concentrates mainly on the current and future applications of zinc L-carnosine in gastrointestinal disease, and may be of use to gastroenterologists and endoscopists. It describes the therapeutic principles and benefits of this interesting molecule and discusses the potential future fields of interest for clinical use in humans.
Collapse
Affiliation(s)
- Konstantinos Efthymakis
- Digestive Endoscopy and Gastroenterology Unit, SS Annunziata Hospital, ASL2 Abruzzo, Chieti, Italy
| | - Matteo Neri
- Digestive Endoscopy and Gastroenterology Unit, SS Annunziata Hospital, ASL2 Abruzzo, Chieti, Italy; Department of Medicine and Ageing Sciences and Center for Advanced Studies and Technology (C.A.S.T.), University "G. D'Annunzio", Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
5
|
Chen S, Qian K, Zhang G, Zhang M. Akkermansia muciniphila and its outer membrane protein Amuc_1100 prophylactically attenuate 5-fluorouracil-induced intestinal mucositis. Biochem Biophys Res Commun 2022; 614:34-40. [PMID: 35567942 DOI: 10.1016/j.bbrc.2022.04.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022]
Abstract
5-Fluorouracil (5-FU) is a chemotherapy drug used to treat tumors. Previous studies have shown that Akkermansia muciniphila (A. muciniphila) and its outer membrane protein, Amuc_1100, alleviate dextran sodium sulfate (DSS)-induced colitis in mice. We investigated the effects of both A. muciniphila and Amuc_1100 on 5-FU-induced intestinal mucosal damage in mice. C57BL/6 mice were gavaged with A. muciniphila or Amuc_1100 daily before, during, and after 5-FU injection for a total of 14 days. By evaluating diarrheal toxicity scores, body weight changes, colonic anatomy images, and histopathology of intestinal injury in these mice, we found that A. muciniphila and Amuc_1100 alleviated 5-FU-induced intestinal mucositis. Quantitative polymerase chain reaction assays of intestinal cytokine mRNA levels demonstrated that both A. muciniphila and Amuc_1100 attenuated the upregulation of intestinal Tumor Necrosis Factor-α (TNF-α) and interleukin-6 (IL-6) induced by 5-FU treatment. In addition, they both reduced 5-FU-induced the NLR family pyrin domain containing 3 (NLRP3) inflammatory vesicle activation. Furthermore, by monitoring the mRNA expression of tight junction proteins in the intestine, we found that A. muciniphila and Amuc_1100 were capable of restoring the damaged intestinal barrier. Notably, A. muciniphila and Amuc_1100 also played a role in altering the structure of the intestinal microbial community. The present study revealed the protective role of both A. muciniphila and Amuc_1100 in the intestinal mucositis caused by 5-FU, providing new insights into treatment options.
Collapse
Affiliation(s)
- Shoujun Chen
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, Anhui, China
| | - Kaiyue Qian
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, Anhui, China
| | - Guanghui Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, Anhui, China
| | - Min Zhang
- School of Life Sciences, Anhui University, Hefei, 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230601, Anhui, China.
| |
Collapse
|
6
|
Tang W, Liu H, Ooi TC, Rajab NF, Cao H, Sharif R. Zinc carnosine: Frontiers advances of supplement for cancer therapy. Biomed Pharmacother 2022; 151:113157. [PMID: 35605299 DOI: 10.1016/j.biopha.2022.113157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022] Open
Abstract
Zinc (Zn) has an existence within large quantities in the human brain, while accumulating within synaptic vesicle. There is growing evidence that Zn metabolic equilibrium breaking participates into different diseases (e.g., vascular dementia, carcinoma, Alzheimer's disease). Carnosine refers to an endogenic dipeptide abundant in skeletal muscle and brains and exerts a variety of positive influences (e.g., carcinoma resistance, crosslinking resistance, metal chelation and oxidation limitation). A complex of Zn and carnosine, called Zinc-L-carnosine (ZnC), has been extensively employed within Zn supplement therapeutic method and the treating approach for ulcers. ZnC has been shown to play a variety of roles in the body, including inhibiting intracellular reactive oxygen species(ROS) and free radical levels, inhibiting inflammation, supplementing zinc enzymes and promoting wound healing and mucosal cell repair. The present study conducting a reviewing process for the advances of ZnC in tumor adjuvant therapy.
Collapse
Affiliation(s)
- Weiwei Tang
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China
| | - Hanyuan Liu
- General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Theng Choon Ooi
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Hongyong Cao
- General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Razinah Sharif
- Center for Healthy Ageing & Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia; Biocompatibility Laboratory, Centre for Research and Instrumentation, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
7
|
Li M, Sun Z, Zhang H, Liu Z. Recent advances on polaprezinc for medical use (Review). Exp Ther Med 2021; 22:1445. [PMID: 34721687 DOI: 10.3892/etm.2021.10880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
The present study described the chemical and biological properties of zinc complex of L-carnosine (L-CAZ; generic name, polaprezinc; chemical name, catena-(S)-[µ-[N(α)-(3-aminopropionyl) histidinato (2-) N1, N2, O: N(τ)]-zinc], molecular formula, C9H14N4O3Zn; molecular weight, 291.6404; CAS registry number, 107667-60-7). Characterized as a white or yellowish white crystalline powder, this drug is insoluble in glacial acetic acid and almost insoluble in water, methanol, ethanol and ether. It is soluble in dilute hydrochloric acid, dilute nitric acid and sodium hydroxide solution, and its melting point is 260-270˚C. Polaprezinc is an anti-ulcer drug that was jointly studied and developed by Hamari Chemicals Co., Ltd. and Zeria Pharmaceutical Co., Ltd., and was first approved in Japan in 1994. This review article summarizes the research advances of polaprezinc, including the patents, preparations, synthetic routes, pharmacokinetics, pharmacological effects and application in clinical research.
Collapse
Affiliation(s)
- Mingru Li
- Jilin Broadwell Pharmaceutical Co., Ltd., Liaoyuan, Jilin 136200, P.R. China
| | - Zhen Sun
- Department of Gastroenterology, Jilin People's Hospital, Jilin City, Jilin 132000, P.R. China
| | - Hong Zhang
- Jilin Broadwell Pharmaceutical Co., Ltd., Liaoyuan, Jilin 136200, P.R. China
| | - Zhaoyang Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
8
|
Yim SK, Kim SW, Lee ST. Efficient Stool Collection Methods for Evaluating the Diarrhea Score in Mouse Diarrhea Models. In Vivo 2021; 35:2115-2125. [PMID: 34182487 DOI: 10.21873/invivo.12481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The mouse diarrhea score is usually determined by evaluating stool consistency and shape. Thus, defecated stools should be collected without damage or contamination. The study aimed to develop improved mouse stool collection methods and diarrhea-scoring criteria. MATERIALS AND METHODS We developed improved stool collection methods (paper towel methods) and compared them with previously used ones (stool collection using regular cages containing bedding chips or filter paper and metabolic cages). RESULTS Compared to previously used methods, paper towel methods collected stools without bedding chips-induced contamination, mouse body/foot-induced damage, or sampling errors. When using paper towel methods, wet stools create water marks (diarrhea marks) on paper towels with strong water absorption capacity, by which diarrheal severity can be analyzed semi-quantitatively. To improve the objectivity in determining diarrhea scores, practical diarrhea-scoring criteria were also proposed. CONCLUSION These results would be helpful to researchers facing difficulties in evaluating the mouse diarrhea score.
Collapse
Affiliation(s)
- Sung Kyun Yim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sang Wook Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea.,Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju, Republic of Korea
| | - Soo Teik Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea; .,Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
9
|
The gut microbiota attenuates muscle wasting by regulating energy metabolism in chemotherapy-induced malnutrition rats. Cancer Chemother Pharmacol 2020; 85:1049-1062. [PMID: 32415349 DOI: 10.1007/s00280-020-04060-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/12/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Malnutrition is a common clinical symptom in cancer patients after chemotherapy, which is characterized by muscle wasting and metabolic dysregulation. The regulation of muscle metabolism by gut microbiota has been studied recently. However, there is no direct convincing evidence proving that manipulating gut microbiota homeostasis could regulate muscle metabolic disorder caused by chemotherapy. Here, we investigate the potential role of gut microbiota in the regulation of the muscle metabolism in 5-fluorouracil (5-Fu)-induced malnutrition rat model. METHODS Male Sprague-Dawley rats were randomly divided into two groups (n = 8/group): control group and 5-Fu group. In the 5-Fu group, rats received 5-Fu (40 mg/kg/day) by intraperitoneal injection for 4 days, and all rats were raised for 8 days. Nutritional status, muscle function, muscle metabolites, and gut microbiota were assessed. Fecal microbiota transplantation (FMT) was applied to explore the potential regulation of gut microbiota on muscle metabolism. RESULTS 5-Fu-treated rats exhibited loss of body weight and food intake compared to control group. 5-Fu decreased the levels of total protein and albumin in serum, and significantly increased the levels of IL-6 and TNF-α in muscle tissue. Rats that received 5-Fu displayed concurrent reduction of muscle function and fiber size. Moreover, 5-Fu group showed a distinct profile of gut microbiota compared to control group, including the relative lower abundance of Firmicutes and a higher abundance of Proteobacteria and Verrucomicrobia. Fourteen differential muscle metabolites were identified between two groups, which were mainly related to glycolysis, amino acid metabolism, and TCA cycle pathway. Furthermore, fecal transplantation from healthy rats improved nutritional status and muscle function in 5-Fu-treated rats. Notably, FMT inhibited the inflammatory response in muscle, and reversed the changes of several differential muscle metabolites and energy metabolism in 5-Fu-treated rats. CONCLUSIONS Our study demonstrated that gut microbiota played an important role in the regulation of muscle metabolism and promoting muscle energy production in 5-Fu-induced malnutrition rats, suggesting the potential attenuation of chemotherapy-induced muscle wasting by manipulating gut microbiota homeostasis.
Collapse
|
10
|
Chmielewska K, Dzierzbicka K, Inkielewicz-Stępniak I, Przybyłowska M. Therapeutic Potential of Carnosine and Its Derivatives in the Treatment of Human Diseases. Chem Res Toxicol 2020; 33:1561-1578. [PMID: 32202758 DOI: 10.1021/acs.chemrestox.0c00010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite significant progress in the pathogenesis, diagnosis, treatment, and prevention of cancer and neurodegenerative diseases, their occurrence and mortality are still high around the world. The resistance of cancer cells to the drugs remains a significant problem in oncology today, while in the case of neuro-degenerative diseases, therapies reversing the process are still yet to be found. Furthermore, it is important to seek new chemotherapeutics reversing side effects of currently used drugs or helping them perform their function to inhibit progression of the disease. Carnosine, a dipeptide constisting of β-alanine and l-histidine, has a variety of functions to mention: antioxidant, antiglycation, and reducing the toxicity of metal ions. It has therefore been proposed to act as a therapeutic agent for many pathological states. The aim of this paper was to find if carnosine and its derivatives can be helpful in treating various diseases. Literature search presented in this review includes review and original papers found in SciFinder, PubMed, and Google Scholar. Searches were based on substantial keywords concerning therapeutic usage of carnosine and its derivatives in several diseases including neurodegenerative disorders and cancer. In this paper, we review articles and find that carnosine and its derivatives are potential therapeutic agents in many diseases including cancer, neurodegenerative diseases, diabetes, and schizophrenia. Carnosine and its derivatives can be used in treating neurodegenerative diseases, cancer, diabetes, or schizophrenia, although their usage is limited. Therefore, there's an urge to synthesize and analyze new substances, overcoming the limitation of carnosine itself.
Collapse
Affiliation(s)
- Klaudia Chmielewska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| | - Iwona Inkielewicz-Stępniak
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk 80-211, Poland
| | - Maja Przybyłowska
- Department of Organic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk 80-233, Poland
| |
Collapse
|
11
|
Animal models of mucositis: critical tools for advancing pathobiological understanding and identifying therapeutic targets. Curr Opin Support Palliat Care 2020; 13:119-133. [PMID: 30925531 DOI: 10.1097/spc.0000000000000421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Mucositis remains a prevalent, yet poorly managed side effect of anticancer therapies. Mucositis affecting both the oral cavity and gastrointestinal tract predispose to infection and require extensive supportive management, contributing to the growing economic burden associated with cancer care. Animal models remain a critical aspect of mucositis research, providing novel insights into its pathogenesis and revealing therapeutic targets. The current review aims to provide a comprehensive overview of the current animal models used in mucositis research. RECENT FINDINGS A wide variety of animal models of mucositis exist highlighting the highly heterogenous landscape of supportive oncology and the unique cytotoxic mechanisms of different anticancer agents. Golden Syrian hamsters remain the gold-standard species for investigation of oral mucositis induced by single dose and fractionated radiation as well as chemoradiation. There is no universally accepted gold-standard model for the study of gastrointestinal mucositis, with rats, mice, pigs and dogs all offering unique perspectives on its pathobiology. SUMMARY Animal models are a critical aspect of mucositis research, providing unprecedent insight into the pathobiology of mucositis. Introduction of tumour-bearing models, cyclic dosing scheduled, concomitant agents and genetically modified animals have been integral in refining our understanding of mucositis.
Collapse
|
12
|
Xiang DC, Yang JY, Xu YJ, Zhang S, Li M, Zhu C, Zhang CL, Liu D. Protective effect of Andrographolide on 5-Fu induced intestinal mucositis by regulating p38 MAPK signaling pathway. Life Sci 2020; 252:117612. [PMID: 32247004 DOI: 10.1016/j.lfs.2020.117612] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/28/2022]
Abstract
AIMS Intestinal mucositis is the most common side effect of 5-fluorouracil (5-Fu) treatment in cancer patients. Previous research suggested that andrographolide (Andro) attenuated the intestinal injury in colitis or diarrhea in mice. The present study was aimed at investigating the protective effect of Andro against 5-Fu induced intestinal mucositis and the underlying mechanism. MAIN METHODS BALB/C mice were injected 5-Fu at a dose of 100 mg/kg for 5 days to induce intestinal mucositis. Andro at different doses (25, 50, 100 mg/kg/day) was administered. Weight loss, diarrhea score, cellular apoptosis and proliferation were evaluated. Apoptosis related proteins were detected by Western blotting. Then, NCM460 cells were used to explore the possible mechanism in vitro. The effect of Andro on the anti-tumor efficacy of 5-Fu was investigated in H22 tumor-bearing mice. KEY FINDINGS Andro significantly ameliorated the 5-Fu induced weight loss and diarrhea. The apoptosis of intestinal cells was also attenuated by Andro treatment both in vivo and in vitro. Besides, Andro markedly down-regulated the 5-Fu-induced protein expression of caspase8/3, Bax and the phosphorylation of p38. Moreover, 5-Fu significantly reduced the viability of NCM460 cells, which was restored by the Andro pretreatment. Furthermore, asiatic acid, an agonist of p38 MAPK, reversed the anti-apoptotic effect of Andro in NCM460 cells. Andro did not weaken the anti-H22 tumor effect of 5-Fu in vivo. SIGNIFICANCE We have demonstrated that p38 MAPK inhibition mediates anti-apoptotic effects of Andro against 5-Fu induced intestinal mucositis, suggesting that Andro may benefit the patients undergoing 5-Fu based chemotherapy.
Collapse
Affiliation(s)
- Dao-Chun Xiang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Pharmacy, The Central Hospital of Wuhan,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Jin-Yu Yang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan-Jiao Xu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Si Zhang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Li
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen Zhu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng-Liang Zhang
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Park JM, Lee HJ, Sikiric P, Hahm KB. BPC 157 Rescued NSAID-cytotoxicity Via Stabilizing Intestinal Permeability and Enhancing Cytoprotection. Curr Pharm Des 2020; 26:2971-2981. [PMID: 32445447 DOI: 10.2174/1381612826666200523180301] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/19/2020] [Indexed: 02/08/2023]
Abstract
The stable gastric pentadecapeptide BPC 157 protects stomach cells, maintains gastric integrity against various noxious agents such as alcohol, nonsteroidal anti-inflammatory drugs (NSAIDs), and exerts cytoprotection/ adaptive cytoprotection/organoprotection in other epithelia, that is, skin, liver, pancreas, heart, and brain. Especially BPC 157 counteracts gastric endothelial injury that precedes and induces damage to the gastric epithelium and generalizes "gastric endothelial protection" to protection of the endothelium of other vessels including thrombosis, prolonged bleeding, and thrombocytopenia. In this background, we put the importance of BPC 157 as a possible way of securing GI safety against NSAIDs-induced gastroenteropathy since still unmet medical needs to mitigate NSAIDs-induced cytotoxicity are urgent. Furthermore, gastrointestinal irritants such as physical or mental stress, NSAIDs administration, surfactants destroyer such as bile acids, alcohol can lead to leaky gut syndrome through increasing epithelial permeability. In this review article, we described the potential rescuing actions of BPC 157 against leaky gut syndrome after NSAIDs administration for the first time.
Collapse
Affiliation(s)
- Jong M Park
- Department of Pharmacology Daejeon University College of Oriental Medicine, Daejeon, Korea
| | - Ho J Lee
- University of Gachon Lee Gil Ya Cancer and Diabetes Institute, Incheon, Korea
| | - Predrag Sikiric
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Ki B Hahm
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam, Korea
- Digestive Disease Center, CHA University Bundang Medical Center, Pangyo, Korea
| |
Collapse
|
14
|
Park SM, Jeon SK, Kim OH, Ahn JY, Kim CH, Park SD, Lee JH. Anti-tumor effects of the ethanolic extract of Trichosanthes kirilowii seeds in colorectal cancer. Chin Med 2019; 14:43. [PMID: 31624493 PMCID: PMC6781338 DOI: 10.1186/s13020-019-0263-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/19/2019] [Indexed: 01/16/2023] Open
Abstract
Background Trichosanthis semen, the seeds of Trichosanthes kirilowii Maxim. or Trichosanthes rosthornii Harms, has long been used in Korean medicine to loosen bowels and relieve chronic constipation. Although the fruits and radixes of this medicinal herb and their constituents have been reported to exhibit therapeutic effects in various cancers, the anti-cancer effects of its seeds have been relatively less studied. In this study, we investigated the effects of an ethanolic extract of T. kirilowii seeds (TKSE) against colorectal cancer and its mechanism. Methods The anti-tumor effects of the TKSE were evaluated in HT-29 and CT-26 colorectal cancer cells and in a CT-26 tumor-bearing mouse model. Results TKSE suppressed the growth of HT-29 and CT-26 cells (both colorectal cancer cell lines) and the cytotoxic effect of TKSE was greater than that of 5-fluorouracil (5-Fu) in HT-29 cells. TKSE significantly induced mitochondrial membrane potential loss in HT-29 and CT-26 cells and dose-dependently inhibited Bcl-2 expression and induced the cleavages of caspase-3 and PARP. In particular, TKSE at 300 µg/mL induced nuclear condensation and fragmentation in HT-29 cells. Furthermore, TKSE dose-dependently inhibited activations of the Akt/mTOR and ERK pathways, and markedly induced the phosphorylation of AMPK. An AMPKα inhibitor (compound C) effectively blocked the TKSE-induced mitochondrial dysfunction. In addition, TKSE attenuated the hypoxia-inducible factor-1α/vascular endothelial growth factor signaling pathway in HT-29 cells under hypoxic-mimic conditions and inhibited migration and invasion. Oral administration of TKSE (100 or 300 mg/kg) inhibited tumor growth in a mouse CT-26 allograft model but was not as effective as 5-Fu (the positive control), which was administered intraperitoneally. In the same model, 5-Fu caused significant body weight loss, but no such loss was observed in TKSE-treated mice. Conclusion Taken together, these results suggest TKSE has potent anti-tumor effects which might be partly due to the activation of AMPK, and the induction mitochondrial-mediated apoptosis in colorectal cancer cells. These findings provide scientific evidence supporting the potential use of TKSE as a complementary and alternative medicine for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Su Mi Park
- 1Department of Korean Medicine, College of Korean Medicine, Dongguk University, Goyang, 10326 Republic of Korea
| | - Sang Kyu Jeon
- 1Department of Korean Medicine, College of Korean Medicine, Dongguk University, Goyang, 10326 Republic of Korea
| | - Ok Hyeon Kim
- 1Department of Korean Medicine, College of Korean Medicine, Dongguk University, Goyang, 10326 Republic of Korea
| | - Jung Yun Ahn
- 1Department of Korean Medicine, College of Korean Medicine, Dongguk University, Goyang, 10326 Republic of Korea
| | - Chang-Hyun Kim
- 2Department of Medicine, College of Medicine, Dongguk University, Goyang, 10326 Republic of Korea
| | - Sun-Dong Park
- 1Department of Korean Medicine, College of Korean Medicine, Dongguk University, Goyang, 10326 Republic of Korea
| | - Ju-Hee Lee
- 1Department of Korean Medicine, College of Korean Medicine, Dongguk University, Goyang, 10326 Republic of Korea
| |
Collapse
|
15
|
Wenqin D, Yaodong Z, Wanji S, Fengli Z, Li S, Haili J, Ping L, Mei Z. Armillariella Oral Solution Ameliorates Small Intestinal Damage in a Mouse Model of Chemotherapy-Induced Mucositis. Nutr Cancer 2019; 71:1142-1152. [PMID: 31210536 DOI: 10.1080/01635581.2019.1599029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: Armillariella oral solution (AOS) shows therapeutic effect on gastrointestinal disorders. We aimed to investigate the potential efficacy of AOS on chemotherapy-induced intestinal mucositis in mice. Methods: Intestinal mucositis was induced in C57BL/6 mice by daily intraperitoneal injection of 5-FU (50 mg/kg) for 7 days. Effects of AOS (at 1, 5, and 10 mL/kg), or combined Bifidobacterium and Lactobacillus (CBL, 450 mg/kg) on the accompanying morphometry and histology, expression of Ki-67, caspase-3, Lgr5 and apoptosis of intestinal crypt cells were assessed. Results: Continuous administration of 5-FU to mice caused severe intestinal mucositis, which was histologically characterized by the destruction of intestinal crypts and shortening of villi, accompanied by diarrhea and body weight loss. Daily AOS administration dose-dependently reduced the severity of intestinal mucositis, diarrhea and body weight loss. Similar beneficial effects were observed with CBL. The expression of Ki-67 and Lgr5 decreased and the expression of caspase-3, and the number of apoptotic cells increased 24 h after the first 5-FU administration (P < 0.05), and these responses were significantly reduced by AOS treatment (P < 0.05, at 5 or 10 mL/kg). Conclusions: AOS can alleviate 5-FU-induced mucositis in mice via increasing Lgr5 expression and suppressing apoptotic responses in the intestinal crypt cells.
Collapse
Affiliation(s)
- Dong Wenqin
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Zhu Yaodong
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Song Wanji
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Zhang Fengli
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Su Li
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Jiang Haili
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Li Ping
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| | - Zhang Mei
- Department of Chinese Integrated Medicine Oncology, First Affiliated Hospital of Anhui Medical University , Hefei , Anhui Province , China
| |
Collapse
|
16
|
Pivotal role of carnosine in the modulation of brain cells activity: Multimodal mechanism of action and therapeutic potential in neurodegenerative disorders. Prog Neurobiol 2018; 175:35-53. [PMID: 30593839 DOI: 10.1016/j.pneurobio.2018.12.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/13/2018] [Accepted: 12/23/2018] [Indexed: 12/24/2022]
Abstract
Carnosine (β-alanyl-l-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Although discovered more than a hundred years ago and having been extensively studied in the periphery, the role of carnosine in the brain remains mysterious. Carnosinemia, a rare metabolic disorder with increased levels of carnosine in urine and low levels or absence of carnosinase in the blood, is associated with severe neurological symptoms in humans. This review deals with the role of carnosine in the brain in both physiological and pathological conditions, with a focus on preclinical evidence suggesting a high therapeutic potential of carnosine in neurodegenerative disorders. We review carnosine and carnosinemia's discoveries and the extensive research on the role and benefits of carnosine in the periphery. We then turn to carnosine's biochemistry and distribution in the brain. Using an array of recent observations as a foundation, we draw a parallel with the role of carnosine in muscles and speculate on the role of carnosine in promoting the metabolic support of neurons by glial cells. Finally, carnosine has been shown to exert a multimodal activity including inhibition of protein cross-linking and aggregation of amyloid-β and related proteins, free radical generation, nitric oxide detoxification, and an anti-inflammatory activity. It could thus play an important role in the prevention and treatment of neurodegenerative diseases such as Alzheimer's disease. We discuss the potential of carnosine in this context and speculate on new preclinical research directions.
Collapse
|
17
|
Study on the Quality Evaluation of Compound Danshen Preparations Based on the xCELLigence Real-Time Cell-Based Assay and Pharmacodynamic Authentication. Molecules 2018; 23:molecules23092090. [PMID: 30134517 PMCID: PMC6225219 DOI: 10.3390/molecules23092090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/18/2018] [Accepted: 08/19/2018] [Indexed: 12/20/2022] Open
Abstract
Objective: To perform a preliminary study on the quality evaluation of compound Danshen preparations based on the xCELLigence Real-Time Cell-based Assay (RTCA) system and make a pharmacodynamics verification. Methods: The compound Danshen was discussed as a methodological example, and the bioactivity of the compound Danshen preparations were evaluated by real-time cell electronic analysis technology. Meanwhile, an in vivo experiment on an acute blood stasis rat model was performed in order to verify this novel evaluation through the curative effect of dissipating blood stasis. Results: We determined the cell index (CI) and IC50 of the compound Danshen preparations and produced time/dose-dependent cell response profiles (TCRPs). The quality of the three kinds of compound Danshen preparations was evaluated through the RTCA data. The trend of CI and TCRPs reflected the effect of drugs on the cell (promoting or inhibiting), and it was verified that the results correlated with the biological activity of the drugs using a pharmacodynamics experiment. Conclusion: The RTCA system can be used to evaluate the quality of compound Danshen Preparations, and it can provide a new idea and new method for quantitatively characterizing the biological activity of traditional Chinese medicines (TCMs).
Collapse
|
18
|
Doi H, Kuribayashi K, Kijima T. Utility of polaprezinc in reducing toxicities during radiotherapy: a literature review. Future Oncol 2018; 14:1977-1988. [PMID: 30074413 DOI: 10.2217/fon-2018-0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/21/2018] [Indexed: 01/22/2023] Open
Abstract
Chemoradiotherapy is important for treating malignancies. However, radiation-induced toxicities develop as chemoradiotherapy-related complications. Various agents reduce or prevent toxicities, but there are no standard treatments. Polaprezinc (PZ), a chelating compound used for gastric ulcers, has antioxidant and free radical scavenging effects. Although few studies have evaluated PZ and radiation-induced normal tissue damage, several clinical studies have shown the efficacy of PZ for oral mucositis, esophagitis, proctitis and taste alterations during and after radiotherapy. Moreover, preclinical data support the clinical data, indicating good potential of testing PZ in future trials. However, as there are only few well-documented review articles on PZ use in cancer treatment, we conducted this literature review. PZ reduced several radiation-induced toxicities and improved the quality of life.
Collapse
Affiliation(s)
- Hiroshi Doi
- Department of Radiation Oncology, Meiwa Cancer Clinic, Nishinomiya, Hyogo, Japan
- Department of Radiology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Department of Radiation Oncology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Kozo Kuribayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Takashi Kijima
- Division of Respiratory Medicine, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|